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Sparse Bayesian factor models are routinely implemented for par-
simonious dependence modeling and dimensionality reduction in high-
dimensional applications. We provide theoretical understanding of such
Bayesian procedures in terms of posterior convergence rates in inferring
high-dimensional covariance matrices where the dimension can be larger
than the sample size. Under relevant sparsity assumptions on the true covari-
ance matrix, we show that commonly-used point mass mixture priors on the
factor loadings lead to consistent estimation in the operator norm even when
p � n. One of our major contributions is to develop a new class of contin-
uous shrinkage priors and provide insights into their concentration around
sparse vectors. Using such priors for the factor loadings, we obtain similar
rate of convergence as obtained with point mass mixture priors. To obtain the
convergence rates, we construct test functions to separate points in the space
of high-dimensional covariance matrices using insights from random matrix
theory; the tools developed may be of independent interest. We also derive
minimax rates and show that the Bayesian posterior rates of convergence
coincide with the minimax rates upto a

√
logn term.

1. Introduction. It is now routine to collect data where the dimension p is
much larger than the sample size n, and interest focuses on the covariance struc-
ture. In this context, even a simple parametric model like the Gaussian distribution
leads to a high-dimensional model space and it becomes necessary to reduce the
effective number of parameters via imposing sparsity or some lower-dimensional
structure. Sparse Bayesian factor models [41] provide one popular choice in appli-
cations, but currently lack theoretical support. In this paper, we close this gap by
studying asymptotic properties for scenarios in which p grows faster than n.

Factor models [5] aim to explain dependence among multivariate observations
through shared dependence on a smaller number of latent factors. Given n i.i.d.
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observations yi ∈ R
p , a latent factor model is given by

yi = �ηi + εi, εi ∼ Np(0,�), i = 1, . . . , n,(1.1)

where � is a p × k factor loadings matrix with k � p, ηi ∼ Nk(0, I) are stan-
dard normal latent factors, and εi is a residual having diagonal covariance � =
diag(σ 2

1 , . . . , σ 2
p). Marginalizing out the latent factors, yi ∼ Np(0,�) with

� = ��T + �,(1.2)

so that the right-hand side has at most p(k + 1) parameters compared to O(p2)

parameters in an unstructured covariance matrix.
A prior distribution on (�,�) induces a prior distribution on � and we are in-

terested in studying concentration of the corresponding posterior measure around a
“true” covariance matrix in operator norm when the dimensionality p = pn can be
much larger than the sample size n. This setting has motivated abundant frequen-
tist work, with rates of convergence of various regularized covariance estimators
derived in [7, 8, 11, 12, 18, 30] among others. Minimax optimal rates for specific
sparsity classes have also been derived in [13, 14]. There is a relatively smaller but
increasing literature on asymptotic properties of Bayesian procedures in models
with growing dimension, primarily focused on linear or generalized linear mod-
els; refer to [2, 6, 10, 17, 22, 23] among others. To the best of our knowledge, the
present paper is the first to study the asymptotic properties of Bayesian covariance
estimation via factor models in the pn � n regime.

We now summarize the main results obtained in this paper. Although the orig-
inal specification of the factor model reduces the number of parameters from
quadratic to linear in pn, the estimation problem is still challenging when pn � n.
To address this challenge, [41] introduced sparse factor modeling to allow many
of the loadings to be exactly equal to zero through a point mass mixture prior hav-
ing a probability mass at zero; see also [15, 33] for modifications and applications
in genomics. Recently, [17] studied posterior concentration in estimating a sparse
high-dimensional mean using such point mass mixture priors. However, it is not
clear whether the induced prior on the covariance from such sparsity favoring pri-
ors on the factor loadings would lead to consistent covariance estimation in the
pn � n setting. We answer the question in the affirmative and derive the rate of
convergence of the posterior in Section 5, explicitly characterizing the dependence
on the dimensionality pn, the true number of factor k0n, the column sparsity sn
in the true loadings and the growth rate of the largest eigenvalue cn of the true
covariance. In particular, the dimensionality enters the rate through a logarithmic
factor, providing justification of usage of such methods in ultra high-dimensional
settings. It may be remarked here that the usual practice of assuming the eigenval-
ues of the true covariance to be bounded is restrictive in our context and we relax
that assumption.

Although point mass mixture priors are amenable to incorporate sparsity, ex-
ploring the model space via MCMC can be daunting and may lead to slow mixing
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and convergence of the algorithm [36]. To address such problems through block
updating, while allowing a weaker notion of sparsity in which elements are close
to zero instead of exactly zero, continuous shrinkage priors can be used. Such
priors have become common in regression [2, 16, 28, 35], with [36] providing a
unifying local–global scale mixture representation. Although computationally at-
tractive, the lack of tight concentration bounds for such priors has limited the study
of their asymptotic properties. One of our main contributions is to develop a novel
class of continuous shrinkage priors and derive nonasymptotic bounds on the con-
centration and dimensionality of such priors. Based on these results, we show that
the proposed continuous shrinkage prior leads to the same rate of posterior con-
vergence as the point mass mixture priors in estimating large covariance matrices.

The Birgé–Le Cam testing theory [9, 32] for the Hellinger metric is commonly
used in Bayesian asymptotics [24] to separate points in the parameter space. How-
ever, generalization of the testing argument to other norms has been relatively
unexplored. A notable exception is [26] who advocated the use of concentration
inequalities based on empirical process techniques to derive tests in the Lr metric
in a nonparametric function estimation context. See also [37] for an usage of con-
centration bounds for centered linear estimators in the context of test construction
in Bayesian inverse problems. In the setting of large covariance estimation in op-
erator norm, we construct tests inspired by results from the nonasymptotic theory
of random matrices, which might be of independent interest in related settings.

Finally, we use Fano’s lemma to derive the minimax rate of convergence for the
class of covariance matrices considered in this paper and show that the posterior
indeed convergences at the minimax rate up to a

√
logn term.

There is a sizeable literature studying asymptotic properties of various aspects
of factor analysis, including consistent estimation of factor loadings and latent
factors [3] and the number of factors [4, 31]. Fan, Fan and Lv [19] studied rates
of convergence of high-dimensional covariance estimates based on factor models,
with [20] extending their results to approximate factor models that allow nondi-
agonal � in (1.2). This work assumes that the factor scores ηi are known, while
we consider the fundamentally different setting in which the factor scores are un-
known while also studying concentration of a Bayesian posterior instead of con-
vergence of a point estimate.

The rest of the paper is organized as follows. After setting up the basic notation
and definitions in Section 2, we state our assumptions and their implications in
Section 3. In Section 4, we discuss our prior distributions. The main results of this
paper are stated in Section 5. Section 6 contains some numerical simulations. In
Section 7, we prove a number of concentration bounds for the shrinkage prior in-
troduced in Section 4, while in Section 8, we elucidate our test construction. These
results are used to prove the main results in Section 9. Proof of some technical
lemmas are given in a supporting document.
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2. Preliminaries. Given sequences an, bn, we shall denote an = O(bn) or
an � bn if there exists a global constant C such that an ≤ Cbn. Similarly, we define
an � bn and an � bn.

Given a metric space (X,d), let N(ε;X,d) denote its ε-covering number, that
is, the minimum number of balls of radius ε needed to cover X.

For a vector x ∈ R
r , ‖x‖2 denotes its Euclidean norm. We will use Sr−1 to de-

note the unit Euclidean sphere {x ∈ R
r :‖x‖2 = 1} and �r−1 to denote the (r −1)-

dimensional simplex {x = (x1, . . . , xr)
T :xj ≥ 0,

∑r
j=1 xj = 1}. Further, let �r−1

0

denote {x = (x1, . . . , xr−1)
T :xj ≥ 0,

∑r−1
j=1 xj ≤ 1}.

For a square matrix A, tr(A) and |A|, respectively, denote the trace and the de-
terminant of A. For a p × r matrix A = (ajj ′) with p ≥ r , let s(1) ≥ s(2) ≥ · · · ≥
s(r) ≥ 0 denote the singular values of A (or equivalently the eigenvalues of

√
ATA)

arranged in decreasing order. We shall use smin(A) and smax(A) to denote the
smallest and largest singular values, respectively. The Frobenius norm (‖ · ‖F ) and
the operator norm (‖ · ‖2) are defined in the usual way, with ‖A‖F := √

tr(ATA)

and ‖A‖2 := supx∈Sr−1 ‖Ax‖2 = smax(A). Also ‖A‖1 = ∑p
j=1

∑r
h=1 |Ajh| is the

l1 norm of vec(A). We will derive posterior convergence rates in the operator
norm.

For a subset S ⊂ {1, . . . , p}, let |S| denote the cardinality of S and define θS =
(θj : j ∈ S) for a vector θ ∈ R

p . Denote supp(θ) to be the support of θ , that is, the
subset S0 ⊂ {1, . . . , p} corresponding to the nonzero entries of θ . We shall continue
to use the same notation for a subset of entries and support for matrices �, where
it has to be interpreted that � is vectorized column-wise. Let l0[s;p] be the space
of s-sparse vectors θ ∈R

p with | supp(θ)| ≤ s.
Throughout C,C ′ are generically used to denote positive constants whose val-

ues might change from one line to the next but are independent from everything
else.

