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A TRAJECTORIAL INTERPRETATION OF THE DISSIPATIONS OF
ENTROPY AND FISHER INFORMATION FOR STOCHASTIC
DIFFERENTIAL EQUATIONS
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Universidad de Chile and Université Paris-Est

The dissipation of general convex entropies for continuous time Markov
processes can be described in terms of backward martingales with respect
to the tail filtration. The relative entropy is the expected value of a back-
ward submartingale. In the case of (not necessarily reversible) Markov dif-
fusion processes, we use Girsanov theory to explicit the Doob—Meyer de-
composition of this submartingale. We deduce a stochastic analogue of the
well-known entropy dissipation formula, which is valid for general convex
entropies, including the total variation distance. Under additional regularity
assumptions, and using It6’s calculus and ideas of Arnold, Carlen and Ju,
we obtain moreover a new Bakry—Emery criterion which ensures exponential
convergence of the entropy to 0. This criterion is nonintrinsic since it depends
on the square root of the diffusion matrix and cannot be written only in terms
of the diffusion matrix itself. We provide examples where the classic Bakry—
Emery criterion fails, but our nonintrinsic criterion applies without modifying
the law of the diffusion process.

Introduction. We are interested in the long-time behavior of solutions to the
stochastic differential equation

0.1 dX;=0(X;)dW, 4+ b(X,)dt,

where b:R? - RY, 5 :RY — RI®" and W = (W;, t > 0) is a standard Brownian
motion in RY .

If (0.1) admits a reversible probability measure, the celebrated Bakry—Emery
curvature dimension criterion, which involves the generator, the carré du champs
and the iterated carré du champs, is a sufficient condition for this reversible mea-
sure to satisfy a Poincaré inequality and a logarithmic Sobolev inequality. From
these inequalities, one can, respectively, deduce exponential convergence to 0 as
t — oo of the chi-square distance or the relative entropy between the marginal at
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time ¢ of the process and its reversible measure. These results have been extended
to more general entropy functionals; see, for instance, [2].

In general, even when the stochastic differential equation (0.1) admits an in-
variant probability measure, this measure might be not reversible. It is well known
from both a probabilistic point of view [13] and the point of view of partial differ-
ential equations [1] that a contribution in the drift term, antisymmetric with respect
to the invariant measure, may accelerate convergence to this invariant measure as
t — o0.

Throughout this paper, we assume

(HO0) U:[0,00) — Ris aconvex function such that inf U > —o0,

and we consider the U-entropy of a probability measure p on a measurable space
(E, &), with respect to another probability measure ¢ on (E, £), defined by

d
/ U(—p(X))dq(X), if p<Lgq,
RY  \dgq

+00, otherwise.

Hy(plg) = I

The particular cases U(x) = 1,-0x In(x) and U (x) = (x — 1)2, respectively, cor-
respond to the usual entropy and the x2-distance. For U(x) = |x — 1|, Hy(plq)
coincides with the total variation distance when p < ¢. Notice that U is continu-
ous on (0, +00) and that U (0) > lim,_, o+ U (x).

The primal goal of this work is to recover, by arguments using Itd’s stochastic
calculus, the results of [1] and [2] about the long-time behavior of the U -entropy
of the law of X; with respect to the invariant measure. Our approach is based
on the following simple remark, valid for an arbitrary (possibly nonhomoge-
neous) continuous-time Markov process (X;:¢ > 0) with values in a measurable
space (E, £).

If we denote:

e by P; and Q; the time marginal laws of X; when the initial laws are Py and Qo,
respectively, and

e by (X tP )r>0 and (X tQ )s>0 realizations of the process (X;) with Xy, respectively,
distributed according to Py and Qo,

then, as soon as Hy (P;|Q;) < 400 for some ¢t > 0, one has P; < Q, for all s > ¢,

and the process
d Py
/(70,0))
< dQS( S) s>t

is a backward F;-submartingale with respect to the filtration F; := o (X rQ ,F>8).
In fact, it is easily deduced from the Markov property that if Py < Q; for some
t > 0, then the law of (X[F),>, is absolutely continuous with respect to the one

of (XrQ),Z, and moreover, Py < Q; for all s >t with (jgi (XSQ))SZ, a backward
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martingale with respect to the filtration Fs. Jensen’s inequality ensures that ¢ —
Hy (Py| Q) is nonincreasing and implies the remark.
The convergence of the U -entropy

Hy(PiQy) = E((U(jgi(xg))»

= E(U(E(jgt x2)| N }'s>>> <0

s>0

0.2)

is then deduced from the a.s. convergence of jgi (XSQ) to E(j—g[(XIQN ﬂsZO F3)

[the fact that for r > ¢, 55’, (XrQ) = 0 a.s. on the set {E(j—g(XtQ)l Ns=0Fs) =0}
permits to cope with the possible discontinuity of U at 0].
The first section of the paper is dedicated to time-inhomogeneous Markov dif-

fusions given by the stochastic differential equation

(0.3) dX;=o0(t, X;)dW; +b(t, X;)dt,

where b: Ry x R - R?, 0 :Ry x R? — R4®4" Under assumptions that guar-
antee that for both initial laws, the time-reversed processes are still diffusions, we
use Girsanov theory to make explicit the Doob—Meyer decomposition of the sub-
martingale (U (51Q)i (XSQ))) s>¢- In this way, we obtain a stochastic analogue of the
well-known entropy dissipation formula, valid for general convex entropies (in-
cluding total variation). Taking expectations in this formula, we recover the well-
known fact that the U-entropy dissipation is equal to the U-Fisher information.
The proofs of the main results of this section are given in Appendix A.

It should be noticed that the idea of considering a trajectorial interpretation of
entropy to obtain functional inequalities is not new, at least for reversible diffu-
sions; see, for example, the work of Cattiaux [5] whose results are nevertheless of
quite a different nature. However, even in the reversible case, time reversal of a
diffusion starting out of equilibrium modifies the dynamics of the diffusion. The
backward martingale approach takes this fact into account and moreover permits
the use of Itd’s calculus under less regularity than is a priori needed when work-
ing in the forward time direction. Its interest thus goes beyond the treatment of
nonreversible situations.

In the second section, we further suppose that the stochastic differential equa-
tion is time-homogeneous [i.e., of the form (0.1)] and that it admits an invariant
probability distribution that is chosen as the initial law Qg. Under additional reg-
ularity assumptions, and using It6’s calculus and some ideas similar to those of
Arnold, Carlen and Ju [1], we obtain a new Bakry—Emery criterion which ensures
exponential convergence of the U-Fischer information to 0 and therefore expo-
nential convergence of the U-entropy to 0. In addition, under this criterion, the
invariant measure satisfies a U -convex Sobolev inequality. This criterion is nonin-
trinsic: it depends on the square root o of the diffusion matrix a = oo* and cannot
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be written only in terms of the diffusion matrix itself, whereas, under mild regu-
larity assumptions on b and a, the law of (X;);>0 solving (0.1) is characterized
by the associated martingale problem only written in terms of a and b. The main
results of this section are proved in Appendix B. In Appendix C, we point out that
our approach allows us to recover the results and criterion provided in [1]. We also
highlight the difference between the arguments leading to each of the two criteria.
Additionally, we provide a combined criterion.

Finally, we provide in the third section two examples where the classic Bakry—
Emery criterion fails, but our nonintrinsic criterion ensures exponential conver-
gence to equilibrium without modifying the law of the diffusion process.

As future work, we plan to investigate how to choose the square root o of the
diffusion matrix in order to maximize the rate of exponential convergence to equi-
librium given by our nonintrinsic Bakry—Emery criterion.

Throughout this work, we use the convention of summation over repeated in-
dexes.

1. Entropy dissipation for diffusion processes. From now on we assume
that (X;, t > 0) is a Markov diffusion process which satisfies the stochastic differ-
ential equation

(1.1 dX;=o(t,X;)dW; +b(t, X;)dt,

where W = (W;, t > 0) is a standard Brownian motion in RY and b: Ry x RY —
R?, o :Ry x R? — RY®4" are mesurable coefficients satisfying conditions that
will be specified below.

For Py and Qg two probability measures on R4, we now denote by (X,P )i>0

and (X ,Q )s>0 two solutions of (1.1) with Xy, respectively, distributed according to
Py and Q. For t > 0, the law of XtP (resp., X,Q) is denoted by P; (resp., O;).

Our first goal is to explicitly describe the backward submartingale U (j 51 (X SQ))

when Py < Qg and, as a byproduct, the decrease of its expectation Hy (Ps|Qys).
In a way, this backward-in-time approach to entropy is converse to Follmer’s ap-
proach to the study of time reversal of diffusion processes [8] (see [9] for the
infinite-dimensional case) based on the stability under time reversal of the usual
pathwise entropy. The latter corresponds to U (r) = r Inr in Remark 1.1 below.

We fix a finite time-horizon T € (0, +00) in order to work with standard (for-
ward) filtrations by time reversal in [0, T']. Let us introduce some notation:

o QT (resp., PT) will denote the law of the time reversed processes (X g_t)tsT
[resp., (X;,,)th] on the canonical space C ([0, T], RY).

e Throughout the sequel, E7 will denote the expectation under the law Q7.

e (¥;);<r stands from now on for the canonical process on C([0, T], R%), and
G: =0 (Y, 0 < s <t) denotes its natural (complete, right continuous) filtration.
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Whenever Py < Qo, by the Markov property we have P7 « Q7 with % =
%(YT), and

dﬁf dIP)T _ dPT—Z‘
d@T g[ dQT—t
is a QT — G, martingale. Moreover, Hy (Ps| Q) < +oc for s € [0, T if and only if

(U (Dy))o<i<T—s 1s a uniformly integrable QT —¢g, submartingale, in which case
one has

(1.2) D, Yo, 0<t<T

Hy(Pi|Q) =BT (U(Dr_,))  foralltel[s, T.

REMARK 1.1. If Hy (P;|P;) denotes the pathwise U -entropy of a probability
measure P; on C([0, T], R?) with respect to a second probability measure P,

dP
/ U(—l(w)) dPy(w),  if P <P,
C([0,T],R9) dP,

Hy (P1|P2) := [
+00, otherwise,

we easily deduce that
Hy (Po| Qo) = Hy (law(X :0 <t < T)[law(X2:0 <1 < T))
= Hy (PT1Q").

