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MAXIMUM SMOOTHED LIKELIHOOD ESTIMATORS
FOR THE INTERVAL CENSORING MODEL

BY PIET GROENEBOOM

Delft University

We study the maximum smoothed likelihood estimator (MSLE) for in-
terval censoring, case 2, in the so-called separated case. Characterizations in
terms of convex duality conditions are given and strong consistency is proved.
Moreover, we show that, under smoothness conditions on the underlying dis-
tributions and using the usual bandwidth choice in density estimation, the
local convergence rate is n−2/5 and the limit distribution is normal, in con-
trast with the rate n−1/3 of the ordinary maximum likelihood estimator.

1. Introduction. In [10], the maximum smoothed likelihood estimator
(MSLE) and smoothed maximum likelihood estimator (SMLE) were studied for
the current status model, the simplest interval censoring model. It is called the
interval censoring, case 1, model in [5] and [12]. It was shown in [10] that, under
certain regularity conditions, the MSLE and the SMLE, evaluated at a fixed inte-
rior point, converge at rate n−2/5 to the real underlying distribution function, if one
takes a bandwidth of order n−1/5. This convergence rate is faster than the conver-
gence rate of the nonsmoothed maximum likelihood estimator, which is n−1/3 in
this situation, as shown in [5] and [12]. Moreover, the limit distribution is normal,
in contrast with the limit distribution of the nonsmoothed maximum likelihood
estimator.

The interval censoring model, where there is an interval in which the relevant
(unobservable) event takes place, is more common, in particular in medical statis-
tics. It is called the interval censoring, case 2, model in [5] and [12]. A prelimi-
nary discussion of the SMLE in this situation can be found in [11], where it was
shown that the development of the theory of the SMLE for this model crucially
depends on a further analysis of the integral equations, studied in [2, 3] and [4].
In the present paper, we study the MSLE and prove a consistency and asymptotic
normality result for this estimator. We also discuss algorithms for computing the
MSLE, which is a rather complicated issue.

We recall the interval censoring, case 2, model. Let X1, . . . ,Xn be a sample
of unobservable random variables from an unknown distribution function F0 on
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[0,∞). Suppose that one can observe n pairs (Ti,Ui), independent of Xi , where
Ui > Ti . Moreover,

�i1
def= 1{Xi≤Ti}, �i2

def= 1{Ti<Xi≤Ui} and �i3
def= 1 − �i1 − �i2,

provide the only information one has on the position of the random variables Xi

with respect to the observation times Ti and Ui . In this set-up, one wants to esti-
mate the unknown distribution function F0, generating the “unobservables” Xi , on
an interval [0,M].

Interestingly, from a computational point of view, the MLE for the distribution
function of the hidden variable in the case that one has more observation times
Ti,Ui,Vi, . . . “per hidden variable,” can always be reduced to the case of interval
censoring, case 2. This follows from the fact that at most two of the observation
times of the set {Ti,Ui,Vi, . . .} are relevant for the location of the hidden variable.
If we know that the hidden variable is located between two observation times,
while the other observation times for this hidden variable are either more to the
right or more to the left, then these other observation times do not give extra in-
formation and can be discarded in computing the MLE. Likewise, if we know that
the hidden variable lies to the right of all these observation times, all observation
times smaller than the largest one do not give extra information, with a similar
situation if we know that the hidden observation time lies to the left of the smallest
observation time for this variable. So, in the last two cases, only one observation
time gives relevant information and the other ones can be discarded. This moti-
vates concentrating on the interval censoring, case 2, model, as an extension of the
current status model.

The MSLE (maximum smoothed likelihood estimator) is defined in the follow-
ing way. Let g be the joint density of the observation pairs (Ti,Ui), with first
marginal g1 and second marginal g2. Moreover, let the densities h01, h02 and h0
be defined by

h01(t) = F0(t)g1(t),

h02(u) = {
1 − F0(u)

}
g2(u),(1.1)

h0(t, u) = {
F0(u) − F0(t)

}
g(t, u).

We define h̃nj , j = 1,2 and h̃n as the estimates of the densities h0j , j = 1,2 and
the 2-dimensional density h0, respectively, where

h̃n1(t) = 1

n

n∑
i=1

Kbn(t − Ti)�i1, h̃n2(u) = 1

n

n∑
i=1

Kbn(u − Ui)�i3,(1.2)

h̃n(t, u) = 1

n

n∑
i=1

Kbn(t − Ti)Kbn(u − Ui)�i2(1.3)
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and

Kbn(x) = 1

bn

K

(
x

bn

)
,

for a symmetric continuously differentiable kernel K with compact support, like
the triweight kernel

K(x) = 35
32

(
1 − x2)31[−1,1](x), x ∈ R.(1.4)

At boundary points, we use a boundary correction by replacing the kernel K by a
linear combination of K(u) and uK(u). For example, if t ∈ [0, bn), we define

h̃n1(t) = α(t/bn)
1

n

n∑
i=1

Kbn(t − Ti)�i1 + β(t/bn)
1

n

n∑
i=1

t − Ti

bn

Kbn(t − Ti)�i1,

where the coefficients α(u) and β(u) are defined by

α(u)

∫ u

−1
K(x)dx + β(u)

∫ u

−1
xK(x)dx = 1, u ∈ [0,1](1.5)

and

α(u)

∫ u

−1
xK(x)dx + β(u)

∫ u

−1
x2K(x)dx = 0, u ∈ [0,1].(1.6)

It may happen that h̃n1(t) < 0; in that case we put h̃n1(t) = 0.
If t ∈ (M − bn,M], we similarly define

h̃n1(t) = α
(
(M − t)/bn

)1

n

n∑
i=1

Kbn(t − Ti)�i1

− β
(
(M − t)/bn

)1

n

n∑
i=1

t − Ti

bn

Kbn(t − Ti)�i1,

where the functions α and β are again defined by (1.5) and (1.6). The estimates
h̃n2 and h̃n are similarly defined if one or more (in the case of h̃n) arguments
have distance less than bn to the boundary; for h̃n we apply this to the factors of
the product of the kernels separately, in the same way as for the one-dimensional
estimates h̃nj . We finally divide h̃n1(t), h̃n2(t) and h̃n(t, u) by∫

[0,M]
{
h̃n1(x) + h̃n2(x)

}
dx +

∫
[0,M]2

h̃n(x, y) dx dy,

(i.e., by a discrete approximation to this quantity) to give a total mass approxi-
mately equal to 1 to the observation density.

The MSLE F̂n is now defined as the distribution function, maximizing the cri-
terion function

�(F ) =
∫

h̃n1(t) logF(t) dt +
∫

h̃n2(u)
{
1 − F(t)

}
du

(1.7)
+

∫
h̃n(t, u) log

{
F(u) − F(t)

}
dt du,
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as a function of the distribution function F . But in practice we discretize, and
maximize

m∑
i=1

{
h̃n1(ti) logF(ti)

}
di +

m∑
i=1

{
h̃n2(ti) log

{
1 − F(ti)

}}
di

(1.8)

+
m−1∑
i=1

m∑
j=i+1

{
h̃n(ti , tj ) log

{
F(tj ) − F(ti)

}}
didj ,

over all distribution functions F , where 0 = t0 < t1, . . . ,< tm = M are the points
of a grid and di = ti − ti−1, i = 1, . . . ,m.

Note that �(F ) is a smoothed log likelihood for F and, therefore, the maxi-
mizing (sub)distribution function F is called the maximum smoothed likelihood
estimator (MSLE). Also note that the maximization of (1.7) is the same as the
minimization of the Kullback–Leibler distance∫

h̃n1(t) log
h̃n1(t)

F (t)g̃n1(t)
dt +

∫
h̃n1(t) log

h̃n2(t)

{1 − F(t)}g̃n2(t)
dt

+
∫

h̃n(t, u) log
h̃n(t, u)

{F(u) − F(t)}g̃n(t, u)
dt du,

where g̃ni and g̃n are kernel estimates of the densities gi and g, computed in the
same way as the estimates hni and h̃n (but without the indicators �ij ).

Defining the SMLE (smoothed maximum likelihood estimator) is somewhat
easier. If we have computed the ordinary MLE F̂n, we simply define the SMLE
F SML

n (x) by

F SML
n (x) =

∫
Kbn(x − y)dF̂n(y),

(1.9)

Kbn(u) =
∫ u/bn

−∞
K(x)dx,

where K is of type (1.4) again. A picture of the MLE, the MSLE and the SMLE
for a sample of size n = 1000 from an exponential distribution function is shown
in Figure 1. A picture of the bivariate observation density g, with ε = 0.1, is shown
in Figure 2.

1.1. The SMLE and MSLE for the current status model. Before embarking on
the theory for this model, it might be instructive to recapitulate the rather different
ways in which the asymptotic distributions of the SMLE and the MSLE are derived
for the simpler current status model. In this case, the data are given by

(T1,�1), . . . , (Tn,�n),

where

�i = 1{Xi≤Ti},
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FIG. 1. The MSLE (solid), SMLE (dashed-dotted) and MLE (dotted) on [0,1] for a sample of size
n = 1000 from the exponential distribution function F0(x) = 1 − exp{−x} (dashed); the bivariate
observation density is g(x, y) = 6(y − x − ε)2/{(2 − x − ε)(2 − ε)}2, x + ε < y on the triangle with
vertices (0, ε), (0,2) and (2 − ε,2), where ε = 0.1. The bandwidth for the computation of the MSLE
was bn = n−1/5 ≈ 0.25119.

and Xi and Ti are independent.
Let F̃

(SML)
n be the SMLE for the current status model, defined by (1.9), but

now using the MLE F̂n in the current status model. It is shown in [10] that, under

FIG. 2. The bivariate observation density g on [0,2]2, where ε = 0.1.
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suitable smoothness conditions, we can write, if bn � n−1/5,

F̃ (SML)
n (t) −

∫
Kbn(t − u)dF0(u)

(1.10)
=

∫
θCS
t,bn,F (u, δ) d(Qn − Q0)(u, δ) + op

(
n−2/5)

,

where

θCS
t,b,F (u, δ) = −δφCS

t,b,F (u)

F (u)
+ (1 − δ)φCS

t,b,F (u)

1 − F(u)
, u ∈ (0,1)(1.11)

and φCS
t,b,F is given by

φCS
t,b,F (u) = F(u){1 − F(u)}

g(u)
b−1K

(
(t − u)/b

)
.

Moreover, g is the density of the (one-dimensional) observation distribution.
The solution φCS

t,bn,F0
gives as an approximation for nvar(F̃n(t)):

EθCS
t,bn,F0

(T1,�1)
2 =

∫ φCS
t,bn,F0

(u)2

F0(u)
g(u)du +

∫ φCS
t,bn,F0

(u)2

1 − F0(u)
g(u)du

∼ F0(t){1 − F0(t)}
bng(t)

∫
K(u)2 du, bn → 0.

Taking the bias into account, we get, if bn � n−1/5, for the SMLE the central limit
theorem

√
n

{
F̃ CS

n (t) − F0(t) − 1

2
b2
nf

′
0(t)

∫
u2K(u)du

} /
σn

D−→ N(0,1),

(1.12)
n → ∞,

where

σ 2
n = EθCS

t,bn,F0
(T1,�1)

2 ∼ F0(t){1 − F0(t)}
bng(t)

∫
K(u)2 du, n → ∞;

see Theorem 4.2, page 365 [10].
On the other hand, for the MSLE in the current status model it is first shown that

the MSLE corresponds to the slope of greatest convex minorant of the continuous
cusum diagram

(∫
Kb(t − x)dGn(x),

∫
δKb(t − x)dPn(x, δ)

)
,

(1.13)

Kb(y) =
∫ y/b

−∞
K(u)du, t ≥ 0,
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FIG. 3. Unsmoothed and smoothed cusum diagram.

where Gn is the empirical distribution function of the Ti and Pn the empirical
distribution function of the pairs (Ti,�i), analogously to the way the MLE corre-
sponds to the slope of greatest convex minorant of the cusum diagram(∫

[0,t]
dGn(u),

∫
[0,t]

δ dPn(u, δ)

)
, t ≥ 0.

A picture of the cusum diagram for the MLE and the SMLE for the same sample
is shown in Figure 3.

Next, it is shown that the MSLE is at interior points asymptotically equivalent
to the ratio of kernel estimators

gδ
n,bn

(t)

gn,bn(t)
,(1.14)

where

gn,bn(t) =
∫

Kbn(t − u)dGn(u), gδ
n,bn

(t) =
∫

δKbn(t − u)dPn(u, δ).

