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ESTIMATING TIME-CHANGES IN NOISY LEVY MODELS

BY ADAM D. BuLL!
University of Cambridge

In quantitative finance, we often model asset prices as a noisy Itd semi-
martingale. As this model is not identifiable, approximating by a time-
changed Lévy process can be useful for generative modelling. We give a new
estimate of the normalised volatility or time change in this model, which
obtains minimax convergence rates, and is unaffected by infinite-variation
jumps. In the semimartingale model, our estimate remains accurate for the
normalised volatility, obtaining convergence rates as good as any previously
implied in the literature.

1. Introduction. In quantitative finance, we often wish to predict the distri-
bution of future asset prices using historical data; this problem is of interest when
pricing options or evaluating investment strategies. From economic considerations,
we know that log-prices must be given by a noisy semimartingale; however, this
model cannot in general be identified from price data.

We will therefore consider modelling log-prices as a noisy time-changed Lévy
process. We note that this model is general enough to describe the salient fea-
tures of price data—stochastic volatility, jumps and noise—while still being simple
enough to identify its parameters from data. It thus serves as a useful approxima-
tion to the semimartingale model for generative modelling.

Our goal will be to estimate the normalised volatility or time-change process in
this model. Previous estimates have failed to achieve minimax convergence rates
when the jumps are of infinite variation, as is suggested by empirical evidence.
We will therefore describe a new estimate, which obtains minimax rates, and is
unaffected by arbitrary jump activity.

We will further show that in the semimartingale model, our estimate remains
accurate for the normalised volatility, obtaining convergence rates as good as any
previously implied in the literature. Our estimate thus achieves the best of both
worlds: good convergence when the time-changed approximation is accurate, and
no penalty when it is not.

We begin by describing the statistical models we will consider. We will suppose
we have a single asset whose efficient log-price is given by an It6 semimartin-
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where b; € R is a drift process, ¢; > 0 a volatility process, v; a jump measure
process, w(dx,dt) a Poisson random measure with intensity v;(dx)dt, and the
above decomposition holds with respect to a filtration J;. [We refer to Jacod and
Shiryaev (2003), for definitions.]

We note that the assumption (1) is extremely common in quantitative finance,
and is motivated by economic no-arbitrage arguments, as in Delbaen and Schacher-
mayer (1994). Model (1) reproduces common features of price data, such as
stochastic volatility, given by the dependence of the characteristics (by, ¢;, v¢) on
time, and jumps, given by the presence of the jump measure process v;.

To fit this model to price data, however, it is widely accepted that we must
also account for a third feature, known as microstructure noise. The quoted price
of assets in general can diverge from the efficient market price, due to economic
artefacts such as the bid-ask spread, tick sizes, transaction costs, and communica-
tion delays. Indeed, empirical studies confirm that high-frequency price data is too
volatile to be explained solely by an efficient price process [Andersen et al. (2000),
Hansen and Lunde (2006), Mykland and Zhang (2005)].

A popular model for microstructure noise is to assume that the log-prices are
observed under zero-mean errors. We thus consider observations

) Yj=XTj/n+8j, j=0,...,n—1,

over a time interval [0, T'], and with errors ¢ satisfying E[¢ j|F7;j/,] = 0. We refer
to Jacod et al. (2009) for a discussion of this model.

Unfortunately, the observations Y; are insufficient to identify the parameters of
model (1). Even given noiseless observations, letting the time horizon T — oo,
and the step size T/n — 0, we cannot in general identify the drift process b;, or
jump measure process ;.

In the following, we will therefore also consider a time-changed Lévy process
model. Here, we instead suppose the log-price

3) X =Lg,,
for a Lévy process

t
L,=L0+bt+«/EBt+fO /Rx(,u(dx,ds)—1|x\<1v(dx)ds),

with drift b € R, volatility ¢ > 0, jump measure v, and Poisson random measure
w(dx, dt) with intensity v(dx) dt, and a time-change process

t
R; :/ reds,
0
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given by a rate process r; > 0.

Model (3) was popularised by Carr and Wu (2004), and its applications also dis-
cussed by Cont and Tankov (2004). Intuitively, this model describes prices which
move faster or slower according to an activity rate r;; this rate can be thought of
as the cumulative effect of factors such as trading activity and volume, investor
liquidity, and general economic uncertainty.

Formally, the time-changed model (3) is the subset of the semimartingale
model (1) which satisfies the separability condition

(4) bt=br;, Ct = Cry, V¢ = Vry.

This condition requires, for example, that the jump measure v; be governed by the
rate process r;, and contain no idiosyncratic jump component.

Since these parameters are defined only up to a multiplicative constant, we must
also choose a normalisation for r;. In the following, for simplicity we will set 7; to
integrate to one (although we will also discuss alternative normalisations). Equiv-
alently, using (4) we may define
(5) Tt

— Cl .
" fesds’

we note that this definition is then also meaningful for the semimartingale
model (1).

The separability condition (4) can be thought of as similar to the additivity con-
dition in an additive model. We take a fully nonparametric model, which is difficult
to fit, and restrict it to a lower-dimensional one, which is less so. As our smaller
model (3) reproduces the salient features of price data—stochastic volatility, jumps
and noise—it can potentially offer a good approximation to the full model (1).

This approximation can be useful in a variety of settings. If we wish to predict
the distribution of future asset prices, for example, to price options or evaluate
investment strategies, we must fit a generative model to the data. We already know
we cannot fit the full model (1), as we cannot identify its parameters b; and v;.
As we will see below, the parameters of model (3) can all be identified from price
data; it may thus be used either directly as a generative model, or as a starting point
to identify suitable parametric alternatives [Carr and Wu (2004), Cont and Tankov
(2004)].

To fit model (3) to data, we must estimate the parameters b, ¢, v and r;. If the
time horizon 7' — oo, and the step size 7 /n — 0, the drift b and volatility ¢ can
be estimated using standard techniques. Estimation of the Lévy measure v, while
more involved, has also been considered by several authors [Belomestny (2011),
Belomestny and Panov (2013), Figueroa-Lépez (2009, 2011)], and extensions of
Figueroa-Lépez’s approach to include noise are possible, as in Vetter (2014).

In the following, we will focus specifically on estimation of the rate process r;.
We first note that some of the factors contributing to this process, in particular
trading activity and volume, can be observed directly. While such side information
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may be useful in practice, we can expect that not all such factors are observable,
and the relationship between observable factors and efficient prices may be un-
clear, especially after accounting for microstructure noise.

In the following, we will therefore restrict ourselves to estimating r; directly
from price data. While previous work has provided such estimates in a variety of
settings [Figueroa-Loépez (2012), Rosenbaum and Tankov (2011), Winkel (2001),
Woerner (2007)], these authors have not considered our setting (2) and (3). Even
accounting for microstructure noise, we cannot apply their methods here to obtain
minimax rates of convergence.

An alternative route to estimating r;, is to first use identification (4), and then
estimate the volatility ¢; in the semimartingale model (1). Many authors have de-
scribed approaches for this problem, under various assumptions on the jump mea-
sure process vy.