In order to use Itd calculus to obtain the explicit form of the Girsanov density
D, as a QT — G, martingale, and then deduce the Doob-Meyer decomposition of
the submartingale U (D;), we will assume that the Markov processes (X %)_,, t <
T) and (X i_t,t < T) are diffusion processes as well. Conditions ensuring this
fact have been studied in Follmer [8], in Hausmann and Pardoux [11], in Pardoux
[18] and in Millet, Nualart and Sanz [17] among others, who in particular provide

the semimartingale decomposition of (X ?_,, t < T) in its filtration. We recall in
Theorem 1.2 below the general results in [17] in a slightly more restrictive setting.
The following conditions are needed:

(H1) For each T > 0, sup,¢jo 71(|0(7,0)[ + |o(7,0)[) < +o0 and for every
A > 0 there is a constant K7 4 > 0 such that
d/
|b(t,x) —b(t, y)| + Z}U.i(t, x) —0ai(t, )| < K1, alx — ¥l
i=1

vt €[0,T],Vx,y € B(0, A),

where o,; denotes the ith column of the matrix o and B(0, A) is the ball
of radius A > 0 centered at the origin in R?. Moreover:
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(H1)" the constants K7 4 do not depend on A, or
(H1)" for each s > 0, equation (1.1) starting at time s is strictly con-

servative, and for any bounded open set D C R?,

sup sup E{exp[/T _4Bs,,(x) +38 Z|A{;,(x)|2] dt“ < 00,

xeDse[0,T] j

where

1/2
By 1 (x) = Qb (1, Xs,t(x))2:| ,

Al (o) =

12
diow; (1, Xs,t(x))2:|

and X ;(x) denotes the solution to (1.1) starting from x at time s < ¢.

(H2)p Foreacht > 0, the law Q;(dx) of X,Q has a density g, (x) with respect to
Lebesgue measure.

(H3)p Setting a;j = (00™);;, foreachi =1, ...,d the distributional derivative
0j(a;j(t, x)g:(x)) is a locally integrable function on [0, T'] x R4:

T
/0 /Dlaj (aij(t, x)q:(x))| dx dt < 00

for any bounded open set D C R?.
For (r,x) € [0, T] x R9 we write:

° Zl,-j(t,x):=a,-j(T—t,x),i,j=1,...,d,

o b2t x) 1= —bi(T —t,x) + 2% (ZZ’:EET"(’“))

term involving m is zero when g7_;(x) is zero]

[with the convention that the

and notice that b2 (z, x) is defined dt ® dx a.e. on [0, T] x R under assump-
tion (H3)g.

THEOREM 1.2.  Assume that (H1) and (H2)¢ hold.

(a) Suppose moreover (H3)¢g. Then QT is a solution to the martingale prob-
lem

(MP)o:M] := f(Y;) — f(Yo)
- f t %a,-,(s, Yy)dij £ (V) + b (5. Y0)d; £ (Yy) ds,
0
tel0,T],

is a continuous martingale with respect to the filtration (G,) for all f € C3° (RY).
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(b) Let b Ry xR? — Rd and 6 : Ry x R4 — RI®4" pe measurable functions
such that fo Iplaij(t, x)|+ |bi (t, x)IqT (x)dx dt < oo for any bounded open set
D C R?. Assume moreover that QT is a solution to the martingale problem with
respect to (Gy) for the generator L; f(x) = %Zz,-j (t,x)0;; f(x) + bi (2, x)0; f(x).
Then (H3) ¢ holds, b=banda=a.

PROOF. According to Theorem 3.3 in [17], under (H1), (H2)p and (H3)g,

(Mtf)te[O,T) is a continuous G;-martingale under Q7. When f is C* on R and
vanishes outside B(0, A), we have

T
B ([ 20 ol £vo)ds

(1.3) < sup |Vf|<T sup  |b(s, x)|
B(0,A) [0,T1x B(0,A)

+f 9 ( dsd
[OT]XB(OA)Z| au(s x)qs(x))| s x)

where the right-hand side is finite under (H1) and (H 3)p. This implies that

ET(leD < +o00, and together with (H1), that (M )ief0,7] 1S a continuous
G;-martingale under Q. Part (b) follows from Theorem 3.3 in [17]. [

Assume (H1), (H2)p, (H2)p, (H3)p and (H3)¢p. Then, under (MP)¢y and
(MP) p, the process Y; is, respectively, a weak solution to the SDEs
(1.4) dX, =6&(t, X,)dW, +b9(t, X,)dt,  1€[0,T]
and
dX, =&(t, X;)dW, +b*(t, X, dt,  t€[0,T),

where & (t,x) = o (T —t,x) and W and W are d’-dimensional Brownian motions
in possibly enlarged probability spaces. If for all > 0, x — p;(x) and x — g;(x)
are strictly positive and differentiable, then the difference between the drift terms
of the two equations is given by

bl (t,x) — b2 (t,x) =a;;(t,)3; In pr_;(x) — @ (¢, )9, Ingr_; (x)

= (1, x)0; [m Pr— (x)].
qr—1
If uniqueness in law holds for the second stochastic differential equation, then the
simplest form of Girsanov theorem allows us to deduce that

Dl:p—T(YO)eXp{/ V*|: PT— I(Yt)i|0(t Y[)dW[
qTr qr—t

1
2

V*[l pT‘S](YS)a(s, YS)V[ln pT‘S](YS)ds}
qT —s qT —s
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(in the above equation and from now on, we denote by V* the transpose of the
gradient). However, in the general case when ¢;(x) or p;(x) may vanish and are
possibly not differentiable, it is not clear what sense should be given to the deriva-
tives above. If the diffusion matrix is singular, neither is it clear that the difference
of drift terms 52 and b” (defined by means of distributional derivatives) is in the
range of the diffusion matrix, which is required in order to use Girsanov theorem.

The problem of finding D; in the general case is reminiscent of and, somehow,
reciprocal to the stochastic construction of Nelson processes, where Q7 and the
possibly singular difference of drift terms are given, and one aims to construct P7 ;
see, for instance, [6]. The following technical lemma answers the question in the
most general situations covered by Theorem 1.2. Its proof, not hard but lengthy,
relies on Girsanov theory in the absolutely continuous setting and is given in the
Appendix A.l. Recall that an element Py € M of a given set M of probability
measures in C ([0, T'], Rd) is said to be extremal if Py = alP1 + (1 — )P, for some
P], ]P)z eManda e (0, 1) implies IP)O :P] :Pz.

LEMMA 1.3. Assume that (H1), (H2)p, (H3)p and (H3)p hold, with
Py < Qo, and let %(x) be the Radon—Nikodym derivative of p;(x)dxdt w.rt.

q:(x)dxdt on [0, T] x RY. Then:

(a) there exists a measurable function in [0, T] x R¢ — R? denoted (t, x) >
\Y% ln[%](x) such that

b (t,x) — b1, x) =af, x)V[ln PT—t (x)], pr—i(x)dx dr a.e.
qr—t

(b) Define q;(x)dx dt a.e.in [0, T] x R4 the function (t, x) +— V[%](x) by

v[ﬁ](x) = ﬁ(x)v[ln ﬁ](x),
q: q: q:

and assume moreover that QT is an extremal solution to the martingale prob-
lem (MP)g. Then the QT-(G;) martingale (Dy¢)iefo,1 introduced in (1.2) has a
continuous version (denoted in the same way) satisfying

PT—s
qr—s

t
D; = Z—T(YO) ‘f“/(; DsV1I1|: :|(Ys)1s<R 'dMS
T

PT t_[pr-
= q—T(YO) +./0 V|:QT s](Ys)l{(prs/qrs)(Yst} -dMj,
—S

where M, = (M,i )le are the continuous local martingales w.r.t. QT and (G;) de-
fined by

. . . r_
M= Y,’—Yé—/o be(s,Y)ds,  tel0,T],
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and R is the (G,)-stopping time R = inf{s € [0, T1: Dy = 0}. Moreover, QT a.s.,
one has

(D), = /Ot V*[%](Ys)é(s, YS)V[Z:_S}(YS)IKR ds  Vie[0.T].

From the proof of Lemma 1.3 it will be clear that if p; and ¢; are everywhere
strictly positive and of class C', (¢, x) — V[%](x) and (t, x) Vln[%](x) can
be, respectively, taken to be the usual gradient and gradient of the logarithm of %.

We now introduce the notation U’ and U”(dy) for the left-hand derivative of
the restriction of the convex function U : [0, co) — R to (0, 400) and the nonneg-
ative measure on (0, +00) equal to the second order distribution derivative of this
restriction.

We are ready to state the main result of this section:

THEOREM 1.4 (Stochastic U-entropy dissipation). Let Qo and Py be proba-
bility measures on R? such that

Hy (Pl Qo) < 00,

and assume that (H1), (H2)o, (H3)g and (H3)p hold. Suppose moreover that
QT is an extremal solution to the martingale problem (MP)g.
Then the submartingale (U (Dy)):c[o,1] has the Doob—Meyer decomposition

PT—s
qr—s

t
U(D,):U(D0)+f0 U/_(DS)V[ ](Ys)ls<R -dM;
(1.5)

1
+3 ] LIDU@) ~l0ekenAU©) Vi€ [0,T]
2 J0.4+0)

where R :=inf{s € [0, T]: Dy =0}, AU0) = lim,_,o+ U(x) — U(0) <0 and
L} (D) denotes the local time at level r > 0 and time t of the continuous version of
the martingale (Dy)se(0,T]-

In particular, if U is continuous on [0, +00) and C? on (0, 400), one has

U(D;) =U(Dy) + /t U’(DS)V[pTS](Y;)IKR -d M,
0 qr—s
o (o) (v Jae v [ 22 ])
(1.6) —I——/ U'\—X) )| V| ——|a(s, )V (Y 1,-rds
2 Jo qr—s qr—s qr—s
Vrel0,T].

