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Abstract: Bartlett correction is one of the desirable features of empirical
likelihood (EL) since it allows constructions of confidence regions with im-
proved coverage probabilities. Previous studies demonstrated the Bartlett
correction of EL for independent observations and for short-memory time
series. By establishing the validity of Edgeworth expansion for the signed
root empirical log-likelihood ratio, the validity of Bartlett correction of EL
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log3 n/n, which is different from the classical rate of reduction from n−1
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1. Introduction

Empirical likelihood (EL) is a nonparametric likelihood approach of statistical
inference introduced by Owen [30, 31, 32]. Let X1, X2, . . . , Xn be a sequence
of independent and identically distributed (i.i.d.) random variables satisfying
E(m(Xj , θ)) = 0, where θ ∈ R

k and m(Xj , θ) ∈ R
k is a vector-valued estimating

equation. The sample may be regarded as coming from a discrete probability
distribution concentrated only at the values m(Xj , θ). The EL is the largest
probability to attain the observed sample,

EL(θ) = max
pj







n
∏

j=1

pj |
n
∑

j=1

pjm(Xj , θ) = 0,

n
∑

j=1

pj = 1, pj ≥ 0







.
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It can be shown that EL(θ) = n−n without the constraint
∑n

j=1 pjm(Xj , θ) = 0.
Thus the profile EL ratio for the parameter of interest θ is attained through
dividing EL(θ) by n−n, i.e., R(θ) = EL(θ)/n−n ∈ [0, 1]. By the method of
Lagrange multiplier, R(θ) =

∏n
j=1 np̂j , where p̂j = 1/n(1 + tTm(Xj , θ)), and t

is the solution of equation

1

n

n
∑

j=1

m(Xj , θ)

1 + tTm(Xj , θ)
= 0. (1.1)

Therefore, the logarithm of the profile EL ratio is

l(θ) = −2 logR(θ) = 2

n
∑

j=1

log(1 + tTm(Xj , θ)). (1.2)

Qin and Lawless [34] proved that for just-identified estimating equations (i.e.
the number of estimating equations is the same as that of parameters) and true
parameter θ0,

l(θ0)
d→ χ2

k as n→ ∞,

which resembles the Wilks’s theorem for parametric likelihood. Consequently,
an asymptotic 100(1 − α)% EL confidence region for θ0 can be constructed
by Iα = {θ | l(θ) ≤ χ2

k,1−α}, where χ2
k,1−α is 1 − α quantile of chi-squared

distribution with k degrees of freedom.
The standard theory of EL requires the estimating functions {m(Xj, θ)} to

be independent across j. Monti [27] extended EL to time series models by con-
sidering

mj(θ) =
∂ log{f(ωj, θ)}

∂θ

{

In(ωj)

f(ωj , θ)
− 1

}

, (1.3)

which is the score function of Whittle likelihood

WL(θ) = −
n
∑

j=1

log{f(ωj, θ)} −
n
∑

j=1

In(ωj)

f(ωj , θ)
,

where In(ωj) =
1

2πn |
∑n

t=1Xt exp(−iωjt)|2, (i =
√
−1), is the periodogram or-

dinate at Fourier frequency ωj = 2πj/n for j ∈ Sn = {1, . . . , n} and f(ωj , θ) is
the spectral density function, belonging to a class of parametric family. Since
the periodogram ordinates are asymptotically independent for Gaussian short-
memory time series [6], the mj(θ) in (1.3) are asymptotically independent esti-
mating functions and the Wilks’s theorem for the periodogram-based EL statis-
tic can be established. Treating the periodogram collections {In(ωj) : j ∈ Sn} as
approximate independent in bootstrap context is discussed in Hurvich and Zeger
[23], and Kreiss and Paparoditis [25]. However, the dependence among the pe-
riodogram collection creates problems in estimation the dependence structure
when applied to Whittle score function [14]. Specifically, the dependence be-
tween different ordinates for non-Gaussian processes leads to an extra term,
which will vanish for Gaussian processes, in the asymptotic variance of Whittle
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score function. Based on a different Whittle-type estimating function, Ogata
[29] considered EL for non-Gaussian stationary processes. This frequency do-
main EL method is extended to a general framework included both short- and
long-range dependent series by Nordman and Lahiri [28].

Meanwhile, other approaches to EL in time series are considered. Kitamura
[24] studied blockwise EL for weakly dependent series. Chuang and Chan [12]
used martingale estimating equation to unstable autoregressive models. Chan
and Ling [8] extended this methodology to GARCH models.

One attractive feature of EL is Bartlett correction, which is a simple ad-
justment to the log-EL ratio that improves the approximation to the limiting
chi-squared distribution and hence achieves a better coverage accuracy. Define
the coverage error of EL confidence region by

Eα = P (l(θ0) ≤ χ2
k,1−α)− (1 − α).

Zhang [38] showed that for k = 1, Eα converges to 0 as n → ∞ with order
O(n−1), which can be reduced to O(n−2) by Bartlett correction technique. Hall
and La Scala [19] demonstrated the Bartlett correction for EL in the case θ = µ,
the population mean. Bartlett correction for smooth functions of means is estab-
lished by DiCiccio, Hall and Romano [15]. Chen and Cui [10] studied Bartlett
correction of EL for over-identified models (i.e., the number of estimating func-
tions is larger than that of parameters) in econometrics. Chan and Liu [9], based
on the periodogram version of EL, showed that Eα can be reduced from order
O(n−1) to o(n−1) for Gaussian short-memory time series.

It is unclear, however, whether Bartlett correction is applicable in long-
memory time series (LMTS). Hurvich and Beltrao [22] and Robinson [35] proved
that the periodogram ordinates of LMTS are asymptotically dependent for fre-
quencies near the origin. Therefore, the proof of Bartlett correction of EL for
weakly dependent data, which relies on the asymptotic independence of peri-
odograms, cannot be directly generalized to LMTS. In this paper, by establishing
the validity of the Edgeworth expansion for Gaussian LMTS, we prove that EL
is moderately Bartlett correctable, in the sense that, Eα is reduced from order
log6 n/n to log3 n/n. Although we only establish the Bartlett correctability of
EL for Gaussian distributed time series, this exploration provides a fundamental
step for further research in non-Gaussian cases. Moreover, our simulation results
demonstrate that the performance of Bartlett corrected EL is better than that
of the Bartlett corrected version of Whittle likelihood in ARFIMA models with
Gaussian noise, which justifies the usefulness of Bartlett correction of EL for
Gaussian distributed series.

This paper is organized as follows. Section 2 reviews LMTS models and
Bartlett correction of EL for i.i.d. observations and short-memory time series.
In Section 3, we establish the validity of Edgeworth expansion, which provides
a fundamental tool for the main results. Finally, Section 4 presents simulation
studies that demonstrate the good finite sample performance of Bartlett cor-
rection in ARFIMA models. Furthermore, we study the coverage error of both
Whittle likelihood ratio and Bartlett corrected statistics. Proofs of technical
results are given in the Appendix.
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Throughout the paper, the following notations will be adopted: O(1)(Op(1))
means a term (a random variable) which is bounded (in probability); o(1)(op(1))
denotes a term (a random variable) converging to zero (in probability); “a ∼ b”
means a/b → 1; Rk denotes the Euclidean space with dimension k; and K is a
generic constant.

2. Review of long-memory time series and Bartlett correction

2.1. Long-memory time series

Consider a weakly stationary real-valued process {Xt} with mean zero and
spectral density function

f(ω, θ) ∼ Kω−θ as ω → 0+, (2.1)

where K > 0 and θ ∈ R. The parameter θ is known as the memory parameter.
The processXt is said to have short-memory when θ = 0, long-memory when θ ∈
(0, 1), and negative-memory when θ ∈ (−1, 0). This model includes two widely
used long-memory parametric models: the ARFIMA model [17, 20], where the
fractional parameter d is defined by d = θ/2, and the fractional Gaussian noise
model [26], where the self-similar parameter H satisfies H = (θ + 1)/2. For
details, see Beran [4].

Note that the spectral density function is unbounded but integrable at the
origin. Due to this singularity, periodogram ordinate is asymptotically biased
estimators for spectral density at low frequencies (see Lemma B.4 below). Dif-
ferent periodogram ordinates are also asymptotically correlated when the fre-
quencies tend to zero (see Lemma B.4 below). However, when associated Fourier
frequencies are separated by a fixed distance, periodograms are asymptotically
uncorrelated (see Lemmas B.2 and B.3 below).