If there are no jumps present, the integrated volatility fol cs ds can be recovered
using multiscale estimators [Zhang (2006), Zhang, Mykland and Ait-Sahalia
(2005)], realised kernels [Barndorff-Nielsen et al. (2008)], or pre-averaging [Jacod
et al. (2009), Podolskij and Vetter (2009a)]. The spot volatility ¢; can likewise
be recovered using kernel estimators [Kristensen (2010), Mancini, Mattiussi and
Reno (2014)], Fourier series [Munk and Schmidt-Hieber (2010a), Reiss (2011)],
or wavelets [Hoffmann, Munk and Schmidt-Hieber (2012)].

In each case, these methods can achieve minimax convergence rates, equivalent
for fixed T to observing ¢; under Gaussian white noise of size n~!/4. In fact, it can
be shown this link is a formal statistical equivalence [Reiss (2011)].

When jumps are present, however, we must account for them before estimating
¢t. Methods for doing so include jump thresholding [Mancini (2001, 2009, Fan and
Wang (2007), Jing, Kong and Liu (2011)], bipower variation [Barndorff-Nielsen
and Shephard (2004), Hautsch and Podolskij (2013), Podolskij and Vetter (2009b,
2009a)], and characteristic functions [Jacod and Reiss (2014), Jacod and Todorov
(2014), Todorov and Tauchen (2012)].

Unfortunately, if the jumps are of infinite variation, in general these methods can
no longer achieve the same convergence rates. Even given noiseless observations
of the efficient prices, it is known that the minimax convergence rate for c; suffers,
unless we assume the infinite-variation part is a scaled B-stable process [Jacod and
Reiss (2014), Jacod and Todorov (2014)].

Nonetheless, empirical evidence suggests that price data does indeed con-
tain infinite-variation jumps [Ait-Sahalia and Jacod (2009), Jing, Kong and Liu
(2011)]. In the following, we will therefore construct a novel estimate of the rate
process r;. We will show that our estimate achieves good rates of convergence
in both models, and in the time-changed model is unaffected by arbitrary jump
activity.

Our estimate will be constructed in three stages. We will first obtain pre-
averaged estimates of price increments, and estimates of the microstructure noise,
as in Jacod et al. (2009) or Podolskij and Vetter (2009a).
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We will then construct local estimates of the spot volatility, derived by estimat-
ing the characteristic function of the price process. While our approach will be
similar to ones considered by previous authors [Jacod and Reiss (2014), Jacod and
Todorov (2014), Todorov and Tauchen (2012)], the precise construction necessary
to obtain minimax rates will be new.

Finally, we will smooth our local estimates of the volatility, using standard tools
from nonparametric regression. While many such approaches are possible, we will
use local polynomials, as described, for example, by Tsybakov (2009). We will
also discuss how the various parameters required can be chosen automatically from
the data.

We will then prove results on the convergence rates of our estimates. We note
that our results will apply in two settings: a standard nonparametric setting, where
the characteristics of X; are assumed fixed and smooth; and a setting more natural
in quantitative finance, where these characteristics are themselves described by 1t6
semimartingales with locally bounded characteristics.

For simplicity, our results will focus on the high-frequency case, where the fixed
time horizon T = 1. We note, however, that similar results can also be proved when
T — oo, provided that the step size T /n — O.

In the time-changed Lévy model (3), we will then show that our procedure es-
timates r, with minimax convergence rates, equal to those in the Gaussian white
noise model with noise level n~!/4. Our results will hold under arbitrary jump
activity, and without knowledge of the Lévy parameters b, ¢ and v.

In the general semimartingale model (1), we will show that our procedure con-
tinues to estimate r;. While lower bounds for this problem are still unknown, the
convergence rates we will obtain are as good as any implied by previous work.
Our estimate thus achieves the best of both worlds: good convergence when the
time-changed approximation is accurate, and no penalty when it is not.

In Section 2, we will give the construction of our estimates, and in Section 3,
describe the specific assumptions we consider. In Section 4, we will then state our
results on convergence rates, and in Section 5, give proofs.

2. Local characteristic-function estimates. In this section, we will define
our estimates of the volatility and rate processes. As described in the Introduc-
tion, our estimates are constructed in three stages: pre-averaging, spot volatility
estimation and smoothing.

We begin with the pre-averaging step, and proceed using the construction of
Reiss (2011). We must first subdivide the time interval [0, 1] into a number ng of
equal bins. To define ng, we choose ny, n, € N in terms of n, so that

N ~ b n @D =12,

for bandwidths &1, hy > 0, and set ng =nns.
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We then divide [0, 1] into ng bins, and compute on each one a pre-averaged esti-
mate X of the increments of X,;. We will compute Xj by integrating the observed
increments against a scaling function ®,,(¢); we define

D, (1) = /no®(not), ®(t) =2sin(2rt).

The specific choice of scaling function ®,, is motivated by Reiss (2011), who
shows that in a Gaussian setting, functions of this form are most efficient at ex-
tracting information from noisy data. We note that our choice of @ includes a full
period of the sine wave in each bin, rather than a half period; this choice allows
us to ensure that the pre-averaged increments are approximately symmetrically
distributed, a property we will require when modelling the behaviour of infinite-
variation jumps.

We may now define the pre-averaged increments X¢. Fork=0,...,n0— 1,
define index sets Jy = (n/ng)lk, k + 1) N Z, and let

Xe= Y pi(Yjpu—Y)), pj=,(j/n).
jijtledy

The estimate X « thus averages the observed increments of X; over the time interval
[k, k + 1)/ng. We can also define an estimate 8,3 of the microstructure noise over
the interval. We set

&f = ,21_0 Y Y - Y
J.jt+ledk
proportional to the realised quadratic variation of the observations.

We next describe our spot volatility estimation step. We will subdivide [0, 1]
into n; larger bins, and on each one, construct an estimate ¢;(«) of the volatility ;.
While our approach will be based on local characteristic function estimates, sim-
ilar to those considered by previous authors [Jacod and Reiss (2014), Jacod and
Todorov (2014), Todorov and Tauchen (2012)], the precise construction necessary
to obtain minimax rates will be new.

For I =0,...,ny — 1, we define index sets K; = n[l,/ + 1) N Z, and local
estimates @;(u) of the characteristic function of increments of X, given by

_ 1 -
o(u)=— Z cos(uXyg).
1 kekK;

We note that @; (1) thus averages the cosines of the X r over the time interval [/, [ +
1)/n,. We can also define an estimate ;(u) of the corresponding contribution of
the microstructure noise; we set
~ 1 472032
22
V() = — Z exp(—kuoy), K =—20,

n keK; n
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If the log-prices X, and noises ¢; were Gaussian, then by considering their
characteristic functions, we would expect
P 2 2 TN A 2 2
@1 (u) ~ exp(=(ci/n, + k07, )u”),  Yu(u) ~ exp(—ko;;,,u°).
We could then rearrange these quantities to obtain an estimate

L o] 2100

e )

of the volatility ¢;/, .
In fact, such an estimate would be biased. We can, however, provide bias-
corrected estimates ¢; () of ¢;/n,; we define

L aw
ci(u) = M2<10g T +

where the bias-correction term

I _i<1+¢l<2u>_ )
T (u)—n1 W) 1).

