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OPTIMUM DESIGN ACCOUNTING FOR THE GLOBAL
NONLINEAR BEHAVIOR OF THE MODEL

BY ANDREJ PÁZMAN1 AND LUC PRONZATO

Comenius University and CNRS/University of Nice-Sophia Antipolis

Among the major difficulties that one may encounter when estimating
parameters in a nonlinear regression model are the nonuniqueness of the es-
timator, its instability with respect to small perturbations of the observations
and the presence of local optimizers of the estimation criterion.

We show that these estimability issues can be taken into account at the de-
sign stage, through the definition of suitable design criteria. Extensions of E-,
c- and G-optimality criteria are considered, which when evaluated at a given
θ0 (local optimal design), account for the behavior of the model response
η(θ) for θ far from θ0. In particular, they ensure some protection against
close-to-overlapping situations where ‖η(θ) − η(θ0)‖ is small for some θ

far from θ0. These extended criteria are concave and necessary and sufficient
conditions for optimality (equivalence theorems) can be formulated. They are
not differentiable, but when the design space is finite and the set � of admis-
sible θ is discretized, optimal design forms a linear programming problem
which can be solved directly or via relaxation when � is just compact. Sev-
eral examples are presented.

1. Introduction. We consider a nonlinear regression model with observations

yi = y(xi) = η(xi, θ̄) + εi, i = 1, . . . ,N,

where the errors εi satisfy E(εi) = 0, var(εi) = σ 2 and cov(εi, εj ) = 0 for i �= j ,
i, j = 1, . . . ,N , and the true value θ̄ of the vector of model parameter θ belongs
to �, a compact subset of R

p such that � ⊂ int(�), the closure of the interior
of �. In a vector notation, we write

y = ηX(θ̄) + ε with E(ε) = 0,Var(ε) = σ 2IN,(1)

where ηX(θ) = (η(x1, θ), . . . , η(xN, θ))�, y = (y1, . . . , yN)�, ε = (ε1, . . . , εN)�,
and X denotes the N -point exact design (x1, . . . , xN). The more general nonsta-
tionary (heteroscedastic) case where var(εi) = σ 2(xi) can easily be transformed
into the model (1) with σ 2 = 1 via the division of yi and η(xi, θ) by σ(xi). We
suppose that η(x, θ) is twice continuously differentiable with respect to θ ∈ int(�)

Received October 2013; revised March 2014.
1Supported by the VEGA Grant No. 1/0163/13.
MSC2010 subject classifications. Primary 62K05; secondary 62J02.
Key words and phrases. Optimal design, nonlinear least-squares, estimability, curvature.

1426

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/14-AOS1232
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 1427

for any x ∈ X , a compact subset of Rd . The model is assumed to be identifiable
over X ; that is, we suppose that

η
(
x, θ ′) = η(x, θ) for all x ∈ X �⇒ θ ′ = θ.(2)

We shall denote by � the set of design measures ξ , that is, of probability mea-
sures on X . The information matrix (for σ 2 = 1) for the design X at θ is

M(X, θ) =
N∑

i=1

∂η(xi, θ)

∂θ

∂η(xi, θ)

∂θ�

and, for any ξ ∈ �, we shall write

M(ξ, θ) =
∫
X

[
∂η(x, θ)/∂θ

][
∂η(x, θ)/∂θ�]

ξ(dx).

Denoting ξN = (1/N)
∑N

i=1 δxi
the empirical design measure associated with X,

with δx the delta measure at x, we have M(X, θ) = NM(ξN, θ). Note that (2)
implies the existence of a ξ ∈ � satisfying the Least-Squares (LS) estimability
condition

η
(
x, θ ′) = η(x, θ) ξ -almost everywhere �⇒ θ ′ = θ.(3)

Given an exact N -point design X, the set of all hypothetical means of the
observed vectors y in the sample space R

N forms the expectation surface Sη =
{ηX(θ) : θ ∈ �}. Since ηX(θ) is supposed to have continuous first- and second-
order derivatives in int(�), Sη is a smooth surface in R

N with a (local) dimen-
sion given by r = rank[∂ηX(θ)/∂θ�]. If r = p (which means full rank), the
model (1) is said regular. In regular models with no overlapping of Sη, that is,
when ηX(θ) = ηX(θ ′) implies θ = θ ′, the LS estimator

θ̂LS = θ̂N
LS = arg min

θ∈�

∥∥y − ηX(θ)
∥∥2(4)

is uniquely defined with probability one (w.p.1). Indeed, when the distributions
of errors εi have probability densities (in the standard sense) it can be proven that
η[θ̂LS(y)] is unique w.p.1; see Pázman (1984) and Pázman (1993), page 107. How-
ever, there is still a positive probability that the function θ −→ ‖y −ηX(θ)‖2 has a
local minimizer different from the global one when the regression model is intrin-
sically curved in the sense of Bates and Watts (1980), that is, when Sη is a curved
surface in R

N ; see Demidenko (1989, 2000). Moreover, a curved surface can “al-
most overlap”; that is, there may exist points θ and θ ′ in � such that ‖θ ′ − θ‖ is
large but ‖ηX(θ ′) − ηX(θ)‖ is small (or even equals zero in case of strict over-
lapping). This phenomenon can cause serious difficulties in parameter estimation,
leading to instabilities of the estimator, and one should thus attempt to reduce its
effects by choosing an adequate experimental design. Classically, those issues are
ignored at the design stage and the experiment is chosen on the basis of asymp-
totic local properties of the estimator. Even when the design relies on small-sample
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properties of the estimator, like in Gauchi and Pázman (2006), Pázman and Pron-
zato (1992), a nonoverlapping assumption is used [see Pázman (1993), pages 66
and 157] which permits to avoid the aforementioned difficulties. Note that putting
restrictions on curvature measures is not enough: consider the case dim(θ) = 1
with the overlapping Sη formed by a circle of arbitrarily large radius, and thus
arbitrarily small curvature (see the example in Section 2 below).

Important and precise results are available concerning the construction of sub-
sets of � where such difficulties are guaranteed not to occur; see, for example,
Chavent (1983, 1990, 1991); however, their exploitation for choosing adequate de-
signs is far from straightforward. Also, the construction of designs with restricted
curvatures, as proposed by Clyde and Chaloner (2002), is based on the curvature
measures of Bates and Watts (1980) and uses derivatives of ηX(θ) at a certain θ ;
this local approach is unable to catch the problem of overlapping for two points
that are distant in the parameter space. Other design criteria using a second-order
development of the model response, or an approximation of the density of θ̂LS
[Hamilton and Watts (1985), Pronzato and Pázman (1994)], are also inadequate.

The aim of this paper is to present new optimality criteria for optimum design in
nonlinear regression models that may reduce such effects, especially overlapping,
and are at the same time closely related to classical optimality criteria like E-, c- or
G-optimality (in fact, they coincide with those criteria when the regression model
is linear). Classical optimality criteria focus on efficiency, that is, aim at ensuring
a precise estimation of θ , asymptotically, provided that the model is locally iden-
tifiable at θ . On the other hand, the new extended criteria account for the global
behavior of the model and enforce identifiability.

An elementary example is given in the next section and illustrates the motiva-
tion of our work. The criterion of extended E-optimality is considered in Section 3;
its main properties are detailed and algorithms for the construction of optimal de-
signs are presented. Sections 4 and 5 are, respectively, devoted to the criteria of
extended c-optimality and extended G-optimality. Several illustrative examples
are presented in Section 6. Section 7 suggests some extensions and further devel-
opments and Section 8 concludes.

2. An elementary motivating example.

EXAMPLE 1. Suppose that θ ∈ � = [0,1] and that, for any design point x =
(t, u)� ∈ X = {0, π/2} × [0, umax], we have

η(x, θ) = r cos(t − uθ),

with r a known positive constant. We take umax = 7π/4; the difficulties mentioned
below are even more pronounced for values of umax closer to 2π . We shall consider
exclusively two-point designs X = (x1, x2) of the form

x1 = (0, u)�, x2 = (π/2, u)�



OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 1429

FIG. 1. Expectation surface Sη for θ ∈ � = [0,1], r = 1 and u = umax = 7π/4.

and denote νu the associated design measure, νu = (1/2)[δx1 + δx2]. We shall look
for an optimal design, that is, an optimal choice of u ∈ [0, umax], where optimality
is considered in terms of information.