2.2. Bartlett correction of EL

For i.i.d. real-valued estimating functions, it can be shown that E(l(θ0)) = 1 +
b/n+O(n−2), for some constant b. Bartlett correction corresponds to multiplying
a scaling factor 1 + bn−1 to the pivot χ2

1,1−α. Then the Bartlett corrected EL

confidence interval is given by I
′

α = {θ | l(θ) ≤ (1+ b
n )χ

2
1,1−α}. Define the signed

root empirical log-likelihood ratio SR = R1 +R2 +R3 by

l(θ0) = nSR2 +Rn = n(R1 +R2 +R3)
2 +Rn,

where R1 = Op(n
−1/2), R2 = Op(n

−1), R3 = Op(n
−3/2) and Rn = Op(n

−3/2).
Bartlett correction of EL bases on the Edgeworth expansion for the probability
density function (p.d.f.) of

√
nSR. The idea behind this is to prove that the

distribution of squared root of EL converges to normal. For example, in the
i.i.d. case, the density admits the formula expansion

π(x) = φ(x)+n−1/2r1(x)φ(x)+n
−1r2(x)φ(x)+n

−3/2r3(x)φ(x)+O(n
−2), (2.2)
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where φ(x) is the p.d.f. of a standard normal random variable; r1 and r3 are odd
polynomials and r2 is an even polynomial of degree 2. Unlike other statistics
in general, r2 does not involve terms of degree 4 and 6. This feature makes
EL Bartlett correctable valid because the scaling of EL completely removes all
terms of order n−1 in (2.2). Letting cα = χ2

1,1−α and c
′

α = cα(1 + bn−1), we
have

P (θ0 ∈ I
′

α) = P (l(θ0) ≤ c
′

α) = P ((
√
nSR)2 +Rn ≤ c

′

α)

=

∫

√
c′α

−
√

c′α

φ(x) dx +

∫

√
c′α

−
√

c′α

{

n−1/2r1(x)φ(x) + n−1r2(x)φ(x)

+ n−3/2r3(x)φ(x)
}

dx+O(n−3/2) = 1− α+O(n−3/2),

where the O(n−3/2) in the last equality is in fact O(n−2) [3]. Thus Bartlett
correction improves the coverage accuracy from O(n−1) to O(n−2). For short-
memory time series, we have

E(In(ωj)) = f(ωj, θ0)−
c

n
+ o(n−2), (2.3)

where

c =
1

2π

∞
∑

j=−∞
| j | γ(j)e−ijωj .

It can be seen from (2.3) that periodograms are asymptotic unbiased estima-
tors for spectral density functions, with convergence rate O(n−1). In this case,
Chan and Liu [9] constructed the profile EL estimating function through mj(θ)
as Monti [27]. Through deriving orders of first four moments of mj(θ), they
obtained the coefficients of polynomials in Edgeworth expansion (2.2). In par-
ticular, the expectation of the sample mean function at the true value θ0 is

E (m) = E





1

n

n
∑

j=1

mj(θ0)



 ∼ Kn−1, (2.4)

where mj(θ0) is given by (1.3). Because of the order n−1 bias, terms of degrees
4 and 6 in r2, terms of degree 3 in r1 and degree 5 in r3 vanish. Based on these
results, they deduced the Edgeworth expansion of signed root empirical log-
likelihood with a different form for Gaussian short-memory time series, leading
to an inaccurate improvement of coverage accuracy. For LMTS, however, (2.3)
does not hold, i.e., E(m) does not converge to zero at rate n−1. In Lemma 3.1
below, we obtain the order O(log3 n/n) of E(m) in LMTS by carefully bounding
the summation in m over different ranges of frequencies in the entire collection.
Due to this larger bias involving logn, an irregular form Edgeworth expansion
is established to show a “slight” Bartlett correctability in the next Section.
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3. Main results

3.1. Assumptions

Before establishing the validity of Edgeworth expansion and Bartlett correction,
we impose the following Assumptions.

Assumptions.

1. {Xt} is a real-valued linear weakly stationary process satisfying

Xt =

∞
∑

u=0

auǫt−u,

where a0 = 1, and
∑∞

u=0 a
2
u <∞. The noise process {ǫt} is a sequence of

Gaussian i.i.d. random variables with E(ǫt) = 0 and finite known innova-
tion variance E(ǫ2t ) = σ2

ǫ .
2. The spectral density function of {Xt} is given by

f(ω, θ) =
σ2
ǫ

ω2d
f∗(ω),

where d = θ/2 ∈ (0, 12 ) is parameter of interest, and f∗(ω) is an even,
positive, continuous function on [−π, π], bounded above and away from
zero. In addition, we assume that the true spectral density (

√
−1 = i),

f(ω) =
1

2π

∞
∑

k=−∞
Cov(Xt, Xt+k) exp(−iωk) = f(ω, θ).

The Gaussian assumption is used to deduce bounds for higher order moments
of m (see Lemma B.7 below). This condition rules out distributions supported
on lattice, and implies Cramér’s condition lim supτ→∞ |E(exp(iτXt))| < ∞,
which is necessary for valid Edgeworth expansion establishment. Assumption
2 ensures the integrability of spectral density function and the existence of a
positive definite autocovariance function for {Xt}. By the approximation ω2d ∼
|1 − exp(−iω)|2d as ω → 0, Assumption 2 can be applied to ARFIMA models

with spectral density
σ2

ǫ

2π
1

|1−exp(−iω)|2d f̃(ω), for f̃(ω) is bounded above and away

from zero for all ω.

3.2. Bartlett correction in Gaussian LMTS

To study the Bartlett correction of EL, we first establish the stochastic expansion
of l(θ0). We begin with Lemma 3.1, which evaluates the bias of the estimating
equation. For simplicity, define mj := mj(θ0) and for k = 2, 3, 4, let

λk = E





1

n

n
∑

j=1

mk
j



 and ∆k =
1

n

n
∑

j=1

(mk
j − λk). (3.1)
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Lemma 3.1. Under Assumptions 1–2, we have

E (m) = O

(

log3 n

n

)

, and Var (m) = O

(

1

n

)

. (3.2)

Unlike the bias in (2.4) for SMTS of order n−1, the larger bias in (3.2) for
LMTS results from the dependence of periodogram ordinates at frequencies near
origin. However, if the integers j in Fourier frequency ωj = 2πj/n are allowed to
increase at a comparable rate with the sample size, i.e., j/n = j(n)/n ∈ (0, 1],
then the periodogram ordinates are independently chi-squared distributed (see
Lemmas B.2 and B.3). Hence, after some tedious calculations, variance of the
estimating function is bounded above by an order n−1 quantity. By applying
Chebyshev’s inequality to (3.2), we have m = Op(n

−1/2). Together with Lemma
B.7 in the Appendix, we establish the stochastic expansion for periodogram-
based log-EL ratio,

1

n
l(θ0) =

m2

λ2
− m2∆2

λ22
+

2

3

λ3m
3

λ32
+
m2∆2

2

λ32
+

2

3

m3∆3

λ32
− 2

λ3m
3∆2

λ42

+
λ23m

4

λ52
− 1

2

λ4m
4

λ42
+Op

(

n− 5

2

)

. (3.3)

Details to derive this formula are given in the proof of Theorem 3.1. Based on
(3.3), the signed root empirical log-likelihood ratio SR = R1 +R2 +R3, where
Rj = Op(n

−j/2), can be derived as follows. By collecting the terms of order
Op(n

−1) in (3.3) and comparing them to R2
1, we have

R1 =
m√
λ2
.

By collecting terms of order Op(n
−3/2) and comparing them to 2R1R2, we have

R2 =
1

3

λ3m
2

λ
5/2
2

− 1

2

m∆2

λ
3/2
2

.

Lastly, by collecting terms of order Op(n
−2) and comparing them to 2R1R3+R

2
2,

we have

R3 =
3

8

m∆2
2

λ
5/2
2

+
1

3

m2∆3

λ
5/2
2

− 5

6

λ3m
2∆2

λ
7/2
2

+
4

9

λ23m
3

λ
9/2
2

− 1

4

λ4m
3

λ
7/2
2

.

Using the above Rj forms, Lemma 3.2 gives the asymptotic expansions on the
cumulants of

√
nSR.

Lemma 3.2. Let kj , j = 1, . . . , 4, be the first four cumulants of
√
nSR. The

asymptotic expansion for kj is given by

k1 = k1,1
log3 n√

n
+ k1,2

1√
n
+ k1,3

1

n
+O

(

log6 n

n3/2

)

, (3.4)
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k2 = k2,1 + k2,2
log6 n

n
+ k2,3

log3 n

n
+ k2,4

1

n
+O

(

log9 n

n2

)

, (3.5)

k3 = k3,1
1√
n
+ k3,2

1

n
+O

(

log9 n

n3/2

)

, (3.6)

k4 = k4,1
1

n
+O

(

log12 n

n2

)

, (3.7)

where the coefficients in the asymptotic expansion satisfy

k1,1 =
1√
λ2

n

log3 n
cum (m) , (3.8)

k1,2 =
n

3

λ3

λ
5/2
2

ρ11 −
n

2

1

λ
3/2
2

ρ12, (3.9)

k2,2 = −2

3

λ3
λ32

n2

log6 n
cum2 (m) ,

k2,3 =
n2

log3 n

(

4

3

λ3
λ32
ρ11 −

1

λ22
ρ12

)

cum(m)

k2,4 = −n
2

λ22
ρ112 + n2 2

3

λ3
λ32
ρ111 + n2 7

4

1

λ32
ρ212 − n2 17

3

λ3
λ42
ρ11ρ12

+ n2 1

λ32
ρ11ρ22 + n2 2

λ32
ρ11ρ13 + n2

(

26

9

λ23
λ52

− 3

2

λ4
λ42

)

ρ211,

k2,1 = 1, k1,3 = k3,1 = k3,2 = k4,1 = 0,

and ρuv and ρuvw are defined as

ρuv = cum





1

n

n
∑

j=1

mu
j ,

1

n

n
∑

j=1

mv
j



 ,

ρuvw = cum





1

n

n
∑

j=1

mu
j ,

1

n

n
∑

j=1

mv
j ,

1

n

n
∑

j=1

mw
j



 .