We have thus defined an estimate ¢;(u) of the spot volatility. The advantage
of this procedure over other such estimates is that it naturally accounts for the
presence of jump activity: we will show that, for general semimartingales, ¢; (i) is
an asymptotically-unbiased estimate of the quantity ¢;/, (1), given by the adjusted
volatility process

)

1 1
() =c; + 11()7./0 /R(l — cos(/no® (w)ux)) v, (dx) dw.

The process c;(u) thus includes both the volatility ¢; and a term depending on
the jump measure v;. As n — 00, the term involving v; vanishes; however, when
the jump activity S is large, this term will not vanish fast enough to be negligible,
and so we must consider it explicitly. Crucially in the time-changed model (3), we
have that both terms enter ¢;(u) linearly, and so ¢;(u) is proportional to the rate
process 7;.

In either model, since r;, integrates to one, we may estimate it by normalising
our estimates of ¢;(u). However, to estimate r; optimally we will not be able to
use the preliminary estimates ¢;(u) directly, as their variance is too large. First, we
must smooth them, using standard tools from nonparametric regression.

While many such approaches are possible, in the following we will use a local
polynomial estimate of ¢;(u), as described, for example, by Tsybakov (2009). To
define our estimate, fix a nonnegative kernel function K : R — R, supported on
[—1, 1], and satisfying [ K(t)dt = 1. Also fix an order N € N, and bandwidth
h > 0. Then let ¢; (u) denote a local polynomial estimate of ¢;(u) of degree N — 1,
using the observations ¢; (1), kernel K, and bandwidth 7.
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In other words, let

no—1

G =Y Wai(t)a(w),

=0

where the weight functions W), ;(¢) are given by

1
Wy (1) = EK(M,A:))U(O)TVn(z)”U(An,z(r»,
for the terms

1 [
1 (1) = Z(t _ n—z)

)\N—l T
U(A):(l,k,...,7> ,
(N —1)!

ny—1

V@) = — > K1 (0)U (an s 0O)U (s ().
nah 1=

The constant N € N serves as an upper bound for the smoothness we expect
of the volatility process c¢;, and other processes related to X,. We include here the
case where N is large, so that our estimate can match-known nonparametric lower
bounds for a wide range of smoothness.

In practice, however, we may believe that these processes are Itd semimartin-
gales, as in most common financial models. We will see later that in this case it
suffices to take N = 1; the above estimate then reduces to the Nadaraya—Watson
kernel estimate, with weights W, ;(¢) given by

K Ouns (1))
Y12 K i (1))

In either case, we then have an estimate ¢; () of the volatility ¢;. To estimate the
normalised volatility or rate process r;, we likewise define the normalised estimate

Wn,l(t) =

~ ny—1
W S W wmw),

U/n) Y2 Cnw) 155

ri(u) =

where
c1(u)
(1/12) 32,720 T (u)
In the following sections, we will prove results on the theoretical performance of
our estimates ¢; (1) and 7; («). We first, however, briefly discuss their implementa-

tion. In particular, we note that the above estimates require the choice of a number
of parameters: the kernel K, order N, frequency u, and bandwidths /1, i, and h.

ri(u) =
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In general, good performance in nonparametric regression can be obtained with
a range of kernels K; popular choices include the uniform, Epanechnikov and
biweight kernels, given by Beta(k, k) densities for k = 1,2 and 3, respectively.
If we believe the volatility ¢; and other characteristic processes are given by Itd
semimartingales, then as noted above, we may also take N = 1.

The remaining parameters u, i1, ho and & are more important. We will show
in the following that the variances of our estimates ¢;(u) depend crucially on the
choice of the frequency u and bandwidths %1, 3. The correct choice of the band-
width £ is likewise known to be crucial generally in nonparametric regression.

To select these parameters, we can borrow methods from nonparametric
statistics. While many such approaches are available, we will briefly mention the
heuristic of generalised cross-validation, a popular method for choosing the band-
width / in nonparametric regression [Golub, Heath and Wahba (1979)].

The GCV criterion

(1/n2) X020 Gy (1) — Fi(u))?
((1/n2) X020 Wi 11/ n2))?

provides an estimate of the L? error in 7:(u). We can then choose u, hy, hy and h
to minimise this criterion, using any standard global optimisation algorithm.

Simple tests on simulated data show that minimising this criterion provides sen-
sible choices of the parameters, for both estimates ¢; (#) and 7; (u). [We note that it
is inadvisable to apply GCV to ¢;(u) directly, as the criterion then favours param-
eters which shrink the estimate to zero.]

We have thus described new estimates of the volatility ¢;, and normalised
volatility or rate process r;; however, we have yet to consider their performance. In
the following sections, we will show that, for suitable choices of the parameters,
these estimates can obtain good rates of convergence over both the semimartingale
model (1) and time-changed Lévy model (3).

GCV(u, hy, hy, h) =

3. Semimartingale and Lévy models. In this section, we will describe the
assumptions we make on our data. Our assumptions will be satisfied by common
models in both nonparametric statistics and quantitative finance. Under these as-
sumptions, we may then proceed to show that our estimates ¢; (#) and 7; (1) achieve
good rates of convergence.

We first assume that the log-prices X; are generated under the general Itd semi-
martingale model (1), and our observations Y; come from the microstructure noise
model (2), with fixed time horizon 7" = 1. For simplicity, we do not consider fur-
ther other choices of 7', but we note that similar results can also be proved when
T —o0, T/n—0.

Our assumptions will then be stated in terms of a filtration F;, t € [0, 1], with
respect to which the semimartingale decomposition (1) and zero-mean condition
of (2) hold. As in Jacod et al. (2009), to allow for the modelling of microstructure
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noise, we will not assume that the filtration J; is right-continuous. Instead, we will
require that the semimartingale decomposition (1) is also valid with respect to the
filtration F;" = N, Fs, and that the noises & j are F frn—measurable.

We then let S denote the class of probability measures P satisfying the above
conditions, on some filtered measurable space (2, F, F;). We will also make some
further assumptions on the characteristics by, ¢; and vy, and errors €.

We begin by defining a smoothness assumption on F;-adapted processes. We
will require in the following that the volatility c;, and other characteristic processes
of the log-prices X; and noises ¢, satisfy this assumption with high probability.

DEFINITION 1. Let S € [0, 1] be an F;-stopping time, o > %, D > 0, and set
ap =1 A a. We define Z%(D, S) to be the class of F;-adapted complex-valued
processes Z;, for which the stopped process Z; s satisfies:

() |Ziasl = D, 1 €0, 1];
(i) E[|Zsns — ZinsPIFT1< DX (s —1)?®0,0<t <s < 1;
(iii) if o > 1, then letting m denote the largest integer smaller than «, Z; .5 has

mth real derivative Z\"'} satisfying

E[|z" — 2 PIF ) < DX s — 2@ ™™, 0<i<s<l.

The classes Z% (D, S) thus contain all processes Z; which, when stopped by S,
are bounded and smooth in quadratic mean. We note that these classes describe a
variety of processes. Firstly, the classes Z%(D, 1) contain all processes which are
almost-surely «-Holder, with constant D. More generally, the following lemma
shows that the classes Z'/2(D, S) can describe all caglad It6 semimartingales with
locally bounded characteristics.