It is easy to see that for any design νu we have

ηX(θ) =
(

η(x1, θ)

η(x2, θ)

)
=

(
r cos(uθ)

r sin(uθ)

)
.

The expectation surface is then an arc of a circle, with central angle u; see Figure 1
for the case u = umax = 7π/4. The model is nonlinear but parametrically linear
since the information matrix M(X,θ) for σ 2 = 1 (here scalar since θ is scalar)
equals r2u2 and does not depend on θ . Also, the intrinsic curvature (see Section 6)
is constant and equals 1/r , and the model is also almost intrinsically linear if r

gets large.
Any classical optimality criterion (A-, D-, E-) indicates that one should observe

at u = umax, and setting a constraint on the intrinsic curvature is not possible here.
However, if the true value of θ is θ̄ = 0 and σ 2 is large enough, there is a chance
that the LS estimator will be θ̂LS = 1, and thus very far from θ̄ ; see Figure 1. The
situation gets even worse if umax gets closer to 2π , since Sη then almost overlaps.

Now, consider HE(νu, θ) = (1/2)‖ηX(θ) − ηX(θ0)‖2/|θ − θ0|2, see (5), with
θ0 = 0. For all u ∈ [0, umax], the minimum of HE(νu, θ) with respect to θ ∈ � is
obtained at θ = 1, HE(νu,1) = r2[1 − cos(u)] is then maximum in [0, umax] for
u = u∗ = π . This choice u = u∗ seems preferable to u = umax since the expecta-
tion surface Sη is then a half-circle, so that ηX(0) and ηX(1) are as far away as
possible. On the other hand, as shown in Section 3, minθ∈� HE(νu, θ) possesses
most of the attractive properties of classical optimality criteria and even coincides
with one of them in linear models.

Figure 2-left shows HE(νu, θ) as a function of θ for three values of u and il-
lustrates the fact that the minimum of HE(νu, θ) with respect to θ ∈ � is max-
imized for u = u∗. Figure 2-right shows that the design with u = umax (dashed
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FIG. 2. HE(νu, θ) (left) and ‖ηX(θ) − ηX(θ0)‖ (right) as functions of θ ∈ � = [0,1] for r = 1,
u = 2 (dotted line), u = umax = 7π/4 (dashed line) and u = u∗ = π (solid line).

line) is optimal locally at θ = θ0, in the sense that it yields the fastest increase
of ‖ηX(θ) − ηX(θ0)‖ as θ slightly deviates from θ0. On the other hand, u = π

maximizes minθ∈� ‖ηX(θ) − ηX(θ0)‖/|θ − θ0| (solid line) and realizes a better
protection against the folding effect of Sη, at the price of a slightly less infor-
mative experiment for θ close to θ0. Smaller values of u (dotted line) are worse
than u∗, both locally for θ close to θ0 and globally in terms of the folding of Sη.

The rest of the paper will formalize these ideas and show how to implement
them for general nonlinear models through the definition of suitable design criteria
that can be easily optimized.

3. Extended (globalized) E-optimality.

3.1. Definition of φeE(·). Take a fixed point θ0 in � and denote

HE(ξ, θ) = HE

(
ξ, θ; θ0) = ‖η(·, θ) − η(·, θ0)‖2

ξ

‖θ − θ0‖2 ,(5)

where ‖ · ‖ξ denotes the norm in L2(ξ); that is, ‖l‖ξ = [∫X l2(x)ξ(dx)]1/2 for any
l ∈ L2(ξ). When ξ is a discrete measure, like in the examples considered in the
paper, then ‖l‖2

ξ is simply the sum
∑

x:ξ({x})>0 ξ({x})l2(x).
The extended E-optimality criterion is defined by

φeE(ξ) = φeE

(
ξ ; θ0) = min

θ∈�
HE(ξ, θ),(6)

to be maximized with respect to the design measure ξ .
In a nonlinear regression model φeE(·) depends on the value chosen for θ0

and can thus be considered as a local optimality criterion. On the other hand,
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the criterion is global in the sense that it depends on the behavior of η(·, θ) for
θ far from θ0. This (limited) locality can be removed by considering φMeE(ξ) =
minθ0∈� φeE(ξ ; θ0) instead of (6), but only the case of φeE(·) will be detailed in
the paper, the developments being similar for φMeE(·); see Section 7.2.

For a linear regression model with η(x, θ) = f�(x)θ + v(x) and � = R
p , for

any θ0 and any ξ ∈ �, we have ‖η(·, θ) − η(·, θ0)‖2
ξ = (θ − θ0)�M(ξ)(θ − θ0),

so that

φeE(ξ) = min
θ−θ0∈Rp

(θ − θ0)�M(ξ)(θ − θ0)

‖θ − θ0‖2 = λmin
[
M(ξ)

]
,

the minimum eigenvalue of M(ξ), and corresponds to the E-optimality criterion.
For a nonlinear model with � = B(θ0, ρ), the ball with center θ0 and radius ρ,

direct calculation shows that

lim
ρ→0

φeE

(
ξ ; θ0) = λmin

[
M

(
ξ, θ0)]

.(7)

In a nonlinear regression model with larger �, the determination of an opti-
mum design ξ∗

eE maximizing φeE(ξ) ensures some protection against ‖η(·, θ) −
η(·, θ0)‖ξ being small for some θ far from θ0. In particular, when θ0 ∈ int(�) then
φeE(ξ ; θ0) = 0 if either M(ξ, θ0) is singular or ‖η(·, θ) − η(·, θ0)‖ξ = 0 for some
θ �= θ0. Therefore, under the condition (2), ξ∗

eE satisfies the estimability condi-
tion (3) at θ = θ0 and is necessarily nondegenerate, that is, M(ξ∗

eE, θ0) is nonsin-
gular, when θ0 ∈ int(�) (provided that there exists a nondegenerate design in �).
Notice that (7) implies that φeE(ξ ; θ0) ≤ λmin[M(ξ, θ0)] when � contains some
open neighborhood of θ0. In contrast with the E-optimality criterion, maximizing
φeE(ξ ; θ0) in nonlinear models does not require computation of the derivatives of
η(x, θ) with respect to θ at θ0; see the algorithms proposed in Sections 3.3 and 3.4.
Also note that the influence of points that are very far from θ0 can be suppressed
by modification of the denominator of (5) without changing the relation with E-
optimality; see Section 7.1.

Before investigating properties of φeE(·) as a criterion function for optimum
design in the next section, we state a property relating φeE(ξ) to the localization
of the LS estimator θ̂LS.

THEOREM 1. For any given θ ∈ �, the LS estimator θ̂LS given by (4) in the
model (1) satisfies

θ̂LS ∈ � ∩ B

(
θ,

2‖y − ηX(θ)‖√
N

√
φeE(ξN ; θ)

)
,

with ξN the empirical measure associated with the design X used to observe y.
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PROOF. The result follows from the following chain of inequalities:

‖θ̂LS − θ‖ ≤ ‖η(·, θ̂LS) − η(·, θ)‖ξN√
φeE(ξN ; θ)

= ‖ηX(θ̂LS) − ηX(θ)‖√
N

√
φeE(ξN ; θ)

≤ ‖y − ηX(θ̂LS)‖ + ‖y − ηX(θ)‖√
N

√
φeE(ξN ; θ)

≤ 2‖y − ηX(θ)‖√
N

√
φeE(ξN ; θ)

.(8) �

Note that although the bound (8) is tight in general nonlinear situations (due to
the possibility that Sη overlaps), it is often pessimistic. In particular, in the linear
regression model η(x, θ) = f�(x)θ + v(x), direct calculation gives

‖θ̂LS − θ‖ ≤
√

λmax
[(

F�F
)−1]∥∥y − ηX(θ)

∥∥ = ‖y − ηX(θ)‖√
N

√
φeE(ξN)

,

where F is the N × p matrix with ith line equal to f�(xi). We also have ‖θ̂LS −
θ‖ ≤ ‖y − ηX(θ)‖/[√N

√
φeE(ξN, θ)] in intrinsically linear models (with a flat

expectation surface Sη) since then ‖ηX(θ̂LS) − ηX(θ)‖ ≤ ‖y − ηX(θ)‖.
In the following, we shall omit the dependence in θ0 and simply write φeE(ξ)

for φeE(ξ ; θ0) when there is no ambiguity.