This leads to the following central limit theorem for the MSLE, if bn � n−1/5:

√
n

{
F̃ MSLE

n (t) − F0(t) − 1

2
b2
n

{
f ′

0(t) + 2f0(t)g
′(t)

g(t)

}∫
u2K(u)du

} /
σn

(1.15)
D−→ N(0,1),

as n → ∞, where σn is defined as in (1.12). Note that (1.12) and (1.15) only differ
in the bias term b2

nf0(t)g
′(t)/g(t).

1.2. The SMLE and MSLE for the interval censoring, case 2, model. For inter-
val censoring, case 2, we cannot rely on explicit representations, as in the current
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status model. For the SMLE, we only have a representation of type (1.10) via the
solution φIC of an integral equation, and we have to follow arguments analogous
to the arguments in [3, 6] and [4].

In the separated case (specified by Condition 1.1 below), the integral equation
(in φ = φIC) is given by

φ(u) = dF (u)

{
b−1K

(
(t − u)/b

) +
∫
v>u

φ(v) − φ(u)

F (v) − F(u)
g(u, v) dv

(1.16)

−
∫
v<u

φ(u) − φ(v)

F (u) − F(v)
g(v,u) dv

}
,

where we take either F = F̂n or F = F0, and where

dF (u) = F(u){1 − F(u)}
g1(u){1 − F(u)} + g2(u)F (u)

.(1.17)

Moreover, let the function θ IC
t,b,F be defined by

θ IC
t,b,F (u, v, δ1, δ2)

(1.18)

= −δ1φ
IC
t,b,F (u)

F (u)
− δ2{φIC

t,b,F (v) − φIC
t,b,F (u)}

F(v) − F(u)
+ δ3φ

IC
t,b,F (v)

1 − F(v)
,

where u < v. Then, as in [4], we have the representation∫
K

(
(t − u)/b

)
d(F̂n − F0)(u)

=
∫

θ IC
t,b,F̂n

(u, v, δ1, δ2) dP0(u, v, δ1d2)

=
∫ φIC

t,b,F̂n
(u)

F̂n(u)
F0(u)g1(u) du −

∫ φIC
t,b,F̂n

(v)

1 − F̂n(v)

{
1 − F0(v)

}
g2(v) dv

+
∫ φIC

t,b,F̂n
(v) − φIC

t,b,F̂n
(u)

F̂n(v) − F̂n(u)

{
F0(v) − F0(u)

}
g(u, v) dudv.

Using the theory in [4] again, we get that φIC
t,b,F0

gives as an approximation for

nvar(F̃n(t)):

Eθ IC
t,b,F0

(T1,U1,�11,�12)
2

=
∫ φIC

t,b,F0
(u)2

F0(u)
g1(u) du +

∫ {φIC
t,b,F0

(v) − φIC
t,b,F0

(u)}2

F0(v) − F0(u)
h(u, v) dudv

+
∫ φIC

t,b,F0
(v)2

1 − F0(v)
g2(v) dv.
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Taking bn � n−1/5 and defining

σ 2
n = Eθ IC

t,bn,F0
(T1,U1,�11,�12)

2,

we get

lim
bn↓0

bnσ
2
n = dF0(t)

{
1 + dF0(t)

∫
v>t

g(t, v)

F0(v) − F0(t)
dv

(1.19)

+ dF0(t)

∫
v<t

g(v, t)

F0(t) − F0(v)
dv

}−1 ∫
K(u)2 du,

where dF0 is defined by (1.17). This means, as we shall show below, that the limit
variance for the SMLE is again (as in the current status model) equal to the limit
variance of the MSLE. This leads to Conjecture 11.15 in [9]:

√
n

{
F̃ SML

n (t) − F0(t) − 1

2
b2
nf

′
0(t)

∫
u2K(u)du

} /
σn

D−→ N(0,1),

(1.20)
n → ∞,

under the conditions given in [9]. This also means that the asymptotic bias is of
the same form as for the SMLE in the current status model, which is much simpler
than the bias of the MSLE.

Throughout this paper, we will assume that the following conditions are satis-
fied, which were also assumed in [3] and [4].

CONDITION 1.1. (S1) g1 and g2 are continuous, with g1(x) + g2(x) > 0 for
all x ∈ [0,M].

(S2) P{V −U < ε} = 0 for some ε with 0 < ε ≤ 1/2M , so g does not have mass
close to the diagonal; this is called the separated case.

(S3) (u, v) 
→ g(u, v) is continuous on {(x, y) : 0 ≤ x < y < M} and is zero
outside this set. Moreover, g(u, v) = 0 if v − u < ε.

(S4) F is a continuous distribution function with support [0,M]; F satisfies

F(u) − F(t) ≥ c > 0, if u − t ≥ ε.

(S5) The partial derivatives ∂1g(t, u) and ∂2g(t, u) exist, except for at most a
countable number of points, where left and right derivatives exist. The derivatives
are bounded, uniformly over t and u.

(S6) If both G1 and G2 put zero mass on some set A, then F has zero mass on A

as well, so F � H1 + H2. This means that F does not have mass on sets in which
no observations can occur.

Note that (S1) implies that dF , defined by (1.17), is bounded. Conditions (S2)
and (S4) are needed to avoid singularity in the integral equation: if F(x) − F(t)
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becomes very small, we have g(t, x) = 0. A picture of an observation density,
satisfying the above conditions, is shown in Figure 2; g is defined by

g(x, y) = 6(y − x − ε)2/
{
(2 − x − ε)(2 − ε)

}2
, x + ε < y,(1.21)

on the triangle with vertices (0, ε), (0,2) and (2 − ε,2), where ε = 0.1.
We use the following conditions for the kernel estimators.

CONDITION 1.2 (Conditions on the kernel estimators). We assume that h̃nj

and h̃n are kernel estimators of h0j and h0, respectively, defined by (1.2) and (1.3),
respectively, for a symmetric continuously differentiable kernel K of type (1.4),
with compact support. Moreover, for points near the boundary, boundary kernels
are used, with coefficients α(t) and β(t), defined by (1.5) and (1.6), respectively,
where the functions α, β , and its derivatives α′ and β ′ are bounded on [0,1]. We
assume:

0 = inf
{
t ∈ [0,M] : h̃n1(t) ∨

∫ t

u=0
h̃n(u, t) du > 0

}
(1.22)

and

M = sup
{
t ∈ [0,M] : h̃n2(t) ∨

∫ M

u=t
h̃n(t, u) du > 0

}
.(1.23)

An example of a kernel estimate, satisfying the conditions of Condition 1.2, is
given by kernel estimates which use the triweight kernel, defined by (1.4). For this
kernel, the weight functions α and β , used in constructing the boundary kernel,
are decreasing on [0,1], and the derivatives are bounded on [0,1]. Using Condi-
tion 1.1, we give a characterization in terms of necessary and sufficient (duality)
conditions for the MSLE in Section 2. In that section, we also prove consistency of
the MSLE, using techniques, similar to the method, used in [12], Part II, Section 4.

In Section 3, we discuss algorithms for computing the MSLE: the EM algorithm
and an iterative convex minorant algorithm. The iterative convex minorant algo-
rithm is an adapted version of the algorithm, introduced in [5] and (again in) [12].
It turns out that the latter algorithm performs best in our experiments. The EM
algorithm is very slow and, therefore, not suitable for larger sample sizes or simu-
lation purposes.

In Section 4, we will prove asymptotic normality of the MSLE at a fixed interior
point of the domain of definition (Theorem 4.1). In this paper, we concentrate on
the “separated case,” where Ui − Ti ≥ ε for some ε > 0, as in [3] and [4]. This
case seems to be the most important case, and also to be the usual situation in
medical statistics. The nonseparated case is rather different and has its own specific
difficulties. The behavior of the MLE and SMLE in this situation is discussed in
[2, 6] and [11], but the theory is still rather incomplete, even for the MLE. There
is a conjecture for its asymptotic distribution, put forward in [5] and [12], but this
conjecture has not been proved up till now, although a simulation study, supporting
the conjecture is given in [11]. The theory for the MSLE in this situation has still
not been developed.
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2. Characterization of the MSLE and consistency. Let, for an estimate h̃n

of h0, satisfying

h̃n(t, u) = 0, u − t < ε,(2.1)

for some ε > 0, the nabla function ∇F be defined by

∇F (u) = h̃n1(u)

F (u)
− h̃n2(u)

1 − F(u)
+

∫ u

v=0

h̃n(v, u)

F (u) − F(v)
dv

(2.2)

−
∫ M

v=u

h̃n(u, v)

F (v) − F(u)
dv,

if 0 < F(u) < 1. If F(u) = 0 or F(u) = 1, we define ∇F (u) = 0.
Then, similarly to the ordinary MLE, the MSLE can be characterized by the

so-called Fenchel duality conditions.

LEMMA 2.1. Let h̃n satisfy (2.1), for some ε > 0. Then the distribution func-
tion F̂n maximizes (1.7) if and only if F̂n is continuous on [0,M] and satisfies the
conditions ∫ M

v=t
∇

F̂n
(v) dv ≤ 0, t ∈ [0,M)(2.3)

and ∫ M

0
∇

F̂n
(v)F̂n(v) dv = 0.(2.4)

Moreover, if t ∈ [0,M) is a point of increase of F̂n, that is,⎧⎪⎪⎨
⎪⎪⎩

F̂n(u) − F̂n

(
u′) > 0,

for all u,u′ ∈ [0,M] such that u′ < t < u, if t > 0,
F̂n(u) > 0,

u ∈ (0,M], if t = 0,

(2.5)

we have

∇
F̂n

(t) = 0 and
∫ M

t
∇

F̂n
(v) dv = 0.(2.6)

The proof of this lemma is given in the Appendix.
Note that if ∇F (t) = 0 for all t ∈ (0,M), where ∇F is defined by (2.2), the con-

ditions of Lemma 2.1 are satisfied for F , and hence F would be the MSLE if it
also would be a distribution function. But unfortunately, the function F satisfying
∇F (t) = 0 for all t ∈ (0,M) need not be monotone. We will call a function F̃n, sat-
isfying ∇

F̃n
(t) = 0, t ∈ (0,M), a plug-in estimator or naive estimator (as in [10]).

This plug-in estimator will be further studied in Section 4 in the proof of the lo-
cal asymptotic normality of the MSLE, where it will be shown that the MSLE is
indeed locally asymptotically equivalent to this plug-in estimator.
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COROLLARY 2.1. Let h̃n satisfy (2.1), for some ε > 0. Then the distribution
function F̂n maximizes (1.7) if and only if F̂n is continuous on [0,M), F̂n(M) > 0,
and if F̂n satisfies the conditions

∫ t

0
∇

F̂n
(v) dv ≥ 0, t ∈ (0,M)(2.7)

and ∫ M

0
∇

F̂n
(v) dv = 0.(2.8)

Moreover, if t ∈ [0,M) is a point of increase of F̂n, that is, satisfies condition (2.5)
of Lemma 2.1, then

∇
F̂n

(t) = 0 and
∫ t

0
∇

F̂n
(v) dv = 0.(2.9)

PROOF. Suppose F̂n maximizes �(F ). Defining

Fδ(t) = {
1 − (1 + δ)

(
1 − F̂n(t)

)} ∨ 0, t ∈ [0,M],
we find:

lim
δ→0

�(Fδ) − �(F̂n)

δ
= −

∫ M

0
∇

F̂n
(u)

{
1 − F̂n(u)

}
du = 0.(2.10)

So if F̂n maximizes �(F ), (2.8) follows from (2.10) and (2.4) of Lemma 2.1.
∫ M

0
∇

F̂n
(u) du = 0.

This implies
∫ t

0
∇

F̂n
(v) dv = −

∫ M

t
∇

F̂n
(v) dv,

and condition (2.9) now also follows.
Conversely, if the conditions of the corollary hold, we get

∫ M

0
F̂n(u)∇

F̂n
(u) du

= F̂n(M)

∫ M

0
∇

F̂n
(v) dv +

∫ M

t=0

∫ u

v=0
∇

F̂n
(v) dv dF̂n(u)

= F̂n(M)

∫ M

0
∇

F̂n
(v) dv = 0,

implying condition (2.4) of Lemma 2.1. The other conditions of Lemma 2.1 follow
similarly. �
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We now simplify the conditions somewhat, in view of the iterative convex mi-
norant algorithm, to be discussed in Section 3. Multiplying ∇F by F(1−F) yields
the function

∇F (u) = h̃n1(u)
{
1 − F(u)

} − h̃n2(u)F (u)

+ F(u)
{
1 − F(u)

}
(2.11)

×
{∫ u

v=0

h̃n(v, u)

F (u) − F(v)
dv −

∫ M

v=u

h̃n(u, v)

F (v) − F(u)
dv

}
.