LEMMA 1. Let Z; be a caglad It6 semimartingale, having decomposition
t— t
Zi=7Z0+ /0 by.sds + /0 JeZsdBy

-
+/0 fRX(Mz(dx,dS)—1|x|<1VZ,s(dx)dS)

with respect to both filtrations F; and F;". Suppose the processes bz, and cz;
are locally bounded, as are the processes flkaxsz’t(dx) for all R > 0. Then
for each D > 0, there exists an event Qo € Fo, and F;-stopping time S, such that
on Q, Z, e IV2(D, S), with P(QoN{S=1}) - 1 as D — oo.

We now define our assumptions on the observations Y;. Essentially, our results
will be proved in models where with high probability, the drift b, is bounded, and
the stochastic volatility c;, jump process v; and noise variance 0,2 are bounded and
smooth.
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DEFINITION 2. Leta > 3, $€[0,2], y €[0,1] and 0 < C < D. We define

S;f’ﬂ (C, D) to be the class of probability measures P € S which satisfy the fol-
lowing conditions, on an event ¢ € Fp, and for a stopping time S € [0, 1], with
PoN{S=1)=1—-y:

(i) The noises &; have variance
2 2
E[Sjlfj/"] =0j/n>
for a latent process alz € I*(D, §) and have bounded fourth moment
E[e}|Fjm] < D*  j/n<S.

(i1) The drift process b; is bounded,
|bs] < D, t €10, S].

(iii) The volatility process ¢; € Z%(D, §), and is also bounded below
¢ > C, t €10, S].

(iv) The jump activity is of index at most 3,
[@ArPu@n<p,  remw.s)
R

and if 8 > 1, for any measurable function f:R — C with

(0] < (1Ax?),

we have
fRf(x)vt(dx) eI%(D, S).

Also define S*#(C, D) = 88"'8 (C, D), and let S*# denote the class of probability

measures P which lie in some S,‘f’ﬂ(C, D) for each 0 < C < D, with y — 0 as
C—0,D— <.

In the following, our theoretical results will be first proved for the classes
S*P(C, D), where the characteristics of the log-price X; and noises ¢ are almost-
surely bounded and smooth. These classes will be the most convenient for our anal-
ysis and will allow us to draw comparisons with previous nonparametric results in
the literature.

We note that these classes impose quite strong conditions on our process X;; in
particular, they require the volatility ¢; to be bounded away from zero. However,
we will also generalise our results to the larger classes S%#, which only require
these conditions to hold locally; in particular, they only impose the weaker bound
that ¢; > 0 almost-surely.
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The parameters « and 8 govern two different smoothness properties of X;. The
parameter o measures the smoothness of the characteristics of X; and the ¢; over
time: if X, is a Lévy process, and the ¢; have constant variance, the above condi-
tions can hold for any value of «. In contrast, the parameter 8 governs the jump
activity of X, and thus also the smoothness of its sample paths.

We note that in typical semimartingale models, the parameter o = %; we include
here the case o > % to allow for comparison with previous results in nonparamet-
rics. We also note that since the smoothness « is measured in square mean, the case
o= % allows for jumps in the volatility or in other characteristics; it thus allows the
characteristics to depend smoothly on X;, for any level g of jump activity. More
generally, Lemma 1 shows that the classes S'/%# contain most common models
for financial processes.

As some of our results will be specific to the time-changed model (3), we addi-
tionally define submodels describing this case. We note that our definition includes
a choice of normalisation; as in (5), we assume the rate process r; integrates to one.

DEFINITION 3. Let 7 denote the class of probability measures IP € S satis-
fying (4), for a drift b € R, volatility ¢ > 0, Lévy measure v, and rate process
r; > 0 given by (5). Also define the models 7%(C, D) = S*2(C,D) N T and
T =8%2NT.

This choice of normalisation is most convenient for our results, but we note that
others are also possible; for example, we might prefer the deterministic normalisa-
tion E[ fOT rsds] = T.If we made an ergodicity assumption on the process r;, as in
Figueroa-Lépez (2009), then for suitable 7 — oo, T/n — 0, we would have that

fOT reds is close to E[ fOT ry ds]. The two normalisations would then also be close,
and our arguments would apply equally in either setting.

In the following, for simplicity, we will concentrate on Definition 3. We then
have that in particular, the class 7 /2 covers most common financial models for
time-changed Lévy processes. With these definitions, we are now ready to give our
results on the performance of our estimates.

4. Convergence results. In this section, we will show that our estimates ¢; (1)
and 7; (1) have good rates of convergence, in both the general semimartingale mod-
els S*# and time-changed Lévy models 7. In particular, we will establish that
in 7%, the time-change r; can be recovered at minimax rates under arbitrary jump
activity.

We first define some additional processes which will be relevant to our results.
We set

@) = exp(—c, W)Y (), Y (u) = exp(—kotu?),



2038 A.D. BULL

processes we will show describe the means of the estimates @;(#) and f//\l (). We
also set

Pt =3(1+¢,Qu) —gf @), 77w = p}w)/me; W),

processes we will show describe the variances of the estimates @;(«) and ¢;(u).

We now begin with a result on the accuracy of the preliminary estimates ¢;(u).
At this stage, our results will be proved solely in the bounded semimartingale
model S*#(C, D); we will return later to the consequences for our other models.

We can establish that, on events with high probability, our preliminary estimates
¢;(u) have asymptotic mean c¢;/,,(u) and variance le/nz (u). We can further show
that the errors in these statements are of order n~*! and n~%2, respectively, where
the rates

1 3« o] 1
“MEINY T T IE

THEOREM 1. Fixu,hi,hy >0, a > %, B €10,2],0 < C < D, and suppose
P e S%B(C, D). Then the local volatility estimates ¢;(u) are F(11)/n,-measu-
rable, and we have events E; € F(111)/n,, satisfying

P(Ef | Fi/ny) < exp(—An'/®)
for a constant A > 0, on which
E[(¢1 () = c1/n, W) 1(ED|Fi/ny | = O(n™1),

E[(@1(0) = c1/ny @) 1 ED|Finy] = T, @) + O (™).

Furthermore, these results are uniformoverl =0, ..., np,—1 andP € S*A(C, D).

We thus have that the estimates ¢;(«) behave roughly like n3/% observations of
the adjusted volatility process ¢;(u), under errors with variance n~!/3. In other
words, we obtain an accuracy like observing the process ¢, () under n~'/4 white
noise. While our estimates ¢; () also include an additional bias term, and are ac-
curate only on a set of high probability, we will nonetheless see that they are good
enough to accurately recover the volatility ¢; or time-change r;.

We now establish that our regression estimate ¢;(u) is a good estimate of the
adjusted volatility ¢, (u). We will measure the accuracy of our estimates both point-
wise and in the L2-norm

1
1= [ rarar.

In these metrics, we will show that ¢; (1) can be recovered at the rate n~%3, where
o

220 + 1)

is the standard minimax rate for recovering a function of smoothness « under n
white noise.

o3 =

~1/4
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THEOREM 2. Fix a kernel K as in Section2, NeN,ueR, hi,h) >0,a €
[3.N1. B€[0,2],0 < C <D, let h~n~1/22+D _and suppose P € S*F(C, D).
We then have an event E, satisfying

P(EC|Fo) <exp(—An'/®)
for a constant A > 0, on which
E[[& ) — ¢ ) 1(E)| Fo] /* = 0 (n™*),

uniformly in t € [0, 1], and

1/2

E[|&w) — c@)[31(E)Fo) 2 = 0 (™).