Note that ku,vs are bounded by some constants, for u, v ∈ S4 = {1, 2, 3, 4}.
Then the cumulants expansions (3.4)–(3.7) lead to the coefficients of polyno-
mials in the Edgeworth expansion for

√
nSR. Due to the larger bias in (3.2),

the expansion has an irregular form with a decreasing power series of order
log3 n/

√
n instead of order

√
n in weakly dependent case (2.2).

Theorem 3.1. Under Assumptions 1–2, the p.d.f. π(x) of
√
nSR admits a valid

Edgeworth expansion

π(x) = φ(x) +
r1(x) log

3 n√
n

φ(x) +
r2(x) log

6 n

n
φ(x) +O

(

log9 n

n3/2

)

, (3.10)
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where

r1(x) =

√
n

log3 n

{

k1x+
1

6
k3(x

3 − 3x)

}

,

r2(x) =
n

log6 n

1

2
(k2 − 1 + k21)(x

2 − 1),

and r1, r2 are bounded above and below.

With the particular form of Edgeworth expansion in (3.10), calculating the
coverage error of EL is equivalent to calculating the integral of the density
expansion of signed root decomposition. It is noted that the decreasing series
of power log3 n/

√
n makes the coverage error larger than conventional one for

i.i.d. data.

Theorem 3.2. If Assumptions 1–2 hold, then

P (l(θ0) ≤ cα) = 1− α+O

(

log6 n

n

)

.

Theorem 3.2 says that the coverage error of order log6 n/n is larger for LMTS,
which is larger than that of i.i.d. data or short-memory time series. The expec-
tation of the periodogram-based log-EL ratio in this case becomes

E(l(θ0)) = E(
√
nSR)2 +O(n−3/2) =

∫ ∞

−∞
x2π(x) dx +O(n−3/2)

=

∫ ∞

−∞
{x2φ(x) + x2r1(x)φ(x) log

3 n/
√
n+ x2r2(x)φ(x) log

6 n/n} dx

+O(log9 n/n3/2) = 1 + b log6 n/n+O(log9 n/n3/2),

where b =
∫∞
−∞ x2r2(x)φ(x) dx. The feature that r2 has no term of degree 4 or 6

prompts us to scale l(θ0) by 1 + b log6 n/n for a more accurate approximation.
In contrast to short-memory time series, the additional terms k1,1 and k1,2 in
(3.4) in LMTS prevent the coverage error from reducing to n−2 via Bartlett
correction. However, this scaling adjustment can remove terms involving k2,1
and k2,2 in (3.5) such that a “slight” Bartlett correction (i.e., from O(log6 n/n)
to O(log3 n/n)) can be still achieved.

Theorem 3.3. Define c∗α = (1 + b log6 n/n)cα. Under Assumptions 1–2, it
follows that

P (l(θ0) ≤ c∗α) = 1− α+O

(

log3 n

n

)

,

where b = k21,1 + k2,2, and k1,1, k2,2 are given by (3.8) and (3.9).

In practice, b is unknown, the Bootstrap method in DiCiccio, Hall and Ro-
mano [15], Monti [27] and Yau [37] can be used to estimate b from the data.
We mention the procedure for the sake of completeness. First, for each series,
we calculate the normalized periodogram {In(ωj)/f(ωj , θ)}. Since In(π + λ) =
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In(π − λ), we can restrict our attention to the frequencies ωj = 2πj/n for
j = 1, 2, . . . , [(n− 1)/2]. Define T = [(n− 1)/2], we calculate

yj =
In(ωj)

f(ωj, θ̂)

/

1

T

T
∑

l=1

In(ωl)

f(ωl, θ̂)
,

where θ̂ is a consistent estimator of θ. Let FT be the empirical distribution
function that assigns mass T−1 to each yj . A bootstrap sample (ya1 , y

a
2 , . . . , y

a
T )

can be obtained by resampling from FT with replacement. Then, using Ian(ωj) =

yaj f(ωj , θ̂), we get the resampled periodogram Ian(ω1), I
a
n(ω2), . . . , I

a
n(ωT ). Using

the resampled periodogram, we compute the periodogram-based log-EL ratio
{l̂(θ̂T )}. The resampling procedure is repeated for B times to obtain a new set

{l̂a(θ̂T )}, a = 1, 2, . . . , B. Finally, we estimate the unknown factor b̂ by

1

B

B
∑

a=1

l̂a(θ̂n) = 1 +
b̂ log6 n

n
.

Consequently, the Bartlett corrected confidence interval is given by
{

θ ∈ Θ | l(θ) ≤ χ2
1,1−α

(

1 +
b̂ log6 n

n

)}

.

Remark 1. For Gaussian time series, higher order cumulants of the peri-
odogram ordinates can be decomposed into products of the second order cumu-
lants of DFT, where terms with the third or higher order cumulants of DFT can
be neglected. However, for non-Gaussian time series, the higher order cumulants
of DFT are non-negligible. For example, for two different Fourier frequencies ωj

and ωk, j 6= k in general,

cum(In(ωj), In(ωk)) = cum2(Jn(ωj), Jn(ωk))cum
2(Jn(ωj), Jn(ω−k))

+ cum(Jn(ωj), Jn(ω−j), Jn(ωk), Jn(ω−k)).

For non-Gaussian time series, the fourth order cumulant term in the above
equation is non-zero. Therefore, the calculation of higher order cumulants of pe-
riodogram ordinates becomes substantially complicated. It is thus much more
difficult to establish the valid Edgeworth expansion for the signed root empir-
ical log-likelihood ratio statistic for non-Gaussian processes. In this case, it is
unknown whether empirical likelihood is still Bartlett correctable.

4. Simulation studies

In this Section, we performMonte Carlo experiments to demonstrate the Bartlett
correction of EL for LMTS models. A simple LMTS model, ARFIMA (0, d, 0),
is used. Also, we compare the performance of Whittle likelihood ratio test and
Bartlett corrected test, under ARFIMA models. All the simulations in this ar-
ticle are conducted using R version 2.15.1.
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Table 1

Coverage errors of EL and Bartlett corrected EL confidence intervals for ARFIMA (0, d, 0)
models, replications =1,000

Two-sided coverage error One-sided coverage error

d=0.1 d=0.2 d=0.3 d=0.4 d=0.1 d=0.2 d=0.3 d=0.4
n = 200 n = 200

EL 0.0469 0.0392 0.0302 0.0393 0.0469 0.0392 0.0302 0.0419
Bart. EL 0.0227 0.0169 0.0067 0.0527 0.0227 0.0169 0.0112 0.0717

n = 1,000 n = 1,000
EL 0.036 0.01 0.008 0.02 0.036 0.028 0.03 0.02

Bart. EL 0.0223 0.008 0.003 0.023 0.0223 0.024 0.027 0.023
n = 1,500 n = 1,500

EL 0.028 0.003 0.006 0.025 0.028 0.007 0.008 0.025
Bart. EL 0.021 0.001 0.002 0.022 0.021 0.007 0.004 0.022

The ARFIMA (p, d, q) process Xt with memory parameter d is given by

φ(B)Xt = (1−B)−dψ(B)ǫt, ǫt
i.i.d.∼ N(0, 1),

where N(0, 1) denotes the standard normal distribution with mean 0 and vari-
ance 1, ψ(B) = (1− ψ1B − · · · − ψqB

q) and φ(B) = (1− φ1B − · · · − φpB
p).

Recall that the asymptotic 1 − α confidence interval for d = θ/2 is given
by Iα(d) = {d | l(d) ≤ cα} and the Bartlett corrected confidence interval is
I
′

α(d) = {d | l(d) ≤ c∗α}. To construct Iα(d) and I
′

α(d), we substitute various
values of d into the log-EL ratio and compare them with the critical value cα.
The simulations are conducted for d0 = 0.1, 0.2, 0.3, 0.4. In Table 1, we compare
Eα and E

′

α for α = 0.05 and sample sizes n = 200, 1,000 and 1,500. In each
case, 1,000 replications are drawn. In the procedure of Bootstrap sampling, we
adopt the Whittle maximum likelihood estimator as the consistent estimator
and set the resampling replications B to be 500.