Theorem 1.4 is proved in Appendix A. We next briefly discuss some of its as-
sumptions and then state some consequences.
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REMARK 1.5. (a) By Theorem 3.1 in [11], conditions (H2)p and (H3)g
hold under condition (H 1)" if Q¢ has a density go w.r.t. the Lebesgue measure s.t.

i g5 (x)dx
RY 13 x

< +o00 for some k£ > 0 and either

VT >0,3¢ >0,V(t,x) €[0,T] x R4 a(t,x)=oc0™(t,x) > ¢ely
924
0x; 0x;
R for each T > 0 (by Theorem 3.1, page 1199 of [11], the latter conditions imply
that (A)(ii) on page 1189 and thus Theorem 2.1 therein hold). In particular, under
(H1)' and the previous conditions, (H2)p and (H3)p also hold if, for instance,

Py < Qp and 5—5‘(’) has polynomial growth.

or the second-order distribution derivatives

(¢, x) are bounded on [0, T'] x

(b) Condition (H1)” introduced in [17] allows us to include in our study the

fundamental examples of Langevin diffusions with a(x) = Iy and b(x) = —=VV (x)
for a nonnegative C? potential V', possibly superquadratic, but satisfying
. —x*VV(x) . AV

limsup ————— < +o0, limsup ———(x) <2,

(1.7) |x]—o00 x| |x]— 00 IVV|
' . Vi VoV
limsuyp ——— (x) =0.
[x]—o00 14

See Section A.5 for a proof of this fact.
(c) Extremality of the solution QT to the martingale problem (MP) ¢ is implied

by pathwise uniqueness for the stochastic differential equation (1.4). In the relevant

case when o and b in (1.1) are time-homogeneous and (0.1) admits an invariant

density pso(x) > 0, for the choice Qp(dx) = po(x)dx, equation (1.4) takes the

form

0 J (ae ipP )

o0

dX;=0o(X;)dW, + < (Xt)—b(Xt)> dt, tel0,T].

Pathwise uniqueness for this SDE can be proved under (H1) by a standard argu-
ment using localization, It6’s formula and Gronwall’s lemma, whenever the func-
tion — w is the sum of a locally Lipschitz function and a monotone function.
This is, for instance, the case when a = I; and poo(x) = Ce=2Y™ for some con-
vex function V:R¢ — R, or when the strictly positive density pso and a have

locally Lipschitz derivatives.

The proof of Theorem 1.4 will justify that expectations can be taken in (1.5)
and (1.6), yielding

COROLLARY 1.6 (U-entropy dissipation). Under the assumptions of Theo-
rem 1.4,
Hy(Pi|Qy) = Hu(Pr|Q1) = AUOQT (0 <R<T —1)
1
2 (0,4+00)

(1.8)
ET(LYy_,(D))U"(dr)  Vtel0,T].
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If U is moreover continuous on [0, +00) and C? on (0, +00), we get the well-
known expression for the entropy dissipation, ¥Vt € [0, T,

Hy (P| Q1) = —Hy (Po| Qo)

4 //<ps/qs><x)>o U<qs( ))
x <v*[&}a(s, -)V[&D(x)qs(x)dx ds,
qs qds

with U” (r) now standing for the second order derivative of U at r > 0.

The particular case U(x) = |x — 1| of the total variation distance is more in-
tricate, but we are still able to derive an analogous dissipation formula. To our
knowledge this formula is new:

COROLLARY 1.7 (Dissipation of total variation). Under the assumptions
of Theorem 1.4, suppose moreover that for a.e. t € [0, T], the functions x —
q:(x) and x — %(x) are, respectively, of class C U and C2, and there exists
a sequence (rp), of positive numbers tending to +oo0 as n — 00, such that
: 1
lim,, oo o f{rnSIXI<2rn} |a(t,x)V[%](x)|qt(x) dx = 0. Furthermore, assume that

fOT Jra IV - lags, x)V[%](x)qT_s(x)de ds < 0o. Then, Vt € [0, T],

1P+ — QellTv
(1.10) = [[Po — QollTv
2[ / s1gn(— — 1>(x)V [a(s x)V[ }(x)qs(x)} dxds,
qs
where sgn(r) = —1(—00,0) (") + 1(0,00)(r) and the integral is nonpositive for all
tel0,T].

The proof is given in Appendix A.3.

REMARK 1.8. (a) Denote by Q the law of (X,Q,t < T) and by E the corre-
sponding expectation. The following “forward” version of formula (1.8) holds un-
der the assumptions of Theorem 1.4 if moreover p ! (Y,) is a continuous (G;) semi-

martingale under Q [in particular if (¢, x) — dP ’ (x) has a version of class C!2]:

Hy (Pi| Q1) = Hy (Po| Qo)

+AUOQO<S<1) - %/(0,-1—00) E(L{(%(Y.)))U”(dr)

Ve el0, T],
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where S :=inf{s € [0, T']: ” s (Y ) > 0}. This follows from the pathwise relation

(G0t )~ e (G ed ) = i (Gx)

qr - qr—

and the fact that (p Lt (X _:)tefo,1 1s a.s. stopped upon hitting 0, by Lemma 1.3.

(b) The limit type assumption in Corollary 1.7 is not too stringent. Thanks
to (1.9) and the Cauchy—Schwarz inequality, it holds true, for instance, if the
matrix a is uniformly bounded and Hy (Py| Qo) < oo for U(r) = (r — 1)2, since
|aVI2]| = sup < (00)* (@ VL) < /Jal, /V*[21aVI L],

We end this section providing sufficient conditions in order that
lim;_, oo Hy (P¢]| Q) = 0. The proof of the following result is differed to Ap-
pendix A.4.

PROPOSITION 1.9. Let us assume that the coefficients o and b are time-
homogeneous and globally Lipschitz continuous. Then the semigroup associated
with the SDE (0.1) is Feller. Let us also suppose that (0.1) admits an invariant
density DPoo, locally Lipschitz and bounded away from 0 and +o00, and such that

Jrd p‘ﬁ:)lcx)lfx < +00 for some k > 0 and that M

Lipschitz function and a monotone function. Finally, we suppose that

is the sum of a locally

(1.11) VA>0,3e4>0,V|x| <A  a(x)>ealy

with either €4 not depending on A or the second-order distribution derivatives

ajaa] bounded on R2. Then the tail sigma-field (>0 (Xr,r > 1) is trivial a.s.

w.r.t. the law of (Xt )i>0. In particular, if U(1) = 0, then as soon as Hy (Ps|Qs) <
400 for some s < +00, one has lim;_, oo Hy (P;|Q;) = 0.

REMARK 1.10. The triviality of the tail sigma-field still holds when (X;);>0 is
Feller, has an invariant distribution and a strictly positive transition density ¢;(x, y)
with respect to the Lebesgue measure which is continuous in (x, y) for each t > 0.
(The continuity implies the strong Feller property, the positivity implies the er-
godicity of the invariant measure and combining both, one checks that (X;);>0
is Harris recurrent. Then one concludes by Theorem 1.3.9 in [15].) Notice that
conditions ensuring the positivity and joint continuity in (x, y) of ¢;(x, y) can be
found in [10], Chapter 9, under uniform ellipticity, and in [16], Theorem 4.5, under
hypoellipticity.

2. Dissipation of the Fisher information and nonintrinsic Bakry—-Emery
criterion. From this point forward, we will focus on the case when Qo(dx) =
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Poo(X) dx 1is a stationary probability law for the time-homogeneous Markov diffu-
sion (0.1). We denote

1o (pulpo) = 5 0 (L) o[£ Jav | L |pocan
2 Jips/poo>0)  \Poo Poo Poc
the integral that appears in the right-hand side of (1.9), and we refer to it as the
U -Fisher information.
Inspired by the famous Bakry—Emery approach, we want to compute the deriva-
tive of Iy (ps|pso) With respect to the time variable.
Throughout the sequel, we make the following assumptions:

(H4) The drift function b and the matrix o are time-homogeneous and such
that (H1) holds. Moreover, b (resp., o) admits first (resp., second) order deriva-
tives which are locally a-Holder-continuous on R? for some o > 0.

(H5)p,, The Markov process defined by (0.1) has an invariant density poo(x)
and Qo(dx) = poo(x) dx. Moreover, p~, admits derivatives up to the second order
which are locally a-Hé6lder-continuous on R4 for some o > 0 and Poo(x) > 0 for
all x e R4,

(H 6)IT70 The initial distribution Py admits a probability density po with respect
to the Lebesgue measure. Moreover, we assume that (H2),, holds and that p, (x)
has spatial derivatives up to the second order for each ¢ > 0, which are continuous
in (r, x) € (0, T] x R? and bounded and Hélder continuous in x € R? uniformly
on [8, T] x R? for each § € (0, T.

Let us also introduce some notation:

° Wewrite]P’T :=QT and b; .=l5 ,i=1,...,d.
e By possibly enlarging the probablhty space g, , we introduce a Brownian
motion W such that (¥;)sc[0,1] solves the stochastlc dlfferentlal equation
dY; = o (Y;)dW, +b(Y,)dt
2.1)
9j(aij(y) Poo(¥))
Poo(y)

By assumptions (H4) and (H5)«o, the coefficients o and b are locally Lipschitz

so that trajectorial uniqueness holds for this SDE. By the Yamada—Watanabe

theorem, one deduces that uniqueness holds for the martingale problem (MP).
e We write p;(x) := E(x),t e[0,T].

Notice that (H5),,, implies (H2)gp for Qo(dx) = Poo(x)dx and combined
with (H4), it implies (H3)p. Moreover (H 6) implies (H2)p and (H3)p.
Therefore the hypotheses of Theorem 1.4 hold w1th1n the present section. Notice
also that, under (H5) and (H 6)T , the first-order spatial derivatives of If’ L are de-
fined everywhere. Thus, we may and will assume in the sequel that Lemma 1.3(b)
and equation (1.9) hold with the standard gradient V lfoto Under (H4), if moreover

where b; (y) = —b; (y) +

a and b are bounded with a uniformly elliptic, then (H 6);0 holds for any com-
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pactly supported probability density pg, by [10] Chapter 9. We refer to [16] for
conditions ensuring that (H 6)IT70 holds under hypoellipticity.

To compute the dissipation of the U -Fischer information, throughout the sequel
we make the following regularity assumption on U':

(H7) The convex function U : [0, 00) — R is of class C* on (0, +00), contin-
uous on [0, +00) and satisfies U (1) = U’(1) =0.