Furthermore, these results are uniform over P € S*B(C, D).

We thus have that the regression estimates ¢; (u) accurately recover ¢, (#) in the
model S*#(C, D). It remains to deduce consequences for the volatility ¢; and
time-change 7, in the more general models S*# and 7. In S%#, we will obtain
the rate n =%, where

2-p
4 =3 N ——
4 3 1
depends also on the jump activity 8 of the log-price X;. When estimating r; in 7,
however, we will retain the convergence rate n~“3, even under arbitrary jump ac-
tivity.

COROLLARY 1. Let the parameters K, N,u, hy, ha, o, 8, C, D and h be as in
Theorem 2.

() IfP e S“P, the estimates ¢;(u) and T, (u) satisfy

Fr(u) —r| = 0,(n~%),

|5z(u) — Ct|s

uniformly in t € [0, 1], and

||E(u) —c

20 7 () — r||2 = OP(”_M)-

Furthermore, these results are uniform over P € S""ﬂ(C, D).
(i) If also P € T, the results for 7,(u) hold with improved convergence
rate n= %,

We note that convergence does depend on the choice of parameters K, N, u, hy,
h> and &, and in particular requires the bandwidth % to be chosen as in Theorem 2.
Adaptive results in this setting are possible, for example, by applying Lepski’s
method to choose /2 and using Azuma’s inequality to control the deviations in @; (1)
and 9 (1) [Lepski, Mammen and Spokoiny (1997)]. For simplicity, however, we
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will treat these parameters as fixed, noting that they can be chosen heuristically as
in Section 2.

For the time-changed Lévy model 7%, as a simple consequence of results in
Munk and Schmidt-Hieber (2010b), we can further show that our rates are opti-
mal. We can likewise provide a partially matching lower bound for the general
semimartingale model S%#.

THEOREM 3. Leta > 3, f€[0,2],and0 < C < D.
(i) No estimate c; of ¢; can satisfy
[e* —cly=0p(n™%),
uniformly over P € S*F(C, D)NT, or
lcf —ci|=0p(n™*),

uniformly overt € [0, 1] and P € S“P(C,D)NT.
(ii) The same results hold for any estimate r; of r;.

In the general semimartingale model S%B if B is large, we have a3 > a4, and
matching lower bounds are more difficult to establish. We note, however, that our
estimates ¢; (1) and 7, (1) already obtain rates as good as those implied by previous
work under noise. Furthermore, the recent paper of Jacod and Reiss (2014) on the
noiseless problem suggests that the rate n~%* is indeed optimal, up to log factors.

It may at first be surprising that the results for r, in the time-changed model 7
are better than in the general semimartingale model S*#, when the jump activity
is large. However, we know that the difficulty in estimating the volatility ¢; in S*#
comes primarily from distinguishing ¢; and v;. We obtain improved convergence
rates in 7% because in this model, we can estimate the rate process r; without
having to separate ¢; and v;.

We have thus shown that our estimate 7; (1) can recover the time change in a
noisy Lévy model at the minimax rate, equivalent to observing r; under n~!/*
white noise. It can do so without knowledge of the distribution of the Lévy process
and under arbitrary jump activity.

Furthermore, in the general semimartingale setting, where the Lévy assumption
may be violated, 7; (#) remains a valid estimate of the normalised volatility. In this
setting, we again achieve good rates, governed either by the noise level of n~1/4
or by a bias due to jump activity, common to all volatility estimates.

5. Proofs. We now give proofs of our results. We prove results on the prelimi-
nary estimates ¢; () in Section 5.1 and results on convergence rates in Section 5.2.
Technical proofs, and a list of notations, are given in the supplemental article [Bull
(2014)].
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5.1. Proofs on preliminary estimates. We first prove Theorem 1, our result
bounding the error in our preliminary estimates ¢;(u). Our proof will use a series
of lemmas, controlling the behaviour of the various components of ¢; (1). We begin

by stating some technical lemmas; proofs are given in the supplemental article
[Bull (2014)].

LEMMA 2. In the setting of Theorem 1, fix u € R, and let & denote (i) c;(u),
(i1) ¢r(u), or (iii) Y (u). In each case, forn e N, 0 <t <s <1, we have

E[(:) — &)’ 1] = 0((s =0 +n~'12).
Furthermore, we have (iv) ¢;(u) < 3D, almost surely.

LEMMA 3. In the setting of Theorem 1, for k =0,...,n9 — 1, and u € R, we
have

E[cos(uX) | Fi/ny] = @k/ng (@) + O (n™1/4),
Var[cos(uXi) | Fi/ny] = p,f/no(u) +0(n~1%).

LEMMA 4. In the setting of Theorem 1, for k =0, ...,n9o— 1, and u e R, we
have

E[exp(—«87u”)| Fing] = Wikjng () + O (n 1%,
Var[exp(—x&,fuz)l]:k/no] = 0(n71/4).

We are now in a position to describe the behaviour of the estimates @;(«#) and
Y (u). First, we will define the event E; mentioned in the statement of Theorem 1.
We set

E ={giw) > ¢} n{ynw) > @)},

where the constant ¢ (1) = % exp(—(k + 3)Du?). We then have the following result.

LEMMA 5. In the setting of Theorem 1, for [ =0, ...,n, — 1, we have:

() El@i ) — @1yn, @) Fiyn,1 = O(n~1);

(i) E[1() — Y/, )| Fiyny] = O (n=);
(i) EL@1 1) = @1/ny @) | Fijny) = pfy, @) /n1 + O(n=21);
() EIW1 W) = Y1/m, ))*| Fipns]1 = O (0714

) for p=3,4, E[@(u) — @1/n, )P |Fijn,] = O(n~);
(vi) P(E}|Fi/n,) < exp(—Anl/S),for a constant A > 0.
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PROOF. We first note that

~ 1
L) = @y W) =— > Zs.,
n keK;

where the random variables

Zsx =cosuXp) —qumy (), k€Ki
we will begin by proving some facts about the Z; ;. We have |Z; x| <2 and

E[E[Zs k| Fi/ny 1’1 Fifns]
- 2

= E[(¢k/no () = @1y @) + O (0™ /)| Fiyny)]:
using Lemma 3,
(©6) = OE[(@k/n0 ) = @170, )1 Fipmy] + O (n ™)

= O(n_zo”),

using Lemma 2(ii).
We also have

E[Zg,ku'-k/no]
= Var[Z ;| Fi/no] + EIZs 1| Fijny 1
= 02y @) + (@ /g 10) — P1ymy ) + O (™14,
using Lemma 3, so
E(E[Z] 41 Fno] = i)y (0)) | Fija]
= OE[(0F/ny @) = Py 1)) + (970 @) = @1/ )| Fi s
+ 0(n—1/2)
_ O(I’l_zal),
using Lemma 2(ii). We may now prove the claims of the theorem:

(1) We have

(7

~ 1
E[@1 ) — @1/n, @) Fiyny | = o > " ElZs.k| Fijn,)
kekK;

oW

ni

Z E[|E[Zs k| F/no||F1/n, ]
kekK;