We use the coverage error to evaluate the performance of the asymptotic
distribution confidence intervals. Let d0, d[α/2] and d[1−α/2] be the true value
of the parameter, the lower and the upper endpoints of the confidence interval,
respectively. The one-sided and two-sided coverage error are defined by

∣

∣P{d0 < d[α/2]} − α/2
∣

∣+
∣

∣P{d0 > d[1−α/2]} − α/2
∣

∣ ,

and
∣

∣P{(d0 < d[α/2]) ∪ (d0 > d[1−α/2])} − α
∣

∣ .

The simulations show that the coverage accuracy of both confidence intervals
is higher for larger n, which supports that both of the two statistics tend to a χ2

1

variate. Also, except for d = 0.4 and n ≤ 1,000, Bartlett corrected intervals have
smaller coverage error than the non-Bartlett corrected counterparts. Figures 1a–
1c present the QQ plot between the log-EL ratio and Bartlett corrected log-EL
ratio and the χ2

1 random variable. The closer the lines to the 45◦ straight line,
the more accurate the corresponding asymptotic distribution. As it is found that
for large n, the asymptotic accuracy of both the EL and the Bartlett corrected
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Fig 1. QQ plot for Bartlett correction in the ARFIMA (0, d, 0) models.

Table 2

Coverage errors of Whittle and Bartlett corrected confidence intervals for ARFIMA (0, d, 0)
models, replications= 1,000

Two-sided coverage error One-sided coverage error

d=0.1 d=0.2 d=0.3 d=0.4 d=0.1 d=0.2 d=0.3 d=0.4
n = 200 n = 200

EL 0.011 0.006 0.007 0.019 0.011 0.006 0.007 0.019
Bart. EL 0.034 0.051 0.053 0.057 0.041 0.051 0.053 0.057

n = 1,000 n = 1,000
EL 0.003 0.002 0.001 0.012 0.03 0.002 0.003 0.012

Bart. EL 0.007 0.01 0.006 0.015 0.03 0.04 0.044 0.033

EL are very similar, we only show the cases with small sample sizes. It can be
seen that the Bartlett correction does improve the approximation.

Alternatively, we may use Whittle likelihood ratio test to construct the con-
fidence interval, because Hosoya [21] proved for LMTS that

−2{WL(d0)−WL(d̂)} d→ χ2
1,

where d̂ is a consistent estimator of d. However, Bartlett correction does not work
for Whittle likelihood ratio statistic in finite sample performance. To show this,
we further compare coverage error of Whittle likelihood ratio test and Bartlett
corrected test with α = 0.05 and sample sizes n = 50, 200 and 500. In calculating
the Bartlett correction factor step, we also adopt the Whittle estimator as the
consistent estimator, and the Bootstrap iteration is set to 500 times.

The simulation results in Table 2 show that the Whittle likelihood ratio
converges to chi-squared random variable as sample size increases. However,
the Bartlett corrected coverage error does not converge to zero in general. But
this technique fails to improve the conventional Whittle likelihood ratio test in
almost all cases. This feature provides our periodogram-based EL superior in
real applications.

To explore the applicability of Bartlett correction for non-Gaussian LMTS,
we conducted a small scale simulation studies on the coverage accuracies of
Bartlett corrected EL confidence intervals for ARFIMA(0, d, 0) models with
t5 and Exp(1) white noise process. We considered nominal coverage error of
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Table 3

Two-sided coverage errors of Bartlett corrected EL confidence intervals for ARFIMA

(0, d, 0) models with non-Gaussian noises, replications =1,000

t5 Exp(1)

d=0.1 d=0.2 d=0.3 d=0.4 d=0.1 d=0.2 d=0.3 d=0.4
n = 200 n = 200

EL 0.047 0.046 0.038 0.062 0.037 0.042 0.045 0.04
Bart. EL 0.035 0.039 0.036 0.06 0.032 0.029 0.027 0.045

n = 1,000 n = 1,000
EL 0.027 0.033 0.02 0.028 0.03 0.017 0.012 0.02

Bart. EL 0.011 0.025 0.012 0.021 0.028 0.011 0.003 0.006

α = 0.05 and sample sizes of n = 200 and 1,000. The results are summarized in
Table 3. It can be seen that the coverage errors of EL confidence intervals can
be reduced by Bartlett correction even for non-Gaussian noises.
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Appendix A: Proofs of theorems

Proof of Theorem 3.1. In order to study Edgeworth expansion of density for
signed root empirical log-likelihood ratio, we need to develop stochastic expan-
sion for l(θ0). First, we establish that t is small of order Op(n

−1/2). For the
score function mj = m(Xj , θ0) evaluated at the true value θ0, t is the solution
to the equation

1

n

n
∑

j=1

mj

1 + tmj
= 0. (A.1)

Substituting 1/(1 + tmj) = 1 − tmj/(1 + tmj) into (A.1) and simplifying, we
have

1

n

n
∑

j=1

mj =
1

n

n
∑

j=1

tm2
j

1 + tmj
. (A.2)

Since pj > 0 and pj =
1
n

1
1+tmj

, we have 1 + tmj > 0, and

t
1

n

n
∑

j=1

m2
j ≤ t

1

n

n
∑

j=1

m2
j

1 + tmj
(1 + max

1≤j≤n
tmj)
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=
1

n

n
∑

j=1

mj(1 + t max
1≤j≤n

mj), (A.3)

where the equality in (A.3) follows from (A.2). By Lemma 3.1, we have

1

n

n
∑

j=1

mj = Op(n
−1/2). (A.4)

By Lemma B.7 in Appendix B, we have

1

n

n
∑

j=1

m2
j = λ2 +Op(n

−1/2) = Op(1). (A.5)

Also, from Hong-Zhi An et al. [2], we obtain

max
1≤j≤n

mj ≤ max
1≤j≤n

(

∂

∂θ
log f(ωj, θ)

)

max
1≤j≤n

(

In(ωj)

f(ωj , θ)

)

= O(log n)Op(logn) = Op(log
2 n). (A.6)

In conclusion, combining (A.3), (A.4), (A.5) and (A.6), it can be seen that

t = Op(n
−1/2).

Applying Taylor expansion to (A.1), we get

1

n

n
∑

j=1

mj(1 − tmj + (tmj)
2 + · · · ) = 0.

Solving for t, it follows that

t =
m

λ2
−m∆2

λ22
+
λ3m

2

λ32
+
m∆2

2

λ32
−3

λ3m
2∆2

λ42
+2

λ23m
3

λ52
+
m2∆3

λ32
−λ4m

3

λ42
+Op(n

−2).

Note that t = Op(n
−1/2). Substituting t into (1.2), we have the stochastic

expansion (3.3). Then Rjs and asymptotic expansions of kjs are obtained as
discussed in Section 3. The characteristic function of

√
nSR is thus given by

ψn(x) = exp

{

k1(ix) +
1

2
k2(ix)

2 +O

(

log9 n

n3/2

)}

= e−
x2

2

{

1 + k1(ix) +
1

2
(k2 − 1 + k21)(ix)

2

}

+O

(

log9 n

n3/2

)

.

Applying Fourier inversion formula to ψn(x) =
∫∞
−∞ eiτxπ(x) dτ , π(x) admits

the Edgeworth expansion (3.10). This completes the proof of Theorem 3.1.
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Proof of Theorem 3.2. From the Edgeworth expansion (3.10) of π(x), we have

P (l(θ0) ≤ cα)

= P (nSR2 +Rn) ≤ cα) =

∫

√
cα

−√
cα

φ(x) dx +

∫

√
cα

−√
cα

k1H1(x)φ(x) dx

+

∫

√
cα

−√
cα

(

1

2
(k2 − 1 + k21)H2(x)

)

φ(x) dx +O

(

log9 n

n3/2

)

= 1− α+O

(

log6 n

n

)

,

where Hj(x), j = 1, . . . , 6 are Hermite polynomials [18]. The order O(log6 n/n)
of error term comes from k2 − 1+ k21 . This completes the proof of Theorem 3.2.

Proof of Theorem 3.3. The proof relies on the Edgeworth expansion of density
for the corrected signed root empirical log-likelihood ratio, i.e., SR∗ = SR(1−
b log6 n

2n ), which requires the asymptotic expansion of the cumulants of
√
nSR∗.

Scaling the log-EL ratio by its mean, we have

l(θ0)/(1 + b log6 n/n) =

{√
nSR(1− b log6 n

2n
)

}2

+Op(n
−3/2)

= (
√
nSR∗)2 +Op(n

−3/2).

Using this equation, we can deduce the asymptotic expansion of k∗j , j = 1, . . . , 4,
which are the first four cumulants of

√
nSR∗,

k∗1 =
k1,1 log

3 n√
n

+
k1,2
n1/2

+O

(

log9 n

n3/2

)

, k∗2 = 1−
k21,1 log

6 n

n
+
k2,3 log

3 n

n
+O

(

1

n

)

,

k∗3 =
k3,1√
n

+O

(

log6 n

n3/2

)

, k∗4 =
k4,1
n

+O

(

log12 n

n2

)

.