Finally, let Cn denote the cone of covariance matrices of size pn × pn and let
�0n ∈ Cn denote a true sequence of covariance matrices.3 We observe

y1, . . . , yn
i.i.d∼ Npn(0,�0n)

and set y(n) = (y1, . . . , yn). We model the data as

yi
i.i.d∼ Npn(0,�n), �n = �n�

T
n + �n,�n = σ 2Ipn.(2.1)

We will denote our prior distribution on Cn (constructed in Section 4) by 
n(·)
and the corresponding posterior distribution by 
n(·|y(n)).

3As a convention, we make the dependence of all quantities on n explicit, and only omit that in a
few places for notational convenience.
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3. Assumptions. In this section, we state our assumptions on the true data
generating model and briefly discuss their implications. Let Rp×k denote the class
of real-valued p × k matrices. We start with the following assumptions on the true
covariance matrix of the observed data y(n).

ASSUMPTION 3.1. The true sequence of covariance matrices �0n are of the
form

(A0) �0n = �0n�
T
0n + �0n, �0n ∈R

pn×k0n, k0n ≤ pn,�0n = σ 2
0nIpn.

Assumption (3.1) says that the true sequence of covariances �0n admit a factor
decomposition as in (1.2) with �0n = σ 2

0nIpn . We make the following assumptions
on �0n and σ 2

0n.

ASSUMPTION 3.2. There exist sequences of positive real numbers cn, sn with
cn � sn, such that:

(A1) limn→∞ cnk
3/2
0n

√
sn logpn

n

√
logn = 0;k3/2

0n

√
sn logpn

n
(logn)3/2 = O(1).

(A2) Each column of �0n belongs to l0[sn;pn].
(A3) ‖ 1

cn
�T

0n�0n − Ik0n
‖2 = o(k0n

√
log k0n/n).

(A4) There exists a constant σ
(1)
0 such that σ

(1)
0 ≤ σ 2

0n ≤ cn.

We now discuss implications of each of the above assumptions.

• If k0n = O(1), cn, sn � logpn, the first part of (A1) allows pn to grow faster
than n under the mild assumption of (logpn)

5 logn/n → 0. In this case, pn can
be of the order of exp(nα) for any α ∈ (0,1/5). The second part is a very mild
requirement given the first part; indeed if pn = exp(nα), sn = nβ and k0n = nγ

for appropriate α,β, γ > 0 such that the first part of (A1) holds, then the second
part follows from the first.

• In gene-expression studies, we expect each factor is related to only a relatively
small number of variables, representing a sparse, parsimonious structure un-
derlying the associations among genes. Following the motivation in [41], usu-
ally a small number of latent factors associate with the response so that only
those genes with nonzero loadings on those factors are relevant. This is reflected
through (A2), requiring the loadings columns to be sparse with sn � pn many
signals per column.

• Conditions similar to (A3) appear in the econometric factor model setting [19,
20] referred to as “pervasive.” We provide an intuition based on random matrix
theory which suggests that (A3) is indeed mild and expected to be satisfied by
a large class of loadings. As our emphasis is on sparse factor models, a realistic
generative model for the true loadings would be

λ0jh ∼ (1 − πn)δ0 + πnN(0,1),
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where λ0jh = [�0n]jh, δ0 denotes a point mass at zero and we set πn = sn/pn

to reflect the sparsity assumption in (A2). Using a modification of Theo-

rem 5.39 of [40], ‖ 1
pn

�T
0n�0n − πnIk0n

‖2 ≤ C
√

k0n√
pn

‖πnIk0n
‖2, or equivalently,

‖ 1
sn

�T
0n�0n − Ik0n

‖2 ≤ C
√

k0n√
pn

, with probability at least 1− e−C′k0n . We can thus

choose cn = sn and
√

k0n/pn is smaller than k0n

√
logk0n/n if pn = exp(nα).

• (A4) simply posits an upper and lower bound on the residual variance. The lower
bound is used to avoid �0n being ill-conditioned,4 while the upper bound en-
sures that the larger contribution to ‖�0n‖2 comes from the loadings �0n. In
particular, (A3) and (A4) imply ‖�0n‖2 � cn, allowing the largest eigenvalue to
grow with increasing dimension.

We denote by C0n the class of covariance matrices satisfying (A0)–(A4) in
Assumptions 3.1 and 3.2. Clearly, any �0n ∈ C0n can be parameterized by
(k0n,�0n, σ

2
0n), where �0n ∈ R

pn×k0n .

4. Prior distribution. We consider model (2.1) with �n ∈R
pn×k . We specify

priors on the residual variance σ 2, the number of factors k and the factor loadings
(conditional on the number of factors) �n | k below.

For the residual variance σ 2, we assign a gamma prior fσ on (0,∞),

σ 2 ∼ Ga(a, b).(PR)

For the number of factors k, we assume a prior distribution πk which decays
exponentially,

πk(k > j) ≤ exp(−Cj),(4.1)

for all j ≥ j0 for some j0 ∈ N. Additionally, assume

πk(k = k0n) ≥ exp(−Csnk0n logn),(4.2)

where sn is the sequence appearing in (A2). For instance, a Poisson distribution on
k with rate parameter 1 will satisfy (4.1) and (4.2) if log k0n ≤ sn logn, which is
automatically satisfied given (A1).

Conditional on k, we consider two classes of prior distributions on the factor
loadings �n. We first consider a class of point mass mixture priors on the loadings
similar to that advocated by [41],

λjh | k, π ∼ (1 − π)δ0 + πg(·), j = 1, . . . , pn;h = 1, . . . , k,
(PL1)

k ∼ πk, π ∼ Beta(1, κk0npn + 1), κ > 0,

where δ0 denotes a point mass at zero and g is an absolutely continuous density on
R with exponential tails or heavier.

4The constant lower bound on σ 2
0n can be relaxed as long as smax(�0n)/smin(�0n) � n.
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For linear models, [38] showed that such point mass mixture priors with a beta
hyper-prior on the mixture probability lead to an automatic multiplicity correction.
[29] proved optimality results in estimating the predictive distribution under such
priors in generalized linear models accommodating diverging numbers of predic-
tors. Castillo and van der Vaart [17] studied concentration properties of a class
of prior distributions similar to (PL1) on a high-dimensional normal mean and
showed that they lead to the minimax optimal rate of convergence.

As mentioned in the Introduction, although point mass mixture priors are con-
ceptually appealing in allowing exact sparsity and often leading to appealing the-
oretical properties, posterior computation under such priors can be daunting in
high-dimensional cases. As an alternative, a rich variety of continuous shrinkage
priors have been developed that admit a scale mixture representation [36]. A fun-
damental hurdle in studying theoretical properties of such priors is the difficulty
of obtaining tight bounds on their concentration and implied dimensionality. With
the motivation of developing a continuous shrinkage prior that can be shown to
concentrate near sparse vectors and approximate point mass mixture priors, we
propose a novel class of priors. We use such priors for the factor loadings, but they
should be broadly applicable in other high-dimensional settings.

Let DE(ψ) denote the Laplace or double-exponential density with scale param-
eter ψ with a density given by

f (x) = 1

2ψ
e−|x|/ψ, x ∈R.(4.3)

Draw the elements of a high-dimensional vector θ ∈ R
p through the following

hierarchical mechanism:

θj ∼ DE(τγj ), τ ∼ fτ , γ = (γ1, . . . , γp)′ ∼ fγ .(PS)

In (PS), τ > 0 is a global scale parameter and γ ∈ �p−1 is a vector of local scale
parameters. We set fτ to be an exp(1/2) density. We draw γ̃ = (γ1, . . . , γp−1)

T ∈
�

p−1
0 from a Dir(α/p, . . . , α/p) density and set γp = 1 −∑p−1

j=1 γj . For a detailed
discussion on the properties of the prior (PS), refer to Section 7.

Given k, we consider the prior (PS) on the vectorized loadings vec(�n) ∈ R
pnk

as an alternative to (PL1); note that the Dirichlet concentration parameter becomes
α/(pnk) in this case.

5. Main results. With the prior specification complete, we now state the main
results of this paper. The proofs are available in Section 9. Theorems 5.1 and 5.2
assume the true number of factors to be bounded, which is generalized in Theo-
rem 5.3. Recall the class of “true” covariance matrices C0n from Section 3. We first
establish the rate of posterior convergence in operator norm using the point mass
priors (PL1) on the loadings in Theorem 5.1.
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THEOREM 5.1. Suppose �0n ∈ C0n with sn � logpn and k0n = O(1), and
model (2.1) is fitted with a prior distribution on the number of factors satisfy-
ing (4.1) and (4.2). Assume independent priors 
(� | k) and 
(σ 2) on the load-
ings and the residual variances as in (PL1) and (PR), respectively. Then, with

εn = cn

√
sn logpn

n

√
logn and for some constant M > 0,

lim
n→∞E�0n


n

(‖�n − �0n‖2 > Mεn | y(n)) = 0,(5.1)

where E�0n
denotes an expectation with respect to the joint distribution of y(n).

We next show in Theorem 5.2 that our proposed shrinkage prior on the loadings
achieves the same posterior rate of convergence as for the point mass mixture
priors.

THEOREM 5.2. Assume the same setup as in Theorem 5.1, with the point mass
prior (PL1) on the loadings replaced by the shrinkage prior (PS) on the vectorized

loadings given k. Then (5.1) is satisfied with εn = cn

√
sn logpn

n

√
logn.