The assumption that U’(1) = 0 is inspired in the analysis on admissible entropies
developed in Arnold et al. [2] and is granted without modifying the functions
P+ Hy(plpos) and p > Iy (p|poc) by replacing U (r) by U (r) — U'(1)(r — 1) if
needed. Notice that if (H7) holds, U (r) attains the minimum O at r = 1 and there-
fore U > 0 by convexity. Following [3], page 202 (see also [2, 7]), we introduce
an additional assumption on U,

(H7') Vr € (0,00), (U® ) < U"(nHUD ),

which is satisfied, for instance, by U(r) =rInr — (r — 1) and by U(r) = (r — 1)2.
Let us recall consequences of (H7)" pointed out in [2] (see Remark 2.3 therein)
which will be used in proving the following results.

REMARK 2.1. Condition (H7") implies that (%)” < 0 at points where
U” #0. Since U” > 0, and excluding the uninteresting case where U” identically
vanishes, the previous implies that i,/ is finite in [0, 00), and therefore that U is

strictly convex. We then deduce from (H7’) that U @ > 0in (0, 00). By concavity
and positivity of % this function is moreover nondecreasing, and we deduce that

U <0in (0, 00).

We do not assume that the entropy function U is C* on the closed interval
[0, +00), since we want to deal with U (r) = rIn(r) — (r — 1). This is why we
introduce some regularization Us indexed by a positive parameter §: we choose
Us such that Us(r) = U(r + 8) for r > 0, and Us is extended to a C* function
on R. In the next proposition as well as in the remaining of the paper, we will omit
the argument (¢, Y;) in order to obtain more compact formulas.

PROPOSITION 2.2.  Under (H4), (H5) ., (H6)Z0 and (H7), one has on the
time-interval [0, T,

d[U} (p)V*paVp] = tr(AsT) dt + U ()8 dt + dM®
with tr(AsT) > 0 under (H7)'
and where M\E‘s) = fé wlLU§ (p)V*paV plog, dW; is a Gy — PL -local martingale,
6 =2{0y pd1 p[ 3 (k01 Ak IO | — Ok 01 Omj ImOV:)
+ 3bmdmaw + 301 Ak Omk0li — A Imbi]

+ [ovi@mk — OkiAmi 10y POMO1i D1 P}
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and As and T are the square matrices defined by
3
. { Ui(e) U (p) }
- 3 4 )
u” (o) 3U5" ()
. i (0ei - VP)V*paV(oei - V)

" [ (0ui - VP)V*paV (i - V) V*paVpl’

with 'y = Z,d,jzl(akjﬁziakl,o + %(Ukjakmi + ok 9k 01j) 31 ).
The computation of d[Ug' (p) V*paV p] is postponed to Appendix B. Let us nev-

ertheless discuss the sign of the term tr(AsI") which is inspired from [3], page 202,
and also from the term tr(XY) in [1], pages 163—164; see Appendix C for a detailed

comparison with the computations in that paper. Since, by the Cauchy—Schwarz
inequality,

((0ai - VP)V*paV (0ui - V)’

1 2
= ((G*V/O),- (U*V,O)j (Ukjo'liaklp + E(O’kj 00y + Ok 3k01j)3m))

d
<Ti Y (0*Vp); (6*Vp); =Tui|V*paVp
ij=1

2

the determinant of the matrix I" is nonnegative, and this matrix is positive semidef-
inite. Under (H7'), As is also positive semidefinite and tr(AsT") > 0.

REMARK 2.3. In a previous version of this paper, the coefficient I'1; was
chosen equal to

d d
2
Y (0kjoridup + 0k o i p) > = Y (6*V(o*Vp),);
i.j=1 i,j=1
= V*(0Vp)iaV(aVp);.
We thank Anton Arnold for pointing out to us that the positive semidefiniteness of
the matrix I' is preserved under the new choice of this coefficient. Notice that, by
symmetry of oy;oy; 00 ini and j,
d

> (oxjoiidup + ok o1 d1p)> — T1y
ij=1

B

d
> ((orjori — oki 0k01) 1 p)’
ij=1

1
= E(akgljakmamal/j — 0% 0k01jOmjOm0y;) 01 POy o
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is a nonnegative quadratic form applied to V p which implies that the Bakry—Emery
criterion below improves upon the one of the previous version.

We introduce one last assumption on the density flow p; = %:
oo

(H6' IT70 For each T’ € (0, T') the following integrals are finite:

o f3 1UP(p)V —112V*paVp|? peo(x) dx dt;
o f3 (U"(p) ADEV*(V*paV p)aV(V*paV p) peo(x) dx dt;

/

/0 (U"(0) A V)[|@ridime — Tuitimt)omoi]

+ |k ([oiamk — Okiamir10mo1:) |10y p1101 9] poo(x) dx dit;

!

fo (U"(0) A1)|(07iamk — Oxidim)
X 8,07i (9 POk In poo + 9k p) |10 p| Poo (x) dx dt.

We also denote by (H 6);‘(; [resp., (H6' )Z‘(’)] the assumption that (H 6);0 [resp.,
(H6’)1T,O] holds for each T > 0.

THEOREM 2.4. Let © denote the d x d symmetric matrix defined by
Our = —3bmdmaw + 3 (aw b + adebr) — §amidmian
- %(aszakjalj + agokjay j) — agrajy O In(poo)
— 3 (apdkar j + agrdkar)d; n(poo)
- %(amkamalif)kaz’i + ki 0k01jOmj OmOvi)
+ 204 B0t @y + Im0riam1) 3 In(poc)

+ %Gk[(fki(amo'liamz/ + Omoviam)],

and assume that ©(x) is peo(Xx)dx-a.e. positive semidefinite. Then, under (H4),
(H5) poe, (HO)! (H6)! . (HT) and (HT'), for a.e. t € [0, T] one has

- U//(pt)[V*ptant]Poo dx
dt >0
(2.2)

>2 U (p)V* 0OV py poc dx.

Pr>

If moreover Iy (po| pso) < +00, (H6);’f(’) and (H6’);’,<(’) hold and the matrix © satis-
fies the nonintrinsic Bakry—Emery criterion
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(NIBEC) 3A > 0,Vx e RY, ©(x) > Aa(x),

then Vt > 0, Iy (pr|peo) < e My (polpoo) and the nonincreasing function t —
Hy (pi| poo) also converges at exponential rate 2\ to its limit as t — o0.

REMARK 2.5.

e The matrix ® and therefore our Bakry—Emery criterion are nonintrinsic in the
sense that they cannot in general be written in terms of the diffusion matrix a
only without making explicit use of o. This is because we got rid of the non-
negative term tr(AsI") which appears in the first equation in Proposition 2.2 and
involves the nonintrinsic term I"y.

e In case a =2vl; and b = —(VV + F) with F such that V - (¢e~V/VF) = 0,
then poo e VIV b=—b+ 2vVInpso = —VV + F and © = v(2V2V —
V F — V F*). For the canonical choice o = V2v1y, condition (NIBEC) therefore
writes 34 > 0, Vx € RY, V2V (x) — vwavw(x) > M1z which is exactly condi-
tion (A2) in the Introduction of [1], page 158.

The proof of (2.2) is postponed to Appendix B.2. Let us deduce the last assertion
of Theorem 2.4. Reverting time in (2.2) and using (NIBEC), one obtains that for
r=>0,

d
d_rIU(pr|Poo) < =2My(prlpso)-

Hence Vr >t > 0, Iy (pr|pso) < e‘zx(r_’)lu(pﬂpoo). Since by Theorem 1.4, one
has <= Hy (pr|poc) = —Iu (Pr| Poc), We deduce that

0 < Hy (pt|poo) — lim Hy (pr|poo)

2.3) - f Ty (prlpoo) dt

—2At
- Iy (pt|poo) e IU(P0|poo)‘
- 2 - 22

We deduce the following theorem.

THEOREM 2.6. Assume (H4), (H5)p,,, (H6)% (H6' os (HT) and (HT),
that the matrix ©(x) is po(Xx) dx-a.e. positive semidefinite, that the diffusion ma-
trix a is locally uniformly strictly positive definite and that Hy (ps|poo) < +00
for some s > 0. Then Hy(p;|poo) converges to 0 as t — o0o0. Moreover, under

(NIBEC), for t > s, one has the convex Sobolev inequality

1
(2.4) Hy (pilpoc) = 7 1u(pilpoo) - and

(2.5) Vi>s  Hy(pilpeo) < e " Hy(ps|poo).
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PROOF. Reverting time in (2.2), we obtain that f — Iy (ps| peo) iS nonincreas-
ing. When Hy (ps|po) is finite for some s > 0, writing (1.9) on the interval [s, T']
in place of [0, T] with arbitrarily large T, we deduce that Iy (p;|px) is finite
on (s,+o00) and tends to 0 as t — 0o. When a is locally uniformly strictly posi-
tive definite, the beginning of the proof of Theorem 2.5 [1] [before part (a)], en-
sures that p; tends to pso in L'(R?). As a consequence, in the notation of the

Introduction, Elj—g(X ,Q ) — 1] tends to 0 as t — o0, and therefore the a.s. limit

E(j—g’t(XtQH Ms=>0Fs) of 53 (XtQ) is equal to 1. By (0.2), one concludes that

Hy (ptlpoo) tends to U (1) = 0.
Under (NIBEC), for ¢ > s, Iy (p:]| poo) < +00 and reasoning like in the deriva-
tion of (2.3), one obtains (2.4). This implies that

d
EHU(ptlpoo) =—Iy(pilpo) < —20AHy (Pl poo)

from which the last assertion follows readily. [

REMARK 2.7. In view of (0.2) and Remark 1.10, the local uniform strict pos-
itive definiteness assumption on the diffusion matrix @ may be replaced by some
hypoellipticity assumption, in order to ensure that Hy (p;|pso) tends to 0 as r — oo
at exponential rate 2A as soon as Hy (ps| peo) < 00 for some s > 0. By the last step
of the proof of Theorem 2.6, this implies (2.4) and (2.5) under (NIBEC).

3. Examples. Consider the reversible diffusion process in R? with coeffi-
cients given for each (x1, xp) € R? by

a(x;,x2)=1I and b(xy,x2)=-VV(x1,x2),

where V is the globally C? convex potential
V(xrx) = a2 g — x4 o

2V and we have

for some « € (0, 1). The invariant measure is poo X €~
01V =2x1 + 2+ ) sign(x; — x2)x1 — x2|' T,
02V = 2+ ) sign(x) 2| + (2 + &) sign(xz — xp)xy — x1 |1

and

vzv—<2 0 >+(2+a)(1+a)|x —x|°‘<1 _1>
0 C+a)d +a)n” =2\ 1 )

The drift > = —VV is locally Lipschitz continuous. Moreover,

(x1,x2)VV(x1,x2) >0
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and /3 VAV, x12) < Cyf/ 1+ 022 + x) — 22 so that

Jim sup Vi ViV (xi, x2) _
|(x1,x2)|—>+00 V(x1, x2)

0.