COROLLARY 2.2. Let h̃n satisfy (2.1), for some ε > 0 and let the function ∇F

be defined by (2.11). Then the distribution function F̂n maximizes (1.7) if and only
if F̂n(M) > 0, and F̂n is continuous on [0,M) and satisfies the conditions

∫ t

0
∇

F̂n
(v) dv ≥ 0, t ∈ [0,M](2.12)

and ∫ M

0
∇

F̂n
(v) dv = 0.(2.13)

Moreover, if t ∈ [0,M) is a point of increase of F̂n, that is, satisfies condition (2.5)
of Lemma 2.1, then

∇
F̂n

(t) = 0 and
∫ t

0
∇

F̂n
(v) dv = 0.(2.14)

PROOF. We have, for t ∈ (0,M),
∫ t

0
∇

F̂n
(v) dv =

∫ t

0
F̂n(v)

{
1 − F̂n(v)

}∇
F̂n

(v) dv.

Furthermore,
∫ t

a
F̂n(v)

{
1 − F̂n(v)

}∇
F̂n

(v) dv

= F̂n(t)
{
1 − F̂n(t)

} ∫ t

u=0
∇

F̂n
(u) du

−
∫ t

0

{
1 − 2F̂n(u)

} ∫ u

v=0
∇

F̂n
(v) dv dF̂n(u)

= F̂n(t)
{
1 − F̂n(t)

} ∫ t

u=0
∇

F̂n
(u) du.

Hence, condition (2.12) is equivalent to condition (2.7) of Corollary 2.1. Rela-
tion (2.14) follows similarly, and (2.13) is the same as (2.8). �
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The preceding results imply the consistency of the MSLE. The proof, which is
given in the Appendix, is somewhat analogous to the proof of the consistency of
the MLE in [12].

THEOREM 2.1 (Consistency of the MSLE). Let Condition 1.1 be satisfied
on [0,M] for the distribution function F0 and the observation density g. More-
over, let h̃nj and h̃n be kernel estimators of h0j and h0, respectively, of the type
defined in Condition 1.2. Finally, let F̂n be the MSLE of F0. Then, with probability
one,

lim
n→∞ F̂n(t) = F0(t),

for each t ∈ [0,M). The convergence is uniform on each subinterval [a, b]
of (0,M).

The proof of this theorem is given in the Appendix.

3. Algorithms. We explained in Section 1 that the MSLE can be computed
for current status data via a continuous cusum diagram. In the present case we
do not have a similar algorithm, which computes the MSLE in one step. The EM
algorithm is based on the following “self-consistency equations”

f̂n(t) =
{∫ M

t

h̃n1(v)

F̂n(v)
dv +

∫ t

0

h̃n2(v)

1 − F̂n(v)
dv

+
∫
v<t<u

h̃n(v, u)

F̂n(u) − F̂n(v)
dv du

}
f̂n(t),

where f̂n(t) = F̂ ′
n(t). This yields the iteration steps

f (k+1)(t) =
{∫ M

t

h̃n1(v)

F (k)(v)
dv +

∫ t

0

h̃n2(v)

1 − F (k)(v)
dv

(3.1)

+
∫
v<t<u

h̃n(v, u)

F (k)(u) − F (k)(v)
dv du

}
f (k)(t).

One can indeed use a discretized version of (3.1) to compute the MSLE, but the EM
algorithm is (as is usual for this type of problem with many parameters) very slow.
Simply enhancing the EM algorithm by a Newton step is also not helpful because
of the many constraints the solution has to satisfy, leading to very small “feasible
steps.” For this reason, a Newton-improved EM algorithm does not improve very
much on the EM algorithm itself.

In our experience, the fastest algorithm is a combination of the EM algorithm
with a version of the iterative convex minorant (ICM) algorithm, introduced in [5]
and [12]. We use a sequence of cusum diagrams(

W(k)
n (t),V (k)

n (t)
)
, t ∈ [0,M], k = 0,1,2, . . . ,(3.2)



2106 P. GROENEBOOM

for which we compute the greatest convex minorants at each kth step. We alter-
nate this with an EM-step (the combination is sometimes called the “hybrid algo-
rithm”). The cumulative weight function W

(k)
n is of the form

W(k)
n =

∫ t

0
w(k)

n (u) du, t ≥ 0,

for suitably (but somewhat arbitrarily) chosen weights w
(k)
n , and the cusum func-

tion V
(k)
n is of the form:

V (k)
n (t) =

∫ t

0
F (k)(u)w(k)

n (u) du +
∫ t

0
∇F (k)(u) du, t ≥ 0,

where, for a distribution function F , ∇F is the function, defined by (2.11), evalu-
ated at F = F (k). The idea is that the iterations force the Fenchel duality conditions
(2.12) and (2.13) to be satisfied at the end of the iterations.

The following weight function, chosen by taking the diagonal elements of the
Hessian matrix, corresponding to the function ∇F , gave good convergence results
in our simulation study of the MSLE:

w(k)
n (t) = h̃n1(t) + h̃n2(t)

− {
1 − 2F (k)

n (t)
}

×
{∫ t

u=0

h̃n(u, t)

F (k)(t) − F (k)(u)
du −

∫ M

u=t

h̃n(t, u)

F (k)(u) − F (k)(t)
du

}

+ F (k)(t)
{
1 − F (k)(t)

} ∫ t

u=0

h̃n(u, t)

{F (k)(t) − F (k)(u)}2 du

+
∫ M

u=t

h̃n(t, u)

{F (k)(u) − F (k)(t)}2 du.

To prevent divergence of the algorithm, Armijo’s line search method, as imple-
mented in [13], was used for determining the step size at each iteration. The inte-
grals were computed by a discrete approximation, using Riemann sums.

Note that, in the case of current status data, the function ∇F is just given by

∇F = h̃n(t) − g̃n(t)F (t),(3.3)

from which we can compute F̂n in one step.

4. Asymptotic distribution.

4.1. Main result and road map. We will prove the following theorem.

THEOREM 4.1. Let condition (1.1) be satisfied. Moreover, let F0 be twice dif-
ferentiable, with a bounded continuous derivative f0 on the interior of [0,M],
which is bounded away from zero on [0,M], with a finite positive right limit
at 0 and a positive left limit at M . Also, let f0 have a bounded continuous
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derivative on (0,M) and let g1 and g2 be twice differentiable on the interior of
their supports S1 and S2, respectively. Furthermore, let the joint density g of the
pair of observation times (Ti,Ui) have a bounded (total) second derivative on
{(x, y) : 0 < x < y < M}. Suppose that Xi is independent of (Ti,Ui), and let dF0

be defined by

dF0(v) = F0(v){1 − F0(v)}
g1(v){1 − F0(v)} + F0(v)g2(v)

.

Then, if bn � n−1/5, we have for each v ∈ (0,M),√
nbn

{
F̂n(v) − F0(v) − β(v)b2

n

} D−→ N
(
0, σ (v)2)

,

where N(0, σ (v)2) is a normal distribution with first moment zero and variance
σ(v)2, and where, defining

σ1(v) = 1 + dF0(v)

{∫
t<v

g(t, v)

F0(v) − F0(t)
dt +

∫
w>v

g(v,w)

F0(w) − F0(v)
dw

}
,(4.1)

the variance σ(v)2 is given by

σ(v)2 = dF0(v)

σ1(v)

∫
K(u)2 du.(4.2)

Defining

β1(v) = 1

2σ1(v)

{{1 − F0(v)}h′′
1(v) − F0(v)h′′

2(v)

g1(v){1 − F0(v)} + F0(v)g2(v)

+ dF0(v)

{∫ v

t=0

(∂2/∂v2)h0(t, v)

F0(v) − F0(t)
dt(4.3)

−
∫ M

u=v

(∂2/∂v2)h0(v, u)

F0(u) − F0(v)
du

}}∫
u2K(u)du,

the bias β(v) is given by

β(v) = β1(v) + dF0(v)

σ1(v)

{∫ v

u=0

g(u, v)β1(u)

F0(v) − F0(u)
du +

∫ M

u=v

g(v,u)β1(u)

F0(u) − F0(v)
du

}
.

REMARK 4.1. The asymptotic bias of the MSLE is of a very complicated
form, certainly compared to the asymptotic bias of the SMLE, which is just

1

2
f ′

0(t)b
2
n

∫
u2K(u)du;

see (1.20). It would be nice if some simplification could be found. Note however,
that also in the current status model the asymptotic bias of the MSLE is more
complicated than the asymptotic bias of the SMLE, since the derivatives of the
estimates of the observation density come into play.

We now first give a “road map” of the proof of Theorem 4.1. Our starting point
is given by the duality conditions (2.12) and (2.13). It is clear that if we would
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have equality in (2.12) instead of inequality, we would get the following relation
by differentiating w.r.t. t :

∇F (t) = h̃n1(t)
{
1 − F(t)

} − h̃n2(t)F (t)

+ F(t)
{
1 − F(t)

}{∫ t

v=0

h̃n(v, t)

F (t) − F(v)
dv −

∫ M

v=t

h̃n(t, v)

F (v) − F(t)
dv

}
(4.4)

= 0.

Conversely, if F solves (4.4) for each t ∈ (0,M) and F is a distribution function
such that F(t) ∈ (0,1), for each t ∈ (0,M), F also satisfies (2.12) and (2.13) and
is therefore the MSLE.

The solution of equation (4.4) takes the role of the plugin estimator (1.14) in
the current status model. In the proof of the central limit theorem for the MSLE
for the current status model, it was shown that the solution (in F ) of (4.4) is a
distribution function on a subinterval (a, b) of [0,M] for large n with high prob-
ability, where we can take a > 0 arbitrarily close to 0 and b < M arbitrarily close
to M . In the present case, we prove the stronger fact that the solution of (4.4)
is a (sub)distribution function on [0,M] itself. This implies that the MSLE F̂n

coincides with the solution of (4.4) on the interval (0,M) for large n with high
probability.

To show that the solution (in F ) of (4.4) is with high probability a (sub)distribu-
tion function on [0,M] for large n, we first show that the solution is close to the
solution of the linear integral equation

F(t) − F0(t) + dF0(t)

{∫ t

u=0

g(u, t){F(t) − F0(t) − F(u) + F0(u)}
F0(t) − F0(u)

du

−
∫ M

u=t

g(t, u){F(u) − F0(u) − F(t) + F0(t)}
F0(u) − F0(t)

du

}

(4.5)

= h̃n1(t){1 − F0(t)} − h̃n2(t)F0(t)

{1 − F0(t)}g1(t) + F0(t)g2(t)

+ dF0(t)

{∫
u<t

h̃n(u, t)

F0(t) − F0(u)
du −

∫
u>v

h̃n(t, u)

F0(u) − F0(t)
du

}
,

where dF0 is defined by (1.17), with F = F0.
We next show that the “toy estimator,” solving the equation

{
F(t) − F0(t)

}{
1 + dF0(t)

{∫ t

u=0

g(u, t)

F0(t) − F0(u)
du +

∫ M

u=t

g(t, u)

F0(u) − F0(t)
du

}}

= h̃n1(t){1 − F0(t)} − h̃n2(t)F0(t)

{1 − F0(t)}g1(t) + F0(t)g2(t)
(4.6)

+ dF0(t)

{∫
u<t

h̃n(u, t)

F0(t) − F0(u)
du −

∫
u>v

h̃n(t, u)

F0(u) − F0(t)
du

}
,
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where the off-diagonal terms

−dF0(t)

{∫ t

u=0

g(u, t){F(u) − F0(u)}
F0(t) − F0(u)

du

(4.7)

+
∫ M

u=t

g(t, u){F(u) − F0(u)}
F0(u) − F0(t)

du

}

on the left-hand side of (4.5) are omitted, also solves (4.5) to the right order, apart
from a deterministic shift term. This last step is somewhat similar to a part of
the proof of the asymptotic distribution of the MLE for interval censoring under
the separation condition in [6]. However, in the latter case a corresponding “off-
diagonal” term (4.7) plays no role asymptotically, since for the MLE the contri-
bution to the bias is of lower order. In this way, we have reduced the proof to the
asymptotic equivalence of the MSLE with the solution of (4.6) on [0,M].

A comparison of the MSLE and the toy estimator, solving (4.6), is shown in
part (a) of Figure 4 for bandwidth bn = n−1/5. One can see that for this bandwidth
isotonization is still needed (the MSLE has derivative zero on a piece in the middle
of the interval). Note that the toy estimator is not monotone, but has a very small
distance to the MSLE. If we take bn = 2n−1/5, as in part (b) of Figure 4, which
seems a better choice in this case, isotonization is not needed, except at the very last
end of the interval (where the MSLE has derivative zero). Note that, as n → ∞,
the bandwidth will become smaller than ε/2, where ε is the separation distance
in (1.21), but that this is still not the case in Figures 4.