We show in Section 5.1 that cn

√
sn logpn/n is the minimax rate of estimating

�0n ∈ C0n in operator norm with k0n = O(1). Thus, the posterior rate of conver-
gence obtained in both Theorems 5.1 and 5.2 is equal to the minimax rate up to a√

logn term. For a general k0n, we establish analogous versions of Theorems 5.1
and 5.2 below.

THEOREM 5.3. If �0n ∈ C0n with snk0n � logpn, the convergence rates in

both Theorems 5.1 and 5.2 are modified to cnk
3/2
0n

√
sn logpn

n

√
logn.

Clearly, Theorem 5.3 permits consistent estimation in operator norm even if
pn = exp(nα), sn = nβ and k0n = nγ for appropriate α,β, γ > 0. At this point, we
do not know whether the rate obtained in Theorem 5.3 is minimax-optimal and
substantial further work seems necessary to prove such a result.

5.1. A lower bound to the minimax rate. Minimax optimal rates in operator
norm for high-dimensional covariance matrix estimation have been established
for a class of bandable matrices by [13] and a class of covariance matrices with
sparse columns by [14]. Although C0n has a nonempty intersection with the class
G0(cn,p) in [14], there exists a large subclass of matrices which lie in one and not
in the other. Moreover, the existing minimax results on large covariance estimation
assume the eigenvalues of the true sequence of covariance matrices to be bounded.
For example, [13] and [14] assume that yi is sub-Gaussian, that is, for all t > 0 and
v ∈ R

p with ‖v‖2 = 1, P(|vT(y1 − Ey1)| > t) ≤ exp(−t2/2τ 2). The parameter
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τ is assumed to be a constant and its role in the rate is not characterized. For
y1 ∼ Np(0,�), a standard tail bound for the normal distribution implies

P
(∣∣vTy1

∣∣ > t
) ≤ exp

(
− t2

2vT�v

)
≤ exp

(
− t2

2‖�‖2

)
.

For � = ��T + σ 2Ip ∈ C0n,‖�‖2 = ‖�‖2
2 + σ 2 � cn by Assumption 3.2, so that

τ � √
cn in our case. Hence, the growth rate of ‖�‖2 needs to be accounted for in

our calculations. With this motivation, we study minimax lower bounds for C0n in
Theorem 5.4 below.

THEOREM 5.4. If �̂n is a sequence of estimators of �0n ∈ C0n with k0n =
O(1), then

inf
�̂n

sup
�0n∈C0n

‖�̂n − �0n‖2 ≥ cn

√
sn

logpn

n
.(5.2)

PROOF. We will use Fano’s lemma to derive a lower bound for the mini-
max risk. Let F be a parameter space of covariance matrices and we observe
y1, . . . , yn ∼ N(0,�) with � ∈ F . Let � = {�(1), . . . ,�(mn)},mn ≥ 2 be a finite
subset of F and let P(j) denote the joint distribution of y1, . . . , yn independently
distributed as N(0,�(j)), 1 ≤ j ≤ mn. Let �̂ be an estimator for �. Suppose for
all j �= j ′, we have that

d(�(j),�(j ′)) ≥ dmn, KL
(
P

(j),P(j ′)) ≤ Kmn.

Letting Ej denote the expectation under P(j), Fano’s lemma (as in [42]) implies

max
1≤j≤mn

Ej d(�̂,�) ≥ dmn

2

(
1 − Kmn + log 2

logmn

)
.(5.3)

We first introduce notation and then proceed to construct our finite parameter
set �. Let qn = pn − 1. Define M := {x ∈ R

qn :xj ∈ {0,1} ∀j,‖x‖1 = sn} to
be the collection of all binary vectors of length qn with exactly sn ones. Let ‖ · ‖H

denote the Hamming distance between two binary strings, so that ‖x − y‖H =∑qn

j=1 1(xj �= yj ). Let bj = (θj ,0) denote the pn-dimensional vector obtained by
appending zero at the end of θj . With this notation, set

�(j) = βIpn + γ bjb
T
j + κepne

T
pn

, j ∈M,

where ep ∈ R
p is the vector with 1 in the pth coordinate and zero elsewhere, and

γ < β < κ are sequences to be chosen below.
We now state Lemmas 5.5 and 5.6; for clarity in notation, we drop the subscript

n in both lemmata. Refer to the Appendix for a proof.
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LEMMA 5.5. For j �= j ′ and 0 ≤ r ≤ s, if ‖θj − θj ′‖H = 2(s − r), then

‖�(j) − �(j ′)‖2 = γ

√
s2 − r2, KL

(
P

(j),P(j ′)) = n

2

t2

ts + 1

(
s2 − r2)

,

where t = γ /β .

LEMMA 5.6. Given s ≥ 6, there exists a subset M0 = {θ1, . . . , θm} of M with
m � exp(Cs logp) and ‖θj − θj ′‖H ≥ s/3 for all 1 ≤ j �= j ′ ≤ m, where C is a
positive constant independent of p.

We set � = {�(j) : θj ∈ M0}. Since ‖θj − θj ′‖H ≥ sn/3 by Lemma 5.6, the
quantity rn = rn(j, j

′) appearing in Lemma 5.5 is bounded above by 5sn/6 for all
pairs j �= j ′ ∈ M0. Hence, we can choose dmn = C1γ sn and Kmn = n(tsn)

2 =
n(γ sn/β)2 in (5.3). To obtain dmn as a lower bound to the minimax risk up
to a constant, we need to set Kmn/ logmn = C′ for some constant C′ ∈ (0,1).
Since logmn � Csn logpn, we obtain, by choosing β = cn, that d2

mn
= C(γ sn)

2 =
C

c2
nsn logpn

n
for some absolute constant C. �

6. Simulation studies. In this section, we consider a number of simulation
cases to compare our proposed continuous shrinkage prior (PS) with existing meth-
ods including the point mass priors (PL1) on the loadings matrix and the sample
covariance matrix S = (n − 1)−1 ∑n

i=1(yi − ȳ)(yi − ȳ)T. For prior (PL1), we use
a standard Laplace distribution on the signal coefficients.

We also compare our methods with Principal Orthogonal complement Thresh-
olding (POET) of [21] which is based on an additive decomposition of the co-
variance matrix in terms of a low rank matrix and a sparse residual covariance
matrix. POET estimates the factors and the loadings by thresholding the princi-
pal components of the sample covariance matrix. Finally, we provide results for
the adaptive thresholding method (AT) of [12] which thresholds the entries of the
sample covariance matrix, with the resulting thresholded estimator �̂ being of
the form �̂jj ′ = Sjj ′1(|Sjj ′ | > δκjj ′), where δ is a tuning parameter and κjj ′ is a
threshold specific to the corresponding entry of S. We chose the tuning parameter
δ by 5-fold cross-validation as suggested by [12]. We also implemented the same
procedure with the default choice of δ = 2; the results were worse in all cases, and
hence are not reported.

We describe the two simulation settings below:

1. yi, i = 1, . . . , n are generated from Npn(0,�0n), where �0n = �0n�
T
0n +

σ 2
0 Ipn and �0n is a pn × k0n matrix with sn = logpn nonzero entries per column

and k0n = 1 or logpn. The nonzero entries were drawn uniformly between 1 and 2.
These simulations were designed to mimic assumptions (A0)–(A4) in Section 3.
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TABLE 1
Simulation setting 1. Comparative performance in covariance matrix estimation for (PL1), (PS),

POET, AT. The average error in operator norm across simulation replicates is tabulated

n 50 100

pn 100 200 100 200

k0n 1 logpn 1 logpn 1 logpn 1 logpn

(PL1) 0.98 (0.43) 2.84 (1.12) 10.06 (5.68) 9.79 (4.90) 8.83 (0.12) 12.82 (1.42) 15.90 (0.26) 16.07 (1.77)
(PS) 1.03 (0.38) 3.95 (1.69) 5.96 (1.81) 7.01 (2.01) 1.74 (0.83) 3.43 (1.10) 3.66 (1.83) 4.21 (1.20)

POET 2.89 (0.41) 6.98 (1.28) 8.90 (2.11) 12.41 (2.69) 3.08 (0.64) 5.72 (1.09) 7.32 (1.51) 7.51 (1.44)
AT 1.93 (0.57) 4.71 (2.97) 6.92 (5.43) 8.86 (3.79) 2.11 (0.71) 3.26 (1.08) 3.80 (2.03) 4.37 (1.34)
SC 2.79 (0.36) 7.08 (1.33) 9.01 (2.22) 12.73 (2.80) 3.06 (0.65) 5.73 (1.14) 7.34 (1.52) 7.52 (1.46)

2. This setting is designed to illustrate the performance of our method under
model misspecification. We let �0n = �0n�

T
0n + �0n, where �0n is as in simula-

tion setting (1), but �0n is nondiagonal, corresponding to the covariance matrix of
an autoregressive sequence with pure error variance 0.4 and autoregressive coeffi-
cient 0.1.

For each simulation setting, we choose two sample sizes, namely n = 50,100
and for each value of n, we let pn = 100,200. For each (n,pn) pair, we consider
50 simulation replicates. For the Bayesian methods, the posterior mean is used
as a point estimate. Tables 1 and 2 summarize the results across the simulation
replicates for the two simulation settings, respectively, to compare the operator
norm difference between the estimator resulting from the different methods and
the truth. In particular, the average error across 50 replicates is provided, with
standard error in parenthesis.