3.2. Properties of φeE(·). As the minimum of linear functions of ξ , φeE(·) is
concave: for all ξ, ν ∈ � and all α ∈ [0,1], φeE[(1−α)ξ +αν] ≥ (1−α)φeE(ξ)+
αφeE(ν). It is also positively homogeneous: φeE(aξ) = aφeE(ξ) for all ξ ∈ �

and a > 0; see, for example, Pukelsheim (1993), Chapter 5. The criterion of eE-
efficiency can then be defined as

EeE(ξ) = φeE(ξ)

φeE(ξ∗
eE)

, ξ ∈ �,

where ξ∗
eE maximizes φeE(ξ).

The concavity of φeE(·) implies the existence of directional derivatives and,
due to the linearity in ξ of HE(ξ, θ), we have the following; see, for example,
Dem’yanov and Malozemov (1974).

THEOREM 2. For any ξ, ν ∈ �, the directional derivative of the criterion
φeE(·) at ξ in the direction ν is given by

FφeE
(ξ ;ν) = min

θ∈�E(ξ)
HE(ν, θ) − φeE(ξ),

where �E(ξ) = {θ ∈ � :HE(ξ, θ) = φeE(ξ)}.
Note that we can write FφeE

(ξ ;ν) = minθ∈�E(ξ)

∫
X �eE(x, θ, ξ)ν(dx), where

�eE(x, θ, ξ) = [η(x, θ) − η(x, θ0)]2 − ‖η(·, θ) − η(·, θ0)‖2
ξ

‖θ − θ0‖2 .(9)
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Due to the concavity of φeE(·), a necessary and sufficient condition for the opti-
mality of a design measure ξ∗

eE is that

sup
ν∈�

FφeE

(
ξ∗
eE;ν) = 0,(10)

a condition often called “equivalence theorem” in optimal design theory; see, for
example, Fedorov (1972), Silvey (1980). An equivalent condition is as follows.

THEOREM 3. A design ξ∗
eE ∈ � is optimal for φeE(·) if and only if

max
x∈X

∫
�E(ξ∗

eE)
�eE(x, θ, ξ)μ∗(dθ) = 0

(11)
for some measure μ∗ ∈ M

[
�E

(
ξ∗
eE

)]
,

the set of probability measures on �E(ξ∗
eE).

PROOF. This is a classical result for maximin design problems; see, for exam-
ple, Fedorov and Hackl (1997), Section 2.6. We have

0 ≤ sup
ν∈�

FφeE
(ξ ;ν)

= sup
ν∈�

min
θ∈�E(ξ)

∫
X

�eE(x, θ, ξ)ν(dx)

= sup
ν∈�

min
μ∈M [�E(ξ)]

∫
X

∫
�E(ξ)

�eE(x, θ, ξ)μ(dθ)ν(dx)

= min
μ∈M [�E(ξ)] sup

ν∈�

∫
X

∫
�E(ξ)

�eE(x, θ, ξ)μ(dθ)ν(dx)

= min
μ∈M [�E(ξ)] max

x∈X

∫
�E(ξ)

�eE(x, θ, ξ)μ(dθ).(12)

Therefore, the necessary and sufficient condition (10) can be written as (11). �

One should notice that supν∈� FφeE
(ξ ;ν) is generally not obtained for ν equal to

a one-point (delta) measure, which prohibits the usage of classical vertex-direction
algorithms for optimizing φeE(·). Indeed, the minimax problem (12) has generally
several solutions x(i) for x, i = 1, . . . , s, and the optimal ν∗ is then a linear com-
bination

∑s
i=1 wiδx(i) , with wi ≥ 0 and

∑s
i=1 wi = 1; see Pronzato, Huang and

Walter (1991) for developments on a similar difficulty in T -optimum design for
model discrimination. This property, due to the fact that φeE(·) is not differen-
tiable, has the important consequence that the determination of a maximin-optimal
design cannot be obtained via standard design algorithms used for differentiable
criteria.

To avoid that difficulty, a regularized version φeE,λ(·) of φeE(·) is considered
in Pronzato and Pázman (2013), Sections 7.7.3 and 8.3.2, with the property that
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limλ→∞ φeE,λ(ξ) = φeE(ξ) for any ξ ∈ � (the convergence being uniform when
� is a finite set), φeE(·) is concave and such that supν∈� FφeE,λ

(ξ ;ν) is obtained
when ν is the delta measure δx∗ at some x∗ ∈ X (depending on ξ ). However,
although φeE,λ(·) is smooth for any finite λ, its maximization tends to be badly
conditioned for large λ.

In the next section, we show that optimal design for φeE(·) reduces to linear pro-
gramming when � and X are finite. This is an important property. An algorithm
based on a relaxation of the maximin problem is then considered in Section 3.4 for
the case where � is compact.

3.3. Optimal design via linear-programming (� is finite). To simplify the
construction of an optimal design, one may take � as a finite set, � = �(m) =
{θ(1), θ (2), . . . , θ (m)}; φeE(ξ) can then be written as φeE(ξ) =
minj=1,...,m HE(ξ, θ(j)), with HE(ξ, θ) given by (5). If the design space X is also
finite, with X = {x(1), x(2), . . . , x(�)}, then the determination of an optimal design
measure for φeE(·) amounts to the determination of a scalar t and of a vector of
weights w = (w1,w2, . . . ,w�)

�, wi being allocated at x(i) for each i = 1, . . . , �,
such that c�[w�, t]� is maximized, with c = (0,0, . . . ,0,1)� and w and t satis-
fying the constraints

�∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , �,

(13)
�∑

i=1

wihi

(
θ(j)) ≥ t, j = 1, . . . ,m,

where we denoted

hi(θ) = [η(x(i), θ) − η(x(i), θ0)]2

‖θ − θ0‖2 .(14)

This is a linear programming (LP) problem, which can easily be solved using stan-
dard methods (for instance, the simplex algorithm), even for large m and �. We
shall denote by (ŵ, t̂) = LPeE(X ,�(m)) the solution of this problem.

We show below how a compact subset � of Rp with nonempty interior can be
replaced by a suitable discretized version �(m) that can be enlarged iteratively.

3.4. Optimal design via relaxation and the cutting-plane method (� is a com-
pact subset of Rp). Suppose now that X is finite and that � is a compact subset
of R

p with nonempty interior. In the LP formulation above, (w, t) must satisfy
an infinite number of constraints:

∑�
i=1 wihi(θ) ≥ t for all θ ∈ �; see (13). One

may then use the method of Shimizu and Aiyoshi (1980) and consider the solu-
tion of a series of relaxed LP problems, using at step k a finite set of constraints
only, that is, consider θ ∈ �(k) finite. Once a solution (wk, tk) = LPeE(X ,�(k))
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of this problem is obtained, using a standard LP solver, the set �(k) is enlarged to
�(k+1) = �(k) ∪{θ(k+1)} with θ(k+1) given by the constraint (13) most violated by
wk , that is,

θ(k+1) = arg min
θ∈�

HE

(
wk, θ

)
,(15)

where with a slight abuse of notation, we write HE(w, θ) = HE(ξ, θ); see (5),
when ξ allocates mass wi at the support point x(i) ∈ X for all i. This yields the
following algorithm for the maximization of φeE(·).

(0) Take any vector w0 of nonnegative weights summing to one, choose ε > 0,
set �(0) = ∅ and k = 0.

(1) Compute θ(k+1) given by (15), set �(k+1) = �(k) ∪ {θ(k+1)}.
(2) Use a LP solver to determine (wk+1, tk+1) = LPeE(X ,�(k+1)).
(3) If �k+1 = tk+1 − φeE(wk+1) < ε, take wk+1 as an ε-optimal solution and

stop; otherwise k ← k + 1, return to step 1.

The optimal value φ∗
eE = maxξ∈� φeE(ξ) satisfies

φeE

(
wk+1) ≤ φ∗

eE ≤ tk+1

at every iteration, so that �k+1 of step 3 gives an upper bound on the distance to
the optimum in terms of criterion value.