Finally AV (x1,x2) < C(1 4 |x2|* 4 |x1 — x2]|%) whereas
2
IVV[2(x1, x2) > (21x2] 4+ 2+ @) lx1 — x21")  Lign(ey) signceo—x1)

2
+ @2+ CY)2(|952|1+O( + |x1 — x2|1+a) lsign(xz):sign(xzfxl)

since sign(xy) # sign(xp — x1) if and only if x; > xp > 0 or x| < x < 0. Therefore
limSUP| (¢, 1)) oo Ty (1. 2) = 0 and, by Remark 1.5(b), (H1)" is satisfied.

The classic Bakry—Emery criterion fails since V>V (0, 0) is singular, but a loga-
rithmic Sobolev inequality can be obtained by the perturbative argument of Holley
and Stroock [12]. The potential V is also a particular case of the examples con-
sidered by Arnold, Carlen and Ju in Section 3 of [1]. We notice that in order to
check that p, satisfies the convex Sobolev inequality (2.4), they first modify the
Fokker—Planck equation by adding a nonsymmetric drift term F, as described in
Remark 2.5(ii), above. Exponential convergence to 0 of Hy (p;|pso) for the solu-
tion p; of the original Fokker—Planck equation is only deduced in a second step.

It is nevertheless of interest to see how our nonintrinsic Bakry—Emery criterion
allows us to prove directly that p, satisfies the convex Sobolev inequality (2.4)
and that Hy (p¢| poo) converges exponentially to 0. In contrast to [1] we modify the
stochastic differential equation associated with the diffusion processes, by chang-
ing the square root o of the diffusion matrix, but not the law of its solution or the
associated Fokker—Planck equation. We consider

( cos ¢ sin¢)

—sing cos¢

for a function ¢ : R> — R? of class C? to be chosen later. We obtain, after some
computation,

©0=v2V - JIVPL - ( (026’ Pl
4

4\ -01900¢  (014)
D126 0220 ; 011¢
dnd — 1
22 . 11 o
( —20190,V dpdV — 32¢)32V>
01001V — 3V 20,0001V '

We now consider a parameter ¢ > 0 which will be chosen small and a C? func-
tion ¢ :R — R such that ¢(s) = s if |s| <1 and ¢(s) = 0 if |s| > 2. Then we
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define
P(x1,x2) = —e@: (¥1)@e(x2),  (x1,x2) €R?,
where . (s) = ep(s/¢e). Notice that
1, if [s| <e,
e = 0(e), ol =0(/e) and ¢,=1{ 0(), if e < |s| <2e,
0, if [s| > 2e.

Then, defining B, := {(x1, x2) € R2 s.t. [x1] V |x2] < e} and C, := By \ Be, we
have

0(e?), if (x1, x2) € By,
019 (x1, x2), 2 (x1, x2) = ) . N
0, if (x1,xp) € Bzg,
—¢&, lf (xl,XZ) € BS7
0120 (x1,x2) = § O(e), if (x1,x2) € Ce,
0, if (x1,x2) € BS,,
0, if (x1, x2) € Be,
%(311¢(X1,X2) — 00¢(x1,x2)) = 1 O(e), if (x1,x2) € Ce,
0, if (x1,x) € Bge

and 8;V = 0(¢g), 3,V = O(¢'1®) on By,. It follows that

— 0 2—¢ 0
@:V2V+< 08 )—i— 0(e) > ( 0 ¢ >—|— 0(¢®)  on B,.
& €

Next, the smallest eigenvalue of V2V (x1, x2) is given by

V- Z=1+K1+K2/2—\/1+K12—K2+K22/4

> 14K2/2—/(k2/2 =12 =Kk2 A2

with k1 = k1(x1,x2) ' = 2 + a)(1 + @)|x; — x2]* and kp = k2(x1, x2) := (2 +
a)(1 4+ a)|xz|*. Since y— =k + k2 + O(/cl2 + K%) as K12 + /c22 — 0 and |x2|* +
lx1 —x2]% = (|x2| + [x1 — x2[)* > [x1]%, we deduce that on Ce,

(3.1)

O=VV+0(@) = Q+a)(1+a)s%l + o(e).

Finally, by (3.1), inf(xl,xz)eggs Y- > (24+a)(1+a)2e)*) A2 > 0. We conclude

that for ¢ small enough, (NIBEC) holds.

We next study a related second example of application of our criterion, where
V2V is singular on a ball with positive radius. Once again, the perturbative argu-
ment of Holley and Stroock [12] also ensures that a logarithmic Sobolev inequality
holds for this choice of potential.



TRAJECTORIAL INTERPRETATION OF ENTROPY DISSIPATION 151

Let v be a convex C? function which vanishes on [—%, }‘] and such that v/ =2
on (—00, 31U [5, +00). We set v (s) = e?v(¥) and Ve (x1, x2) = x7 + vp(x2) +
ve(x1 — x3). For e < %, let ¢ be a C? function such that
s, when |s| <e,

0, when |s| > 1

0s(s) = {

and such that % <@, <1, |gg] <2e and |@,| < C where C is a constant not
depending on . We set ¢ (x1, x2) = —@e(x1)@e(x2) so that —1 < djp¢(x1, x2) <
12%8 with the first inequality being an equality on B;. We have |022¢ —911¢| <4Ce

and [V¢| = O(e). As a consequence, © = O+ O (e) where

56— <2+U,§/(x1 — x2) + 120 (x1, x2) —v (x1 —x2) )
—v)/ (x1 — x2) vl (x2) + v (x1 — x2) — 329 (x1,x2) )
On B,, we have 312¢ (x1,x2) = —1 and ® > L. If |x2| > £, then v/ (x2) =2 so

that @ > 2 -1 A (2 — 12788)12. When |x2| < § and |x1| > &, [x; — x2| > 5 holds
so that v/ (x; — x2) =2 and

~ (440120 -2 )
0> > (3—/5+2012¢ — (3120)?) 1
_( ) E 65+ 2000 — @)
de
2(3— 5+ )12.
1—¢
‘We conclude that

Vie (0,3 — «/5) for & > 0 and small enough, Vx € RY, Ox) = Arl.

APPENDIX A

In the present Appendix section we give the proofs of the main results of Sec-
tion 1.

A.l. Proof of Lemma 1.3. The proof of part (a) relies on the following tech-
nical result:

LEMMA A.1. Assume that (H1), (H2)p and (H3)p hold.

(i) Foreachi=1,...,d and a.e. t € (0, T, the distribution [a;;(t,-)d; p;] :=
0j(a;j(t,-)pr) — pi9ja;j(t,-) is a function in Llloc(dx) and, as a Radon measure
in [0, T] x R4, one has laij(t, )0 pel(x)dxdt K ps(x)dxdt. A measurable in
(¢, x) version of the Radon—Nikodym density is given by [a;;(t,-)9; p;]1(x)/p:(x).
Moreover, there exists a measurable function (t,x) — KP(t,x) € R such that for
eachi=1,...,d,

[aij(t,)3jpi](x)/ pi(x) = aja(t, x)KP (1, x), pi(x)dxdt ae.,

where a;o denotes the row vector (a;1, ..., aiq).
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(ii) If, moreover, (H2)g, (H3)p and Py < Qo hold, one has
laij(t,)0;p(x)dxdt K q;(x)dxdt, and [a;j(t,-)d;p:1(x)/q;(x) is a measur-
able in (t,x) version of the Radon—Nikodym derivative. Furthermore, it holds
pr—:(x)dx dt [but not necessarily qr—;(x) dx dt] a.e. that

bf (1, x) = b (1, x) = [ai;(t, )3 pr—](x)/ pr— (%)
— [@ij(t, )0;q7—](x)/qT 1 (x)
=a;e(t,x)(KP(T —t,x) — KU(T —t,x)),
and qr—;(x)dx dt [and thus pr_;(x)dx dt] a.e. that

pPr—1(X) -p _ 70

o (b (t,x) — b2 (1, x))
_ pPT— 1 (x )—l.(t x)(Kp(T—t x) — Kq(T—l,X))-
6]T—t( )

PROOF. The Lipschitz character of a [following from (H1)] ensures that a
has a.e. defined spatial derivatives of order 1 in L{; ([0, T'] x R?). Thus, the distri-

bution a;;(t, -)d; p, is a function in Llloc([O, T1] x R%) under (H3)p. This implies,
by Lemma A.2in [17] (see also Lemma A.2 in [11]), that a;; (¢, x)9; p,(x) vanishes
a.e. on {x: p;(x) = 0}. This fact easily yields the remaining assertions, except the
existence of the functions K? or K4, which we establish in what follows.

We will, on one hand, use the fact asserted in the proof of Lemma A.2
in [17] that for a.e. + > 0 and each bounded open set O, a;;(t,x)d;p;(x)
is the o (L1(0), L®(0))-weak limit of some subsequence of a,j (t,x)0j[pn *
p:1(x), for compactly supported regularizing kernels p,(x) = n?p(nx). It is
indeed shown in Lemma A.l in [11] that for a suitable bounded sequence
oy >0, a_1|x||V,0n (x)| is again a regularizing kernel. The local Lipschitz char-
acter of a then yields the domination Vx € O, |a;;(t,x)d;[pn * p/1(x)| < |pon *
9 (aij (1, ) p) ()] + Ca ! [ 1x — yI[Vpa(x = y)|py(y)dy, the right-hand side
bemg, by the previous, an L!(O)-converging sequence. Weak compactness is
then provided by the Dunford—Pettis criterion, and the limit is identified inte-
grating by parts against smooth test functions compactly supported in O. On the
other hand, diagonalizing the symmetric positive semidefinite matrix (a;;(z, x)) =
(w1 (t,x), ..., uqg(t, x)]AE, x)[u1(t, x), ..., uq(t, x)]* provides orthonormal vec-
tors (ul-(t,x))l.d:1 and the corresponding eigenvalues and diagonal components
(A (t, x))f:1 of A(t, x), that are measurable as functions of (¢, x).