The results for (PS) and (PL1) were reported based on 10,000 runs of the Gibbs
sampler with 5000 burn-in. From Tables 1 and 2, it becomes evident that when

TABLE 2
Simulation Setting 2. Comparative performance in covariance matrix estimation for (PL1), (PS),

POET, AT. The average error in operator norm across simulation replicates is tabulated

n 50 100

pn 100 200 100 200

k0n 1 logpn 1 logpn 1 logpn 1 logpn

(PL1) 1.73 (1.26) 5.30 (3.92) 11.92 (2.82) 13.41 (4.03) 17.01 (0.22) 19.37 (1.74) 10.04 (0.08) 22.10 (0.52)
(PS) 2.44 (1.40) 5.42 (2.67) 4.12 (2.86) 7.98 (3.23) 2.01 (1.44) 4.56 (1.49) 2.04 (1.12) 5.23 (2.10)

POET 3.59 (0.84) 7.16 (1.84) 7.14 (1.59) 12.63 (2.89) 3.93 (1.17) 7.39 (1.69) 3.90 (0.71) 10.13 (2.09)
AT 2.32 (1.49) 5.50 (3.09) 4.04 (2.99) 8.26 (4.16) 2.12 (1.62) 4.45 (1.63) 1.97 (0.90) 4.96 (2.28)
SC 3.63 (0.88) 7.32 (1.95) 7.26 (1.66) 12.85 (3.07) 3.95 (1.19) 7.44 (1.75) 3.88 (0.72) 10.24 (0.26)
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the number of model parameters increase, the performance of (PL1) deteriorates
due to possibly slower convergence of the MCMC, while (PS) has more robust
performance. Even in Table 2, where the truth is misspecified for both (PS) and
AT, and in fact designed to favor POET, (PS) performs at least equally or better
than the competitors. For each MCMC iteration, the runtime for (PS) scaled ap-
proximately linearly with n and p, though we are not aware of sharp theoretical
bounds on MCMC convergence in high dimensions guaranteeing polynomial time
convergence unlike many frequentist estimators.

7. Some properties of shrinkage priors in high-dimensional settings. We
develop a number of properties of the proposed shrinkage prior (PS) in high-
dimensional settings; the results are used to prove the main results on posterior
concentration, but are also of independent interest. Proofs of all the results are
deferred to the Appendix.

Let θ be a p-dimensional vector and θ0 ∈ l0[s;p] be an s-sparse vector with
s � p. Depending on the problem, θ might correspond to a high-dimensional
mean vector, a vector of regression coefficients or a column of the factor loadings,
with θ0 corresponding to a sparse truth.5 A quantity of fundamental importance in
studying the behavior of the posterior distribution in high-dimensional problems
is the prior concentration around an arbitrary sparse vector θ0, which is defined as
the noncentered small ball probability

P
(‖θ − θ0‖2 < ε

)
,(7.1)

for ε small. It can be shown that if θj ’s are i.i.d. standard normal,

sup
θ0∈l0[s;p]

P
(‖θ − θ0‖2 < ε

) ≤ e−Cp log(1/ε),

which decays exponentially with p for fixed s limiting the ability of the posterior
to concentrate on sparse θ0. However, with appropriate point mass mixture priors
having a probability mass at zero and ‖θ0‖ bounded, the small ball probability (7.1)
can be improved to e−Cs log(1/ε) [17].

For reasons mentioned in Section 4, there has been a recent thrust on developing
one-group alternatives to the two-group mixture priors using continuous shrinkage
priors, which can be often represented as a global–local scale mixture [36] of
Gaussians. Despite computational advantages with this family of shrinkage priors,
their concentration properties are understudied. Our proposed prior (PS), which
can be expressed as a Gaussian scale mixture, favors a large subset of the θj to
be simultaneously close to zero while inflicting minimal shrinkage on the rest, and
thus achieve a concentration similar to point mass mixture priors. In the following
Lemma 7.1, we present a nonasymptotic bound to the prior concentration for (PS).

5For us, θ and θ0 correspond to the vectorized loadings �n and �0n, respectively.
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LEMMA 7.1. Suppose θ ∼ (PS). Let θ0 ∈ l0[s;p],1 ≤ s ≤ p and s/p ≤ 1/2.
Then, for any ε ∈ (0,1) small enough,

P
(‖θ − θ0‖2 < ε

) ≥ exp
[−C max

{‖θ0‖2
2, s log(s/ε), logp

}]
for some constant C > 0.

We also state an auxiliary Lemma 7.2 which is used to prove Lemma 7.1; refer
to the supplemental document for a proof.

LEMMA 7.2. Let η ∈ R
s denote a random vector with independent compo-

nents ηj ∼ DE(ψj ). If there exist numbers a, b > 0, such that ψj ∈ [a, b] for all
j = 1, . . . , s, then for any δ > 0 and η0 ∈ R

s ,

P
(‖η − η0‖2 < δ

) ≥ exp

{
−C1

a2

s∑
j=1

|η0j |2 − C2s − s
∣∣log

{
δ/(b

√
s)

}∣∣}

for constant C1,C2 > 0.

We next show that the shrinkage prior (PS) does not spread its mass across too
many dimensions. A point mass mixture prior allows a high-dimensional vector to
collapse onto fewer dimensions and the implied dimensionality can be naturally
studied through appropriate tail bounds for the induced prior on | supp(θ)|, which
is a random variable supported on {0,1, . . . , p}. Such bounds on the prior dimen-
sionality are useful to control the posterior model size [17]. However, continuous
shrinkage priors do not allow exact zeroes in θ and clearly P(| supp(θ)| = p) = 1.
We instead use a generalized definition of the support of a vector as the subset of
entries which are larger than a small number δ in magnitude. For any δ > 0, we
denote the corresponding subset to be suppδ(θ), so that suppδ(θ) = {j : |θj | > δ}.

In the following Lemma 7.3, we provide a nonasymptotic tail bound for
| suppδ(θ)|, the number of entries in θ larger than δ in magnitude.

LEMMA 7.3. Let ε ∈ (0,1) and δ = ε/p with ε > 1/pB for some B > 0. If
θ is drawn according to the prior (PS) and s � logp, then there exists a constant
A > 0 such that

P
(∣∣suppδ(θ)

∣∣ > As
) ≤ e−Cs

for some constant C > 0. Moreover, the constant C appearing in the exponent can
be made arbitrarily large by choosing A large enough.

A final important property of (PS) is established through the following deviation
result on the l1 norm of θ .

LEMMA 7.4. For t ≥ 1, P[‖θ‖1 ≥ t] ≤ 2e−C
√

t .
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8. Construction of test functions. An important step [24] in Bayesian
asymptotic theory for establishing posterior contraction rates is to develop a test
function for the true parameter versus the complement of a ball of radius ε > 0 (in
an appropriate norm) around the truth with type-I and II error rates of the order
exp(−Cnε2). Under the Hellinger or L1 distance between densities, existence of
such tests is guaranteed by the seminal work of [9] and [32]; the same is true for
norms compatible to the above norms [25]. However, when the object of interest
is not the density itself, but rather some high-dimensional parameter indexing the
density with a norm of discrepancy relevant to the space the parameter lives in, the
test arising from Birgé–Le Cam theory might fail to produce the desired error rates
in the norm of interest.

In the context of nonparametric function estimation in general Lr norms,
[26] advocated using concentration inequalities based on empirical process tech-
niques as an alternative to the traditional testing framework. Castillo and Van Der
Vaart [17] used deviation bounds for the likelihood ratio test in estimating a high
dimensional mean in Euclidean norm. An important contribution of the present pa-
per is to utilize recently developed concentration results for random (self-adjoint)
matrices [39, 40] to devise a test function.

Using a version of the matrix Bernstein inequality (Theorem 6.2 in [39]), it
can be shown that the sample estimator �̂ = n−1 ∑n

i=1 yiy
T
i has appropriate con-

centration around E�̂ = �0 when the “effective rank” re(�0) := tr(�0)/‖�0‖2 is
modest compared to p [11, 40]. However, for �0 = �0�

T
0 + σ 2

0 Ip ∈ C0n, re(�0)

can scale in the order of p, prohibiting us from using �̂ as an estimator to con-
struct the test. A crucial observation is that even if �0 ∈ C0n does not necessarily
have a small effective rank, the larger contribution to the operator norm of �0
(‖�0‖2 = ‖�0‖2

2 + σ 2
0 ) comes from the low rank part by (A3). We exploit this to

design a novel projection based test in Theorem 8.1 below, where the types I and II
error rates can be expressed in terms of deviation bounds of a k0n × k0n sample
covariance matrix from its mean. Dependence of all quantities on n has been made
explicit from this point onwards.

THEOREM 8.1. Recall the sequences k0n and cn from Assumptions 3.1
and 3.2, respectively. Let �0n ∈ C0n with the corresponding �0n ∈ R

pn×k0n . Let
Bj,n = {�n ∈ Cn : jεn ≤ ‖�n − �0n‖2 < (j + 1)εn} denote an annulus of inner
radius jεn and outer radius (j +1)εn in operator norm around �0n for some inte-

ger j > 1 and sequence εn > 0. Assume εn ≥ cnk0n

√
log k0n

n
and εn log j ≤ cn. Fix

�1n ∈ Bj,n and let Ej,n = {�n ∈ Bj,n :‖�n −�1n‖2 < jεn/2} denote an operator
norm ball in Bj,n around �1n of radius jεn/2.