Thus, the p.d.f. π∗(x) of
√
nSR∗ admits an Edgeworth expansion

π∗(x) = φ(x) +
r∗1(x) log

3 n√
n

φ(x) +
r∗2(x) log

6 n

n
φ(x) +O

(

log9 n

n3/2

)

,

where

r∗1(x) =

√
n

log3 n

[

k∗1H1(x) +
1

6
k∗3H3(x)

]

,

r∗2(x) =
n

log6 n

[

1

2
(k∗2 − 1 + (k∗1)

2)H2(x) + (
k∗4
24

+
k∗1k

∗
3

6
)H4(x) +

(k∗3)
2

72
H6(x)

]

.
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The coefficients of Hermite polynomials in r∗2(x) satisfy

k∗2 − 1 + (k∗1)
2 = (2k1,1k1,2 + k2,3)

log3 n

n
+O

(

1

n

)

,

1

6
k∗1k

∗
3 +

1

24
k∗4 =

k1,1k3,1
6

log3 n

n
+
k4,1
24

1

n
+O

(

log9 n

n3/2

)

,

1

72
(k∗3)

2 =
k23,1
72

1

n
+O

(

log6 n

n2

)

.

In the Appendix C, we show that k3,1 = k4,1 = 0. Hence, 1
6k

∗
1k

∗
3 + 1

24k
∗
4 and

1
72 (k

∗
3)

2 are bounded by O(log3 n/n). Consequently, after a standard argument,
the coverage probability follows

P (l(θ0) ≤ c∗α) = 1− α+O

(

log3 n

n

)

,

completing the proof of Theorem 3.3.

Appendix B: Technical lemmas for cumulant calculations

Let δ ∈ (0, 1) and ǫ > 0 be generic constants. Define the discrete Fourier trans-
form (DFT) Jn(ωj) as

Jn(ωj) =
1√
2πn

n
∑

t=1

Xte
−itωj .

Note that In(ωj) = Jn(ωj)Jn(ω−j) and Jn(ωj)/
√

f(ωj) is referred as the nor-
malized DFT. To calculate

∑n
j=1 R(In(ωj)/f(ωj)) for some functions R, we need

to study the limiting covariance of the normalized DFT for the whole frequency
domain. Define Λ = {j ∈ Sn : δn ≤ j ≤ n}, then ωj in this region are bounded
away from zero. The whole frequency region on the plane (0, 2π) × (0, 2π) can
be partitioned into four complementary regions

Λ1 = {(j, k) : j, k ∈ Λ; j 6= k ; |ωj − ωk| ≤ ǫ},
Λ2 = {(j, k) : j, k ∈ Λ; ǫ < |ωj − ωk| < 2π},
Λ3 = {(j, k) : j ∈ Sn, k ∈ Λ; |ωj| ≤ ǫ} ∪ {(j, k) : k ∈ Sn, j ∈ Λ; |ωk| ≤ ǫ},
Λ4 = {(j, k) : j, k ∈ Sn; |ωj | ≤ ǫ; |ωk| ≤ ǫ; j 6= k}.
Proof of Lemma 3.1. For any constants K and any small δ > 0, the expectation
of m are divided into three regions as

E(m) =
1

n
E





[log logn]
∑

j=1

mj +

[δn]
∑

j=[log logn]+1

mj +

n
∑

j=[δn]+1

mj





≤ K
log1+δ n

n
+
K

n

[δn]
∑

j=[log logn]+1

log j

j
log

(

j

n

)

+
K

n

n
∑

j=[δn]+1

logn

n
, (B.1)
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where [x] is the largest integer that is less than or equals to x. For the first term
of (B.1), mj = O(log n) since ∂

∂θ log f(ωj) ∼ logn, and In(ωj)/f(ωj)−1 = O(1)
by Lemma B.4. By the formula

n
∑

j=1

log j

j
=

1

2
log2 n+O

(

log2 n

n

)

and Lemma B.5, the second term in (B.1) is of order O(log3 n/n). Additionally,
using Lemma B.2, the last term is of order O(log n/n). Summing these parts,
E(m) = O(log3 n/n). For the variance of m, note that

Var(m) = P1 + P2,

where

P1 =
1

n2

n
∑

j=1

Var(mj), P2 =
1

n2

∑

j 6=k

Cov(mj ,mk).

Then by Lemmas B.2 and B.3,

P1

=
1

n2

n
∑

j=1

(
∂

∂θ
log f(ωj))

2

[

E2

(

Jn(ωj)Jn(ω−j)
√

f(ωj)f(ω−j)

)

+ E

(

J2
n(ωj)

f(ωj)

)

E

(

J2
n(ω−j)

f(ω−j)

)

]

≤ K

n2





[log logn]
∑

j=1

log2 n+

[δn]
∑

j=[log log n]+1

(log j − logn)2
(

1 +
log j

j

)2

+
n
∑

j=[δn]+1

(

1 +O(
log n

n
)

)2


 = O(n−1),

and

P2 =
1

n2

∑

j 6=k

(
∂

∂θ
log f(ωj))(

∂

∂θ
log f(ωk))

×
[

E2

(

Jn(ωj)Jn(ω−k)
√

f(ωj)f(ω−k)

)

+ E2

(

Jn(ωj)Jn(ωk)
√

f(ωj)f(ωk)

)]

=
1

n2





∑

|ωj−ωk|≤ǫ

+
∑

|ωj−ωk|≥ǫ



 .

Considering the two parts separately, it follows that

1

n2

∑

|ωj−ωk|≤ǫ

=
1

n2







∑

j,k∈Λ4

+
∑

j,k∈Λ1






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≤ K

n2







∑

1≤k≤[log log n]≤j≤δn

logn(log j − logn)(
log j

k
)2

+

[δn]
∑

j=[log log n]+1

j
∑

k=[log logn]

log2 n(
log j

k
)2 + (1 − δ)2n2(

log2 n

n2
)







= o(n−1),

and

1

n2

∑

|ωj−ωk|≥ǫ

=
1

n2







∑

j,k∈Λ2

+
∑

j,k∈Λ3







≤ K

n2







[δn]
∑

j=1

(log j − logn)2(1− δ)n(
log2 n

n2
)

+

[δn]
∑

k=1

(log k − logn)2(1− δ)n(
log2 n

n2
) + (1− δ)2n2(

log2 n

n2
)







= o(n−1).

Thus, P2 = o(n−1) and Var(m) = P1 + P2 = O(n−1).

Next we state some technical Lemmas for the cumulant expansions. The
proofs can be found in the Appendix C.

Lemma B.1.

1

n

∫ π

−π

∣

∣

∣

∣

sin(nµ/2)

sin(µ/2)

∣

∣

∣

∣

dµ ∼ 1

π

logn

n
as n→ ∞. (B.2)

Lemma B.2. For any sequences of integers j = j(n) with j ∈ Λ, we have

E

(

Jn(ωj)Jn(ω−j)
√

f(ωj)f(ω−j)

)

= 1 +O

(

logn

n

)

, and E

(

J2
n(ωj)

f(ωj)

)

= O

(

logn

n

)

.

Lemma B.3. For any two sequences of integers j = j(n) and k = k(n) such
that {j, k} ∈ Λ1 ∪ Λ2 ∪ Λ3, we have

E

(

Jn(ωj)Jn(ω−k)
√

f(ωj)f(ω−k)

)

= O

(

logn

n

)

, and E

(

Jn(ωj)Jn(ωk)
√

f(ωj)f(ωk)

)

= O

(

logn

n

)

.

Lemma B.4 and B.5 describe the different behaviors of the expectation of a
product of DFTs under Fourier frequencies ωj with fixed j and slowly increasing
j, respectively.
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Lemma B.4 (P.M. Robinson [35]). For 0 < |d| < 1
2 and any fixed integers

j 6= k, bd = 2Γ(1− 2d) sinπd, we have

lim
n→∞

E

(

In(ωj)

f(ωj)

)

=
bd|j|2d
(2π)1−2d

{

4

∫ 1

0

u2d−1(u− 1) sin2(πju) du +
1

d(2d+ 1)

}

,

and

lim
n→∞

E

(

Jn(ωj)Jn(ωk)
√

f(ωj)f(ωk)

)

= Pd(j, k),

where

Pd(j, k) =
−2bd |jk|d

(2π)1−2d(j + k)

∫ 1

0

u2d−1{sin(2πju) + sin(2πku)} du.

In particular, if the white noise process is Gaussian and j ± k 6= 0, then

lim
n→∞

E

(

In(ωj)

f(ωj)

)

= 2P 2
d (j, j),

lim
n→∞

Cov

(

In(ωj)

f(ωj)
,
In(ωk)

f(ωk)

)

= P 2
d (j, k) + P 2

d (j,−k).