We take O as before and a;; (¢, x)9;[ 0, * pr]1(x) to be the subsequence described
above. Defining the vectorial functions w® = [uy, ..., uq)*Vipn * p:] and vy =
sign(uilaVpDur,k=1,...,d, we have

vlaVpd| = lim v [aVip, * pil
/Oﬂ{)\k:O}‘ k Dt ‘ n—00 J o, =0) k[ Pn p;]

: (n) . *
= lim Arw,  sign(u;[aV p]) =
n—00 ON{r=0} k g ( k P )
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since aV[py * p;] Z 1A w u ;j by the spectral decomposition of a. Conse-
quently, for each ¢t and a.e. x € ]Rd, the vector [a(t, x)V p;(x)] belongs to the linear
space ((u;(t,x))i=1,....d:(t,x)£0). Denote now by w = (wj)j?:1 = (ujfan,)‘jzl
the coordinates of aV p; w.r.t. the orthogonal basis (u;(z, x)) j=1,....a, S0 that w is

a measurable function of (¢, x). If we moreover denote by A the diagonal matrix

with diagonal coefficients )\;llkj;éo,j =1,...,d,and set v :=[uy, ..., ug]Aw,
then
av=1[uy,...,uqglAur,...,ug*ur, ..., uglAw =1luy, ..., uglAAw
=[uy,...,uqlw

since w = (w; lkj7é0)?:1. That is, (¢, x) — v(f, x) € R¢ is a measurable function
such that for almost every ¢ € [0, T'| and each i, a;o(t, x)v(t, x) = [a;;0; p; (x)],
dx a.e. Finally, K? (¢, x) :== v(t, x)/ p;(x)1,(x)>0 has the required properties. []

We can now take V In %(x) to be an arbitrary representant of the equivalence
class of the function K?(t,x) — K9(¢, x) under the relation f(¢,x) — g(t,x) €
Ker(a(t, x)), p;(x)dx dt a.e. The identity in Lemma 1.3(a) is then satisfied by
construction.

The proof of part (b) of Lemma 1.3 first relies on the following martingale
representation property ensured by the extremality assumption, according to The-
orem 12.21 in [14]:

LEMMA A.2. Assume that (H1), (H2)p and (H3)g hold. For each i =
1,...,d,

. . . r_
M=Y — Y] —/O be(s,Y)ds,  t€l0,T]

is a continuous local martingale with respect to QT and (G,), and (M', M7), =
fé a(s,Yg)ds foralli,j=1,...,d. Moreover, ifQT is an extremal solution to
the martingale problem (MP) g, then for any martingale (N;)e[0, 1| with respect to

QT and (G) such that Ny = 0, there exist predictable processes (h )tel0,T1, j=1,....d
with Z = 1f0 h’a,J(s Y)hjds < 00,Q7 as., and such that (foh -dMg =

Z?Zl fo hs dm! )ief0,1] is a modification of (N¢)ie[0,1- In particular, (N¢)se[0,1)
has a continuous modification.

The main assertions in part (b) of Lemma 1.3 are then consequences of the next
result.

LEMMA A.3. Assume that (H1), (H2)g, (H3)g and (H3)p hold together.
Suppose moreover that Py < Qo and that Q" is an extremal solution to the mar-
tingale problem (MP) . Recall that (t, x) > V[%](x) is g:(x)dx dt a.e. defined

in [0, 7] x R? — RY by V[£](x) := £ (x) V[In ££](x).
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T(i) With R the (G;)-stopping time R := inf{s € [0, T]: Dy = 0}, we have
Q" -a.s. that

t
Vi €[0,T] / V*[pT_S}(YS)Ez(s, YS)V[pT_S](Ys)lKR ds < 0o,
0 qr—s qTr—s

and on {R > 0},

t
Vi € [0, R) / V*[ln pT‘S](YS)a(s, YS)V[ln pT_s](Ys)ds < o0.
0 qr—s qr—s

(i1) The process (Dy)c(0,T] has a continuous version, denoted in the same way,
such that QT a.s., ¥Vt €[0, T,

2L (o) + f [” r- ‘](m A,pdM,

pPr—
(Y0)+/ [ Y}(Ys)'1{<pT_s/qT_s><Ys>>0}dMs and

(D>t=f0 V*[”T S](Y s, Y)V[””}(Ys)lkkds.

qTr—s T—s

PROOF. By Lemma A.2, the QT—mar’[ingale (Dr)tefo,1) admits the continuous
version Dy + Z?:] fé hi dMj still denoted by D, for simplicity. The martingale
representation property and standard properties of stochastic integrals moreover
imply that D; is determined by the processes (D, M') = Joaij(t, Y)hidt,i =

., d. Consequently, i; can be replaced (leaving D; unchanged) by any pre-
dictable process k; such that for each i, [ Z?zl h{c_lij (t, Y dt = [ya;;(t, Y)k] dt
Q" as. [the fact that fy kidi;(s, Yki ds = i Y ;_y hlaij (s, Yo)hlds < 0o QT
a.s. then follows immediately]. Furthermore, since D; = D; g by standard proper-
ties of nonnegative continuous martingales, we may and shall assume that Q7 a.s.
hi =h/1; g = h1p,~¢ for all t € [0, T]. Let us also notice that, by Fubini’s the-
orem, it Q7 -a.s. holds that Dj pT = (¥s) (and then Lr>s) = Li(pr_, /qr_,)(¥5)>0})
fora.e. s €[0, T].

Now, by our assumptions and Theorem 1.2(a), PT « Q7 are probability mea-
sures, respectively, solving the mamngale problems (MP)p and (MP)g. The
processes [obF (¢, Y dt and [3b2 (1, Yy dt + [3(D;)"'hi d(MP, MJ), then are
PPT -indistinguishable; see, for example, Proposition 12.18(v) in [14]. Using these
facts, the expression for (M, M/) in Lemma A.2 and part (ii) of Lemma A.1, we
deduce first that, P -a.s.,

Vt € [0, T1, Vi bl v) — b2, )

(A1) . Y»( pi 47 <Yt>>

PT—t
= a;4(t, Yt)(Kp(T —t,Y)—KUT —1t, Yt)).
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By part (ii) of Lemma A.1 we then also get

: i : (Y
[ voud di = [ Yo (K2 =170~ KT —1,30) P20 .
0 0 qr—1 (Y1)
i=1,...,d, PT-as., and then Q7 -a.s. because of our assumption on /. From

these identities and our previous discussion, we deduce that we can choose h; =

Vf{’;;’ YO X(pr_ Jar—n)(Y)=>0) = Vﬁ;?;’ (Y/)1{r>s)- This proves part (ii). The first
property of the process Vﬁ; ;:t‘ (Y;) in (i) is thus consequence of the general prop-
erties of 4 in the representation formula for D;. The second assertion in (i) easily

follows from the first one, taking into account the definitions of V%(Yt) and
Vin %(Y,) and the properties of D;. [

A.2. Proof of Theorem 1.4. Since, by Lemma 1.3, (D;);¢[0,7] is a contin-
uous nonnegative Q7 -martingale and U’ is locally bounded on (0, +00), t >

fé[U/_(DS)]Zd(D)S is finite and continuous on [0, T] when R > T and finite

and continuous on [0, R) otherwise. In the latter case, fOR[U ! (Ds))*d (D) makes
sense but is possibly infinite. Define for any positive integer n the stopping time

i 1 r, 2
R, :=1nf{te[0,T/\R]:Dt§—or/-[U(Ds)] d(D)Szn}.
n 0

For all 1 € [0, T], fi"* U (D»)1?d(D)s < n and E(f}"* U’ (Dy)dDy) = 0.
Moreover R,, /' R as n — oo.
Let r € [0, T]. By Tanaka’s formula,

tAR;,

U(Ding,) = U(Do) + /0 U’ (Dy)dD;

(A2) 1

5 (0,+00)

The finiteness of Hy (Py| Qo) implies that (U (Dy))se[o,17 1 @ uniformly integrable
QT -submartingale. Since the Q7 -expectation of the stochastic integral is zero, one
deduces

T _mwr 1 T r ”
ET(U(Dirg,)) =E (U(Do))+2IE (/(07+OO)LMRH(D)U (dr)).

Li g, (DYU"(dr).

When n — o0, since U is continuous on (0, 4-00) by convexity, U(D;sg,) con-
verges to U(Diagr) + AU (0)1o<r<s) = U(D;) + AU (0)1j0<r<¢}. Then, by uni-
form integrability, ET (U (Dt nr,)) converges to ET(U(D,)+AU0)QT(0<R <
t). Dealing with the expectation of the integral on the right-hand side above by
monotone convergence, we obtain

ET(U(D,)) = ET (U (D)) — AU)QT (0 < R <1)

1
+ EET (/ L;AR(D)U”(dr)).
(0,4-00)
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Since according to Lemma 1.3(b), D is equal to zero on [R, T'], one can replace ¢ A
R by ¢ in the last expectation. Replacing ¢ by T — ¢ in this equation, one gets (1.8).
Moreover Q7 as., f(o, +oo) LI (D)U "(dr) is the finite limit of the integral with
respect to U”(dr) in the right-hand side of (A.2) as n — co. Since the left-hand
side converges to U (D;) + AU (0)1{o<r<;) We deduce that the stochastic integral
on the right-hand side also has a finite limit. Hence féAR[U’(DS)]2 d{D); < +o00,
fé "R U'(Dy) d Dy makes sense, and (1.5) holds. When U is continuous on [0, +00)
and C? on (0, +00), (1.6) follows by the occupation times formula. In this case,
Lemma 1.3(b) and (1.8) written for t+ = 0, combined with the same arguments,
imply that

Hy (Po| Qo)
= Hy(Pr|Qr)

T
+ 1ET( f U”(DS)I{KR}V*[}’ T‘S](ma(s, st[p T‘S}m)ds).
2 0 qT —s qT—s

Since Y admits the density g7_ and for almost all s € [0, T'), Dy = 5;:: (Ys) and

{R>s}= {%(Ys) > 0}, (1.9) follows by the change of variables s — T —s.