Based on n i.i.d. samples y1, . . . , yn from Npn(0,�n), consider testing the point
null vs. composite alternative hypothesis

H0 :�n = �0n versus H1 :�n ∈ Ej,n.(8.1)
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Define xi = (1/cn)�
T
0nyi and zi = �0nxi for i = 1, . . . , n, so that xi ∈ R

k0n

and zi ∈ R
pn . Let �̂y = n−1 ∑n

i=1 yiy
T
i and define �̂x = (1/c2

n)�
T
0n�̂y�0n, �̂z =

�0n�̂x�
T
0n. Let φj,n denote a test function for (8.1) defined as

φj,n = 1{‖�̂z−�0n‖2≥jεn/4}.(8.2)

Then, the type-I and type-II error rates of φj,n satisfy:

E0φj,n ≤ exp
{
−Cnj2ε2

n

c2
nk

2
0n

}
,(8.3)

sup
�n∈Ej,n

E�n(1 − φj,n) ≤ exp
{
−Cn(log j)2ε2

n

c2
nk

2
0n

}
(8.4)

for some constant C > 0, where E�n denotes an expectation under the distribution
of y(n) under N(0,�n) and E0 is a shorthand for E�0n

.

REMARK. If the condition εn log j ≤ cn is replaced by jδεn ≤ cn for some
0 < δ ≤ 1, the type-II error bound in (8.4) becomes exp{−Cnj2δε2

n/(c
2
nk

2
0n)}.

PROOF OF THEOREM 8.1. We shall make use of a matrix concentration result
from [11]. Let u1, . . . , un

i.i.d.∼ Nq(0,�) and �̂ := n−1 ∑n
i=1 uiu

T
i denote the sam-

ple covariance matrix. Proposition A.4 in [11] implies that for any s > 0 such that
s + logq < n,

P

[
‖�̂ − �‖2 > C tr(�)

√
s + logq

n

]
≤ e−s .(8.5)

We adapt a fact from Lemma 5.36 of [40]. For a p × k matrix B with p > k,
suppose ‖BTB − Ik‖2 ≤ max{δ, δ2} for some δ > 0. Then

1 − δ ≤ smin(B) ≤ smax(B) ≤ 1 + δ.(8.6)

Finally, we index matrices that appear frequently in the sequel. Define

Gn := 1

cn

�T
0n�0n − Ik0n

, �n := 1

cn

�0n�
T
0n − Ipn,

(8.7)

�n :=
(

1 + σ 2
0n

cn

)
Ik0n

.

Note that Gn is the matrix appearing in (A3). The nonzero eigenvalues of Gn and
�n are the same; hence, ‖Gn‖2 = ‖�n‖2.

Type-I error: Recall �̂z and �̂x from the theorem statement. We proceed
to bound E0φj,n = P0[‖�̂z − �0n‖2 ≥ jεn/4]. By the triangle inequality and
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Lemma 1.1 in the supplemental document,

‖�̂z − �0n‖2

≤
∥∥∥∥�0n�̂x�

T
0n − �0n�

T
0n − σ 2

0n

cn

�0n�
T
0n

∥∥∥∥
2
+ σ 2

0n‖�n‖2(8.8)

≤ ‖�0n‖2
2‖�̂x −E0�̂x‖2 + ‖�0n‖2

2‖E0�̂x − �n‖2 + σ 2
0n‖Gn‖2.

A simple calculation yields

E0�̂x = 1

c2
n

�T
0n

[
�0n�

T
0n + σ 2

0nIpn

]
�0n

(8.9)

=
(

1

cn

�T
0n�0n

)2

+ σ 2
0n

cn

1

cn

�T
0n�0n.

Substituting this in (8.8) and using triangle inequality, the sum of the second and
third term in (8.8) can be bounded above by

‖�0n‖2
2

∥∥∥∥
(

1

cn

�T
0n�0n

)2

− Ik0n

∥∥∥∥
2
+ σ 2

0n(1/cn + 1)‖Gn‖2.

Recall ‖Gn‖2 = o(k0n

√
log k0n/n) by (A3). In addition, ‖�0n‖2 ≤ 2

√
cn by (A3)

and σ 2
0n ≤ cn from (A4). Note that ‖A − Ik0n

‖2 < δ for A symmetric and some δ ∈
(0,1) implies that ‖A2 − Ik0n

‖2 ≤ 3δ. Using these facts, the expression in the above
display can be bounded above by (13cn + 1)‖Gn‖2. Since we have assumed εn ≥
cnk0n

√
log k0n

n
in the condition of the theorem, (13cn + 1)‖Gn‖2 can be bounded

above by jεn/8 for n large enough. Substituting this bound in (8.8),

P0
[‖�̂z − �0n‖2 ≥ jεn/4

] ≤ P0
[‖�0n‖2

2‖�̂x −E0�̂x‖2 ≥ jεn/8
]
.

Using ‖�0n‖2
2 � cn one more time, we have

E0φj,n ≤ P0
[‖�̂x −E0�̂x‖2 ≥ Cjεn/cn

]
.(8.10)

By definition, �̂x = n−1 ∑n
i=1 xix

T
i is a k0n × k0n sample covariance ma-

trix. We now invoke (8.5) to bound the deviation of �̂x from its expecta-
tion under P0 in (8.10). From (8.9) and using tr(A2) = ‖A‖2

F for A sym-
metric, tr(E0�̂x) = ‖�T

0n�0n/cn‖2
F + (σ 2

0n/cn)‖�0n/
√

cn‖2
F . Recall σ 2

0n ≤ cn

by (A4). By Lemma 1.1 in the supplemental document, ‖�T
0n�0n/cn‖F ≤

‖�0n/
√

cn‖F ‖�0n/
√

cn‖2 ≤ 2‖�0n/
√

cn‖F . Hence, tr(E0�̂x) ≤ 5‖�0n/
√

cn‖2
F .

Using ‖�0n‖F ≤ √
k0n‖�0n‖2 ≤ 2

√
cnk0n, tr(E0�̂x) can be bounded above

by Ck0n.
Choose s = Cnj2ε2

n/(k
2
0nc

2
n). Since εn ≥ cnk0n

√
log k0n/n, we have s � log k0n

and hence C tr(E0�̂x)
√

(s + log k0n)/n � C tr(E0�̂x)
√

s/n ≤ Cjεn/cn. By (8.5),
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the expression in the right-hand side of (8.10) is then bounded above by e−s =
exp{−Cnj2ε2

n/(k
2
0nc

2
n)}, proving (8.3).

Type-II error: Fix �n ∈ Ej,n. We proceed to bound E�n(1−φj,n) = P�n[‖�̂z −
�0n‖2 < jεn/4]. By repeatedly using the triangle inequality, we obtain

‖�̂z − �0n‖2 ≥ ‖�0n‖2
2

∥∥∥∥�̂x − Ik0n
− σ 2

0n

cn

Ik0n

∥∥∥∥
2
− σ 2

0n

∥∥∥∥ 1

cn

�0n�
T
0n − Ipn

∥∥∥∥
2

≥ ‖�0n‖2
2
{‖E�n�̂x − �n‖2 − ‖�̂x −E�n�̂x‖2

} − σ 2
0n‖�n‖2.

Recall ‖�n‖2 = ‖Gn‖2. Therefore, on the set {‖�̂z − �0n‖2 < jεn/4},

‖�0n‖2
2‖�̂x −E�n�̂x‖2 ≥ ‖�0n‖2

2‖E�n�̂x − �n‖2 − σ 2
0n‖Gn‖2 − jεn

4

≥ ‖�0n‖2
2‖E�n�̂x −E0�̂x‖2(8.11)

− ‖�0n‖2
2‖E0�̂x − �n‖2 − σ 2

0n‖Gn‖2 − jεn

4
.

Recalling the definition of �̂x and invoking Lemma 1.1 in the supplemental docu-
ment,

‖�0n‖2
2‖E�n�̂x −E0�̂x‖2 =

∥∥∥∥ �0n√
cn

∥∥∥∥
2

2

∥∥∥∥ 1

cn

�T
0n(�n − �0n)�0n

∥∥∥∥
2

≥
∥∥∥∥ �0n√

cn

∥∥∥∥
2

2
smin

(
�T

0n�0n

cn

)
‖�n − �0n‖2(8.12)

≥
∥∥∥∥ �0n√

cn

∥∥∥∥
2

2
smin

(
�T

0n�0n

cn

)
jεn

2
.

The last inequality in (8.12) used the triangle inequality to obtain ‖�n − �0n‖2 ≥
‖�1n − �0n‖2 − ‖�n − �1n‖2 ≥ jεn − jεn/2 = jεn/2. By (A3) and (8.6),
both ‖�0n/

√
cn‖2 and smin(�

T
0n�0n/cn) can be bounded below by 4/5. Hence,

‖�0n‖2
2‖�̂x − E�n�̂x‖2 is bounded below by 64jεn/250. Further, based on the

calculations following (8.8),

‖�0n‖2
2‖E0�̂x − �n‖2 + σ 2

0n‖Gn‖2 + jεn

4

can be bounded above 63jεn/250 for n large enough. Substituting in (8.11),

P�n

[‖�̂z − �0n‖2 ≤ jεn/2
]
< P�n

[‖�0n‖2
2‖�̂x −E�n�̂x‖2 > Cjεn

]
.