The algorithm can be interpreted in terms of the cutting-plane method. Indeed,
from (5) and (14) we have HE(w, θ(j+1)) = ∑�

i=1 wihi(θ
(j+1)) for any vector of

weights w. From the definition of θ(j+1) in (15), we obtain

φeE(w) ≤ HE

(
w, θ(j+1)) = HE

(
wj , θ (j+1)) +

�∑
i=1

hi

(
θ(j+1)){w − wj }

i

= φeE

(
wj ) +

�∑
i=1

hi

(
θ(j+1)){w − wj }

i ,

so that the vector with components hi(θ
(j+1)), i = 1, . . . , �, forms a subgradient

of φeE(·) at wj , which we denote ∇φeE(wj ) below [it is sometimes called super-
gradient since φeE(·) is concave]. Each of the constraints

�∑
i=1

wihi

(
θ(j+1)) ≥ t,

used in the LP problem of step 2, with j = 0, . . . , k, can be written as

∇�φeE

(
wj )

w = φeE

(
wj ) + ∇�φeE

(
wj )(

w − wj ) ≥ t.

Therefore, wk+1 determined at step 2 maximizes the piecewise-linear approxima-
tion

min
j=0,...,k

{
φeE

(
wj ) + ∇�φeE

(
wj )(

w − wj )}
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of φeE(w) with respect to the vector of weights w, and the algorithm corresponds
to the cutting-plane method of Kelley (1960).

The only difficult step in the algorithm corresponds to the determination of
θ(k+1) in (15) when � is a compact set. We found that the following simple proce-
dure is rather efficient. Construct a finite grid, or a space-filling design, G 0 in �.
Then, for k = 0,1,2, . . .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) compute θ̂ k+1 = arg min
θ ′∈G k

HE

(
wk, θ ′);

(ii) perform a local minimization of HE

(
wk, θ

)
with respect to θ ∈ �, initialized at θ̂ k+1;
let θ(k+1) denote the solution;

(iii) set G k+1 = G k ∪ {
θ(k+1)

}
.

(16)

The optimal value φeE(ξ∗
eE) can then be approximated by HE(wk+1, θ (k+2)) when

the algorithm stops (step 3).
The method of cutting planes is known to have sometimes rather poor conver-

gence properties; see, for example, Bonnans et al. (2006), Chapter 9, Nesterov
(2004), Section 3.3.2. A significant improvement consists in restricting the search
for wk+1 at step 2 to some neighborhood of the best solution obtained so far, which
forms the central idea of bundle methods; see Lemaréchal, Nemirovskii and Nes-
terov (1995), Bonnans et al. (2006), Chapters 9–10. In particular, the level method
of Nesterov (2004), Section 3.3.3, adds a quadratic-programming step to each iter-
ation of the cutting planes algorithm presented above; one may refer for instance to
Pronzato and Pázman (2013), Section 9.5.3, for an application of the level method
to design problems. Notice that any linear constraint on w can easily be taken into
account in addition to those in (13), so that the method directly applies to optimal
design with linear cost-constraints; see, for example, Fedorov and Leonov (2014),
Section 4.2.

4. Extended (globalized) c-optimality.

4.1. Definition and properties. Consider the case where one wants to estimate
a scalar function of θ , denoted by g(θ), possibly nonlinear. We assume that

c = c(θ) = ∂g(θ)

∂θ

∣∣∣∣
θ=θ0

�= 0.

Denote

Hc(ξ, θ) = Hc

(
ξ, θ; θ0) = ‖η(·, θ) − η(·, θ0)‖2

ξ

|g(θ) − g(θ0)|2(17)

and consider the design criterion defined by

φec(ξ) = min
θ∈�

Hc(ξ, θ),(18)
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to be maximized with respect to the design measure ξ .
When η(x, θ) and the scalar function g(θ) are both linear in θ , with g(θ) = c�θ ,

we get

φec(ξ) = min
θ∈�,c�(θ−θ0) �=0

(θ − θ0)�M(ξ)(θ − θ0)

[c�(θ − θ0)]2

and, therefore, φec(ξ) = [c�M−(ξ)c]−1, using the well-known formula c�M−c =
maxα �=0(c�α)2/(α�Mα); cf. Harville (1997), equation (10.4). Also, for a nonlin-
ear model with � = B(θ0, ρ) and a design ξ such that M(ξ, θ0) has full rank, one
has

lim
ρ→0

φec(ξ) = [
c�M−1(

ξ, θ0)
c
]−1

,

which justifies that we consider φec(ξ) as an extended c-optimality criterion. At
the same time, in a nonlinear situation with larger � the determination of an op-
timal design ξ∗

ec maximizing φec(ξ) ensures some protection against ‖η(·, θ) −
η(·, θ0)‖2

ξ being small for some θ such that g(θ) is significantly different from

g(θ0). The condition (2) guarantees the existence of a ξ ∈ � such that φec(ξ) > 0,
and thus the LS estimability of g(θ) at θ0 for ξ∗

ec, that is,

η(x, θ) = η
(
x, θ0)

, ξ∗
ec-almost everywhere �⇒ g(θ) = g

(
θ0);

see Pronzato and Pázman (2013), Section 7.4.4. When � contains an open neigh-
borhood of θ0, then φec(ξ) ≤ [c�M−(ξ, θ0)c]−1.

Similarly to φeE(·), the criterion φec(·) is concave and positively homogeneous;
its concavity implies the existence of directional derivatives.

THEOREM 4. For any ξ, ν ∈ �, the directional derivative of the criterion
φec(·) at ξ in the direction ν is given by

Fφec(ξ ;ν) = min
θ∈�c(ξ)

Hc(ν, θ) − φec(ξ),

where �c(ξ) = {θ ∈ � :Hc(ξ, θ) = φec(ξ)}.

A necessary and sufficient condition for the optimality of ξ∗ maximizing φec(·)
is that supν∈� Fφec(ξ

∗;ν) = 0, which yields an equivalence theorem similar to
Theorem 3.

When both � and X are finite, an optimal design for φec(·) is obtained by
solving a LP problem. Compared with Section 3.3, we simply need to substitute Hc

for HE and use hi(θ) = [η(x(i), θ) − η(x(i), θ0)]2/|g(θ) − g(θ0)|2, i = 1, . . . , �,
instead of (14). Also, a relaxation method similar to that in Section 3.4 can be used
when � is a compact subset of Rp .
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5. Extended (globalized) G-optimality. Following the same lines as above,
we can also define an extended G-optimality criterion by

φeG(ξ) = min
θ∈�

‖η(·, θ) − η(·, θ0)‖2
ξ

maxx∈X [η(x, θ) − η(x, θ0)]2 .

The fact that it corresponds to the G-optimality criterion for a linear model can
easily be seen, noticing that in the model (1) with η(x, θ) = f�(x)θ + v(x) we
have {

sup
x∈X

N

σ 2 var
[
f�(x)θ̂LS

]}−1

= inf
x∈X

[
f�(x)M−1(ξN)f(x)

]−1

= inf
x∈X

inf
u∈Rp,u�f(x) �=0

u�M(ξN)u
[f�(x)u]2

= inf
u∈Rp

u�M(ξN)u
maxx∈X [f�(x)u]2 ,

where ξN denotes the empirical design measure corresponding to X, assumed to be
nonsingular, and the second equality follows from Harville (1997), equation (10.4).
The equivalence theorem of Kiefer and Wolfowitz (1960) indicates that D- and G-
optimal designs coincide; therefore, D-optimal designs are optimal for φeG(·) in
linear models. Moreover, the optimum (maximum) value of φeG(ξ) equals 1/p

with p = dim(θ).
In a nonlinear model, a design ξ∗

eG maximizing φeG(ξ) satisfies the estima-
bility condition (3) at θ = θ0. Indeed, maxx∈X [η(x, θ) − η(x, θ0)]2 > 0 for any
θ �= θ0 from (2), so that there exists some ξ ∈ � such that φeG(ξ) > 0. Therefore,
φeG(ξ∗

eG) > 0, and ‖η(·, θ) − η(·, θ0)‖2
ξ∗
eG

= 0 implies that η(x, θ) = η(x, θ0) for

all x ∈ X , that is, θ = θ0 from (2). Notice that when � contains an open neigh-
borhood of θ0, then φeG(ξ) ≤ 1/p for all ξ ∈ �.