FIG. 4. (a) The MSLE (solid) and the toy estimator, solving equation (4.6) (dashed), for a sample
of size n = 1000 from the exponential distribution function F0(x) = 1 − exp{−x} (dotted), using
bandwidth bn = n−1/5 ≈ 0.25119. The bivariate observation density g is defined by (1.21), where
ε = 0.1. (b) The same, but now using the bandwidth bn = 2n−1/5 ≈ 0.36411.
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Replacing h̃nj by h0j in (4.4), j = 1,2, and h̃n by h0, we obtain the equation

h01(t)
{
1 − F(t)

} − h02(t)F (t)

+ F(t)
{
1 − F(t)

}{∫ t

v=0

h0(v, t)

F (t) − F(v)
dv −

∫ M

u=t

h0(t, u)

F (u) − F(t)
du

}
= 0,

which, using the definition of h0j and h0, turns into

g1(t)F0(t)
{
1 − F(t)

} − g2(t)
{
1 − F0(t)

}
F(t)

+ F(t)
{
1 − F(t)

}

×
{∫ t

v=0

g(v, t){F0(t) − F0(u)}
F(t) − F(v)

dv −
∫ M

u=t

g(t, u){F0(u) − F0(t)}
F(u) − F(t)

du

}

= 0.

This equation is clearly solved by F0 itself.
This motivates us to consider the equation

φ(t;h1, h2, h,F ) = 0, t ∈ [0,M],
where

φ(t;h1, h2, h,F )

= h1(t)
{
1 − F(t)

} − h2(t)F (t)(4.8)

+ F(t)
{
1 − F(t)

}{∫ t

v=0

h(v, t)

F (t) − F(v)
dv −

∫ M

u=t

h(t, u)

F (u) − F(t)
du

}
.

The functions h belong to a closed subset of the Banach space C(S), where S is
given by

S = {
(x, y) : 0 ≤ x ≤ x + ε0 ≤ y ≤ M

}
,

for a fixed ε0 > 0. We further define

S1 = [0,M − ε0], S2 = [ε0,M].
We now define the space E by

E = C[S1] × C[S2] × C(S) × C[0,M],(4.9)

and put the following norm on E:∥∥(h1, h2, h,F )
∥∥ = max

{‖h1‖,‖h2‖,‖h‖,‖F‖}
,(4.10)

where the norms on the right-hand side denote the supremum norm, which we also
denote by ‖ · ‖. Note that E is a Banach space for the norm (4.10).

We will also need another norm on C[S], defined by

‖h‖S = sup
t∈[0,M]

{∫
u : (u,t)∈S

∣∣h(u, t)
∣∣du +

∫
u : (t,u)∈S

∣∣h(t, u)
∣∣du

}
.(4.11)

Note that this is indeed a norm on C[S], since ‖h‖S = 0 implies h = 0 and since the
triangle inequality and homogeneity property for scalars are obviously satisfied.
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The proof of Theorem 4.1 now proceeds via a sequence of lemmas. The proofs
of these lemmas are given in the Appendix. The first lemma tells us that we
can apply the implicit function theorem in Banach spaces to ensure that, locally,
using the norms just introduced, there is a unique solution F to the equation
φ(t;h1, h2, h,F ) = 0.

LEMMA 4.1. Let F0, h01, h02 and h0 satisfy the conditions of Theorem 4.1.
Furthermore, let the function φ be defined by (4.8). Then there exists for all small
η > 0 an open set U in the Banach space C[S1] × C[S2] × C(S), endowed with
the norm ∥∥(h1, h2, h)

∥∥ = max
{‖h1‖,‖h2‖,‖h‖}

,

such that, if (h1, h2, h) ∈ U , the equation

φ(t;h1, h2, h,F ) = 0, t ∈ [0,M],
where φ is defined by (4.8), has a unique solution F in the open ball B(F0, η) ⊂
C[0,M] with midpoint F0.

Having established the existence of a solution, we also consider the derivative
of the solution.

LEMMA 4.2. Let, under the conditions of Lemma 4.1, for a small η > 0, F ∈
B(F0, η) be the solution of

φ(t;h1, h2, h,F ) = 0, t ∈ [0,M],
where φ is defined by (4.8), and where hj has a bounded continuous derivative on
the interior of Sj , having finite limits approaching the boundary of Sj , for j = 1,2.
Similarly, we suppose that h is differentiable on the interior of its support S and
has finite limits approaching the boundary of S. Then, if (h1, h2, h) ∈ Uδ , where
Uδ is defined by (A.8), the solution F has a continuous and bounded derivative for
sufficiently small η and δ.

The following lemma will be used to show that, with probability tending to one,
F̃n belongs to the allowed class, for all large n, and is a consistent estimate of F0.

LEMMA 4.3. Let, under the conditions of Lemma 4.1, F (n) ∈ B(F0, η) be the
solution of

φ
(
t;h(n)

1 , h
(n)
2 , h(n),F

) = 0, t ∈ [0,M],
where φ is defined by (4.8), and where h(n) ∈ C[S], h

(n)
1 ∈ C[S1] an h

(n)
2 ∈ C[S2]

are nonnegative functions which have bounded continuous derivatives on the sup-
ports S, S1 and S2, respectively, with finite limits approaching the boundary, re-
spectively. Furthermore, let∥∥h(n)

j − h0j

∥∥ −→ 0 and
∥∥(

h
(n)
j

)′ − h′
0j

∥∥ −→ 0, j = 1,2,
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where, as before, ‖ · ‖ denotes the supremum norm on C[Sj ]. Finally, let∥∥h(n) − h0
∥∥
S −→ 0 and

∥∥∂jh
(n) − ∂jh0

∥∥
S −→ 0, j = 1,2,(4.12)

where ‖ · ‖S is defined by (4.11). Then F (n) → F0 in the supremum metric, as
n → ∞, and F (n) is strictly increasing on [0,M] and satisfies F (n)(t) ∈ [0,1],
t ∈ [0,M], for all large n.

We still need to show that the estimates h̃nj of h0j and h̃n of h0 have the prop-
erties of hj and h, as defined in Lemma 4.3.

LEMMA 4.4. Let the conditions of Theorem 4.1 be satisfied and let the esti-
mates h̃nj of and h̃n satisfy Condition 1.2. Then

‖h̃nj − h0j‖ p−→ 0 and
∥∥h̃′

nj − h′
0j

∥∥ p−→ 0, j = 1,2.

Moreover,

‖h̃n − h0‖S
p−→ 0 and ‖∂j h̃n − ∂jh0‖S

p−→ 0, j = 1,2.(4.13)

We now get the following result.

LEMMA 4.5. Let the conditions of Theorem 4.1 be satisfied and let, for small
η > 0, F = F̃n ∈ B(F0, η) be the solution of the equation

φ(t; h̃n1, h̃n2, h̃n,F ) = 0, t ∈ [0,M],
where φ is defined by (4.8). Moreover, let ‖ · ‖ denote the supremum norm. Then:

(i) With probability tending to one, F̃n is strictly increasing on [0,M], and
satisfies F̃n(t) ∈ [0,1], t ∈ [0,M], for all large n. Hence, with probability tending
to one, F̃n coincides with the MSLE for large n and

‖F̃n − F0‖ p−→ 0, n → ∞.

(ii)

‖F̃n − F0‖ = Op

(
n−2/5

√
logn

)
, n → ∞.

(iii)

‖F̃n − F̄n‖ = Op

(
n−4/5 logn

)
,

where F̄n is the solution in F of the linear integral equation (4.5).

We did now in principle solve our problem, since we have shown that F̃n is
locally asymptotically equivalent to the solution F̄n of a linear integral equation.
Since F̃n coincides with the MSLE for large n, the MSLE is also locally asymptot-
ically equivalent with F̄n. However, to get an explicit expression for the bias and
variance of the MSLE, we now study a still simpler “toy estimator,” which turns
out also to be locally asymptotically equivalent to the MSLE.
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LEMMA 4.6. Let the toy estimator F = F
toy
n be defined as the solution of the

equation{
F(t) − F0(t)

}

×
{

1 + dF0(t)

{∫
u<t

g(u, t)

F0(t) − F0(u)
dt +

∫
u>v

g(t, u)

F0(u) − F0(t)
du

}}

(4.14)

= h̃n1(t){1 − F0(t)} − h̃n2(t)F0(t)

{1 − F0(t)}g1(t) + F0(t)g2(t)

+ dF0(t)

{∫
u<t

h̃n(u, t)

F0(t) − F0(u)
du −

∫
u>v

h̃n(t, u)

F0(u) − F0(t)
du

}
.

Then, under the conditions of Theorem 4.1,

√
nbn

{
F toy

n (v) − F0(v) − β1(v)b2
n

2σ1(v)

}
D−→ N

(
0, σ (v)2)

,

where bn � n−1/5 and β1(v), σ1(v) and σ(v) are defined as in Theorem 4.1.

REMARK 4.2. In Lemma 4.6, a toy estimator is introduced, which plays a
similar role as the toy estimator in the study of the ordinary MLE for interval
censoring, introduced in [5] and [12] (the term “toy estimator” was coined by Jon
Wellner). It is called a toy estimator because we cannot use it in an actual sample,
since F0 is unknown (and is in fact the object we want to estimate). Actually, the
solution F̄n of the linear integral equation (4.5) in part (iii) of Lemma 4.5 is also
a toy estimator in this sense (but does not produce explicit expressions for the
expectation and variance of the asymptotic distribution).

Lemma 4.7 shows that the solution of the linear integral equation (4.5) is equiv-
alent in first order to the toy estimator of Lemma 4.6, apart from a deterministic
bias term.

LEMMA 4.7. Let, under the conditions of Theorem 4.1, F
toy
n solve equa-

tion (4.14) of Lemma 4.6 and let F̄n be the solution of the linear integral equa-
tion (4.5). Then

F̄n(t) = F toy
n (t) + dF0(t)

{∫ t

u=0

γn(u)g(u, t)

F0(t) − F0(u)
du +

∫ M

u=t

γn(u)g(t, u)

F0(u) − F0(t)
du

}

+ Op

(
n−1/2)

,

where

γn(u) = β1(u)b2
n

σ1(u)

and β1(u) and σ1(u) are defined as in Theorem 4.1.



2114 P. GROENEBOOM

Theorem 4.1 now follows from Lemma 4.7 and the asymptotic equivalence
of F̄n with the MSLE.

5. Concluding remarks and open problems. In the preceding, it was shown
that, under the so-called separation hypothesis, the MSLE locally converges to the
underlying distribution function at rate n−2/5, if we use bandwidths bn � n−1/5

in the estimates h̃nj and h̃n. The asymptotic (normal) distribution was also deter-
mined. The results can be used to construct a two-sample likelihood ratio test, of
the same type as the test, discussed in [7] for the current status model, but this
is not done in the present paper. It is also possible to use the results to construct
pointwise bootstrap confidence intervals, as is done in [8] and [9] for the current
status model. In that case, it might be advisable to use undersmoothing, and work
with bandwidths of order n−α , where 1/3 < α < 1/5, as is done in [8] and [9]. In
this way one gets rid of the bias and it is expected that the SMLE and MSLE will
then be very similar, since their asymptotic variances are the same, which implies
that their asymptotic (normal) limits will also be the same.

If the separation hypothesis does not hold, which means that we can have ar-
bitrarily small observation intervals, the asymptotic behavior of the MSLE is still
unknown. In this situation the local asymptotic limit distribution for the ordinary
MLE is also still unknown, although it is conjectured that the rate n−1/3, hold-
ing under the separation hypothesis, is improved to the rate (n logn)−1/3 in this
case. There even exists a conjectured limit distribution in this case, put forward
in [5] (see also [9] and [12]). Supporting evidence for this conjecture is given in
a simulation study in [11], but a proof is still missing. The latter paper also gives
simulation results for the SMLE, and the asymptotic variance of the SMLE is the
same as that of the MSLE, but the asymptotic bias is different, just as in the current
status model. The bias of the SMLE is considerably simpler than the bias of the
MSLE. The asymptotic behavior of the SMLE again has to be deduced from an
associated integral equation; this is further discussed in [9] and [11].

It is possible to extend the theory to the situation that there are more than two
observation times than just Ti and Ui or to the so-called mixed case (see, e.g.,
[14]), where there are a random number of observation times per unobservable
event Xi . However, since this leads to further complications in defining the integral
equations, we did not do this in the present paper.

APPENDIX

PROOF OF LEMMA 2.1. First suppose that the conditions (2.3) and (2.4) are
satisfied. Then we cannot have F̂n(t) = 0 for t in an interval where h̃n1(t) > 0
or

∫ t
u=0 h̃n(u, t) > 0, since otherwise �(F̂n) = −∞. Similarly, we cannot have

F̂n(t) = 1 for t in an interval where h̃n2(t) > 0 or
∫ M
u=t h̃n(t, u) > 0.