A.3. Proof of Corollary 1.7. We notice first that

T
E” [ 1|DS_1|<W*[Z‘S](ma(s, YSW[Z;‘S](YS)ds <0
—S —S

(A.3)

V§ e (0,1).
Indeed, for § € (0, 1), we can easily construct a CZ convex function U on R such
thatVr e R,0<U(r) < |r — 1| and Vr € [1 =8, 1 +8], U"(r) > o for some & > 0,
so that the integral in (A.3) is bounded thanks to (1.9) by éHﬁ(P0| Qo) < é | P —
QollTv. For r € R, since

Li(D)= 2((Dz —r)F = (Do—r)" - /Ot 1p,>r st>,

by Doob’s inequality we obtain |E7(LI(D) — LI(D))| < 4|r — 1| +
2(ET [§ 11ar<D,<rv1yd(D)s)'/?. Hence, Lemma 1.3(b) and (A.3) imply that
r IET(L§ (D)) is continuous (and finite) at » = 1. With the occupation times
formula, one deduces that

2ET (L} (D))
i 1 1+6ET P J
= lim ~ L' (D
lim = | EN(Li(D))dr

1 _ _
=limET—f 1{,Ds_l|<8}v*[m S](Ys)&(s,Ys)V[pT S](Ys)ds
e—0 £ J0 qTr—s T—s
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t 1 e
— lim —/ V*[&}(x)d(s,x)
e=>0J0 € J{|(pr—s/qr—s)(x)—1|<e} qr—s

v[” T‘S](x)qf_s (x) dx ds.
qr —s

Define now the function ¢.(r) := 1[_,3’8](;")r$_l + 1(g,00) (1) — L(—oo,—g) (7).
Since the function & = f§ fii(pr_./ar_o)()—1|<e) dT—s (¥) dx ds is increasing
and right continuous, we can chose & N\, 0 a sequence with
fé f{|(PT—s/QT—.v)(X)—1|=5k} qTfs(.x)dx ds - 0 SO that ZET(L} (D)) IS equal to

t
lim /0 /Rd v*[%k(m“‘ —1)}(}6)&(&x)V[zT_s](x)qT_s(x)dxds

k—o0

q7—s T—s
_ ! PT—s _
= klingofo /R"%k(—cn_s 1)(x)
v. [a(s, x)V[pT_S}(x)qT_s(x)} dx ds
T—s

—_ _ /’/ sgn(pT—s _ 1)(x)V . [é(s, x)v[pT_s}(x)QT—s(X)] dxds.
0 /RS qT—s qT—s

where the last equality follows from the integrability assumption made on V -
[Ez(s,x)V[%](x)qT,s(x)]. To justify the integration by parts at the second
equality, we introduce functions ¢, € Cgo (Rd) such that 13(0,,,) < ¢n < 1B(0,2r,)
and 0 < |V¢,| <2/r,, and functions ¢g, , : R — R of class C! such that Gepm —

P> |Perm| < 1@e, | on Roand @ — @, lop, | < log, | on R\ {—ek, +ex} as
m — o0. Using the assumptions, (A.3) and the choice of &, we take the limits
n — oo then m — oo by dominated convergence in the equality

/[Z&d %/;k,m(st - 1)(X)V*[&](x)a(T —5,X)

qT —s qr—s

V. [pT_s}(x)qT—s(an(X)dx

qT —s

PT—s
== [ (2= = 1)

T—s

PT—s
qr—s

v. (a(T _ s,x)v[ }(X)CIT—S(X)>¢n(X)dx

- ./H‘%d Dey,m (? - 1)(X)V*¢n(x)a(T —5,%)

T—s

v. ["T‘S}x)cn_s(x) dx.

T—s
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A.4. Proof of Proposition 1.9. To check the Feller property, we introduce a
continuous function f:RY — R going to 0 at infinity. Using Itd’s calculus and
Gronwall’s lemma, we check under the assumptions on the coefficients that the
solution X7 of (0.1) starting from x € RY satisfies E((1 + [XF*)~") < C(1 +
|x|*)~! for some C > 0. Then the inequality

(14 A?%)
E(f (X c—T2)
[E(f( ,))IfljluspAlf(y)! (1+|x|2)+|;>‘u>pA!f(y)l

for all A > O (following from the previous estimate and Markov’s inequality) im-
plies that E(f(X;)) — 0 when x — oo. Finally, the continuity of x — E(f(X}))
follows from the bound E(| X} — X ,ylz) < C|x — y|* and the uniform continuity
and boundedness of f.

By Theorem 1.3.8 [15], since (X;);>¢ is Feller, the tail sigma field is trivial
as soon as ||Py — Q¢|ltv — 0 as t — oo for all pair of initial laws Py and Qy.
Since || P — Q:lltv < | Pt — poo dx|ITv + | Poc dx — Q¢ |ITV and, by Theorem 2.1.3,
page 162 of [4], the local uniform ellipticity assumption ensures that P; admits a
density with respect to the Lebesgue measure for all ¢ > 0, it is enough to show
that || Py — poo dx|ITy — 0 as t — oo when Py admits a density pg with respect to
the Lebesgue measure.

For k € N*, consider the probability density:

P6 ) = (Po(x) A kpoo(x)) + peo(x) iy (POO) kP (1) dy.
0 00
Since po is positive, on one hand we have limy_, || po — ,Dlé It =0 and pg <
(k 4+ 1) poo. On the other hand, the total variation distance between the marginal
laws at time ¢ of the solutions to (0.1) started from the initial densities pg and plé
is not larger than || pg — plg |l1. Therefore we can moreover restrict ourselves to the
case when ]%00 is bounded. Then

A@d (%(x) - 1>2Poo(x) dx < </Rd<l%(:(x) - 1)4poo(x)dx>1/2 < 4o0.

We set Qg = poo dx. By Remark 1.5(a) and (c), conditions (H1), (H2)g, (H3)¢
and (H3)p hold, and for each T > 0, Q7 is an extremal solution of the martingale
problem (MP). Applying Theorem 1.4, respectively, with U(r) = (r — 1)* and
Ur)=(r—1)2, we get that ¢ —> fRd(Iito (x)— 1)2poo(x) dx is nonincreasing and
that

Pt 4
sup (—(x) — 1) Poo(X)dx
t>0 JRY \ Poo

(A4)
o x| Pt Pr
+ Vi — [aV| — | |(x) poo(x) dx dt < 400.
0 J{(pt/Poo)(x)>0} P Poo
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Since a is locally uniformly elliptic, the proof of Lemma A.1 ensures that dt a.e.,
the gradient V p; (resp., V pso) of p; (resp., poo) in the sense of distributions is a lo-
cally integrable function on R? that vanishes a.e. on {x : p;(x) = 0}. Moreover, we
can choose therein K7 (7, x) = 1{p,x)>0}-L" VPt (x) and K9 (t x) = p°° (x). Then,

in (A.4), V[[i’o] =Y _ PiVPoo g ge, equal to 0 when £- L s equal to 0 so that

Poo poo

the restriction of the spatial integration to {I%’O(x) > 0} can be removed. Since po
is assumed to be locally Lipschitz continuous and bounded away from 0, the func-
tion — p is locally bounded with a locally bounded distributional gradient equal to

Vpoo
equal to Vp’ Prx) — ”’Z”"o and therefore to V[ L.

From the finiteness of the time-integral in (A.4), we deduce the existence of a se-
quence (t,), tending to +oo such that lim,,_, o [pa (V* Ifg’;aVﬁ;’; ) (%) poo(x) dx =

. We deduce that the gradient V a of ”o’o in the sense of distributions is

0. For A > 0, writing the integral on R¢ as the sum of the integrals on the ball
B(0, A) and its complementary B(0, A), one has

fRd<5—;';(x) - 1>2poo(x)dx

d 2
<[ (Prw- Ja0.0 P4 ) > ) Py dx
B(0.4) \ Poo JB0.4) Poo(Y) dy

([0.4)(Pty = Poo) (¥) dY)?
+
fB(o,A) Po(y)dy

5 4 12
+ ( / (—"(x) - 1) podx [ poo(xwx)
B(0,A)¢ \ Poo B(0,A)¢

00) (¥) dy\?
S/ (&(x) _ fB(o,A)(Ptn/P )(¥) )’> Do) dx
B(0.A) \ Poo IB0,4) 4y

N 30,4y ((P1,/ o) (¥) = D poc(y) dy)?
fB(O,A) Poo(y)dy

4 1/2
Po
+ ([l‘%d<p;(X) - 1) Doo(x)dx /B(O,A)C poo(x)dx> .
2
</ (p’” () — l)poo(y)dy>
B(0,A)° \ Poo

2
< [0 =1) petras [ ptay.

Since
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the sum of the last two terms on the right-hand side tends to O uniformly in n as
A — o0. Using (1.11) and denoting by C4 < +o00 the constant of the Poincaré—
Wirtinger inequality satisfied by the Lebesgue measure on the ball B(0, A), we
check that the first term is smaller than

su
Ca PB(0,A) Poo (

« Pty o Pin.
eainfp,A) Poo JRY v av >(x)p00(x)dx’

Poo )

which tends to 0 as n — oo. Hence lim,,—, o0 Jpa ([’%’é(x) —1)2 poo(x) dx = 0. Since

| P — Pooll? < Jrd (p% (x) — 1) poo (x) dx where the right-hand side is nonincreas-
ing with ¢, we conclude that lim;_, || pr — Pooll1 =0.

A.5. Sufficient conditions for superquadratic potentials to satisfy (H1)".

LEMMA A.4. Let b(x) = —VV(x) for a nonnegative C? potential V in R?
satisfying (1.7), and o be any globally Lipschitz continuous choice of the square
root of the identity 1;. Then condition (H1)" holds for the diffusion process dX,; =
o(Xy)dW; —VV(X;)dt.