Lemma B.5 (P.M. Robinson [35]). Under Assumptions 1–2, for sequences of

positive integers j, k that satisfy K log logn < k < j < δn, we have

E

(

Jn(ωj)Jn(ω−j)√
f(ωj)f(ω−j)

)

= 1 +O( log j
j ),

E

(

Jn(ωj)Jn(ωj)√
f(ωj)f(ωj)

)

= O( log j
j ),

E

(

Jn(ωj)Jn(ωk)√
f(ωj)f(ωk)

)

= O( log j
k ),

E

(

Jn(ωj)Jn(ω−k)√
f(ωj)f(ω−k)

)

= O( log j
k ).

The following Lemma gives the lower bound for the covariance of DFT at
conjugate frequency in the first case of Lemma B.5.

Lemma B.6. Under Assumptions 1–2, for sequences of positive integers j,
satisfying 0 < K log logn < j < δn, we have

E

(

Jn(ωj)Jn(ω−j)
√

f(ωj)f(ω−j)
− 1

)

≥ K
1

j
. (B.3)

Remark. The side lobes of the Fejér kernel in the range [2π/n,∞) makes it
difficult to evaluate the exact magnitude of the integral in [2π/n, ωj] when ωj

is not a fixed constant. Using the properties of Dirichlet kernel, Robinson [35]
only derives an upper bound for the bias E(In(ωj)/f(ωj)) − 1, and the order
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O(log3 n/n) in (3.2) are actually an upper bound of the E(m). Using order j−1

in (B.3), we can find the lower bound O(log2 n/n) for E(m). It follows that
lower bound of the coverage error is reduced from order Op(log

4 n/n) to order
Op(log

2 n/n) after the Bartlett Correction. This argument justifies the slight
Bartlett correction in improving the coverage accuracy even for LMTS.

The following Lemma provides the key order magnitude to derive the asymp-
totic expansion of t in Lemma 3.1 and l(θ0) in (3.3).

Lemma B.7. Under Assumptions 1–2, we have

λk = O(1), ∆k = Op

(

1√
n

)

, for k = 2, 3, 4,

where λk and ∆k are defined in (3.1).

Proof of Lemma B.7. Under the Gaussian assumption, the cumulants of nor-
malized DFT with order 3 or higher vanish, so it suffices to consider the prod-
ucts of second order cumulants. Together with the cumulant expansion formula
in Brillinger [6], λk admits the following asymptotic expansion:

λ2 =
1

n

n
∑

j=1

[

cum(mj ,mj) + cum2(mj)
]

= O(1),

λ3 =
1

n

n
∑

j=1

[

cum(mj ,mj ,mj) + 3cum(mj ,mj)cum(mj) + cum3(mj)
]

= O(1),

λ4 =
1

n

n
∑

j=1

[cum(mj ,mj ,mj ,mj) + 4cum(mj ,mj ,mj)cum(mj)

+ 3cum2(mj ,mj) + 6cum(mj ,mj)cum
2(mj) + cum4(mj)

]

= O(1).

The calculations for variance of higher moments (i.e. 1
n

∑

j m
k
j , k = 2, 3, 4) can

be handled similarly as the proof of Lemma 3.1, albeit more tedious.

Appendix C: Proofs of technical lemmas

Proof of Lemma 3.2. Based on Lemmas B.2 and B.3, cumulants of
√
nSR will

be derived to establish its Edgeworth expansion. We only derive the first four
cumulants because the higher order cumulants have smaller orders and can be
neglected. From the definition of cumulants, we have

k1 = cum(
√
n(R1 +R2 +R3)), (C.1)

k2 = cum(nSR2)− cum2(
√
n(R1 +R2 +R3)), (C.2)

k3 = cum(
√
nR1,

√
nR1,

√
nR1)

+ 3cum(
√
nR1,

√
nR1,

√
nR2) +O

(

log3 n

n3/2

)

, (C.3)
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k4 = cum(
√
nR1,

√
nR1,

√
nR1,

√
nR1)

+ 4cum(
√
nR1,

√
nR1,

√
nR1,

√
nR2)

+ 4cum(
√
nR1,

√
nR1,

√
nR1,

√
nR3)

+ 6cum(
√
nR1,

√
nR1,

√
nR2,

√
nR2) +O

(

log4 n

n2

)

. (C.4)

Consider k1 in (C.1),

k1 = E(
√
n(R1 +R2 +R3))

= cum

(

m√
λ2

)

+ cum

(

1

3

λ3m
2

λ
5/2
2

− 1

2

m∆2

λ
3/2
2

)

(C.5)

+ cum

(

3

8

m∆2
2

λ
5/2
2

+
1

3

m2∆3

λ
5/2
2

− 5

6

λ3m
2∆2

λ
7/2
2

+
4

9

λ23m
3

λ
9/2
2

− 1

4

λ4m
3

λ
7/2
2

)

. (C.6)

By Lemma 3.1, the bounds of terms in (C.5) can be directly derived, i.e.,

cum(m) = O

(

log3 n

n

)

+O
(

n−1
)

,

cum(m2) = cum





1

n

n
∑

j=1

mj ,
1

n

n
∑

k=1

mk



+ cum2





1

n

n
∑

j=1

mj





= O
(

n−1
)

+O

(

log3 n

n

)2

,

cum(m∆2) = cum





1

n

n
∑

j=1

mj ,
1

n

n
∑

k=1

m2
k



 = O(n−1).

In Gaussian case, the higher order cumulant cum(In(ωj)/f(ωj), In(ωk)/f(ωk),
In(ωk)/f(ωk)) can be decomposed into products of second order cumulants of
normalized DFT, in which cumulants of order 3 and higher order vanish. To be
specific, we have

cum

(

In(ωj)

f(ωj)
,
In(ωk)

f(ωk)
,
In(ωk)

f(ωk)

)

= 2cum2

(

Jn(ωj)
√

f(ωj)
,
Jn(ω−k)
√

f(ω−k)

)

cum

(

Jn(ωk)
√

f(ωk)
,
Jn(ω−k)
√

f(ω−k)

)

.

Together with Lemma B.2, B.3, B.4 and B.5, the terms in (C.6) are of order

cum(m∆2
2) = cum





1

n

n
∑

i=1

mi,
1

n

n
∑

j=1

m2
j ,

1

n

n
∑

k=1

m2
k




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+ cum





1

n

n
∑

j=1

mj



 cum





1

n

n
∑

j=1

m2
j ,

1

n

n
∑

k=1

m2
k





= O

(

log3 n

n2

)

+O

(

1

n2

)

,

and

cum(m2∆3) = cum





1

n

n
∑

i=1

mi,
1

n

n
∑

j=1

mj ,
1

n

n
∑

k=1

m3
k





+ 2cum





1

n

n
∑

j=1

mj



 cum





1

n

n
∑

j=1

mj ,
1

n

n
∑

k=1

m3
k





= O

(

log3 n

n2

)

+O

(

1

n2

)

,

and

cum(m2∆2) = cum





1

n

n
∑

i=1

mi,
1

n

n
∑

j=1

mj ,
1

n

n
∑

k=1

m2
k





+ 2cum





1

n

n
∑

j=1

mj ,
1

n

n
∑

k=1

m2
k



 cum





1

n

n
∑

j=1

mj





= O

(

1

n2

)

+O

(

log3 n

n2

)

,

and

cum(m3)

= cum





1

n

n
∑

i=1

mi,
1

n

n
∑

j=1

mj ,
1

n

n
∑

k=1

mk





+ 3cum





1

n

n
∑

j=1

mj ,
1

n

n
∑

k=1

mk



 cum





1

n

n
∑

j=1

mj



+ cum3





1

n

n
∑

j=1

mj





= O

(

1

n2

)

+O

(

log3 n

n2

)

+O

(

log3 n

n

)3

.

This leads to the asymptotic expansion of k1 in (3.4). The expansion of k2 can
be computed similarly. For k3 and k4, define

ρ3 =

n
∑

j=1

(
∂

∂θ
log f(ωj))

3cum

(

In(ωj)

f(ωj)
,
In(ωj)

f(ωj)
,
In(ωj)

f(ωj)

)

,
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ρ4 =

n
∑

j=1

(
∂

∂θ
log f(ωj))

4cum

(

In(ωj)

f(ωj)
,
In(ωj)

f(ωj)
,
In(ωj)

f(ωj)
,
In(ωj)

f(ωj)

)

.

Direct calculations give

cum(
√
nR1,

√
nR1,

√
nR1) =

2

λ
3/2
2

ρ3 + o(n−1),

cum(
√
nR1,

√
nR1,

√
nR2) = −2

3

1

λ
3/2
2

ρ3 + o(n−1).