THE MSLE FOR INTERVAL CENSORING 2115

Since the criterion function F 
→ �(F ) is concave in F , we get

�(F ) − �(F̂n) ≤
∫ M

0
∇

F̂n
(u)

{
F(u) − F̂n(u)

}
du,(A.1)

where we use the facts that the integrals defining �(F ) are all nonpositive. Note
that this is similar to the relation (1.11) in [12].

By (2.4), ∫ M

0
∇

F̂n
(u)F̂n(u) du = 0,

and hence ∫ M

0
∇

F̂n
(u)

{
F(u) − F̂n(u)

}
du =

∫ M

0
∇

F̂n
(u)F (u)du.

If F = 1[t,∞) for some t ∈ [0,M), we get by (2.3),
∫ M

0
∇

F̂n
(u)F (u)du =

∫ M

t
∇

F̂n
(u) du ≤ 0.

So we also get, for subdistribution functions of the type

F =
k∑

i=1

αi1[ti ,∞), 0 ≤ t1 < · · · , tk ≤ M,αi ∈ (0,1),

k∑
i=1

αi ≤ 1,

that
∫ M

0
∇

F̂n
(u)F (u)du =

k∑
i=1

αi

∫ M

ti

∇
F̂n

(u) du ≤ 0.

Since we can approximate any subdistribution function F on [0,M) by subdis-
tribution functions of this type, this implies �(F ) ≤ �(F̂n), for all subdistribution
functions F .

Conversely, suppose that F̂n maximizes �(F ). Then we must have, if t ∈ (0,M),
F = 1[t,∞) and δ ∈ (0,1),

∫ M

v=t
∇

F̂n
(v) dv = lim

δ↓0
δ−1{

�
(
(1 − δ)F̂n + δF

) − �(F̂n)
} ≤ 0

(using the concavity of � for the existence of the limit), and hence (2.3) has to be
satisfied for F̂n. Moreover, defining Fδ by

Fδ(t) = (1 + δ)F̂n(t) ∧ 1, t ∈ [0,M],
we find

lim
δ→0

�(Fδ) − �(F̂n)

δ
= 0,

since the limit has to be nonpositive, if we let δ tend to zero, either from above or
from below.
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We have

0 = lim
δ→0

�(Fδ) − �(F̂n)

δ
=

∫ M

0
∇

F̂n
(u)F̂n(u) du,

so (2.4) must hold.
Suppose F̂n has a jump at t ∈ (0,M) and suppose ∇

F̂n
(t−) > 0. Define

Fδ(u) =
⎧⎪⎨
⎪⎩

F̂n(u), u < t − δ,

F̂n(t), u ∈ [t − δ, t),

F̂n(u), u ∈ [t,M].
Then ∫

∇
F̂n

(u)
{
Fδ(u) − F̂n(u)

}
du > 0,

for small δ > 0, a contradiction. Hence, we must have: ∇
F̂n

(t−) ≤ 0. If ∇
F̂n

(t) < 0,
we define

Fδ(u) =
⎧⎪⎨
⎪⎩

F̂n(u), u < t ,

F̂n(t−), u ∈ [t, t + δ),

F̂n(u), u ∈ [t + δ,M],
and then again: ∫

∇
F̂n

(u)
{
Fδ(u) − F̂n(u)

}
du > 0,

for small δ > 0, a contradiction, so we must have: ∇
F̂n

(t) ≥ 0, implying we must
have

∇
F̂n

(t−) ≤ 0 ≤ ∇
F̂n

(t).(A.2)

On the other hand, we have by the continuity of h̃nj , j = 1,2 and h̃n:

∇
F̂n

(t) − ∇
F̂n

(t−)

= h̃n1(t)

F̂n(t)
− h̃n1(t)

F̂n(t−)
− h̃n2(t)

1 − F̂n(t)
+ h̃n2(t)

1 − F̂n(t−)

+
∫ u

v=0

h̃n(v, t)

F̂n(t) − F̂n(v)
dv −

∫ u

v=0

h̃n(v, t)

F̂n(t−) − F̂n(v)
dv

−
∫ M

v=t

h̃n(t, v)

F̂n(v) − F̂n(t)
dv +

∫ M

v=t

h̃n(t, v)

F̂n(v) − F̂n(t−)
dv

= h̃n1(t)

F̂n(t)
− h̃n1(t)

F̂n(t−)
− h̃n2(t)

1 − F̂n(t)
+ h̃n2(t)

1 − F̂n(t−)

= h̃n1(t)
F̂n(t−) − F̂n(t)

F̂n(t−)F̂n(t)
+ h̃n2(t)

F̂n(t−) − F̂n(t)

{1 − F̂n(t−)}{1 − F̂n(t)}
< 0,
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contradicting (A.2). The conclusion is that we must have: F̂n(t−) = F̂n(t), for
t ∈ (0,M).

Finally, suppose (2.5) is satisfied for a point t ∈ (0,M) and suppose ∇
F̂n

(t) > 0.

Then, by the continuity of F̂n, there also exists a neighborhood of t such that
∇

F̂n
(u) > 0 for u in this neighborhood. We now define a perturbation Fδ of F̂n by

Fδ(u) =
⎧⎪⎨
⎪⎩

F̂n(u), u < t − δ,

F̂n(t + δ), u ∈ [t − δ, t + δ),

F̂n(u), u ∈ [t + δ,M].
Then we have for sufficiently small δ > 0:∫

∇
F̂n

(u)
{
Fδ(u) − F̂n(u)

}
du > 0,

contradicting ∫
∇

F̂n
(u)

{
Fδ(u) − F̂n(u)

}
du ≤ 0.

If (2.5) is satisfied for a point t ∈ (0,M) and ∇
F̂n

(t) < 0, we define the perturbation

Fδ of F̂n by

Fδ(u) =
⎧⎪⎨
⎪⎩

F̂n(u), u < t − δ,

F̂n(t − δ), u ∈ [t − δ, t + δ),

F̂n(u), u ∈ [t + δ,M]
and get a contradiction in the same way. So, if (2.5) is satisfied for a point t ∈
(0,M), we must have:

∇
F̂n

(t) = 0.

This proves the left-hand side of (2.6).
Furthermore,∫ M

0
∇

F̂n
(u)F̂n(u) du

=
[
−F̂n(t)

∫ M

u=t
∇

F̂n
(u) du

]M

t=0
+

∫ M

t=0

∫ M

u=t
∇

F̂n
(u) dudF̂n(t)

(A.3)

= F̂n(0)

∫ M

u=0
∇

F̂n
(u) du +

∫ M

t=0

∫ M

u=t
∇

F̂n
(u) dudF̂n(t)

=
∫ M

t=0

∫ M

u=t
∇

F̂n
(u) dudF̂n(t),

implying by (2.3) that ∫ M

u=t
∇

F̂n
(u) du = 0,
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for points t satisfying (2.5), since otherwise the right-hand side of (A.3) would be
strictly negative. �

PROOF OF THEOREM 2.1. By the assumption on the kernel estimates and the
observation density g, we may assume that h̃n satisfies (2.1), for some ε > 0, and
all large n. Let the function ψ be defined by

ψ(F ;h1, h2, h) =
∫

h1(t) logF(t) dt +
∫

h2(t) log
{
1 − F(t)

}
dt

(A.4)
+

∫
h(t, u) log

{
F(u) − F(t)

}
dt du.

Then we must have, if hj = h̃nj , j = 1,2 and h = h̃n,

lim
ε↓0

ε−1{
ψ

(
(1 − ε)F̂n + εF0;h1, h2, h

) − ψ(F̂n;h1, h2, h)
} ≤ 0.

This implies (see also (4.20) in [12]):∫
F0(t)

F̂n(t)
h̃n1(t) dt +

∫ 1 − F0(t)

1 − F̂n(t)
h̃n2(t) dt

(A.5)

+
∫

F0(u) − F0(t)

F̂n(u) − F̂n(t)
h̃n(t, u) dt du ≤ 1.

Fix a small δ ∈ [0,M/2] and let the intervals Aδ and Bδ be defined by

Aδ = [δ,M], Bδ = [0,M − δ].
Then, arguing as in [12], Part II, Chapter 4, we find that there exists an M > 0 such
that for all n,

sup
t∈Aδ

1
/

F̂n(t) + sup
t∈Bδ

1
/ {

1 − F̂n(t)
} ≤ M.

We also cannot have that F̂n(ukn) − F̂n(tkn) → 0, for a sequence of points
(tkn, ukn) ∈ Cδ . For suppose, if necessary by taking a subsequence, that tkn → t0

and ukn → u0. The u0 − t0 ≥ ε + δ. By the vague convergence of F̂n to F , there
are continuity points t1 and u1 such that t0 < t1 < u1 < u0, u1 − t1 ≥ 1

2δ + ε, and

F̂n(t1) → F(t1) and F̂n(u1) → F(u1). Moreover, since

F̂n(u1) − F̂n(t1) ≤ F̂n(ukn) − F̂n(tkn),

for large n, we must have: F(u1) − F(t1) = 0. We then would get that there exists
a rectangle [t1, t2] × [u2, u1] such that u2 − t2 > ε and

lim inf
n→∞

∫
[t1,t2]×[u2,u1]

F0(u) − F0(t)

F̂n(u) − F̂n(t)
h̃n(t, u) dt du

≥ K
{
F0(u2) − F0(t2)

} ∫
[t1,t2]×[u2,u1]

h0(t, u) dt du,
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for any K > 0, contradicting (A.5). So, we may also assume that

inf
(t,u)∈Cδ

{
F̂n(u) − F̂n(t)

} ≥ 1

M
,

for all n.
As in [12], Part II, Chapter 4, we have by the Helly compactness theorem that

the exists a set of probability one, such that for each ω in this set the sequence
(F̂n(·;ω)) has a subsequence F̂nk

(·;ω) which converges vaguely to a subdistribu-
tion function F = F(·;ω). By the vague convergence of F̂nk

(·;ω) to F , we now
get

∫
Aδ

F0(t)

F̂nk
(t;ω)

h̃n1(t) dt +
∫
Bδ

1 − F0(t)

1 − F̂nk
(t;ω)

h̃n2(t) dt

+
∫
Cδ

F0(u) − F0(t)

F̂nk
(u;ω) − F̂nk

(t;ω)
h̃n(t, u) dt du

→
∫
Aδ

F0(t)

F (t)
h01(t) dt +

∫
Bδ

1 − F0(t)

1 − F(t)
h02(t) dt

+
∫
Cδ

F0(u) − F0(t)

F (u) − F(t)
h0(t, u) dt du, n → ∞.

By monotone convergence, we now also have
∫
[0,M]

F0(t)

F (t)
h01(t) dt +

∫
[0,M]

1 − F0(t)

1 − F(t)
h02(t) dt

+
∫
[0,M]2

F0(u) − F0(t)

F (u) − F(t)
h0(t, u) dt du

(A.6)

= lim
δ↓0

{∫
Aδ

F0(t)

F (t)
h01(t) dt +

∫
Bδ

1 − F0(t)

1 − F(t)
h02(t) dt

+
∫
Cδ

F0(u) − F0(t)

F (u) − F(t)
h0(t, u) dt du

}
≤ 1.

Suppose F(t) �= F0(t) for some t ∈ [0,M/2]. Then there exist a u ∈ (t,M) such
that h0(t, u) > 0 and

F0(t)
2

F(t)
+ {1 − F0(u)}2

1 − F(u)
+ {F0(u) − F0(t)}2

F(u) − F(t)
> 1,

since

F0(t)
2

x
+ {1 − F0(u)}2

1 − y
+ {F0(u) − F0(t)}2

y − x

{= 1, F0(t) = x, F0(u) = y,

> 1, otherwise
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(see also (4.27) in [12]). By the continuity of F0 and the monotonicity and right
continuity of F there exist therefore also h > 0 such that

F0(t
′)2

F(t ′)
+ {1 − F0(u

′)}2

1 − F(u′)
+ {F0(u

′) − F0(t
′)}2

F(u′) − F(t ′)
> 1,

if t ′ ∈ [t, t + h] and u′ ∈ [u,u + h]. This implies
∫
[0,M]

F0(t)

F (t)
h01(t) dt +

∫
[0,M]

1 − F0(t)

1 − F(t)
h02(t) dt

+
∫
[0,M]2

F0(u) − F0(t)

F (u) − F(t)
h0(t, u) dt du

=
∫
[0,M]

F0(t)
2

F(t)
g1(t) dt +

∫
[0,M]

{1 − F0(t)}2

1 − F(t)
g2(t) dt

+
∫
[0,M]2

{F0(u) − F0(t)}2

F(u) − F(t)
g(t, u) dt du

=
∫
[0,M]2

{
F0(t)

2

F(t)
+ {1 − F0(t)}2

1 − F(t)
+ {F0(u) − F0(t)}2

F(u) − F(t)

}
g(t, u) dt du > 1,

in contradiction with (A.6). So, we must have F(t) = F0(t) if t ∈ [0,M/2]. A sim-
ilar argument yields F(t) = F0(t) if t ∈ [M/2,M).