As in case of the type-I error, using ‖�0n‖2
2 � cn, we conclude that

E�n(1 − φj,n) ≤ P�n

[‖�̂x −E�n�̂x‖2 > Cjεn/cn

]
.(8.13)
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We are now in a position to invoke (8.5) to bound the right-hand side of (8.13).
Using triangle inequality and von Neumann’s trace inequality [34],6

tr(E�n�̂x) ≤ tr(E0�̂x) + ∣∣tr(E�n�̂x −E0�̂x)
∣∣

≤ tr(E0�̂x) + k0n‖E�n�̂x −E0�̂x‖2.

Since �n ∈ Bj,n, ‖�n − �0n‖2 ≤ (j + 1)εn < 2jεn, and hence

‖E�n�̂x −E0�̂x‖2 = ∥∥�T
0n(�n − �0n)�0n

∥∥
2/c

2
n

≤ C‖�n − �0n‖2/cn ≤ 2Cjεn/cn.

Substituting in the previous display and using tr(E0�̂x) ≤ Ck0n, one has
tr(E�n�̂x) � k0n max{1, jεn/cn} ≤ Ck0n(j/ log j), with the last inequality using
εn log j ≤ cn.

Choosing s = Cn(log j)2ε2
n/(k

2
0nc

2
n), one has s � logk0n and C tr(E�n�̂x) ×√

(s + log k0n)/n ≤ Cjεn/cn. By (8.5), the expression in the right-hand side
of (8.13) is bounded above by e−s = exp{−Cn(log j)2ε2

n/(k
2
0nc

2
n)}. Since the

bound is independent of �n ∈ Ej,n, (8.4) follows. �

9. Proof of the main results. We now proceed to prove the results stated in
Section 5. We prove Theorem 5.3 with the shrinkage prior (PS); the special case
of k0n = O(1) in Theorem 5.2 follows immediately. For the point mass prior, we
only sketch an argument. We introduce a number of auxiliary Lemmata 9.1, 9.2,
9.3 whose proofs can be found in the supplemental document.

9.1. Proof of Theorem 5.3. Set εn = cnk
3/2
0n

√
sn logpn

n

√
logn and define Un =

{�n :‖�n −�0n‖2 ≤ Mεn}. The posterior probability assigned to the complement
of Un is given by


n

(
Uc

n | y(n)) =
∫
Uc

n

∏n
i=1(f�n(yi)/f�0n(yi)) d
n(�n)∫ ∏n

i=1(f�n(yi)/f�0n(yi)) d
n(�n)
≡ Nn

Dn

,(9.1)

where f�n denotes a pn-dimensional N(0,�n) distribution and Nn and Dn denote
the numerator and denominator of the fraction in (9.1).

Let σ(y1, . . . , yn) denote the σ -field generated by y1, . . . , yn. We first claim that
we can lower-bound Dn on an event An ∈ σ(y1, . . . , yn) with large probability
under f�0n

in Lemma 9.1.

LEMMA 9.1. Let �0n ∈ C0n. Let ηn be a sequence satisfying ηn/smin(�0n) →
0 and nη2

n/smin(�0n)
2 → ∞, and define �n = 2smax(�0n)/smin(�0n). Then there

exists An ∈ σ(y1, y2, . . . , yn) with P�0n
(An) → 1 such that on An,

Dn ≥ e−Cnη2
n log(�n)/smin(�0n)2


n

(
�n :‖�n − �0n‖F < ηn

)
.

6| tr(A)| ≤ k‖A‖2 for a k × k matrix A.
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We shall set ηn = √
snk0n/n in all future usage of Lemma 9.1. Based

on our prior specification, �n can be parameterized by (k,�n,σ
2
n ) with k ∈

{1, . . . ,∞},�n ∈ R
pn×k, σ 2

n ∈ (0,∞), and �n = �n�
T
n + σ 2

n Ipn . We use this to
bound 
n(‖�n − �0n‖F ≤ ηn) from below in the following Lemma 9.2.

LEMMA 9.2. If �0n ∈ C0n, the prior 
n on �n is as in Theorem 5.2, and
ηn = √

snk0n/n, then


n

(‖�n − �0n‖F ≤ ηn

) ≥ e−Csnk0n logn.

We now introduce some notation. Let

en = snk0n logn, tn = Ce2
n, δn = εn/(entn),

(9.2)
δ′
n = δn/(pnen).

Recalling that the true loadings has snk0n many nonzero entries, en can be thought
of as an effective sparsity parameter. Also, recall the suppδ notation from Sec-
tion 7. Given k, let suppδ′

n
(�n) denote the set S ⊂ {1, . . . , pnk} corresponding to

the entries in vec(�n) larger than δ′
n in absolute magnitude.

Since P�0n
(An) → 1 by Lemma 9.1, it is enough to show

lim
n→∞E0

[

n

(
Uc

n | y(n))1An

] = 0

to prove Theorem 5.2, where E0 is a shorthand for E�0n
. For some H > 0 to be

chosen later,

E0
[

n

(
Uc

n | y(n))1An

] ≤ E0
[

n

(
U∗

n | y(n))1An

]
+E0

[

n

(
Wc

n ∩ Vn | y(n))1An

]
(9.3)

+ 2E0
[

n

(
V c

n | y(n))1An

]
,

where U∗
n = Uc

n ∩ Wn ∩ Vn, with

Wn = {∣∣suppδ′
n
(�n)

∣∣ ≤ Hen,‖�n‖1 ≤ tn, σ
2 ≤ tn

}
,

(9.4)
Vn = {k ≤ Cen}.

Thus, U∗
n consists of (strictly speaking, can be identified with the class of) co-

variance matrices �n = �n�
T
n + σ 2

n Ipn satisfying ‖�n − �0n‖2 > Mεn, where
�n ∈ R

pn×k with k ≤ Cen, ‖�n‖1 ≤ tn, | suppδ′
n
(�n)| ≤ Hen and σ 2

n ≤ tn.
We now show in Lemma 9.3 that the expression in (9.3) goes to zero, so that

we can focus on 
n(U
∗
n | y(n)). This will be crucial in reducing the entropy of the

model space.



BAYESIAN COVARIANCE MATRIX ESTIMATION 1121

LEMMA 9.3. Recall the sequences and sets in (9.2) and (9.4), respectively.
There exist constants H,C > 0 such that

lim
n→∞E0

[

n

(
Wc

n ∩ Vn | y(n))1An

] = 0,

lim
n→∞E0

[

n

(
V c

n | y(n))1An

] = 0.

For k ≤ Cen, a set S ⊂ {1, . . . , pnk} with |S| ≤ Hen, and j ≥ M , let Bk,S,j,n

denote the following subset of U∗
n :

Bk,S,j,n = {
�n = �n�

T
n + σ 2

n Ipn :�n ∈R
pn×k, k ≤ Cen,‖�n‖1 ≤ tn,

(9.5)
σ 2

n ≤ tn, suppδ′
n
(�n) = S, jεn ≤ ‖�n − �0n‖2 < (j + 1)εn

}
.

Then, using a standard testing argument (see, e.g., the proof of Proposition 5.1
in [17]),

E0
[
P

(
U∗

n | y(n))1An

]
≤ ∑

k≤Cen

∑
S : |S|≤Hen

∑
j≥M

[
E0�k,S,j,n(9.6)

+ βk,S,j,n sup
�n∈Bk,S,j,n

E�n(1 − �k,S,j,n)
]
,

where �k,S,j,n is a (point vs. composite) test function for

H0 :�n = �0n versus H1 :�n ∈ Bk,S,j,n(9.7)

whose construction is provided below and

βk,S,j,n := 
n(Bk,S,j,n)

e−nη2
n log�n/smin(�0n)2


n(‖�n − �0n‖F < ηn)
≤ eCen.(9.8)

To obtain the upper bound on βk,S,j,n in the above display, bound 
n(Bk,S,j,n)

above by 1, use the fact that log�n � log cn ≤ logn by (A1) and (A4) and use
Lemma 9.2 to conclude that βk,S,j,n ≤ eCen .

To construct the test function �k,S,j,n in (9.6), we cover Bk,S,j,n with a union
of balls and obtain local tests for �0n versus the centers of each of the balls us-
ing Theorem 8.1. Since we are inside Wn ∩ Vn, the number of such balls can be
controlled and �k,S,j,n is obtained as the maximum of the local tests.

Let �n,l
7 for l ∈ Ik,S,j,n be a jεn/2-net of Bk,S,j,n in operator norm and for

each l, define Ek,S,j,n,l = {�n ∈ Bk,S,j,n :‖�n − �n,l‖2 ≤ jεn/2}. By definition,

Bk,S,j,n ⊂ ⋃
l∈Ik,S,j,n

Ek,S,j,n,l .