Substituting the above into (C.3), we have

k3,1 =
√
n

{

2

λ
3/2
2

ρ3 − 3
2

3

1

λ
3/2
2

ρ3

}

= 0,

The calculations for the fourth order cumulants are similar. Again, direct cal-
culations give

cum(
√
nR1,

√
nR1,

√
nR1,

√
nR1) =

1

n2

ρ4
λ22

+ o(n−1),

cum(
√
nR1,

√
nR1,

√
nR1,

√
nR2) =

1

2n

λ23
λ32

− 3

2n2

ρ4
λ22

+O

(

log3 n

n3

)

,

cum(
√
nR1,

√
nR1,

√
nR1,

√
nR3) = − 1

12n

λ23
λ32

+
1

2n2

ρ4
λ22

+ o(n−1) +O

(

log3 n

n4

)

,

cum(
√
nR1,

√
nR1,

√
nR2,

√
nR2) = − 5

18n

λ23
λ32

+
1

2n2

ρ4
λ22

+ o(n−1) +O

(

log3 n

n4

)

.

Substituting the above into (C.4), we have

k4,1 =
1

n

ρ4
λ22

+ 4
1

2

λ23
λ32

− 3

2n

ρ4
λ22

− 4
1

12

λ23
λ32

+
1

2n

ρ4
λ22

− 6
5

18

λ23
λ32

+
1

2n

ρ4
λ22

= 0.

In conclusion, we have k3,1 = k4,1 = 0.

Proof of Lemma B.1. Since the function cosec(µ) − µ−1 is bounded on (0, π2 ),
it follows that

∫ π

−π

∣

∣

∣

∣

sin(nµ/2)

sin(µ/2)

∣

∣

∣

∣

dµ

= 4

∫ π

0

∣

∣

∣

∣

sin(nµ/2)

µ

∣

∣

∣

∣

dµ+O(1)

= 4

(

∫ π

0

sinµ

µ
dµ+

∫ π/n

0

sin(nµ/2)

{

n−1
∑

k=1

1

µ+ kπ/n

}

dµ

)

+O(1).
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The sum in the braces has lower- and upper-bound n
π

∑n−1
j=1

1
j and n

π

∑n
j=2

1
j

respectively, thus equals to n
π [logn + O(1)]. The proof is completed by noting

that, from Brillinger [6],

∫ π/n

0

sin(nµ) dµ = 2/n and

∫ π

0

sinµ

µ
dµ = O(1).

Proof of Lemma B.2. Without loss of generality, assume that ωj ≤ π
2 for suffi-

ciently large n. Note that

E(I(ωj)−f(ωj)) = E(Jn(ωj)Jn(ω−j)−f(ωj)) =

∫ π

−π

Fn(ωj−µ)(f(µ)−f(ωj)) dµ,

where Fn(µ) is the Fejér kernel Fn(µ) =
1

2πn
sin2(nµ/2)
sin2(µ/2)

. Since f(µ) = 1
µ2d f

∗(µ),

where f∗(µ) is a even function bounded above and bounded below from zero,
we have

1

f(ωj)

∫ π

−π

Fn(ωj − µ)(f(µ) − f(ωj)) dµ

=
K

2πn

∫ π

−π

sin2 n(ωj − µ)/2

sin2(ωj − µ)/2
(f(µ)− f(ωj)) dµ.

The idea is to decompose the range [−π, π] into five parts and establish a bound
for each part,

K

n

∫ π

−π

=
K

n

{

∫ ωj−ǫ

−π

+

∫ ωj− 1

n

ωj−ǫ

+

∫ ωj+
1

n

ωj− 1

n

+

∫ ωj+ǫ

ωj+
1

n

+

∫ π

ωj+ǫ

}

. (C.7)

The first part of (C.7) is bounded by

K

n

∫ ωj−ǫ

−π

≤ K

n

(

max
µ∈[−π, ωj−ǫ]

sin2 n(ωj − µ)/2

sin2(ωj − µ)/2

)∫ ωj−ǫ

−π

|f(µ)− f(ωj)| dµ

≤ K

n

∫ ωj−ǫ

−π

(∣

∣µ−2d
∣

∣+ |f(ωj)|
)

dµ = O(n−1).

The second part is bounded above by

K

n

∫ ωj− 1

n

ωj−ǫ

≤ K

n

∫ ωj− 1

n

ωj−ǫ

(

sin2 n(ωj − µ)/2

sin2(ωj − µ)/2
max
µ

∂

∂µ
f(µ)|µ− ωj|

)

dµ

≤ K

n

∫ − 1

n

−ǫ

sin2(nλ/2)

sin2(λ/2)
|λ| dλ ≤ K

n

∫ − 1

n

−ǫ

1

λ
dλ = O

(

logn

n

)

,

where the third inequality follows from the Zygmund [39] that

1

n

sin2(nλ/2)

sin2(λ/2)
= O((nλ2)−1), 0 < |λ| < π.
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The third part in (C.7) is bounded by

K

n

(

max
µ∈[ωj− 1

n
, ωj+

1

n
]

∂

∂µ
f(µ)

)

∫ ωj+
1

n

ωj− 1

n

(

sin2 n(ωj − µ)/2

sin2(ωj − µ)/2

)

|µ− ωj | dµ

≤ K

n

∫ 1

n

− 1

n

(

sin2 nλ/2

sin2 λ/2

)

|λ| dλ ≤ K

n2

∫ π

−π

sin2(nλ/2)

sin2(λ/2)
dλ = O(n−1).

The last step is obtained from

∫ π

−π

[

sin(nλ/2)

sin(λ/2)

]2

dλ = 2πn.

The fourth and fifth terms are bounded by O(log n/n) and K
n

∫ π

ωj+ǫ = O(n−1),

respectively. The proof for E(Jn(ωj)Jn(ωj)/
√

f(ωj)f(ωj)) is similar.

Proof of Lemma B.3. Without loss of generality, assuming that 0 < j ≤ k < n,
we consider three situations

a. j, k ∈ Λ1,
b. j, k ∈ Λ2,
c. j, k ∈ Λ3.

We prove that for each case, the covariances of normalized DFT at different
Fourier frequencies are bounded by a term with order logn/n. First, define

Fj,k =
1

√

f(ωj)f(ω−k)

1

2πn

sinn(ωj − µ)/2

sin(ωj − µ)/2

sinn(ωk − µ)/2

sin(ωk − µ)/2
.

For case a, note that by using
∫ π

−π
Fj,−k(µ) dµ = 0 for j, k ∈ Λ1, we have

E

(

Jn(ωj)Jn(ωk)
√

f(ωj)f(ωk)

)

=

∫ π

−π

[Fj,−k(µ)(f(µ)− f(ωk))] dµ, (C.8)

The integral in (C.8) is divided into seven parts

∫ π

−π

=

∫ −ωk−ǫ

−π

+

∫ −ωk+ǫ

−ωk−ǫ

+

∫ − 1

n

−ωk+ǫ

+

∫ 1

n

− 1

n

+

∫ ωj−ǫ

1

n

+

∫ ωj+ǫ

ωj−ǫ

+

∫ π

ωj+ǫ

. (C.9)

The terms
∫ −ωk+ǫ

−ωk−ǫ +
∫ ωj+ǫ

ωj−ǫ in (C.9) are bounded by

K

n

{

max
µ∈[−ωk−ǫ, −ωk+ǫ]

(

1

|2 sin(µ/2)|2d
| sinn(ωj − µ)/2|
| sin(2πωj − µ)/2|

)

(

∫ −ωk+ǫ

−ωk−ǫ

+

∫ ωj+ǫ

ωj−ǫ

)

+ max
µ∈[ωj−ǫ, ωj+ǫ]

(

1

|2 sin(µ/2)|2d
| sinn(ωk + µ)/2|
| sin(ωk + µ)/2|

)

(

∫ −ωk+ǫ

−ωk−ǫ

+

∫ ωj+ǫ

ωj−ǫ

)}
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≤ K

n

∫ π

−π

∣

∣

∣

∣

sin(nµ/2)

sin(µ/2)

∣

∣

∣

∣

dµ = O

(

logn

n

)

,

where the last step follows from Lemma B.1. Also,
∫ −ωk−ǫ

−π
+
∫ π

ωj+ǫ
are bounded

by O(n−1). Finally,

K

2πn

(

∫ 1

n

− 1

n

+

∫ ωj−ǫ

1

n

+

∫ − 1

n

−ωk+ǫ

)

≤ K

n

∫ 1

n

− 1

n

(

|µ−2d|+ |ωj|−2d
)

dµ

+

(

max
µ∈[ 1

n
,ωj−ǫ]

sinn(ωj − µ)/2

sin(ωj − µ)/2

)

∫ ωj−ǫ

1

n

(

|µ−2d|+ |ωj|−2d
)

dµ

+

(

max
µ∈[−ωk+ǫ,− 1

n
]

sinn(ωk + µ)/2

sin(ωk + µ)/2

)

∫ − 1

n

−ωk+ǫ

(

|µ−2d|+ |ωj |−2d
)

dµ

= O(n−1).