=0(n=*),
using (6).
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(i1) The result follows similarly to (i), using Lemmas 2(iii) and 4.
(ii1) We have

E[Z3 11 F1/ns) = 07, @) + E[E[Z3 41 Fesmo] = Py 01 Fi ]
= ,olz/nz(u) +0(n™),
using (7). Likewise, for k, k1 € Kj, k > k1, we have
E(Zs 1 Zs i, | Fi/ny) = E[E[Zs k| Fyno)Zs k) | F1 /s ]
= OE[|E[Zs k| F/no || Fi/ns ]
= 0(n™"),
using (6). We deduce that

E[(@1(w) — @1/n, (M))2|-7:l/nz]

1 2

2

=E[—2 > Zix+ 3 > Zs,st,lq’fl/nz]
1 kek; 1 k,ki€eK;,

/(>k]
= plz/nz(u)/nl +0(n™).
(iv) For k € K;, by a similar argument, we have
E[(exp(—«GZu?) — Yi/n, (u))2|}‘l/n2] =04,

using Lemma 4. The result follows.
(v) We first consider the case p = 3. For k € K;, we have

E[Z3 (| Fi/n,] = O(D),
and for k, k; € K;, k > ki,
E[Z3 « Zs k4| Fijno]
= E[E[Z5 1| Fino) Zs.51 1 Fi o]
= 01 ny WE[Z5 1y | Finy)
+ OE[|E[Z5 1| Fino] = £71my @1 Fins]
=0(n™"),

using (6) and (7).
Similarly, for k, k1, k> € K;, k > ki, ko, we have

E[Zs kZsk, Zs k3| F1/ny) = E[E[Zs k| Fieyno) Zs ky Zs k> | Fi s |
= O(DE[|E[Zs 1| Fk/no) || Fi/n, ]
=0(n"*),
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using (6). We deduce that

E[(@r(u) — (pl/nz(u))3|]:l/"2]

(2 5 ) ]

1 kekK;

B Yzt ¥ Bt
”1 kek| k.kiek;,
k>ky

0(1)

+ Z Z&,kzé,klza,kz‘}—l/nz}
k,k1,kreKy,
k>ky k>

=0(n™").

For p = 4, by a similar argument, we have that for k, ki, k2, k3 € K;, k >
ki, ka, k3,

E[Z3 (| Fi/ny ) ELZ3 1 Zs s | Fiyny ) BIZ5 o Z5 4| Fiyny] = O (D),
BlZskZs .k, Zs ko Zs k| Fi/ny ] = O (n™*1),
and if k1 > kp,
E[Z3 « Zs., Zs ko) Fijny] = O (n ™).
We thus obtain that

E[(@1 ) — @1, )| Fi/ns]

(2 x e

ni kekK;

01
() [Zzak+ Y Z3iZsi

keK; k,k1 €K,
k>k|

2 2 2
+ Y ZaZiwt+ Y. ZiwZskZsi
k,k1€Ky, k.ky, k€K,
k>ky k>ki>ko

+ Y ZsiZsk Za,kzzé,k3‘f}/n2:|
k.ki,k2,k3€K],
K>k . k3

=0(n™").
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(vi) We first note that the quantity
1

P1) =— Y E[cos(uXp)|Fi/n,]
ni keK;
1 _
=— Y Qme) + O(n~ '),
n kekK;

using Lemma 3,
> 20(u) + 0(n~'%),
using Lemma 2(iv). Then using Azuma’s inequality, we have
P(@i(u) < ¢ Fi/n,)
<P(@1(w) = @) < —£ @) + O (n™"/*)|Fiyny)
<exp(—A'nl/?),
for a constant A’ > 0. By a similar argument, we also have
P(1(w) < ¢ )| Fiyny) < exp(—=A"n'/),

for a constant A” > 0. The result follows. [
Finally, we may prove Theorem 1.

PROOF OF THEOREM 1. From the definitions, we have that the estimates ¢; (u)
are J(;41)/n,-measurable, and the events E; € F(41)/n,. The bound on the proba-
bility of Ej likewise follows directly from Lemma 5(vi).

It thus remains to prove the bounds on the mean and variance of ¢;(u). We
will decompose ’t\he error in ¢;(u) into three terms, controlling the error in each of
log(@i(u)), log((u)) and T7 (u).

We first consider log(¢; (1)) and define the random variable

_ o)
@1/, (1)

@l

We then have that
(log (@i (u)) — log(¢1/n, () 1(Er)
=log(1+Z, )1(E))
=(Zpa — 325, + 322, + O(Z, ) L(ED),

using Taylor’s theorem, since on Ej,

$@W S > 0.

(®) 14+2Z,; > >
0 Quyny (u)
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To bound the error in log(¢;(«)), we will now take expectations of the Z
terms. We have that
@1 (u)
@i/n, (1)

B[Z,1(ED|Fijm] = E — 1|7 | + OPLE 1)),

since @ (u) is bounded, and ¢y /5, (u) > 2¢ (1) > 0,
=0(n™"),
using Lemma 5(i) and (vi). Similarly, we also have
B[ 25,11 CED1Fipna] = Ty () + O (17,
E[Z; ) W(ED|Fijn] = O(n™),
E[Zy  L(ED|Fijn] = O(n™),
using Lemma 5(i), (iii), (v) and (vi); as a consequence, we deduce
E[|Zy 1P VEDFi/ny] < E[Z2 1(ED| Fiyny] *E[ZE L EDIFiyuy]'
=0(n"*),

using Cauchy—Schwarz.
We can now bound the error in log(@;(#)). We conclude that

E[(log (@i (w)) — log(@1/n, () L(ED|Fi/n, ]
=B[(Zps — 32, + 32 + O(Z ) L(ED| Fin,]
= —%rlz/nz(u) + 0(n™),
and similarly,

E[ (log(@1(1)) — 108(1/n,10)))*L(ED | Fin,]
=E[(Zy1+ 0(Z5,) | (ED|Fins]
=E[(Z5,+ O(1ZpI* + Zy 1)) LED| Fiyny ]

=T, () + O(n™*).

We next consider the error in log(glq (u)). By a similar argument, we can obtain
that

E[(log (Y1) — 1og(¥1/n, ) L(EDI Fijn,] = O (n™*1),
E[ (log (1)) — log(V1/n, ) 1(ED|Fiyn,] = O(n~"/%),

using Lemma 5(ii), (iv) and (vi).
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Finally, we prove bounds on ?12 (u), defining the random variable

Ze=@1(2u) — @1/n, 2u).

We then have

(T () — T, () 1(Ep)

L (1 +@mn,Qu)+Zey 1+ @im, 2u) 1
=—(-5 5 (E1)
ni 2(pl/n2 (X +Zy 1) 2¢1/n2(u)
1 /=201 2u))Z Z
_ 1 (I + @10, Qu))Zy,1 + r,1+0(zz +Zp1Ze0) J1CED,
B > 0,1 @, )
ni (pl/nz(u)

using (8), and that ¢; () is bounded below.
Using Lemma 5(i), (iii) and (vi) as above, we also have that

E[Z:1(ED)|Fin,]| = O(n™),
E[Z}, 1(ED|Fin,] = O(n~'/P).
We therefore conclude that
E[(F7 () = 17, ) VED| Fin, ]
= 0™ VB[ Zp1 + Zea + Zg 1 +1 Zpl| Zea | Fims ),
since ¢; (1) is bounded below,
_ O(n_1/4),
using Cauchy—Schwarz. Likewise,
E{(T (0) = 17, @) 1ED| Fiyny] = O (0~ (25 + 231 Fiym]
=0(n3/3).