Again, directional derivatives can easily be computed and an optimal design
can be obtained by linear programming when � and X are both finite, or with the
algorithm of Section 3.4 when X is finite but � has nonempty interior. Note that
there are now m × � inequality constraints in (13), given by

�∑
i=1

wihi

(
θ(j), x(k)) ≥ t, j = 1, . . . ,m, k = 1, . . . , �,

where now

hi(θ, x) = [η(x(i), θ) − η(x(i), θ0)]2

[η(x, θ) − η(x, θ0)]2 .

Also note that in the algorithm of Section 3.4 we need to construct two sequences
of sets, �(k) and X (k), with �(k+1) = �(k) ∪ {θ(k+1)} and X (k+1) = X (k) ∪



OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 1439

{x̂(k+1)} at step 2, and (15) replaced by

{
θ(k+1), x̂(k+1)} = arg min{θ,x}∈�×X

‖η(·, θ) − η(·, θ0)‖2
ξk

[η(x, θ) − η(x, θ0)]2

with ξk the design measure corresponding to the weights wk .

6. Examples. We shall use the common notation

ξ =
{

x1 · · · xm

w1 · · · wm

}

for a discrete design measure with m support points xi and such that ξ({xi}) = wi ,
i = 1, . . . ,m. In the three examples considered, we indicate the values of the para-
metric, intrinsic and total measure of curvatures at θ0 (for σ = 1); see Tables 1, 2
and 3. They are not used for the construction of optimal designs, and the examples
illustrate the fact that they provide information on the local behavior only (at θ0),
so that a small curvature does not mean good performance in terms of extended
optimality. They are given by

Cint(ξ, θ) = sup
u∈Rp−{0}

‖[I − Pθ ]∑p
i,j=1 ui[∂2η(·, θ)/∂θi ∂θj ]uj‖ξ

u�M(ξ, θ)u
,

Cpar(ξ, θ) = sup
u∈Rp−{0}

‖Pθ

∑p
i,j=1 ui[∂2η(·, θ)/∂θi ∂θj ]uj‖ξ

u�M(ξ, θ)u
,

Ctot(ξ, θ) = sup
u∈Rp−{0}

‖∑p
i,j=1 ui[∂2η(·, θ)/∂θi ∂θj ]uj‖ξ

u�M(ξ, θ)u

≤ Cint(ξ, θ) + Cpar(ξ, θ),

with Pθ the projector

(Pθf )
(
x′) = ∂η(x′, θ)

∂θ� M−1(ξ, θ)

∫
X

∂η(x, θ)

∂θ
f (x)ξ(dx),

and correspond to the original measures of nonlinearity of Bates and Watts (1980)
for σ = 1, with an adaptation to the use of a design measure ξ instead of an exact
design (x1, . . . , xN). The connection with the curvature arrays of Bates and Watts
(1980) is presented in Pázman (1993), Section 5.5; a procedure for their numerical
computation is given in Bates and Watts (1980), Ratkowsky (1983).

All computations are performed in Matlab on a biprocessor PC (2.5 GHz) with
64 bits, equipped with 32 Gb RAM. Classical optimal designs (D-, E- and c-
optimality) are computed with the cutting-plane method; see Pronzato and Pázman
(2013), Section 9.5.3; LP problems are solved with the simplex algorithm; we
use sequential quadratic programming for the local minimization of H(wk, θ) that
yields θ(k+1) in (16)-(ii).



1440 A. PÁZMAN AND L. PRONZATO

EXAMPLE 2. This example is artificial and constructed to illustrate the pos-
sible pitfall of using a local approach (here E-optimal design) for designing an
experiment. The model response is given by

η(x, θ) = θ1{x}1 + θ3
1
(
1 − {x}1

) + θ2{x}2 + θ2
2
(
1 − {x}2

)
, θ = (θ1, θ2)

�,

with x ∈ X = [0,1]2 and {x}i denoting the ith component of x. We consider local
designs for θ0 = (1/8,1/8)�. One may notice that the set {∂η(x, θ)/∂θ |θ0 : x ∈
X } is the rectangle [3/64,1] × [1/4,1], so that optimal designs for any isotonic
criterion function of the information matrix M(ξ) are supported on the vertices
(0,1), (1,0) and (1,1) of X . The classical D- and E-optimal designs are sup-
ported on three and two points, respectively,

ξ∗
D,θ0 �

⎧⎨
⎩

(
0
1

) (
1
0

) (
1
1

)

0.4134 0.3184 0.2682

⎫⎬
⎭ ,

ξ∗
E,θ0 �

⎧⎨
⎩

(
0
1

) (
1
0

)

0.5113 0.4887

⎫⎬
⎭ .

When only the design points x1 = (0 1)� and x2 = (1 0)� are used, the param-
eters are only locally estimable. Indeed, the equations in θ ′

η
(
x1, θ

′) = η(x1, θ),

η
(
x2, θ

′) = η(x2, θ)

give not only the trivial solutions θ ′
1 = θ1 and θ ′

2 = θ2 but also θ ′
1 and θ ′

2 as
roots of two univariate polynomials of the fifth degree (with coefficients de-
pending on θ ). Since these polynomials always admit at least one real root, at
least one solution exists for θ ′ that is different from θ . In particular, the vector
θ0′ = (−0.9760,1.0567)� gives approximately the same values as θ0 for the re-
sponses at x1 and x2.

Direct calculations indicate that, for any θ , the maximum of ‖η(·, θ)−η(·, θ0)‖2
ξ

with respect to ξ ∈ � is reached for a measure supported on (0,0), (0,1), (1,0)

and (1,1). Also, the maximum of [η(x, θ) − η(x, θ0)]2 with respect to x is at-
tained on the same points. We can thus restrict our attention to the design space
X = {(0,0), (0,1), (1,0), (1,1)}. We take � = [−3,4] × [−2,2] and use the al-
gorithm of Section 3.4, with the grid G 0 of (16)-(iii) given by a random Latin
hypercube design with 10,000 points in [0,1]2 renormalized to � [see, e.g., Tang
(1993)], to determine optimal designs for φeE(·) and φeG(·). When initialized with
the uniform measure on the four points of X , and with ε = 10−10, the algorithm
stops after 46 and 15 iterations, respectively, requiring 0.67 s and 0.28 s in total,
and gives the designs

ξ∗
eE,θ0 �

⎧⎨
⎩

(
0
0

) (
0
1

) (
1
1

)

0.32 0.197 0.483

⎫⎬
⎭ ,
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TABLE 1
Performances of designs ξ∗

D , ξ∗
E , ξ∗

eE and ξ∗
eG and curvature measures at θ0 in Example 2;

det1/3 = φD(ξ) = {det[M(ξ, θ0)]}1/3, λmin = φE(ξ) = λmin[M(ξ, θ0)]. The optimal (maximum)
values of the criteria are indicated in boldface

ξ det1/3 λmin φeE φeG Cpar Cint Ctot

ξ∗
D 0.652 0.273 3.16 · 10−3 0.108 1.10 0.541 1.22

ξ∗
E 0.625 0.367 0 0 1.19 0 1.19

ξ∗
eE 0.453 8.45 · 10−2 8.78 ·10−3 9.74 · 10−2 3.33 2.69 4.28

ξ∗
eG 0.540 0.195 5.68 · 10−3 0.340 1.33 1.26 1.83

ξ∗
eG,θ0 �

⎧⎨
⎩

(
0
0

) (
0
1

) (
1
0

) (
1
1

)

0.258 0.258 0.258 0.226

⎫⎬
⎭ .

The performances of the designs ξ∗
D , ξ∗

E , ξ∗
eE and ξ∗

eG are given in Table 1. The
values φeE(ξ∗

E) = φeG(ξ∗
E) = 0 indicate that E-optimal design is not suitable here,

the model being only locally identifiable for ξ∗
E . The parametric, intrinsic and total

measures of curvature at θ0 (for σ 2 = 1) are also indicated in Table 1. Notice that
the values of these curvature at θ0 do not reveal any particular difficulty concerning
ξ∗
E , but that the lack of identifiability for this design is pointed out by the extended

optimality criteria.