7We suppress the dependence on k,S and j .
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Clearly, jεn ≤ ‖�n,l − �0n‖2 < (j + 1)εn and εn ≥ cnk0n

√
log k0n/n. For �n ∈

U∗
n , ‖�n‖2 ≤ √

entn and ‖�n −�0n‖2 ≤ ‖�n‖2 +cn ≤ ent
2
n + tn +cn � e5

n. Hence,
Bk,S,j,n ⊂ U∗

n implies j � e5
n/εn, and hence log j � logn, so that εn log j ≤ cn by

the second part of (A1). Therefore, the conditions of Theorem 8.1 for the point
versus composite test H0 :�n = �0n versus H1 :�n ∈ Ek,S,j,n,l are satisfied. Let
φk,S,j,n,l denote the corresponding test function from Theorem 8.1 with type-I

error e−Cnj2ε2
n/(c2

nk2
0n) = e−Cj2en logpn and type-II error e−Cn(log j)2ε2

n/(c2
nk2

0n) =
e−C(log j)2en logpn . Letting �k,S,j,n = maxl∈Ik,S,j,n

φk,S,j,n,l , we therefore have

E0(�k,S,j,n) ≤ |Ik,S,j,n|e−Cj2en logpn,

sup
�n∈Bj,S,n

E�n(1 − �k,S,j,n) ≤ e−C(log j)2en logpn.

To estimate |Ik,S,j,n|, that is, the covering number of Bk,S,j,n in operator norm,
we embed Bk,S,j,n inside B̃k,S,j,n, whose covering number is easier to calculate:

B̃k,S,j,n := {
�n = �n�

T
n + σ 2

n Ipn :�n ∈ B
(�)
k,S,j,n, σ

2
n ≤ tn,

jεn ≤ ‖�n − �0n‖2 < (j + 1)εn

}
,

where B
(�)
k,S,j,n = {�n ∈ R

pn×k :k ≤ Cen, suppδ′
n
(�n) = S,‖�n‖F ≤ entn}. The

containment Bk,S,j,n ⊂ B̃k,S,j,n follows since ‖�n‖F ≤ √
k‖�n‖2 ≤ k‖�n‖1 ≤

entn.
We now proceed to explicitly construct a jεn/2-net for B̃k,S,j,n. Let ξn =

jεn/(8entn). For notational convenience, we use PS(θ) below to denote θS defined
in Section 2. Let {�l}Ll=1 be a ξn-net of B

(�)
k,S,j,n. Also, let {σ 2

r }Rr=1 be a jεn/4-net

of [0, tn]. We show below that {�l�
T
l + σ 2

r }l,r form a jεn/2-net of B̃k,S,j,n in
operator norm.

Let �̃ = �̃�̃T + σ̃ 2I be in B̃k,S,j,n. Find �l and σ 2
r from the respective nets so

that ‖�l − �̃‖F ≤ ξn and |σ 2
r − σ̃ 2| ≤ jεn/4. Let � = �l�

T
l + σ 2

r . Then

‖� − �̃‖2 ≤ jεn/4 + ∥∥�l�
T
l − �̃�̃T∥∥ ≤ jεn/4 + [‖�l‖2 + ‖�̃‖2

]
ξn ≤ jεn/2.

We have thus proved our claim, and hence |Ik,S,j,n| ≤ L × R. Note the use of the
control on ‖�‖2 over Bk,S,j,n in the above display.

Clearly, R can be chosen to smaller than tn/(2jεn). With s = |S|, let {θl}Ll=1 be
a ξn/2-net of the Euclidean sphere in R

s of radius entn. By Lemma 5.2 of [40], the
cardinality of such a net L can be chosen to be smaller than (1+entn/ξn)

s . We now
exhibit a ξn-net {�l}Ll=1 for B

(�)
k,S,j,n in Frobenius norm as follows. Set PS(�l) =

θl and PSc(�l) = 0. Let � ∈ B
(�)
k,S,j,n and θ = PS(�). There exists θl such that
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‖θ − θl‖2 ≤ ξn/2. Also, since suppδ′
n
(�) = S, ‖PSc(�)‖2 ≤ δn. By choosing j

larger than some constant J , we can make ξn ≥ 2δn. Hence, ‖�l − �‖F ≤ ξn.
Thus, L × R can be bounded above by eCs log(entn) ≤ eCs logpn , and hence

E0(�k,S,j,n) ≤ eCs logpne−C1j
2en logpn,(9.9)

sup
�n∈Bk,S,j,n

E�n(1 − �k,S,j,n) ≤ e−C2(log j)2en logpn.(9.10)

Substitute the bounds obtained in (9.8), (9.9) and (9.10) in (9.6). Observing that
all the bounds are free of k, we can bound the expression in (9.6) by

(Cen)

Hen∑
s=0

(
pn

s

)[ ∑
j≥M

eCs logpne−C1j
2en logpn + eCene−C2(log j)2en logpn

]
.(9.11)

The first term in the inner sum over j can be bounded above by eCen logpn ×
e−C3M

2en logpn , while the second one by eCene−C4(logM)2en logpn . Noting that
(Cen) × (Hen + 1)max{0≤l≤Hen}

(pn

l

) ≤ exp{Cen logpn}, (9.11) goes to 0 as
n → ∞ for a large enough constant M > 0. This completes the proof of Theo-
rem 5.3 with the shrinkage prior (PS).

The proof for the point mass priors (PL1) follows similarly. Since the point
mass mixture priors allow exact zeros in the loadings, we can condition on
supp(�n) = S. By properties of point mass mixture priors shown in [17],
analogues of Lemmata 9.2 and 9.3 can be obtained to complete the theo-
rem.

APPENDIX

PROOF OF LEMMA 5.5. Observe that if ‖θj − θj ′‖H = 2(s − r), then
〈bj , bj ′ 〉 = r . For j �= j ′, �(j) − �(j ′) = γ (bjb

T
j − bj ′bT

j ′). The nonzero eigen-

values of the matrix B = (bjb
T
j − bj ′bT

j ′) are {√s2 − r2,−√
s2 − r2}, since

rk(B) = 2, tr(B) = 0 and tr(B2) = 2(s2 − r2).
Since θj ∈ M for all j , by symmetry, det(�(j)) = det(�(j ′)) for all j �= j ′.

Hence, KL(P(j),P(j ′)) = (n/2){tr(�−1
(j)�(j ′)) − p}. Write �(j) = β(A + tbj b

T
j ),

where A is a diagonal matrix with the first (p − 1) diagonal entries equaling one
and the pth entry being (1 + κ/β). An application of the Woodbury matrix inver-
sion formula produces(

A + tbj b
T
j

)−1 = A−1 − t

1 + ts
bjb

T
j ,

so that

�−1
(j)�(j ′) = Ip − t

1 + ts
bjb

T
j + tbj ′bT

j ′ − t2r

1 + ts
bjb

T
j ′ .

The proof is completed by observing that tr(bjb
T
j ) = s and tr(bjb

T
j ′) = r . �
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PROOF OF LEMMA 5.6. Let τ ∈ M with supp(τ ) = S. We show that for
any x ∈ M, ‖x − τ‖H = 2

∑
j /∈S 1(xj = 1). To that end, we have ‖x − τ‖H =∑

j∈S 1(xj = 0) + ∑
j /∈S 1(xj = 1) = s + a − b, where a = ∑

j /∈S 1(xj = 1),
b = ∑

j∈S 1(xj = 1). Since x ∈ M, we also have a + b = s, which implies
‖x − τ‖H = 2a.

Let k denote the integer part of s/6. Let M0 be a maximal set of points in
M, with each pair at least 2(k + 1) apart in Hamming distance. Note here that
2(k + 1) > s/3. Since M0 is maximal and d(x, y) is even for any x, y ∈M by the
above calculation, it follows that M ⊂ ⋃

τ∈M0
B(τ ;2k), where

B(τ ;2k) = {
x ∈ M :‖x − τ‖H ≤ 2k

}
.

By symmetry, B(τ ;2k) is independent of τ , so that |M| ≤ |M0||B(τ ;2k)| for any
τ ∈ M0. It is easy to see that

∣∣B(τ ;2k)
∣∣ =

k∑
j=0

|Aj | =
k∑

j=0

(
s

j

)(
q − s

j

)
,

where Aj = {x ∈ M :‖x − τ‖ = 2j},0 ≤ j ≤ k. Since k ≤ s/2, the expres-
sion in the above display can be bounded above by k

(s
k

)(p−1
k

)
. One thus has

|M| = (p−1
s

) ≤ mk
(s
k

)(p−1
k

)
. Using (n/r)r ≤ (n

r

) ≤ (ne/r)r for 0 ≤ r ≤ n/2, we
obtain m ≥ exp(Cs logp) for some constant C > 0. Also, clearly m ≤ |M| ≤
exp(C1s logp). �

PROOF OF LEMMA 7.1. Let δ = ε/p. To lower-bound P(‖θ − θ0‖2 < ε), we
first obtain a lower bound conditioned on the hyper parameters τ and γ :

P
(‖θ − θ0‖2 < ε | τ, γ )

≥ P
(|θj | ≤ δ ∀j ∈ Sc

0 | τ, γ )
P

(‖θS0 − θ0S0‖2 < ε/2 | τ, γ )
(A.1)

=
[ ∏
j∈Sc

0

(
1 − e−δ/ψj

)] × P
(‖θS0 − θ0S0‖2 < ε/2 | τ, γ )

.