We have thus bounded the error in each of log(g; (1)), log(f//\l (1)) and ?lz(u).
Combining these results, we deduce that

E[ (1) = ¢1/n, W) 1ED|Fi/ny |
= O(E[((log(@i(w)) — log(1/n, W))) + 317, )
— (log(¥1 () — log(Wi/n, w)))
+ 3@ W) = 17, ) 1ED| Fiymy)
=0(n"")
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and
E[ (@) — c1/n, () 1(ED| Fiyn,]
= O(E[((log(@1()) — log(g/n, (1))
+ (log(¥1(w)) = log(Yi/n, )))*
+ (87 @) = 17, 0)> + O (0™ ) L(ED | Fiyn, ]
=1, () + 0 (n~*).
Finally, it can be checked that these results are uniform over / =0, ...,n2 — 1, and

Pes*f(C,D). O

5.2. Proofs of convergence rates. We next prove Theorem 2, our result on
the performance of our regression estimate ¢;(u). Our argument follows from
Tsybakov (2009), taking care to account for the extra error terms in the statement
of Theorem 1 and the stochastic nature of the target c;(u).

PROOF OF THEOREM 2. To begin, we will state some facts about local poly-
nomial regression, as given in the proof of Theorem 1.7 in Tsybakov (2009). Since
the design points //n; are uniform, we have that for large n, the matrices V,,(¢) are
invertible and the weight functions W, ;(¢) well defined. Furthermore, the weights
W1 (¢) satisty:

1 [
©) rWn,z(t)\=0(—)1(‘r—— sh>,
nyh ny
uniformly in/ =0, ...,n, — 1;
ny—1
(10) Z [Wai ()] = O(1);
1=0
ny—1
I\? 1 p=0
11 t—— ) Wu@)=4. ’
(1) EO( n2> 10 {0, p=1,...,N—1

We now prove the results on our estimate ¢;(«). We must first define the high-
probability event E given in the statement of the theorem. We let E, ,, = ﬂf’:_al E;,
and set £ = Ey ,,. We then note that from Theorem 1, we have

npy—1
P(E|Fo) < Y E[P(Ef|Fi/n,) | F0]
=0

= 0 (n*/8)exp(—An'/®)
< exp(—A/nl/g),
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for constants A, A’ > 0. Similarly, for [ =0, ...,ny — 1, k > [, we have
(12) P(Ef ., 1 Fi/ny) < exp(—A'n'/®).

We next split the estimates ¢; () into bias and variance parts. Let
(13) C1(u) = ci/ny () +¢1,0(u) +¢2,1 (),

where the bias term
E[(c1(u) — ci/n, W) 1(E)|Fi/n,]
PCE|Fi/n,) ’
setting ¢ /(1) = 0 when P(E|F;/,,) =0, and the variance term ¢, ;(u) is then
defined by (13).

We can similarly split the regression estimates ¢; () into bias and variance parts.
Let

cr(u) =

(14) Cr(u) = cr(u) + €1,e(u) + ¢, (u) + €3, (u),

where the estimator bias and variance, ¢ ;(u) and ¢; ;(u), are given by

np—1
Ty =Y Wi ()T (u), k=1,2,
=0
and the regression bias
ny—1
3, (u) = Z Wa1(£)Ciny (1) — ¢t (u).
=0

To bound the error in ¢; (), we must show that all three terms ¢ ;(«) are small.
We begin with the estimator bias ¢ ;(#) and note that for large n,

EL(C1 W) — c1/ny W) V(E1n ) Fi/ny]
IP)(El,nz|]:l/nz)

= O(I)E[(a(”) - Cl/nz(u))l(El,n2)|ﬂ/n2]a

[c1.1w)| = 1(Eo,)

using (12),
= O()(E[(C () = c1/n, @) ED|Fiyny ] +P(Ef L, | Fi/my))s
since (¢;(u) — ¢y/n, (1)) 1(E;) is bounded,
(15) =0(n™"),
using (12) and Theorem 1. We thus have

ny—1

L) < Y (Wi [Ei)] = 0(n™*),

=0
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using (10) and (15).
We next consider the estimator variance ¢, ;(u). We first note that

E[¢2,1(u) L(E) | Fi/n, | = E[(€1 () — c1/ny () — €11 (u)) 1(E)| Fi/n, ]
=0

and

E[S3 ;) 1(E)|Fiyny] = O (E[(@ (@) = ciyny @) 1E)Fipny] + 14 w))
— 0(n—1/8),

using (15) and Theorem 1. We thus have
npy—1
E[&,)1(E)|Fo] = [( 3 Wi ()@, (u)1 (E)) ‘fo}

ny—1

Z > (OE[E,w) 1(E)| Fo]

ny—1
— o(n—l/S)('l%ax{W ,(z)|)< > |W,,,l(z){)
1=0
= 0(n™2%),
using (9) and (10).

Finally, we bound the regression bias ¢3;(u). Let m denote the largest integer
smaller than «. Using Taylor’s theorem, for r € [0, 1], and [ =0, ...,n — 1, we
then have that

ﬂ

(t —1/n)" (m)( )

(V)(u)+ .

Ci/ny () = ¢ (u) + Z

r=1

’

for some #; € [0, 1] lying between ¢ and //n,. We deduce that

E[23, (w)|Fo]

n2—1 >
]

=0

using (11),

S —1/m)" )
[(Z W, (0 L= /”2) (™ (u) — cf )<u>)) ‘fo},
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<h)

again using (11),

/
f— —
nj

np—1
o) 3 rwnk(nuwnz(t)\l(‘

k,1=0

X E[[e™ ) — ™ @)||e™ @) — ™ w)|1Fo),
using (9),

npy—1
0 (h*) <Z|Wnl(t))

using Cauchy—Schwarz,
=0(n —203 )

using (10).
Combining these results, we obtain that

E[ (G (1) — ¢/ () 1(E)| Fo]
= O(E[@ () + &, () + & ,()) 1(E) | Fo]
= O(n_2°‘3),

as required. For the L? risk, we likewise obtain

1
B[6 ) a1 EIR] =E| [ @ - aw)’ 16 a7

- / (@ @) — e ) 1(E)| Fo] dt
O(n=2%).

Finally, we can check that these rates are uniform over ¢ € [0, 1], and P €
S*A(C,p). O

We may now deduce our corollary describing the performance of 7;(u)
and ¢; (u).