So, for each ω outside a set of probability zero, the sequence (F̂n(·;ω)) has
a subsequence which converges weakly to F0. This implies that F̂n(t) converges
almost surely to F0(t) for each t ∈ [0,M). The uniformity of the convergence on
subintervals follows from the continuity of F0. �

PROOF OF LEMMA 4.1. We will use the line of argument of the proof of the
implicit function theorem 10.2.1 in [1]. We define the function φ̄ by

[
φ̄(h1, h2, h,F )

]
(t) = φ(t, h1, h2, h,F ), t ∈ [0,M],(A.7)

so φ̄ maps E to C[0,M]. The derivative of φ̄ w.r.t. F , is given by the function
[[

∂4φ̄(h1, h2, h,F )
]
(A)

]
(t)

def= −{
h1(t) + h2(t)

}
A(t)

+ {
1 − 2F(t)

}{∫ t

v=0

h(v, t)

F (t) − F(v)
dv −

∫ M

u=t

h(t, u)

F (u) − F(t)
du

}
A(t)

− F(t)
{
1 − F(t)

}

×
{∫ t

u=0

h(u, t){A(t) − A(u)}
{F(t) − F(u)}2 du +

∫ M

u=t

h(t, u){A(t) − A(u)}
{F(u) − F(t)}2 du

}
,
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where A ∈ C[0,M]. Note that the right-hand side is well defined for F ∈ B(F0, η)

and small η > 0, since h(t, u) = 0 if u − t < ε, and since F0 has a nonvanishing
derivative on [0,M], implying that F0(u)−F0(t) stays away from zero if u− t ≥ ε.

We now define the open set U = Uδ of functions (h1, h2, h) by

Uδ = {
(h1, h2, h) ∈ C[S1] × C[S2] × C[S] :

(A.8)
max

{‖h1 − h01‖,‖h2 − h02‖,‖h − h0‖S

}
< δ

}
.

There exists a δ > 0 such that for (h1, h2, h) ∈ Uδ ,∥∥φ̄(h1, h2, h,F1) − φ̄(h1, h2, h,F2) − [
∂4φ̄(h01, h02, h0,F0)

]
(F1 − F2)

∥∥
≤ ε′‖F1 − F2‖,

if F1,F2 ∈ B(F0, η), where ε′ > 0 can be made arbitrarily small by making δ

small, using the definition of differentiability in Banach spaces.
The equation [

∂4φ̄(F0;h01, h02, h0,F0)
]
(A) = 0

only has the trivial solution A ≡ 0 in C[0,M]. This is seen in the following way.
Suppose there exists a solution in A ∈ C[0,M] such that [∂4φ̄(F0;h01, h02, h0,

F0)](A) = 0 and A(s) > 0 for some s ∈ [0,M]. Then also maxs∈[0,M] A(s) > 0.
Suppose the maximum is attained at t ∈ [0,M]. Then[[

∂4φ̄(h01, h02, h0,F0)
]
(A)

]
(t)

= −{
h01(t) + h02(t)

}
A(t)

+ {
1 − 2F0(t)

}{∫ t

v=0

h0(v, t)

F0(t) − F0(v)
dv −

∫ M

u=t

h0(t, u)

F0(u) − F0(t)
du

}
A(t)

− F0(t)
{
1 − F0(t)

}

×
{∫ t

u=0

h0(u, t){A(t) − A(u)}
{F0(t) − F0(u)}2 du +

∫ M

u=t

h0(t, u){A(t) − A(u)}
{F0(u) − F0(t)}2 du

}

= −{
g1(t)

{
1 − F0(t)

} + g2(t)F0(t)
}
A(t)

− F0(t)
{
1 − F0(t)

}

×
{∫ t

u=0

h0(u, t){A(t) − A(u)}
{F0(t) − F0(u)}2 du +

∫ M

u=t

h0(t, u){A(t) − A(u)}
{F0(u) − F0(t)}2 du

}

≤ −{
g1(t)

{
1 − F0(t)

} + g2(t)F0(t)
}
A(t) < 0,

using g1(t){1 − F0(t)} + g2(t)F0(t) > 0, in contradiction with the assumption[
∂4φ̄(h01, h02, h0,F0)

]
(A) = 0.

We similarly get a contradiction if we assume that A(t) < 0 for some t ∈ [0,M]
(similar arguments were used for the integral equation, studied in [3]). This shows
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that ∂4φ̄(h01, h02, h0,F ) is a linear homeomorphism of C[0,M] onto C[0,M]
and that we can in fact use arguments of the type used in the proof of the implicit
function theorem in Banach spaces, as given, for example, in [1], Theorem 10.2.1.

Denoting (as in the proof of Theorem 10.2.1 of [1]) the linear mapping
∂4φ̄(h01, h02, h0,F0) by T0 and its inverse by T −1

0 , we find that∥∥T −1
0 · {

φ̄(h1, h2, h,F1) − φ̄(h1, h2, h,F2)
} − (F1 − F2)

∥∥ ≤ ε′∥∥T −1
0

∥∥‖F1 − F2‖
≤ 1

2‖F1 − F2‖,
so we have a contraction, and this implies that the equation

F = F − T −1
0 · φ̄(·,F ;h1, h2, h)

has a unique solution F ∈ B(F0, η) which can be obtained by successive approxi-
mations, if we take the balls around h0j and h0, to which hj and h belong, respec-
tively, sufficiently small, using a result like 10.1.1 in [1]. This, in turn, implies that
the equation

φ̄(h1, h2, h,F ) = 0

has a unique solution in F ∈ B(F0, η), for (h1, h2, h) ∈ Uδ and small δ. �

PROOF OF LEMMA 4.2. If φ(·;h1, h2, h,F ) = 0, we have{
1 − F(t)

}
h1(t) − F(t)h2(t)

+ F(t)
{
1 − F(t)

}{∫
u : (u,t)∈S

h(u, t)

F (t) − F(u)
du −

∫
u : (t,u)∈S

h(t, u)

F (u) − F(t)
du

}

= 0.

Note that the differentiability proerties of h, h1 and h2 and the fact that F solves
the integral equation imply that we can differentiate F too. Differentiation w.r.t. t ,
and defining f = F ′, yields:{

1 − F(t)
}
h′

1(t) − F(t)h′
2(t) − f (t)

{
h1(t) + h2(t)

}
+ {

1 − 2F(t)
}

× f (t)

{∫
u : (u,t)∈S

h(u, t)

F (t) − F(u)
du −

∫
u : (t,u)∈S

h(t, u)

F (u) − F(t)
du

}

+ F(t)
{
1 − F(t)

}
(A.9)

×
{∫

u : (u,t)∈S

∂2h(u, t)

F (t) − F(u)
du −

∫
u : (t,u)∈S

∂1h(t, u)

F (u) − F(t)
du

}

− f (t)F (t)
{
1 − F(t)

}

×
{∫

u : (u,t)∈S

h(u, t)

{F(t) − F(u)}2 du +
∫
u : (t,u)∈S

h(t, u)

{F(u) − F(t)}2 du

}

= 0.
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Temporarily replacing F by F0, and hj and h by h0j and h0, respectively, we
would obtain

{
1 − F0(t)

}
h′

01(t) − F0(t)h
′
02(t) − f (t)

{{
1 − F0(t)

}
g1(t) + F0(t)g2(t)

}
+ F0(t)

{
1 − F0(t)

}

×
{∫

u : (u,t)∈S

∂2h0(u, t)

F0(t) − F0(u)
du −

∫
u : (t,u)∈S

∂1h0(t, u)

F0(u) − F0(t)
du

}

− f (t)F0(t)
{
1 − F0(t)

}

×
{∫

u : (u,t)∈S

h0(u, t)

{F0(t) − F0(u)}2 du +
∫
u : (t,u)∈S

h0(t, u)

{F0(u) − F0(t)}2 du

}

= 0,

that is,

f0(t)

{{{
1 − F0(t)

}
g1(t)1S1(t) + F0(t)g2(t)1S2(t)

}

+ F0(t)
{
1 − F0(t)

}{∫
u : (u,t)∈S

h0(u, t)

{F0(t) − F0(u)}2 du

+
∫
u : (t,u)∈S

h0(t, u)

{F0(u) − F0(t)}2 du

}}

= {
1 − F0(t)

}
h′

01(t)1S1(t) − F0(t)h
′
02(t)1S2(t)

+ F0(t)
{
1 − F0(t)

}

×
{∫

u : (u,t)∈S

∂2h0(u, t)

F0(t) − F0(u)
du −

∫
u : (t,u)∈S

∂1h0(t, u)

F0(u) − F0(t)
du

}
.

This means that the coefficient of f (t) in equation (A.9) stays away from zero if
F belongs to a sufficiently small ball B(F0, η) around F0, and (h1, h2, h) ∈ Uδ for
small δ > 0. Denoting this coefficient by c(t, h1, h2, h,F ), we get the equation

f (t) = 1

c(t, h1, h2, h,F )

×
{{

1 − F(t)
}
h′

1(t) − F(t)h′
2(t)

(A.10)
+ F(t)

{
1 − F(t)

}

×
{∫ t

u=0

∂2h(u, t)

F (t) − F(u)
du −

∫ M

u=t

∂1h(t, u)

F (u) − F(t)
du

}}
.

The statement of the lemma now follows. �
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PROOF OF LEMMA 4.3. By Lemma 4.1, we have that F (n) tends to F0 in the
supremum norm on C[0,M], since for any η we can choose a δ > 0 such that

∥∥F (n) − F0
∥∥ < η,

if ‖h(n)
j − h0j‖ < δ and ‖h(n) − h0‖ < δ.

Using Lemma 4.2, we get that, under the conditions of the lemma, that F (n)

is differentiable with a bounded derivative f (n); see (A.10). Specifically, (A.10)
yields

f (n)(t)
def= (

F (n))′(t)
=

{
F (n)(t)

{
1 − F (n)(t)

}

×
{∫ t

u=0

∂2h
(n)(u, t)

F (n)(t) − F (n)(u)
du −

∫ M

u=t

∂1h
(n)(t, u)

F (n)(u) − F (n)(t)
du

}

+ {
1 − F (n)(t)

}(
h

(n)
1

)′
(t) − F (n)(t)

(
h

(n)
2

)′
(t)

}

/
c
(
t, h

(n)
1 , h

(n)
2 , h(n),F (n)),

where c(t, h
(n)
1 , h

(n)
2 , h(n),F (n)) stays away from zero, as n → ∞. The correspond-

ing density f0 of the underlying model similarly has the representation

f0(t) =
{
F0(t)

{
1 − F0(t)

}

×
{∫

u : (u,t)∈S

∂2h0(u, t)

F0(t) − F0(u)
du −

∫
u : (t,u)∈S

∂1h0(t, u)

F0(u) − F0(t)
du

}

+ {
1 − F0(t)

}
h′

01(t) − F0(t)h
′
02(t)

}
(A.11)

/
c0(t),

where c0(t) is given by

c0(t) = g1(t)
{
1 − F0(t)

} + g2(t)F0(t).

By
∥∥h(n)

j − h0j

∥∥ → 0,
∥∥h(n) − h0

∥∥ → 0,
∥∥F (n) − F0

∥∥ → 0,

and (4.12), we now get

sup
t∈[0,M]

∣∣c(
t, h

(n)
1 , h

(n)
2 , h(n),F (n)) − c0(t)

∣∣ → 0.
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Again using (4.12), we also get ∥∥f (n) − f0
∥∥ → 0,

that is, f (n) converges to f0 in the supremum norm. Since f0 stays away from zero
on [0,M], this means that F (n) is strictly increasing on [0,M] for all sufficiently
large n.

Furthermore, since φ(t, h
(n)
1 , h

(n)
2 , h(n),F (n)) = 0, we get for large n, and t in a

right neighborhood of 0,

F (n)(t)

= h
(n)
1 (t)

h
(n)
1 (t) + h

(n)
2 (t) + {1 − F (n)(t)} ∫ M

u=t (h
(n)(t, u)/(F (n)(u) − F (n)(t))) du

≥ 0,

since, by the convergence of F (n) to F0, we may assume 1 − F (n)(t) > 0 for t in a
neighborhood of 0, and since h

(n)
j and h(n) are nonnegative.