This example is very particular and situations where the model is locally, but
not globally, identifiable are much more common: in that case, (2) is only satisfied
locally, for θ ′ in a neighborhood of θ , and one may refer, for example, to Walter
(1987), Walter and Pronzato (1995) for a precise definition and examples. The lack
of global identifiability would then not be detected by classical optimal design, but
the maximum of φeE(·) and φeG(·) would be zero for � large enough, showing
that the model is not globally identifiable.

EXAMPLE 3. Consider the regression model (one-compartment with first-
order absorption input) used in Atkinson et al. (1993),

η(x, θ) = θ1
[
exp(−θ2x) − exp(−θ3x)

]
,

(19)
θ = (θ1, θ2, θ3)

�, x ∈R
+,

with nominal parameters θ0 = (21.80,0.05884,4.298)�. The D- and E-optimal
designs for θ0 are, respectively, given by

ξ∗
D,θ0 �

{
0.229 1.389 18.42
1/3 1/3 1/3

}
,

ξ∗
E,θ0 �

{
0.170 1.398 23.36
0.199 0.662 0.139

}
;
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see Atkinson et al. (1993).

We take � as the rectangular region [16,27] × [0.03,0.08] × [3,6] and use
the algorithm of Section 3.4 to compute an optimal design for φeE(·); the grid
G 0 of (16)-(iii) is taken as a random Latin hypercube design with 10,000 points
in [0,1]3 renormalized to �. The number of iterations and computational time
depend on �, the number of elements of X . For instance, when X is the finite
set {0.2,0.4,0.6, . . . ,24} with � = 120, and the required precision ε equals 10−10,
the algorithm initialized at the uniform measure on the three points 0.2, 1 and 23
converges after 42 iterations in about 26 s. By refining X iteratively around the
support points of the current optimal design, after a few steps we obtain

ξ∗
eE,θ0 �

{
0.1785 1.520 20.95
0.20 0.66 0.14

}
.

A similar approach is used below for the construction of optimal designs for φec(·)
and in Example 4 for φeE(·). The performances of the designs ξ∗

D , ξ∗
E and ξ∗

eE are
indicated in Table 2. One may notice that the design ξ∗

eE is best or second best for
φD(·), φE(·) and φeE(·) among all locally optimal designs considered.

The intrinsic curvature is zero for ξ∗
D , ξ∗

E and ξ∗
eE [since they all have 3 = dim(θ)

support points] and the parametric curvatures at θ0 are rather small (the smallest
one is for ξ∗

eE). This explains that, the domain � being not too large, the values of
φeE(ξ) do not differ very much from those of φE(ξ) = λmin[M(ξ, θ0)].

Consider now the same three functions of interest as in Atkinson et al. (1993):
g1(θ) is the area under the curve,

g1(θ) =
∫ ∞

0
η(x, θ)dx = θ1(1/θ2 − 1/θ3);

g2(θ) is the time to maximum concentration,

g2(θ) = log θ3 − log θ2

θ3 − θ2
,

and g3(θ) is the maximum concentration,

g3(θ) = η
[
g2(θ), θ

]
.

We shall write ci = ci (θ
0) = ∂gi(θ)/∂θ |θ0 and denote ξci ,θ

0 the (locally) optimal
design for gi(θ) which maximizes φci

(ξ ; θ0) = [c�
i M−(ξ, θ0)ci]−1, for i = 1,2,3.

The ξ∗
ci ,θ

0 are singular and are approximately given by

ξ∗
c1,θ

0 �
{

0.2327 17.63
0.0135 0.9865

}
,

ξ∗
c2,θ

0 �
{

0.1793 3.5671
0.6062 0.3938

}
,

ξ∗
c3,θ

0 �
{

1.0122
1

}
;
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TABLE 2
Performances of different designs and curvature measures at θ0 for the model (19) with θ0 = (21.80,0.05884,4.298)� and

� = [16,27] × [0.03,0.08] × [3,6]; det1/3 = φD(ξ) = {det[M(ξ, θ0)]}1/3, λmin = φE(ξ) = λmin[M(ξ, θ0)]. The optimal (maximum) values of the
criteria are on the main diagonal and indicated in boldface. The bottom part of the table corresponds to the average-optimal designs of

Atkinson et al. (1993)

ξ det1/3 λmin φeE φc1 φec1 φc2 φec2 φc3 φec3 Cpar Cint Ctot

ξ∗
D 11.74 0.191 0.178 1.56 · 10−4 6.68 · 10−5 23.43 18.31 0.361 0.356 0.526 0 0.526

ξ∗
E 8.82 0.316 0.274 6.07 · 10−5 3.08 · 10−5 15.89 10.35 0.675 0.667 0.370 0 0.370

ξ∗
eE 9.05 0.311 0.281 6.45 · 10−5 3.01 · 10−5 16.62 11.03 0.656 0.644 0.358 0 0.358

ξ∗
c1

0 0 0 4.56 ·10−4 0 0 0 0 0
ξ∗
ec1

0.757 2.70 · 10−3 1.92 · 10−3 2.26 · 10−4 2.17 ·10−4 8.55 · 10−2 6.12 · 10−2 1.12 · 10−2 1.09 · 10−2 6.51 0 6.51
ξ∗
c2

0 0 0 0 0 35.55 0 0 0
ξ∗
ec2

7.86 7.20 · 10−2 5.99 · 10−2 4.55 · 10−5 1.81 · 10−5 28.82 27.20 0.157 0.145 1.12 0.028 1.12
ξ∗
c3

0 0 0 0 0 0 0 1 0
ξ∗
ec3

4.06 0.162 0.137 9.70 · 10−6 4.19 · 10−6 6.77 4.36 0.890 0.865 1.11 0.263 1.14

ξ∗
AD−A 11.74 0.191 0.177 1.56 · 10−4 6.68 · 10−5 23.53 18.43 0.360 0.355 0.522 0 0.522

ξ∗
Ac1−A 2.74 2.07 · 10−2 1.69 · 10−2 4.36 · 10−4 1.50 · 10−4 1.12 0.864 4.06 · 10−2 4.01 · 10−2 1.82 0 1.82

ξ∗
Ac2−A 6.71 7.22 · 10−2 6.66 · 10−2 2.21 · 10−5 6.67 · 10−6 35.16 20.31 0.175 0.175 0.909 0 0.909

ξ∗
Ac3−A 3.31 0.118 8.23 · 10−2 8.06 · 10−6 3.86 · 10−6 4.37 3.17 0.937 0.838 1.82 0 1.82

ξ∗
AD−B 11.08 0.179 0.159 1.62 · 10−4 6.99 · 10−5 21.15 15.93 0.338 0.335 0.505 0.056 0.507

ξ∗
Ac1−B 2.18 2.23 · 10−2 1.46 · 10−2 2.34 · 10−4 1.56 · 10−4 0.791 0.644 5.37 · 10−2 4.89 · 10−2 2.12 0.133 2.13

ξ∗
Ac2−B 9.45 0.162 0.134 8.07 · 10−5 3.03 · 10−5 20.05 16.28 0.385 0.358 0.753 0.118 0.761

ξ∗
Ac3−B 6.16 0.149 9.92 · 10−2 5.07 · 10−5 2.06 · 10−5 6.60 6.13 0.615 0.587 1.22 0.256 1.25



1444 A. PÁZMAN AND L. PRONZATO

see Atkinson et al. (1993).
For each function gi , we restrict the search of a design ξeci

optimal in the sense
of the criterion φec(·) to design measures supported on the union of the supports
of ξ∗

D,θ0 , ξ∗
E,θ0 and ξ∗

ci ,θ
0 . We then obtain the following designs:

ξ∗
ec1,θ

0 �
{

0.2327 1.389 23.36
9 · 10−4 1.2 · 10−2 0.9871

}
,

ξ∗
ec2,θ

0 �
{

0.1793 0.229 3.5671 18.42
5.11 · 10−2 0.5375 0.3158 9.56 · 10−2

}
,

ξ∗
ec3,θ

0 �
{

0.229 1.0122 1.389 18.42
8.42 · 10−2 0.4867 0.4089 2.02 · 10−2

}
.