PROOF OF COROLLARY 1. We first fix 0 < C < D and prove bounds on the
error of ¢;(u) under the assumption that IP € S%B(C, D). Fort € [0, 1], we have
|Et(u) - Ct| =< |Et(”) - Ct(”)| + |Ct(14) - Cz{,

and from Theorem 2,

¢ () — c; ()| = Op(n™*3).
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It thus remains to bound |c; (1) — ¢;|. We have that
1 1
le:(u) — ¢ = —2/ / (1 = cos(y/no®(w)ux)) dw v, (dx)
nou? Jr Jo
= O(ngl)f (1 /\nox2)v,(dx)
R
= O(nal) ./]R(l A (noxz)ﬂ/z)v,(dx)
=001, ®"7) [ (1 AP )uan)

_ 0(na(2—l3)/2) _ O(n_(z_ﬁ)/4).
We thus conclude that
(16) |G () — ci| = Op(n™*);

by a similar argument, the same holds also for the L? error, ||S(u) — ¢||2. We can
further check that these limits hold conditionally on F¢ and uniformly over all
t€[0,1],Pe S*#(C, D).

We next consider the case that P S;"ﬁ(C, D), for some y € [0, 1]. Create,
on an extended probability space, a process X tS , t €10, 1], which almost-surely
agrees with X, attimes ¢ € [0, S]. For times ¢ € [S, 1], we require that X; is a Lévy
process with respect to both F; and .7-",+, with characteristic triplet (bg, cs, Vs).

Also create observations

yP=x5,+e,  j=0....n—1,
where for j/n < §, the errors z-:js- =¢;. When j/n > S, we require that the errors

sf are ]-'j+/n
Then let E,S (u) denote the estimate of ¢, defined similarly to ¢ (u), but us-

ing the observations Y js. Conditionally on 29, the law of the X tS and YJ.S lies in
S*%P(C, D), so we can apply (16) to Ets(u). We obtain that

-measurable, and equal to £og each with probability % given Fj/p.

(17) 125 (u) — crns|1(R0) = O, (f(C, Dyn™),

uniformly in y, C and D, for a function f(C, D) > 0.

We now consider the case P € S*#, and suppose we are given an arbitrary
sequence 4, > 0, §, — oo. If we choose C,, — 0, D, — oo slowly enough as
n — oo, we will obtain that f(C,, D,) = O(8,). Since P € S*#, we also have
that P € S;’,;ﬁ(c”, D,) for some y,, — 0; let 2, € Fo and S, € [0, 1] denote the
associated events and stopping times.

Applying (17), we deduce that

&5 @) = cons, | 1(Q0.0) = Op(8207%).
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Since
P(QonN{Sp=1})=1—yu— 1,
this implies that
¢ () — ci| = Op(8,n™%).
Since this result holds for any diverging sequence §,, we conclude that
G () — | = 0p(n™*).

Again, the result for the L? error follows similarly.
Next, we suppose that P € 7%(C, D), and bound the accuracy of the estimate
7 (). We begin by bounding its normalising constant,

1 np—1 np—1 -
— Y aw =Y Wuaw),
1> 1=0

where the weights Wn,l(t) = 1/n». Since these weights satisfy (9) and (10) for the
bandwidth 2 = 1, we have that

1 npy—1 npy—1 "
— Y (@) _Cl/nz(u))‘ = Wui0) (@) _Cl/nz(”))‘
Lo — 1=0

= Op(”_al)»

arguing as in Theorem 2.
We also have

1 ny—1 1 2
E[(E IZZO c,/,,z(u)—/o c,(u)dt) ]

ma—1 (1) /ns 2
E[(Z /1/n2 (Cl/nz(u)—c;(u))dt> ]

=0

E

IA

["2—1 (I+1)/n2

>

1=0 l/ny

(ct/n, () — Ct(u))zdt:|,

by Jensen’s inequality,

=1 q41)/n, 5
= Z / E[(ct/n, () — ¢ (w))”] dt
1=0 I/

= O(nfz"”).
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We thus deduce that

1 }’lz—l 1
(18) — > ) —/ cu)dt|=0,(n™").
2120 0
From Theorem 2, we also have that
(19) ¢ () — c; ()| = 0p(n™*).
Combining these results, we obtain that
7o) —re| = ‘ Gt ) ‘ = 0,(n™),

/) X2 aw)  fawar

since fol c;(u)dt > C > 0.
We can again check that this limit holds conditionally on Fp and uniformly over
allt €[0,1], P e T*(C, D). Arguing as above, we then conclude that for P € T¢,

|7 (u) —ri| = 0p(n™*).

As above, we can also conclude that these results likewise hold for the L? error
17 (u) = rll2.

Finally, we bound the performance of 7;(u) for P € S%#(C, D). Combin-
ing (16), (18) and (19), we have

1 np—1 1
— Z’c}(u)—/ ¢ dt
0

2 =0

’

Cr(u) —ct| = 0p(n™).

Arguing as above, we obtain that
7o) —re| = 0 (n™),

and that this can be extended to P € S*#, and the L? error ||F(u) —r|,. O

Finally, we can also prove our lower bound on the rate of estimation, which is a
simple corollary of results in Munk and Schmidt-Hieber (2010b).

PROOF OF THEOREM 3. We begin with part (i) and appeal to the proof of The-
orem 2.1 in Munk and Schmidt-Hieber (2010b). The authors give a lower bound
on the L? estimation rate of ¢;, in a setting similar to our S*B(C, D).

Munk and Schmidt-Hieber consider a setting where otz =02 >0 is a deter-
ministic constant, ¢; is deterministic, and b, = v; = 0. They then construct a large
number of choices ¢, ; for the volatility, separated from each other in L? norm at
a rate at least n~%3. They further establish that, given observations Y; under one
such volatility function ¢, ;, we cannot consistently estimate w. They thus show

that no estimate ¢} of ¢; can satisfy ||c* — c|l2 = 0,(n™%).
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It can be checked that, when C < 1 < D, their models lie in S*#(C, D)N T for
large n, so their lower bound holds also in that setting. By rescaling their volatility
functions ¢, ;, we can obtain the same results also for general 0 < C < D.

A pointwise lower bound can be proved by a similar argument; we sketch a
proof below. Define two choices for the volatility,

cor=1, ciy=14+h*"K((1—1)/h),

where h = n~1/22¢+tD and K:R — R is a smooth nonincreasing nonnegative
function, satisfying K(0) =1, K(1) =0.

We note that when C < 1 < D, these models lie within S%# (C, D) for large n;
as above, by rescaling we can work with general 0 < C < D. We also have that
co.1 and cp,1 are separated at a rate n~*3. It thus suffices to show that we cannot
consistently distinguish c¢o from ¢y given the Y;.

We begin by moving to a more informative model, where we additionally ob-
serve one efficient price X;, atatime t = [(1 —h)n]/n. Given X,, the observations
Y;, j < nt are independent of the Y;, j > nt; furthermore, the former are identi-
cally distributed under c¢ and c;.

We therefore need consider only the observations X; and Y}, j > nt. Arguing
similarly to Munk and Schmidt-Hieber, it can be shown that these observations are
insufficient to distinguish ¢y and c1, thereby establishing our lower bound.

For part (ii), it can be checked that the rate functions r,, s = ¢4 ¢/ fol Co,sds are
again separated, in L? norm or pointwise, at a rate at least n~%3. We thus conclude
that our lower bounds hold also for r,. [

SUPPLEMENTARY MATERIAL

Supplement to “Estimating time-changes in noisy Lévy models” (DOI:
10.1214/14-A0S1250SUPP; .pdf). Proofs of some technical results.
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