Likewise, if F0(M) = 1, we have, for t in a small left neighborhood of M ,

F (n)(t)
{
1 − F (n)(t)

} ∫ t

v=0

h(n)(v, t)

F (n)(t) − F (n)(v)
dv

= {
h

(n)
1 (t) + h

(n)
2 (t)

}
F (n)(t) − h

(n)
1 (t)

+ F (n)(t)
{
1 − F (n)(t)

} ∫ M

v=t

h(n)(v, t)

F (n)(t) − F (n)(v)
dv

= h
(n)
2 (t)F (n)(t) − h

(n)
1 (t)

{
1 − F (n)(t)

}
,

and hence, for t in a small left neighborhood of M ,

{
1 − F (n)(t)

}{
F (n)(t)

∫ t

v=0

h(n)(v, t)

F (n)(t) − F (n)(v)
dv + h

(n)
1 (t)

}
= h

(n)
2 (t)F (n)(t),

implying that, for all large n, 1 − F (n)(t) ≥ 0 for t in a neighborhood of M . This
will a fortiori hold if F0(M) < 1. This shows that, for all large n and all t ∈ [0,M],
F (n)(t) ∈ [0,1]. �

PROOF OF LEMMA 4.4. Since we use boundary kernels near the boundary
of [0,M], h̃nj (t) is a consistent estimate of h0j (t) for each t ∈ Sj . For if t ∈
[bn,M − bn] ∩ Sj we just have

Eh̃n1(t) = E�11Kbn(t − T1) =
∫

Kbn(t − u)h01(u) du = h01(t) + O
(
n−2/5)

,

where the remainder term is uniform in t ∈ [bn,M − bn] ∩ Sj . Since bn ↓ 0, we
have bn < ε for all large n, where ε is the “separation parameter” of Condition 1.1,
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and hence the boundary kernels are only relevant for h̃n1 in a neighborhood of 0
and for h̃n2 in a neighborhood of M .

If t ∈ [0, bn], we have

Eh̃n1(t) = α(t/bn)E�11Kbn(t − T1) + β(t/bn)E

{
�11

t − T1

bn

Kbn(t − T1)

}

= α(t/bn)

∫ M

u=0
Kbn(t − u)h01(u) du

+ β(t/bn)

∫ M

u=0

t − u

bn

Kbn(t − u)h01(u) du

= h01(t)

∫ t/bn

u=−1

{
α(t/bn)K(u) + β(t/bn)K(u)

}
du + O

(
n−2/5)

= h01(t) + O
(
n−2/5)

,

again uniformly for t ∈ [0, bn]. A similar computation can be made for h̃n2 if
t ∈ [M − bn,M]. Since

sup
t∈S1

∣∣h̃n1(t) −Eh̃n1(t)
∣∣ = Op

(
n−2/5

√
logn

)
,

we now get the uniform convergence in probability of h̃n1 to h01 on S1, and simi-
larly we have uniform convergence in probability of h̃n2 to h02 on S2.

Next, we consider the derivative of h̃n1(t). If t ∈ [bn,M −bn]∩S1, we just have

Eh̃′
n1(t) = d

dt
E�11K

′
bn

(t − T1)

=
∫

d

dt
Kbn(t − u)h01(u) du

= b−1
n

∫
K ′(u)h01(t − bnu)du

= b−1
n

∫
K ′(u)

{
h01(t) − bnuh′

01(t) + 1

2
b2
nu

2h′
01(t) − 1

6
b3
nu

3h′′
01(t)

}
du

+ o
(
b2
n

)
= h′

01(t) + O(bn) = h′
01(t) + O

(
n−1/5)

,

again uniformly in t . Since

sup
t∈[bn,M−bn]∩S1

∣∣h̃′
n1(t) −Eh̃′

n1(t)
∣∣ = Op

(
n−1/5

√
logn

)
,

we only have to consider what happens near the boundary.
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In treating the boundary kernels, we denote for simplicity bn by b. If t ∈ [0, b],
we have

Eh̃n1(t) = α

(
t

b

)∫ t+b

x=0
Kb(t − x)h01(x) dx

+ β

(
t

b

)∫ t+b

x=0

t − x

b
Kb(t − x)h01(x) dx.

This can also be written

Eh̃n1(t) =
∫ t/b

−1

{
α

(
t

b

)
K(u) + β

(
t

b

)
uK(u)

}
h01(t − bu)du.

We write this in the form

Eh̃n1(t)

= h01(t)

+
∫ t/b

−1

{
α

(
t

b

)
K(u) + β

(
t

b

)
uK(u)

}∫ t

t−bu
(w − t + bu)h′′

01(w)dw du,

using a second-order Taylor development of h01 with the integral remainder term.
Hence,

d

dt
Eh̃n1(t) = h′

01(t) + 1

b

{
α

(
t

b

)
K

(
t

b

)
+ β

(
t

b

)
t

b
K

(
t

b

)}∫ t

0
wh′′

01(w)dw

+ 1

b

∫ t/b

−1

{
α′

(
t

b

)
K(u) + β ′

(
t

b

)
uK(u)

}

×
∫ t

t−bu
(w − t + bu)h′′

01(w)dw du

−
∫ t/b

−1

{
α

(
t

b

)
K(u) + β

(
t

b

)
uK(u)

}∫ t

t−bu
h′′

01(w)dw du

+
∫ t/b

−1

{
α

(
t

b

)
K(u) + β

(
t

b

)
uK(u)

}
buh′′

01(t) du

= h′
01(t) + O(b), b ↓ 0.

Note that, by Condition 1.2, the functions α, β , α′ and β ′ are bounded on [0,1].
We also have

d

dt
Eh̃n1(t) = 1

b

{
α′

(
t

b

)∫ t+b

x=0
Kb(t − x)h01(x) dx

+ β ′
(

t

b

)∫ t+b

x=0

t − x

b
Kb(t − x)h01(x) dx

}

+ α

(
t

b

)∫ t+b

x=0

d

dt
Kb(t − x)h01(x) dx
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+ β

(
t

b

)∫ t+b

x=0

t − x

b

d

dt
K ′

b(t − x)h01(x) dx

+ 1

b
β

(
t

b

)∫ t+b

x=0
Kb(t − x)h01(x) dx,

so

Eh̃′
n1(t) = d

dt
Eh̃n1(t) = h′

01(t) + O(b) = h′
01(t) + O

(
n−1/5)

.

Since we have

sup
t∈[0,bn]

∣∣h̃′
n1(t) −Eh̃′

n1(t)
∣∣ = Op

(
n−1/5)

,

we now also get that

sup
u∈S1

∣∣h̃′
n1(t) − h′

01(t)
∣∣ = op(1).

The other cases can be treated in a similar way. �

PROOF OF LEMMA 4.5. Part (i) is an immediate consequence of Lemma 4.3.
(ii) We get, again using the approach of the implicit function theorem 10.2.1

in Banach spaces of [1], denoting the derivative w.r.t. (h1, h2, h) by D1 and the
derivative w.r.t. F by D2:

‖F̃n − F0‖ = ∥∥[
D2φ̄(h01, h02, h0,F0)

−1 ◦ D1φ̄(h01, h02, h0,F0)
]

× (h̃n1 − h01, h̃n2 − h02, h̃n − h0)
∥∥(A.12)

+ op

(∥∥(h̃n1 − h01, h̃n2 − h02, h̃n − h0)
∥∥)

,

where the norm ‖ · ‖ on the left-hand side and the first norm on the right-hand side
denote the supremum norm on C[0,M] and the norm in the op-term denotes the
norm ∥∥(h1, h2, h)

∥∥ = max
{‖h1‖,‖h2‖,‖h‖S

}
,

where the first two norms denote again the supremum norm and the third norm
‖ · ‖S is defined by (4.11).

By well-known results in density estimation, we have, if bn � n−1/5,

max
(‖h̃n1 − h01‖,‖h̃n2 − h02‖) = Op

(
n−2/5

√
logn

)
.

The boundary kernels ensure that the rates are not spoiled by what happens at the
boundary. So, we have to determine the rate of convergence of ‖h̃n −h0‖S . We get∫

u : (u,t)∈S

∣∣h̃n(u, t) − h0(u, t)
∣∣du

≤ M1/2
{∫

u : (u,t)∈S

{
h̃n(u, t) − h0(u, t)

}2
du

}1/2
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and
{∫

u : (u,t)∈S

{
h̃n(u, t) − Eh̃n(u, t)

}2
du

}1/2

= Op

(
n−2/5

√
logn

)
,

uniformly in t . For the bias we get, if bn < u < u + ε ≤ t < M − bn,

Eh̃n(u, t) − h0(u, t)

= EKbn(u − T1)Kbn(t − U1)�12 − h0(u, t)

=
∫

Kbn

(
u − t ′

)
Kbn

(
t − u′)h0

(
t ′, u′)dt ′ du′ − h0(u, t)

=
∫

K(v)K(w)h0(u − bnw, t − bnv) dv dw − h0(u, t)

= O
(
b2
n

)
.

The use of the boundary kernels ensures that the bias is also of order O(b2
n) is

u < bn or t > M − bn. The conclusion is

∥∥(h̃n1 − h01, h̃n2 − h02, h̃n − h0)
∥∥ = Op

(
n−2/5

√
logn

)
.(A.13)

The derivative D2 was computed in the proof of Lemma 4.1 (denoted by ∂4

there) and the derivative D1 is given by
[[

D1φ̄(h01, h02, h0,F0)
]
(A)

]
(t)

= B1(t)
{
1 − F0(t)

} − B2(t)F0(t)

+ F0(t)
{
1 − F0(t)

}{∫ t

v=0

B(v, t)

F0(t) − F0(v)
dv −

∫ M

u=t

B(t, u)

F0(u) − F0(t)
du

}
,

where B1, B2 and B are of the form

B1 = h1 − h01, B2 = h2 − h02,

B = h − h0.

Hence, defining F̄n by

F̄n − F0 = −[
D2φ̄(h01, h02, h0,F0)

−1 ◦ D1φ̄(h01, h02, h0,F0)
]

(A.14)
× (h̃n1 − h01, h̃n2 − h02, h̃n − h0),

we get that F = F̄n is the solution of the linear integral equation
[
D2φ̄(h01, h02, h0,F0)

]
(F − F0)

= −[
D1φ̄(h01, h02, h0,F0)

]
(h̃n1 − h01, h̃n2 − h02, h̃n − h0),
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which, letting A = F −F0 and (B1,B2,B) = (h̃n1 −h01, h̃n2 −h02, h̃n −h0), boils
down to the equation{

h01(t) + h02(t)
}
A(t)

− {
1 − 2F0(t)

}{∫ t

v=0

h0(v, t)

F0(t) − F0(v)
dv −

∫ M

u=t

h0(t, u)

F0(u) − F0(t)
du

}
A(t)

+ F0(t)
{
1 − F0(t)

}

×
{∫ t

u=0

h0(u, t){A(t) − A(u)}
{F0(t) − F0(u)}2 du +

∫ M

u=t

h0(t, u){A(t) − A(u)}
{F0(u) − F0(t)}2 du

}
(A.15)

= B1(t)
{
1 − F0(t)

} − B2(t)F0(t)

+ F0(t)
{
1 − F0(t)

}

×
{∫ t

v=0

B(v, t)

F0(t) − F0(v)
dv −

∫ M

u=t

B(t, u)

F0(u) − F0(t)
du

}
.

We have{
h01(t) + h02(t)

}
A(t)

− {
1 − 2F0(t)

}{∫ t

v=0

h0(v, t)

F0(t) − F0(v)
dv −

∫ M

u=t

h0(t, u)

F0(u) − F0(t)
du

}
A(t)

= {
g1(t)F0(t)(t) + g2(t)

{
1 − F0(t)

}}
A(t)

− {
1 − 2F0(t)

}{
g2(t) − g1(t)

}
A(t)

= {{
1 − F0(t)

}
g1(t) + F0(t)g2(t)

}
A(t).

Furthermore,∫ t

u=0

h0(u, t){A(t) − A(u)}
{F0(t) − F0(u)}2 du +

∫ M

u=t

h0(t, u){A(t) − A(u)}
{F0(u) − F0(t)}2 du

=
∫ t

u=0

g(u, t){A(t) − A(u)}
F0(t) − F0(u)

du +
∫ M

u=t

g(t, u){A(t) − A(u)}
F0(u) − F0(t)

du.

Finally,

h01(t)
{
1 − F0(t)

} − h02(t)F0(t)

+ F0(t)
{
1 − F0(t)

}{∫ t

v=0

h0(v, t)

F0(t) − F0(v)
dv −

∫ M

u=t

h0(t, u)

F0(u) − F0(t)
du

}
= 0.

So, we obtain the linear integral equation (4.5) by dividing both sides of (A.15) by
{1 − F0(t)}g1(t) + F0(t)g2(t).