The performances of ξ∗
ci

and ξ∗
eci

, i = 1, . . . ,3, are indicated in Table 2, together
with the curvature measures at θ0 for ξ∗

eci
(which are nonsingular). For each func-

tion gi of interest, the design ξ∗
eci

performs slightly worse than ξ∗
ci

in terms of c-
optimality, but contrarily to ξ∗

ci
, it allows us to estimate the three parameters θ and

guarantees good estimability properties for gi(θ) for all θ ∈ �. Notice that, apart
from the c-optimality criteria φci

(·), all criteria considered take the value 0 at the
c-optimal designs ξ∗

ci
. The construction of an optimal design for φec(·) thus forms

an efficient method to circumvent the difficulties caused by singular c-optimal de-
sign in nonlinear models; see Pronzato and Pázman (2013), Chapters 3 and 5. One
may also refer to Pronzato (2009) for alternative approaches for the regularization
of singular c-optimal designs.

We conclude this example with a comparison with the average-optimal designs
of Atkinson et al. (1993) that aim at taking uncertainty on θ0 into account. Con-
sider a prior distribution π(·) on the two components of θ that intervene non-
linearly in η(x, θ), and let Eπ {·} denote the expectation for π(·). Atkinson et al.
(1993) indicate that when π equals πA uniform on [θ0

2 − 0.01, θ0
2 + 0.01] × [θ0

3 −
1, θ0

3 + 1], the design that maximizes Eπ {log det[M(ξ, θ)]} is

ξ∗
AD−A �

{
0.2288 1.4170 18.4513

1/3 1/3 1/3

}
,

and the designs that minimize Eπ {c�
i (θ)M−(ξ, θ)ci(θ)}, i = 1,2,3, are

ξ∗
Ac1−A �

{
0.2449 1.4950 18.4903
0.0129 0.0387 0.9484

}
,

ξ∗
Ac2−A �

{
0.1829 2.4639 8.8542
0.6023 0.2979 0.0998

}
,

ξ∗
Ac3−A �

{
0.3608 1.1446 20.9218
0.0730 0.9094 0.0176

}
.
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When π equals πB uniform on [θ0
2 − 0.04, θ0

2 + 0.04] × [θ0
3 − 4, θ0

3 + 4], the
average-optimal designs are

ξ∗
AD−B �

{
0.2034 1.1967 2.8323 7.8229 20.1899
0.2870 0.2327 0.1004 0.0678 0.3120

}
,

ξ∗
Ac1−B �

{
0.2909 1.7269 13.0961 39.58
0.0089 0.0365 0.2570 0.6976

}
,

ξ∗
Ac2−B �

{
0.2513 0.9383 2.7558 8.8381 26.6564
0.2914 0.2854 0.1468 0.2174 0.0590

}
,

ξ∗
Ac3−B �

{
0.3696 1.1383 2.4370 6.0691 24.0831
0.0971 0.3584 0.3169 0.1634 0.0641

}
.

Their performances are indicated in the bottom part of Table 2. Notice that the
average-optimal designs for the vague prior πB are supported on more than three
points and thus allow model checking; this is the case too for the two designs
ξ∗
ec2

and ξ∗
ec3

. However, contrary to average-optimal design, the number of support
points of optimal designs for extended optimality criteria does not seem to increase
with uncertainty measured by the size of �: for instance, when � = [θ0

1 − 5, θ0
1 +

5] × [θ0
2 − 0.04, θ0

2 + 0.04] × [θ0
3 − 4, θ0

3 + 4], the optimal design for φeE(·) is
still supported on three points, approximately 0.1565, 1.552 and 19.73, receiving
weights 0.268, 0.588 and 0.144, respectively.

All average-optimal designs considered yield reasonably small curvatures at
θ0, although larger than those for ξ∗

E,θ0 and ξ∗
eE,θ0 . The performances of ξ∗

AD−A

and ξ∗
AD−B are close to those of ξ∗

D,θ0 , and the most interesting features concern
designs for estimation of functions of interest gi(θ). The designs ξ∗

ci ,θ
0 cannot

be used if θ �= θ0 and are thus useless in practice. The average-optimal designs
ξ∗
Aci−B perform significantly worse than ξ∗

eci ,θ
0 in terms of φeci

(·) for i = 1,2
and 3 and in terms of φci

(·) for i = 2 and 3. On the other hand, the designs ξ∗
Aci−A,

constructed for the precise prior πA, perform significantly better than ξ∗
eci ,θ

0 in
terms of φci

(·) for all i. Figure 3 presents φc3(ξ ; θ) as a function of θ , for the
three designs ξ∗

Ac3−A (dashed line), ξ∗
Ac3−B (dash–dotted line) and ξ∗

ec3,θ
0 (solid

line), when θ1 = θ0
1 , θ3 = θ0

3 (left) and θ1 = θ0
1 , θ2 = θ0

2 (right). Note that the
projection on the last two components of θ of the set � used for extended c-
optimality is intermediate between the supports of πA and πB . Although average-
optimal designs ξ∗

Aci−A,B and extended-optimal designs ξ∗
eci ,θ

0 pursue different
objectives, the example indicates that they show some resemblance in terms of
precision of estimation of gi(θ). The situation would be totally different in absence
of global identifiability for gi(θ), a problem that would not be detected by average-
optimal designs; see the discussion at the end of Example 2.

EXAMPLE 4. For the same regression model (19), we change the value of
θ0 and the set � and take θ0 = (0.773,0.214,2.09)� and � = [0,5] × [0,5] ×
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FIG. 3. φc3 (ξ ; θ) as a function of θ , for θ1 = θ0
1 and θ3 = θ0

3 (left) and θ1 = θ0
1 , θ2 = θ0

2 (right);
ξ = ξ∗

Ac3−A in dashed line, ξ = ξ∗
Ac3−B in dash–dotted line and ξ = ξ∗

ec3,θ
0 in solid line.

[0,5], the values used by Kieffer and Walter (1998). With these values, from an
investigation based on interval analysis, the authors report that for the 16-point
design

ξ0 =
{

1 2 · · · 16
1/16 1/16 · · · 1/16

}

and the observations y given in their Table 13.1, the LS criterion ‖y − ηX(θ)‖2

has a global minimizer (the value we have taken here for θ0) and two other local
minimizers in �. The D- and E-optimal designs for θ0 are now given by

ξ∗
D,θ0 �

{
0.42 1.82 6.80
1/3 1/3 1/3

}
,

ξ∗
E,θ0 �

{
0.29 1.83 9.0

0.4424 0.3318 0.2258

}
.

Using the same approach as in Example 3, with the grid G 0 of (16)-(iii) obtained
from a random Latin hypercube design with 10,000 points in �, we obtain

ξ∗
eE,θ0 �

{
0.38 2.26 7.91

0.314 0.226 0.460

}
.

To compute an optimal design for φeG(·), we consider the design space X =
{0,0.1,0.2, . . . ,16} (with 161 points) and use the algorithm of Section 3.4 with
the grid G 0 of (16)-(iii) taken as a random Latin hypercube design with 105 points.
The same design space is used to evaluate φeG(·) for the four designs above. For
ε = 10−10, the algorithm initialized at the uniform measure on X converges after
34 iterations in about 52 s and gives

ξ∗
eG,θ0 �

{
0.4 1.9 5.3 16

0.278 0.258 0.244 0.22

}
.
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TABLE 3
Performances of different designs and curvature measures at θ0 for the model (19) with

θ0 = (0.773,0.214,2.09)� and � = [0,5]3; det1/3 = φD(ξ) = {det[M(ξ, θ0)]}1/3,
λmin = φE(ξ) = λmin[M(ξ, θ0)]. The optimal (maximum) values of the criteria are indicated in

boldface

ξ det1/3 λmin φeE φeG Cpar Cint Ctot

ξ0 1.85 · 10−2 1.92 · 10−4 2.28 · 10−5 5.66 · 10−3 180.7 15.73 181.3
ξ∗
D 5.19 ·10−2 1.69 · 10−3 2.64 · 10−4 6.70 · 10−2 58.0 0 58.0

ξ∗
E 4.51 · 10−2 2.04 ·10−3 1.32 · 10−4 7.95 · 10−2 50.7 0 50.7

ξ∗
eE 4.73 · 10−2 1.53 · 10−3 2.92 ·10−4 0.114 54.6 0 54.6

ξ∗
eG 4.11 · 10−2 1.31 · 10−3 1.69 · 10−4 0.244 69.7 10.7 69.9

The performances and curvature measures at θ0 of ξ0, ξ∗
D , ξ∗

E , ξ∗
eE and ξ∗

eG are
given in Table 3. The large intrinsic curvature for ξ0, associated with the small
values of φeE(ξ0) and φeG(ξ0), explains the presence of local minimizers for the
LS criterion, and thus the possible difficulties for the estimation of θ . The values
of φeE(·) and φeG(·) reported in the table indicate that ξ∗

D , ξ∗
E , ξ∗

eE or ξ∗
eG would

have caused less difficulties.