Next, to prove E(Jn(ωj)Jn(ω−k)/
√

f(ωj)f(ω−k)) = O(log n/n) for a, note that

E

(

Jn(ωj)Jn(ω−k)
√

f(ωj)f(ω−k)

)

=

∫ 2ωj

(ωj+ωk)/2

(f(µ)− f(ωj))Fj,k(µ) dµ

+

∫ (ωj+ωk)/2

ωk/2

(f(µ)− f(ωk))Fj,k(µ) dµ

− (f(ωj)− f(ωk))

∫ (ωj+ωk)/2

ωk/2

Fj,k(µ) dµ

+

(

∫ π

2ωj

+

∫ ωk/2

−π

)

(f(µ)− f(ωj))Fj,k(µ) dµ. (C.10)

For the first part, since

∣

∣

∣

∣

sinn(ωj − µ)/2

sin(ωj − µ)/2

∣

∣

∣

∣

≤
∣

∣

∣

∣

2

ωj − µ

∣

∣

∣

∣

, 0 < |ωj − µ| < π,

it follows that

∫ 2ωj

(ωj+ωk)/2

(f(µ)− f(ωj))Fj,k(µ) dµ

≤ K

2πn

(

max
(ωj+ωk)/2≤µ≤2ωj

∂

∂µ
f(µ)

)∫ 2ωj

(ωj+ωk)/2

∣

∣

∣

∣

sinn(ωk − µ)/2

sin(ωk − µ)/2

∣

∣

∣

∣

dµ

≤ K

2πn

∫ π

−π

∣

∣

∣

∣

sin(nλ/2)

sin(λ/2)

∣

∣

∣

∣

dλ = O

(

logn

n

)

.
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For the second part, we have
∫ (ωj+ωk)/2

ωk/2

(f(µ)− f(ωk))Fj,k(µ) dµ = O

(

logn

n

)

.

The third part is bounded by

(ωj − ωk)

(

max
ωk≤µ≤ωj

∂

∂µ
f(µ)

)

K

2πn

∫ (ωj+ωk)/2

ωk/2

(

2

|ωj − µ|
sinn(ωk − µ)/2

sin(ωk − µ)/2

)

dµ

≤ (ωj − ωk)

(

max
ωk/2≤µ≤(ωj+ωk)/2

1

|ωj − µ|

)

K

2πn

∫ (ωj+ωk)/2

ωk/2

∣

∣

∣

∣

sinn(ωk − µ)/2

sin(ωk − µ)/2

∣

∣

∣

∣

dµ

= O

(

logn

n

)

.

For the last part, we have
∫ ωk/2

−π

(f(µ)− f(ωj))Fj,k(µ) dµ

≤ K

2πn

(

max
−ǫ≤µ≤ǫ

sinn(ωj − µ)/2

sin(ωj − µ)/2

sinn(ωk − µ)/2

sin(ωk − µ)/2

)∫ ǫ

−ǫ

(|µ|−2d
+ |ωj |−2d

) dµ

= O(n−1)

and
∫ π

2ωj

(f(µ)− f(ωj))Fj,k(µ) dµ = O(n−1).

Thus, for a, we have

E

(

Jn(ωj)Jn(ωk)
√

f(ωj)f(ωk)

)

= O

(

logn

n

)

and E

(

Jn(ωj)Jn(ω−k)
√

f(ωj)f(ω−k)

)

= O

(

logn

n

)

.

For the argument for b is similar to the proof of a, so we omit the details. For c,
note that

E

(

Jn(ωj)Jn(ωk)
√

f(ωj)f(ωk)

)

≤ Kω2d
k

∫ π

−π

Fjk(µ)

|2 sin(µ/2)|2d dµ

≤ K

2πn

|2πk|2d
n2d

[

∫ −ǫ

−π

+

∫ ǫ

−ǫ

+

∫ ωj−ǫ

ǫ

+

∫ ωj+ǫ

ωj−ǫ

+

∫ π

ωj+ǫ

]

.

The second term is bounded by

K

2πn

|2πk|2d
n2d

max
µ∈[−ǫ,ǫ]

(

sinn(ωj − µ)/2

sin(ωj − µ)/2

)∫ π

−π

∣

∣

∣

∣

∣

sinn(2πkn + µ)/2

sin(2πkn + µ)/2

1

|2 sin(µ/2)|2d

∣

∣

∣

∣

∣

dµ

= O
(

n−1
)

.

The calculations for other terms are similar and bounds of the terms are of order
logn/n. It is also true that E(Jn(ωj)Jn(ω−k)/

√

f(ωj)f(ω−k)) = O(log n/n).
Combining a–c, Lemma B.3 follows.
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Proof of Lemma B.6. Since

E (Jn(ωj)Jn(ω−j)− f(ωj)) =

∫ π

−π

Fn(ω − ωj)(f(ω)− f(ωj)) dω,

where Fn(ω) is the Fejér kernel, it suffices to show that
∫ π

−π

Fn(ω − ωj)(f(ω)− f(ωj)) dω ≥ K

j
ω−2d
j . (C.11)

Decompose the integral on the left hand side of (C.11) into five parts

∫ π

−π

=

∫ π

ǫ

+

∫ ǫ

2ωj

+

∫ 2ωj

−2ωj

+

∫ −2ωj

−ǫ

+

∫ −ǫ

−π

, (C.12)

where for sufficiently large n, 2ωj < ǫ < π/2. The first term of (C.12) is bounded
below by

∫ π

ǫ

≥ min
ǫ≤ω≤π

{f(ω)− f(ωj)}
∫ π

ǫ

1

2πn

sin2 n(ω − ωj)/2

sin2(ω − ωj)/2
dω

≥ K

2πn

∫ π−ωj

ǫ−ωj

sin2 nω/2

sin2 ω/2
dω =

K

n
.

For small ǫ, let δǫ = [
ǫ−2ωj

n ], then using the property of Fejér kernel [33], the
second term of (C.12) is bounded below by

∣

∣

∣

∣

∣

∫ ǫ

2ωj

∣

∣

∣

∣

∣

≥ min
2ωj≤ω≤ǫ

(

∂

∂ω
f(ω)

)∫ ǫ

2ωj

1

2πn

sin2 n(ω − ωj)/2

sin2(ω − ωj)/2
(ω − ωj) dω

≥ Kǫ−1−2d

n

n−1
∑

k=0

∫ ωj+δǫ(k+1)

ωj+δǫk

sin2 nω/2

sin2 ω/2
ω dω

≥ K

n

n−1
∑

k=0

(

min
ωj+δǫk≤ω≤ωj+δǫ(k+1)

ω

)∫ ωj+δǫ(k+1)

ωj+δǫk

sin2 nω/2

sin2 ω/2
dω

≥
n−1
∑

k=0

K

n2
(ωj + δǫk) = K

{

ωj

n
+
ǫ− 2ωj

n

}

≥ K

n
.

By an identical argument, we have
∫ −ǫ

−π
≥ K/n and

∫ −2ωj

−ǫ
≥ K/n. For

∫ 2ωj

−2ωj
in

(C.12), we have

∫ 2ωj

−2ωj

=

∫ ωj−2π/n

−2ωj

+

∫ ωj+2π/n

ωj−2π/n

+

∫ 2ωj

ωj+2π/n

= L1 + L2 + L3

Note that L3 is bounded below by

min
ωj+2π/n≤ω≤2ωj

(

∂

∂ω
f(ω)

)∫ 2ωj

ωj+2π/n

1

2πn

sin2 n(ω − ωj)/2

sin2(ω − ωj)/2
(ω − ωj) dω
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≥ Kω
−(1+2d)
j

∫ ωj

2π/n

1

2πn

sin2 nω/2

sin2 ω/2
ω dω

≥ Kω
−(1+2d)
j

(

min
2π/n≤ω≤ωj

ω

)∫ ωj

2π/n

1

2πn

sin2 nω/2

sin2 ω/2
dω

= Kω
−(1+2d)
j

1

n

∫ ωj

2π/n

1

2πn

sin2 nω/2

sin2 ω/2
dω.

Since the integral in the last equation is bounded above by small ǫ > 0 from
Section 6.1 in Priestley [33], lower bound of L3 is no more than K 1

jω
−2d
j . By

symmetry, it is also true that lower bound of L1 is no more than K 1
jω

−2d
j . Next,

L2 =

(

∫ −1/n

−2π/n

+

∫ 1/n

−1/n

+

∫ 2π/n

1/n

)

1

2πn

sin2 nω/2

sin2 ω/2

{

(ω + ωj)
−2d − ω−2d

j

}

dω

= L21 + L22 + L23.

Note that

L22 ≥ ω−1−2d
j

∫ 1/n

−1/n

1

2πn

sin2 nω/2

sin2 ω/2
ω dω = 0.

For L23,

L23 ≥
{

min
ω∈[1/n,2π/n]

min
ξ∈[ωj ,ωj+ω]

ξ−1−2dω

}∫ 2π/n

1/n

1

2πn

sin2 nω/2

sin2 ω/2
dω ≥ K

1

j
ω−2d
j .

We also have L21 ≥ K 1
jω

−2d
j . From the above analysis, the division

∫ 2ωj

−2ωj
is

bounded below by K 1
jω

−2d
j . Collecting the lower bounds of each part in (C.12),

(B.3) is established.
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