Hence, F̄n is the solution of the linear integral equation (4.5), and by (A.12)
and (A.13),

‖F̃n − F0‖ = ‖F̄n − F0‖ + op

(
n−2/5

√
logn

)
.
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Note that we have

‖F̄n − F0‖ = Op

(
n−2/5

√
logn

)

by the fact that D1φ̄(h01, h02, h0,F0) and D2φ̄(h01, h02, h0,F0)
−1 are bounded

linear mappings, and hence

‖F̄n − F0‖ = Op

(∥∥(h̃n1 − h01, h̃n2 − h02, h̃n − h0)
∥∥) = Op

(
n−2/5

√
logn

)
.

(iii) The function F̃n satisfies the equation φ̄(h̃n1, h̃n2, h̃n, F̃n) = 0, where φ̄ is
defined by (A.7). Hence,

h̃n1(t)
{
1 − F̃n(t)

} − h̃n2(t)F̃n(t)

+ F(t)
{
1 − F(t)

}{∫ t

v=0

h̃n(v, t)

F̃n(t) − F̃n(v)
dv −

∫ M

u=t

h̃n(t, u)

F̃n(u) − F̃n(t)
du

}
= 0.

By (ii), we have ‖F̃n − F0‖ = Op(n−2/5√logn), and hence
∫ t

v=0

h̃n(v, t)

F̃n(t) − F̃n(v)
dv

=
∫ t

v=0

h̃n(v, t)

F0(t) − F0(v)
dv

−
∫ t

v=0

g(u, t){F̃n(t) − F0(t) − F̃n(u) + F0(u)}
F0(t) − F0(u)

du + Op

(
n−4/5 logn

)

and similarly
∫ M

u=t

h̃n(t, u)

F̃n(u) − F̃n(t)
du

=
∫ M

u=t

h̃n(t, u)

F0(u) − F0(t)
du

−
∫ M

u=t

g(t, u){F̃n(u) − F0(u) − F̃n(t) + F0(t)}
F0(u) − F0(t)

du + Op

(
n−4/5 logn

)
.

Hence, we get

F̃n(t) − F0(t) + dF0(t)

{∫ t

u=0

g(u, t){F̃n(t) − F0(t) − F̃n(u) + F0(u)}
F0(t) − F0(u)

du

−
∫ M

u=t

g(t, u){F̃n(u) − F0(u) − F̃n(t) + F0(t)}
F0(u) − F0(t)

du

}

= h̃n1(t){1 − F0(t)} − h̃n2(t)F0(t)

{1 − F0(t)}g1(t) + F0(t)g2(t)
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+ dF0(t)

{∫ t

u=0

h̃n(u, t)

F0(t) − F0(u)
du −

∫ M

u=t

h̃n(t, u)

F0(u) − F0(t)
du

}

+ Op

(
n−4/5 logn

)
,

uniformly for t ∈ [0,M], implying

F̃n = −[
D2φ̄(h01, h02, h0,F0)

−1 ◦ D1φ̄(h01, h02, h0,F0)
]

× (h̃n1 − h01, h̃n2 − h02, h̃n − h0)

+ Op

(
n−4/5 logn

)
= F̄n + Op

(
n−4/5 logn

)
. �

PROOF OF LEMMA 4.6. We have

h̃n1(v) = 1

n

n∑
i=1

Kbn(v − Ti)�i1

and hence

var
(
h̃n1(v)

) = 1

n
var

(
Kbn(v − T1)�11

)

= 1

n
EKbn(v − T1)

2(
�11 − F0(T1)

)2

∼ F0(v){1 − F0(v)}g1(v)

nbn

∫
K(u)2 du.

Likewise,

var
(
h̃n2(v)

) ∼ F0(v){1 − F0(v)}g2(v)

nbn

∫
K(u)2 du.

Furthermore,

covar
(
h̃n1(v), h̃n2(v)

)

= 1

n
EKbn(v − T1)Kbn(v − U1)

(
�11 − F0(T1)

)(
�13 − F0(U1)

)

= −1

n
EKbn(v − T1)Kbn(v − U1)F0(T1)F0(U1)

∼ −F0(v)2g(v, v)

nbn

∫
K(u)2 du = 0,

using the “separation condition” g(v, v) = 0. So, we obtain

var
({1 − F0(v)}h̃n1(v) − F0(v)h̃n2(v)

g1(v){1 − F0(v)} + F0(v)g2(v)

)

∼ F0(v){1 − F0(v)}({1 − F0(v)}2g1(v) + F0(v)2g2(v))

nbn{g1(v){1 − F0(v)} + F0(v)g2(v)}2 .
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Furthermore,
∫
t<v

h̃n(t, v)

F0(v) − F0(t)
dt = n−1

n∑
i=1

Kbn(v − Ui)�i2

∫
t<v

Kbn(t − Ti)

F0(v) − F0(t)
dt

and hence

var
(∫

t<v

h̃n(t, v)

F0(v) − F0(t)
dt

)

= n−1 var
(
Kbn(v − U1)�12

∫
t<v

Kbn(t − T1)

F0(v) − F0(t)
dt

)

= n−1EKbn(v − U1)
2(

�12 − F0(U1) + F0(T1)
)2

{∫
t<v

Kbn(t − T1)

F0(v) − F0(t)
dt

)2

= n−1EKbn(v − U1)
2{

F0(U1) − F0(T1)
}{

1 − F0(U1) + F0(T1)
}

×
{∫

t<v

Kbn(t − T1)

F0(v) − F0(t)
dt

)2

∼ 1

nbn

∫
t<v

1 − F0(v) + F0(t)

F0(v) − F0(t)
g(t, v) dt

∫
K(u)2 du.

Likewise,

var
(∫

w>v

h̃n(v,w)

F0(w) − F0(v)
dw

)

∼ 1

nbn

∫
w>v

1 − F0(w) + F0(v)

F0(w) − F0(v)
g(v,w)dw

∫
K(u)2 du.

Finally,

covar
(
h̃n2(v),

∫
t<v

h̃n(t, v)

F0(v) − F0(t)
dt

)

= 1

n
EKbn(v − U1)

2(
�13 − {

1 − F0(U1)
})(

�12 − F0(U1) + F0(T1)
)

×
∫
t<v

Kbn(t − T1)

F0(v) − F0(t)
dt

= −1

n
EKbn(v − U1)

2{
1 − F0(U1)

}{
F0(U1) − F0(T1)

}

×
∫
t<v

Kbn(t − T1)

F0(v) − F0(t)
dt

∼ −{1 − F0(v)}g2(v)

nbn

∫
K(u)2 du
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and similarly

covar
(
h̃n1(v),

∫
w>v

h̃n(v,w)

F0(w) − F0(v)
dw

)
∼ −F0(v)g1(v)

nbn

∫
K(u)2 du.

Combining these facts, we obtain that the variance of the right-hand side
of (4.14) is given by

F0(v){1 − F0(v)}({1 − F0(v)}2g1(v) + F0(v)2g2(v))

nbn{g1(v){1 − F0(v)} + F0(v)g2(v)}2

∫
K(u)2 du

+ dF0(v)2

nbn

×
{∫

t<v

g(t, v)

F0(v) − F0(t)
dt +

∫
w>v

g(v,w)

F0(w) − F0(v)
dw − g1(v) − g2(v)

}

×
∫

K(u)2 du + 2dF0(v)2

nbn

{
g1(v) + g2(v)

} ∫
K(u)2 du

= F0(v){1 − F0(v)}({1 − F0(v)}2g1(v) + F0(v)2g2(v))

nbn{g1(v){1 − F0(v)} + F0(v)g2(v)}2

∫
K(u)2 du

+ dF0(v)2

nbn

{∫
t<v

g(t, v)

F0(v) − F0(t)
dt

+
∫
w>v

g(v,w)

F0(w) − F0(v)
dw + g1(v) + g2(v)

}∫
K(u)2 du

= dF0(v)

nbn

{
1 + dF0(v)

{∫
t<v

g(t, v)

F0(v) − F0(t)
dt +

∫
w>v

g(v,w)

F0(w) − F0(v)
dw

}}

×
∫

K(u)2 du.

Hence, we get that the asymptotic variance at a fixed interior point v of the solution
F of the equation (4.14) is given by

dF0(v)

nbnσ1

∫
K(u)2 du,

where σ1 is defined by (4.1).
We still have to compute the bias. We have

E
{1 − F0(v)}{h̃1(v) − h1(v)} − F0(v){h̃2(v) − h2(v)}

g1(v){1 − F0(v)} + F0(v)g2(v)

+ dF0(v)E

∫
t<v

h̃(t, v) − h(t, v)

F0(v) − F0(t)
dt − dF0(v)E

∫
u>v

h̃n(v, u) − h(v,u)

F0(u) − F0(v)
du
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= {1 − F0(v)}h′′
1(v) − F0(v)h′′

2(v)

2{g1(v){1 − F0(v)} + F0(v)g2(v)}b
2
n

∫
u2K(u)du

+ 1

2
b2
n dF0(v)

{∫
t<v

(∂2/∂v2)h(t, v)

F0(v) − F0(t)
dt −

∫
u>v

(∂2/∂v2)h(v,u)

F0(u) − F0(v)
du

}

×
∫

u2K(u)du + o
(
b2
n

)
,

where

h̃1(t) =
∫

Kbn(t − u)F0(u)g1(u) du,

(A.16)
h̃2(t) =

∫
Kbn(t − u)

{
1 − F0(u)

}
g2(u) du

and

h̃(t, u) =
∫

Kbn(t − v)Kbn(u − w)
{
F0(w) − F0(v)

}
g(v,w)dv dw.(A.17)

Moreover,{
1 − F0(v)

}
h1(v) − F0(v)h2(v)

+ F0(v)
{
1 − F0(v)

}{∫
t<v

h(t, v)

F0(v) − F0(t)
dt −

∫
u>v

h(v,u)

F0(u) − F0(v)
du

}

= F0(v)
{
1 − F0(v)

}{
g1(v) − g2(v)

} − F0(v)
{
1 − F0(v)

}{
g1(v) − g2(v)

}
= 0.

This yields the result of the lemma, since we can use the central limit theorem for
i.i.d. random variables on the right-hand side of (4.14), using

h̃n1(t){1 − F0(t)} − h̃n2(t)F0(t)

{1 − F0(t)}g1(t) + F0(t)g2(t)

+ dF0(t)

{∫
u<t

h̃n(u, t)

F0(t) − F0(u)
du −

∫
u>t

h̃n(t, u)

F0(u) − F0(t)
du

}

= n−1
n∑

i=1

{{1 − F0(t)}Kbn(t − Ti)�i1 − F0(t)Kbn(t − Ui)�i3

{1 − F0(t)}g1(t) + F0(t)g2(t)
(A.18)

+ dF0(t)Kbn(t − Ui)�i2

∫
u<t

Kbn(u − Ti)

F0(t) − F0(u)
du

− dF0(t)Kbn(t − Ti)�i2

∫
u>t

Kbn(u − Ui)

F0(u) − F0(t)
du

}
. �

PROOF OF LEMMA 4.7. The difference between the equation defining the toy
estimator and the solution of the integral equation (4.5) resides in the term

−dF0(t)

{∫ t

u=0

g(u, t){F(u) − F0(u)}
F0(t) − F0(u)

du +
∫ M

u=t

g(t, u){F(u) − F0(u)}
F0(u) − F0(t)

du

}
;
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see (4.5) and (4.6). Take F = F
toy
n , and consider the integral within the brackets.

An easy computation yields
∫ t

u=0

{F toy
n (u) −EF

toy
n (u)}g(u, t)

F0(t) − F0(u)
du = Op

(
n−1/2)

.

So, we get

dF0(t)

{∫ t

u=0

g(u, t){F toy
n (u) − F0(u)}

F0(t) − F0(u)
du +

∫ M

u=t

g(t, u){F toy
n (u) − F0(u)}

F0(u) − F0(t)
du

}

= dF0(t)

{∫ t

u=0

g(u, t){EF
toy
n (u) − F0(u)}

F0(t) − F0(u)
du

+
∫ M

u=t

g(t, u){EF
toy
n (u) − F0(u)}

F0(u) − F0(t)
du

}
+ Op

(
n−1/2)

.

This yields the result of the lemma, since the bias of the toy estimator is given by

β1(u)b2
n

σ1(u)
+ o

(
b2
n

)
,

which implies, by the preceding, that

F toy
n (t) + dF0(t)

{∫ t

u=0

γn(u)g(u, t)

F0(t) − F0(u)
du +

∫ M

u=t

γn(u)g(t, u)

F0(u) − F0(t)
du

}

satisfies (4.5), apart from a term of order Op(n−1/2). �
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