7. Further extensions and developments.

7.1. An extra tuning parameter for a smooth transition to usual design criteria.
The criterion φeE(ξ ; θ0) can be written as

φeE

(
ξ ; θ0) = max

{
α ∈R :

∥∥η(·, θ) − η
(·, θ0)∥∥2

ξ ≥ α
∥∥θ − θ0∥∥2

,
(20)

for all θ ∈ �
}
.

Instead of giving the same importance to all θ whatever their distance to θ0, one
may wish to introduce a saturation and reduce the importance given to those θ very
far from θ0, that is, consider

φeE|K
(
ξ ; θ0) = max

{
α ∈ R :

∥∥η(·, θ) − η
(·, θ0)∥∥2

ξ ≥ α
‖θ − θ0‖2

1 + K‖θ − θ0‖2 ,

(21)

for all θ ∈ �

}

for some K ≥ 0. Equivalently, φeE|K(ξ ; θ0) = minθ∈� HE|K(ξ, θ), with

HE|K(ξ, θ) = ∥∥η(·, θ) − η
(·, θ0)∥∥2

ξ

[
K + 1

‖θ − θ0‖2

]
.

As in Section 3.1, we obtain φeE|K(ξ) = λmin[M(ξ)] in a linear model and, for a
nonlinear model with � = B(θ0, ρ), limρ→0 φeE|K(ξ ; θ0) = λmin[M(ξ, θ0)] for
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any K ≥ 0. Moreover, in a nonlinear model with no overlapping φeE|K(ξ ; θ0) can
be made arbitrarily close to λmin[M(ξ, θ0)] by choosing K large enough, whereas
choosing K not too large ensures some protection against ‖η(·, θ) − η(·, θ0)‖ξ

being small for some θ far from θ0. Also, properties of φeE(·) such as concavity,
positive homogeneity, existence of directional derivatives; see Section 3.2, remain
valid for φeE|K(·), for any K ≥ 0. The maximization of φeE|K(·) forms a LP prob-
lem when both X and � are finite (see Section 3.3) and a relaxation procedure
(cutting-plane method) can be used when � is a compact subset of Rp; see Sec-
tion 3.4.

A similar approach can be used with extended c- and G-optimality, which gives
φec|K(ξ) = minθ ′∈� Hc|K(ξ, θ ′) with

Hc|K(ξ, θ) = ∥∥η(·, θ) − η
(·, θ0)∥∥2

ξ

[
K + 1

|g(θ) − g(θ0)|2
]

and

φeG|K(ξ) = min
θ∈�

{∥∥η(·, θ) − η
(·, θ0)∥∥2

ξ

[
K + 1

maxx∈X [η(x, θ) − η(x, θ0)]2

]}
,

for K a positive constant.

7.2. Worst-case extended optimality criteria. The criterion defined by

φMeE(ξ) = min
θ0∈�

φeE

(
ξ ; θ0) = min

(θ,θ0)∈�×�
HE

(
ξ, θ; θ0)

,

see (6), (5), accounts for the global behavior of η(·, θ) for θ ∈ � and oblit-
erates the dependence on θ0 that is present in φeE(ξ ; θ0). The situation is
similar to that in Section 3, excepted that we consider now the minimum of
HE with respect to two vectors θ and θ0 in � × �. All the developments
in Section 3 obviously remain valid (concavity, existence of directional deriva-
tive, etc.), including the algorithmic solutions of Sections 3.3 and 3.4. The
same is true for the worst-case versions of φec(·) and φeG(·), respectively, de-
fined by φMec(ξ) = min(θ,θ0)∈�×� Hc(ξ, θ; θ0), see (17), and by φMeG(ξ) =
min(θ,θ0)∈�×�{‖η(·, θ) − η(·, θ0)‖2

ξ /maxx∈X [η(x, θ) − η(x, θ0)]2}, and for the
worst-case versions of the extensions of previous section that include an additional
tuning parameter K .

Note that the criterion φMeE(·) may direct attention to a particularly pessimistic
situation. Indeed, for � a compact set with nonempty interior and μ the Lebesgue
measure on �, one may have minθ0∈� φeE(ξ ; θ0) = 0 for all designs ξ although
μ{θ0 ∈ � :φeE(ξ ′; θ0) > 0} = 1 for some design ξ ′. This corresponds to a situation
where the model is structurally identifiable, in the sense that the property (2) is
generic but is possibly false for θ in a subset of zero measure; see, for example,
Walter (1987). Example 2 gives an illustration.
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EXAMPLE 2 (Continued). When the three polynomial equations θ ′
1 − θ ′

1
3 =

θ1 −θ3
1 , θ ′

2 −θ ′
2

2 = θ2 −θ2
2 , θ ′

1
3 +θ ′

2
2 = θ3

1 +θ2
2 are satisfied, then η(x, θ ′) = η(x, θ)

for all x. Since these equations have solutions θ ′ �= θ in � × �, φMeE(ξ) = 0 for
all ξ ∈ �. On the other hand, maxξ∈� φeE(ξ ; θ0) > 0 w.p.1. when θ0 is randomly
drawn with a probability measure having a density with respect to the Lebesgue
measure on �.

In a less pessimistic version of worst-case extended E-optimality, we may thus
consider a finite set �0 ⊂ � for θ0, obtained for instance by random sampling
in �, and maximize minθ0∈�0 φeE(ξ ; θ0).

8. Conclusions. Two essential ideas have been presented. First, classical op-
timality criteria can be extended in a mathematically consistent way to criteria that
preserve a nonlinear model against overlapping, and at the same time retain the
main features of classical criteria, especially concavity. Moreover, they coincide
with their classical counterpart for linear models. Second, designs that are nearly
optimal for those extended criteria can be obtained by standard linear program-
ming solvers, supposing that the approximation of the feasible parameter space �

by a finite set is acceptable. A relaxation method, equivalent to the cutting-plane
algorithm, can be used when � is a compact set with nonempty interior. Linear
constraints on the design can easily be taken into account. As a by-product, this
also provides simple algorithmic procedures for the determination of E-, c- or
G-optimal designs in linear models with linear cost constraints.

As it is usually the case for optimal design in nonlinear models, the extended-
optimality criteria are local and depend on a guessed value θ0 for the model pa-
rameters. However, the construction of a globalized, worst-case version enjoying
the same properties is straightforward (Section 7.2).

Finally, we recommend the following general procedure for optimal design
in nonlinear regression. (i) Choose a parameter space � corresponding to the
domain of interest for θ , select (e.g., randomly) a finite subset �0 in the inte-
rior of �; (ii) for each θ0 in �0 compute an optimal design ξ∗

eE,θ0 maximizing

φeE(ξ ; θ0) and a E-optimal design ξ∗
E,θ0 maximizing φE(ξ ; θ0) = λminM(ξ, θ0);

(iii) if φeE(ξ∗
eE,θ0; θ0) is close enough to φE(ξ∗

E,θ0; θ0) for all θ0 in �0, one
may consider that the risk of overlapping, or lack of identifiability in �, is weak
and classical optimal design that focuses on the precision of estimation can be
used; otherwise, a design that maximizes minθ0∈�0 φeE(ξ ; θ0) should be preferred.
When the extended G-optimality criterion φeG(·; θ0) is substituted for φeE(·; θ0),
the comparison in (iii) should be between φeG(ξ∗

eG,θ0; θ0) and 1/dim(θ), see Sec-
tion 5. Extended c-optimality can be used when one is interested in estimating a
(nonlinear) function of θ , the comparison in (iii) should then be with c-optimality.
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