Let γ̃ = (γ1, . . . , γp−1)
T and γp = 1 − ∑p−1

j=1 γj . We now have to integrate out
τ and γ̃ in (A.1). By a relabeling of indices, we can always make sure that the pth
index lies in S0. Let S1 = S0 \ {p} so that Sc

0 ∪ S1 = {1, . . . , p − 1}. Fix numbers
a, b ∈ (0,1) with b = 4a. Observe that if τ ∈ [2s,4s], γj τ ≤ δ

log(p/s)
∀j ∈ Sc

0 and
γj τ ∈ [a, b] ∀j ∈ S1, then for ε < b/2,

p−1∑
j=1

γj = ∑
j∈Sc

0

γj + ∑
j∈S1

γj ≤ ε + (s − 1)b

2s
≤ b < 1.(A.2)
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Define B ⊂ �
p−1
0 ×R

+ such that

B =
{
(γ, τ ) : 0 ≤ γj τ ≤ δ

log(p/s)
∀j ∈ Sc

0;γj τ ∈ [a, b] ∀j ∈ S1,

(A.3)

τ ∈ [2s,4s]
}
.

Clearly, B is a measurable subset of �
p−1
0 × R

+. For a fixed τ in the interval

[2s,4s], the section Aτ ⊂ �
p−1
0 is given by

Aτ =
{

0 ≤ γj ≤ δ

log(p/s)τ
∀j ∈ Sc

0;γj ∈
[
a

τ
,
b

τ

]
∀j ∈ S1

}
.(A.4)

Thus,

P
(‖θ − θ0‖2 < ε

) =
∫
(τ,γ̃ )∈R+×�

p−1
0

P
(‖θ − θ0‖2 < ε | τ, γ̃ )

fγ (dγ̃ )fτ (dτ)

(A.5)
≥

∫
(τ,γ )∈B

P
(‖θ − θ0‖2 < ε | τ, γ )

fγ (dγ̃ )fτ (dτ).

We now substitute the lower bound for P(‖θ − θ0‖2 < ε | τ, γ ) from (A.1) in (A.5)
and lower-bound the two terms on the right-hand side of (A.1) individually.

For the first term, observe that for (τ, γ ) ∈ B,
∏

j∈Sc
0
(1 − e−δ/ψj ) ≥ (1 −

s/p)p−s .
To tackle the second term, we make use of Lemma 7.2. By definition, ψj ∈

[a, b] for all j ∈ S1 whenever (τ, γ ) ∈ B. Further, along the lines of (A.2),∑p−1
j=1 γj ∈ [a/8, b], and hence γp ∈ [1 − b,1 − a/8] on B. Hence, ψp ∈ [2s(1 −

b),4s(1 − a/8)]. Since a, b are constants, by a slight abuse of notation, we shall
assume ψj ∈ [a, b] for all j ∈ S1 and ψp ∈ [2sa,4sb] on B. It thus follows from
Lemma 7.2 that

P
(∥∥
S0(θ) − 
S0(θ0)

∥∥
2 < ε/2 | τ, γ )

≥ exp
{
−C1

a2

∑
j∈S0

|θ0j |2 − C2s − s
∣∣log

{
ε/(2b

√
s)

}∣∣}.

We conclude that for (τ, γ ) ∈ B, the integrand in (A.5) can be bounded below as
follows:

P
(‖θ − θ0‖2 < ε | τ, γ )

(A.6)

≥ e−Cs exp
{
−C1

a2

∑
j∈S0

|θ0j |2 − C2s − s
∣∣log

{
ε/(2b

√
s)

}∣∣},

where the last inequality uses (1 − x)1/x ≥ 1/(2e) for 0 ≤ x ≤ 1/2 and C =
log(2e). It thus remains to obtain a lower bound to

P(B) =
∫
(τ,γ )∈B

fγ (dγ̃ )fτ (dτ) =
∫ 4s

τ=2s
P(Aτ | τ)fτ (dτ).(A.7)
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Now, since γ ∼ Dir(α/p, . . . , α/p), recalling the definition of Aτ from (A.4) and
using (A.2),

P(Aτ | τ)

= �(α)

�(α/p)p

∫
γ̃∈Aτ

[p−1∏
j=1

γ
α/p−1
j

](
1 −

p−1∑
j=1

γj

)α/p−1

dγ1 · · ·dγp−1

(A.8)

≥ Cp(1 − b)α/p−1
∫
γ̃∈Aτ

[ ∏
j∈S1

γ
α/p−1
j

]
×

[ ∏
j∈Sc

0

γ
α/p−1
j

]
dγ1 · · ·dγp−1

≥ Cp(1 − b)α/p−1
{

δ

log(p/s)

}α(p−s)/p{(
b

τ

)α/p

−
(

a

τ

)α/p}s−1

,

where

Cp = �(α)

�(α/p)p

(
p

α

)p−1

= exp
{
log�(α) + (p − 1) log(p/α) − p log�(α/p)

}
(A.9)

≥ exp
{
log�(α) − log�(α/p)

}
≥ exp

{
log�(α) − log(p/α)

}
with the last two inequalities using �(x) ≤ 1/x for all x ∈ (0,1). Moreover, since
b ≥ 4a, we have for τ ∈ [2s,4s],{(

b

τ

)α/p

−
(

a

τ

)α/p}s−1

≥
{(

b

4s

)α/p

−
(

a

2s

)α/p}s−1

(A.10)

≥
(

b

4s

)(s−1)α/p[
1 − exp

{
−α

p
log(2b/a)

}]
.

Equations (A.9) and (A.10), in conjunction with the fact that 1 − e−x ≥ x/2 for
x ∈ (0,1) implies that the expression in (A.8), and thus P(Aτ | τ) in (A.7), is
bounded below by

P
(
Aτ | τ )

(A.11)

≥ C exp
{
α(p − s)

p
log

δ

log(p/s)
− log

p

α
− 1

log(b/2a)
log

p

α

}

for some constant C > 0. Finally, (A.6) and (A.11) substituted into (A.5) gives us

P
(‖θ − θ0‖2 < ε

) ≥ P
[
τ ∈ (2s,4s)

]
e−C max{‖θ0‖2

2,s log(s/ε),logp}.

The proof of Lemma 7.1 is completed upon observing that P[τ ∈ (2s,4s)] ≥ e−Cs .
�
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PROOF OF LEMMA 7.3. Without loss of generality, we provide the proof for
α = 1. Lemma IV.3 of [43] implies that under (PS),

θj | ψj
ind.∼ DE(ψj ), ψj

i.i.d.∼ Ga(1/p,1/2).(1.12)

By (1.12), θj ’s are independent and identically distributed, so that | suppδ(θ)| ∼
Binomial(p, ζ ), with ζ := P(|θ1| > δ). We first show that ζ � logp/p for δ =
ε/p. Observe that

P
(|θ1| > δ

)
= (1/2)1/p

�(1/p)

∫ ∞
0

e−δ/xx1/p−1e−x/2 dx

(1.13)

= (1/2)1/p

�(1/p)

{∫ 4δ

0
e−δ/xx1/p−1e−x/2 dx +

∫ ∞
4δ

e−δ/xx1/p−1e−x/2 dx

}

≤ (1/2)1/p

�(1/p)

{
C +

∫ ∞
4δ

e−x/2

x
dx

}
≤ (1/2)1/p

�(1/p)

{
C +

∫ ∞
2δ

e−t

t
dt

}
.

Using a bound for the incomplete gamma function from Theorem 2 of [1],∫ ∞
2δ

e−t

t
dt ≤ − log

(
1 − e−2δ) ≤ − log(δ),(1.14)

for δ small. Since �(1/p) ≥ p/2 for large p, and C + log(1/δ) ≤ 2 log(1/δ) for
p large, we have P(|θ1| > δ) ≤ log(1/δ)/p � logp/p; the last inequality follows
since ε > 1/pB implies δ ≥ 1/pB+1.

A version of Chernoff’s inequality for the binomial distribution [27] states that
for B ∼ Binomial(p, ζ ) and ζ ≤ a < 1,

P(B > ap) ≤
{(

ζ

a

)a

ea−ζ

}p

.(1.15)

In (1.15), set a = As/p. Since s � logp, we can ensure ζ ≤ a by choosing A

larger than some constant. Hence, by (1.15), P(| suppδ(θ)| > As) ≤ (eζ/a)As ≤
e−A log(A/eC)s . �

PROOF OF LEMMA 7.4. Recall θj | γ, τ ∼ DE(γj τ ) for 1 ≤ j ≤ p. Let
Xj = θj /(γj τ ), so that Xj | γ, τ ∼ DE(1) independently. Let ψj = γj τ and fix
t > 1. Using a Bernstein-type tail inequality for subexponential random variables
(Proposition 5.16 of [40]),

P

( p∑
j=1

|θj | > t
∣∣∣ γ, τ

)
= P

( p∑
j=1

|ψjXj | > t
∣∣∣ γ, τ

)

≤ exp
{
−C min

(
t2

‖ψ‖2
2

,
t

‖ψ‖∞

)}

≤ max
{
e−Ct2/τ 2

, e−Ct/τ }
.
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The last inequality in the above display uses ‖γ ‖2
2 ≤ ‖γ ‖1 = 1 and e−c/x is

increasing in x. Fix t ≥ 1. Since τ ∼ Exp(1/2), P(τ >
√

t) ≤ e−C
√

t . Also,
max0≤x≤√

t max{e−Ct2/x2
, e−Ct/x} ≤ e−C

√
t . The result follows by noting that

P
(‖θ‖1 > t

) ≤
∫ √

t

x=0
max

{
e−Ct2/x2

, e−Ct/x}
fτ (x) dx + P(τ >

√
t)

≤ 2e−C
√

t . �
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