PROOF. Computing d|X;|?, we see that the first condition in (1.7) prevents
explosion for the SDE which has locally Lipschitz coefficients. Since for ¢ > 0,

deV XD = (VX)) <cV*V(X,)U(Xt) dw; + %[AV + (c = 2)|VV*](X)) dt),

the second condition ensures that for ¢ small enough, E(e¢V(X?)) <
K1 (eV(X0)) for some finite constant K (¢) only depending on V and c. The
third assumption ensures the existence of a finite constant K( 7) only depending
on 7 and V such that

T - T
E(exp(4/ \/a,-kvaikV(X,)dz)) < K(£>E(exp(£/ V(Xt)dt>).
0 T T Jo
By Jensen’s inequality, we deduce that

E(exp<4/0T \/mdt)) < E(C/T) /OT E(ecv(x’))dt

T

~(cC
< K . K(C)TE CV(X()) .
< R(5)eKOTBE). g

APPENDIX B

We next provide the proofs of the main results of Section 2.
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B.1. Proof of Proposition 2.2. We will make use of the stochastic flow de-
fined by the two-parameter process &;(x) satisfying

del (x) = oi (£ (%)) WX 4 b; (&, (x)) dt,

(B.1)
(t,x)€[0,T) xR, i=1,...,d,

and &y (x) = x, noting that & (Yp) = Y;. We shall also deal with the family of con-
tinuous G; — Pgo-local martingales (D;(x) :t € [0, T']) ,cge defined by

= PT

(B2) dDy(x) = [oud; pl(t, & (x)) d W}, Do(x) = —(x) = po(x).
o

According to Lemma 1.3, D;(Yp) is equal to the process D; defined in (1.2).
Writing V p; (& (x)) = (V& ENAAT) (& (x))] we remark that, thanks to the It6
product rule, dV p;(&:(x)) can be obtained with by computing d(V,&; (x))~! and
dVy[p: (& (x))]. Those computations are part of the contents of the two next lem-
mas:

LEMMA B.1. The process (t,x) — & (x) has a IP’go a.s. continuous version
such that the mapping x — & (x) is a global diffeomorphism of class C'* for some
a €(0,1) and every t € [0, T]. Moreover, we have for all (t,x) € [0, T) x R4,

(B.3) ;& (x) = 0,0u (1, &(x))3;E" (x) AWy + 0,pbi (1, & (x)) 0,/ (x) dt,
with ajSé (x) = 8;j. Finally, writing V& (x) = (ajs,i (x))ij, it holds that
d(VE ()
BA) =~ (VE®) [00i1(E @) dWE — (V&) [0ibi] (& (x) dr
+ (V&) [0m0ir di0m (& (X)) dt,  (t,x) €[0,T) x R,

PROOF. Under assumptions (H4) and (H5),_, classic results of Kunita [15]
(see Theorem 4.7.2) imply the asserted regularity properties of the stochastic flow,
as well as the IPZO a.s. existence of the inverse matrix (V& (x))~! for all (r,x) €
[0, T] x R?. Since the smooth map A A~! defined on nonsingular d x d matri-
ces, has first and second derivatives, respectively, given by the linear and bilinear
operators F i —A"'FA ' and (F,K)— A'FAT'KA= ' + A"1KA-1FA~]
(where F, K are generic square-matrices), we deduce that for A = (A;}); j=1,....d>

20 4—1
=—A'A7" and A Du _ A A A + Ay A AT

(A D
Jt dA;; dAmn

8A,-j
forallk,l,i, j,m,ne{l,...,d}. Equation (B.4) follows by applying It6’s formula

to each of the functions A — (A~ 1) and the semimartingales (d jéf (x),i,j=
1,...,d. O
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LEMMA B.2. The process D;(x) has a modification still denoted by D;(x)
such that ]Pgo a.s. the function (t, x) — D;(x) is continuous and x — D;(x) is of
class C! for each t. This modification is indistinguishable from (p; (& (x)): (t, x) €
[0,T) x Rd), and we have

ddg Dy (x) = dnloir 3; p1(t, & (X)) & (x) AW/

(B.5)
= d[amp(l, Et(x))akstm ()C)]

forall (t,x) €[0,T) x RY.

PROOF. Thanks to the regularity of x — &;(x) established in Lemma B.1 and
assumptions (H35),, and (H 6)[T,0, the statements follow from Theorem 3.3.3 of
Kunita [15]; see also Exercise 3.1.5 therein. [J

We can now proceed to prove Proposition 2.2. Evaluating expressions (B.4)
and (B.5) in x = Yj, we obtain using Itd’s product rule that
E6 doipi(Yy) = [owr Ik p1(t, Ye) AW, — [04r0kj 0010 jr + Ok p b (2, Yy) dt
= [owr O p1(t, Y) AW} — [50kj pdrar; + 0k pdibi] (¢, Yy) dr.

For the remainder of the proof, the argument (¢, Y;) will be omitted for nota-
tional simplicity. By It6 ’s formula we get doj; = [0/ 0,01i1d W, + [b1, 001 +
%amk Omio1; ] dt. We then have

d[01;0;0] = 01; d0;p + 9 pdoy; +d {0 p, 07;)
= (31 po1i oy AW + 310[bmdmori + %amkdmioi ]
— 01 [0kr Oj P10 jr + P DK + A ik P IO

where we used in the stochastic integral the fact that 0; 00y, 9,,01i + 070k 1k p =
01 POk OO + 010k O1x o = 0 [0) po7; Jogy. It follows that

d[V*paVp]
=d[0;0;p0y; 0y p]
= 2{[07: 3y PaAmk Om01i 01k P1 + 01/ 0 PO P[Bn OmO1i + 5 Ak Ok 01 ]
— ay dy ploirdkj pojr + pdibi]} dt
+ g 3 (31001 13k [y poyi 1 dt + 207 3y pdy [0 plok, AW’ .

On the other hand, using (B.2) at x = Yy we have dUj (p) = U(3(3) (0)Ony Opp dW" +
%U 5(4) (p)anjd,p0jpdt, which combined with the previous expression yields

d[Ug (p)V*paVp]
(B.7) —dM® + LU (p)|V*pavp|* di
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+2057 (p)ovid pikloridiplajid;p di
+2U5 (0){[01i 1 pami 0m 1 ik p]
+ 01/ 0y 0310 [bm dm 01 + 3 Amidmioii]
— ay 3y plow i P jr + Hpdibil) dt
+ Ug' (p)axi 3 (81 p01i 10y [y poyri] dt .
Equivalently,
AU} (0)V*paVp]
=dM® +u[AsT]dt
+2U5 (0){ 8 031 0] 3 (3k01; Qkm Bm 01 j — ki k01 O dm )
+ %15m8ma11/ + %ap,-amkamkali — ayy b ]
+ [oviamk — Okitmp 13y pOmo1i Ok P} di.
B.2. Proof of Theorem 2.4. Let us check (2.2). Since U” is continuous and
nonincreasing in (0, co) by Remark 2.1, one has Ug'(r) ,/ U" (r) for each r > 0 as
& — 0. It is therefore enough to obtain (the integrated version of) inequality (2.2)

with Uy instead of U”, monotone convergence allowing us to pass to the limit as
6 — 0 on both sides. For 0 <r <t < T, we have by Proposition 2.2 that

(U5 (p)V*paV p](t, Y;) — [Us (p)V*paV p](r, ¥,)

o t
> M\t(a) - M® 4 2/ Us' (p)[oviamk — OkiGmp 19y pOm01i ki p ds
r
(B.8) . |
+2 Ug/<p>a,/pazp(Z@kmjakmamoz/ § = Ok Bk01 T IO
i

1 - _
+ 5 ey + oviciminion] ~ amyambz) ds.
Since oy pUs (p)[07i@mk — Oki@pr] =0 and
O (U3 (0)) 3 ploviam — oxiam) = Uy (0) 0k pdy ploviamk — Okidur] =0,
one has

Us (p)[oviami — OkiGmi 10y pOm01i Okt p

1
(B.9) = — (0100 pUS (p)oviamk — Okiami 19m0li Poc)

Poo
dpdyr pUg (p)
— 75(9]((

[amkO1'i — Oki@mi'10mO1i Poo)-
Poo
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Setting

def 1
T = Z(akcfljakmf?mﬁl’j — 0% 0k 01 OmjOmOy;)
1 - _
+ E[bmamall/ + 011Uk Omk 01 ] — Ay Omby

1 1
- —akl:<_amkamall/ - O'kiaml/amo’li)poo}a
Poo 2

we deduce that
[Us' (0)V*paVp](t,Y,) — [Us (p)V*paVp](r, Y,)

—_— t
(B.10) >M> - M9 +2 / U (p) Sy pdyp ds
r

r]
+ 2/ p—8k(81031/pUé/(ﬂ)[01/iamk — OkiGmi'10mO1i Poc) d5.
r o0
Using (2.1) and the identity oy; 0y 07; = 0prax; — O’ 0%i01;, one can check that

1- 1 - _ 1
O = Ebk/ ay + E(akl’akbl + ak okby) + Zak/kak’kall/
1
- Z(ak/k Ok’ 01i k0 + Ok k01O j Ok OY/)

1 1
(B.11) + 50k (O oriary + opiar) ok In(peo) — Eak’kak/all/ Ok In(po)

1
+ §3k [oki (Oxroriary + dporiary) — apxdpan |

X + Xy
—
and therefore, the second integral on the right-hand side of (B.10) rewrites as
2 [} Ui (p)Our oy pdrpds.

Now, the quadratic variation of M® is bounded above in [0, T) by a constant
times

t
/0 [1UL (o) F|V*paVp |’ (¥5) + (UL (0))>V*(V*paV p)aV (V*paV p)]|(Ys) ds.

This fact and our assumptions imply that Misa martingale in [0, T") for all § > 0
sufficiently small. Indeed, we have from Remark 2.1 that Uy'(r) < U"(8) AU"(r)
and U (r)] < [UP )] A [UB ()| for all r > 0. Therefore (since U” > 0) we
have U!'(r) < (U"(r) A Dlyrsy<i + U")(U"(r)/U"(8)) A 1D)1yns)-1 whence
Us(r) <@U" @)+ DH(U"(r) A 1). As U® is nondecreasing and nonpositive, ei-
ther |U® (8)| # 0 for all § sufficiently small, in which case we similarly get
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|U5(3)(r)| < (UG + DU )| A 1), or otherwise UB(S) identically vanishes
for all §. Assumption (H6') oo and the previous then ensure that (M @)y, has finite
expectation for ¢ € [0, T').

In order to conclude that inequality (2.2) holds for the function Us, noting that
V p; vanishes on {p; = 0}, it is enough to show that the last integral in (B.10) has
(well-defined) null expectation. Using (B.9) and assumption (H6') Peo WE Obtain
[with the same estimation for Uy (r) as before] that

t
./
r

t
®12) = [ [ (000 pU} (lovian = orian 1o pc)| dx ds
r

< 00,

1
p—3k(3l,031//0U§/(p)[01/iamk — OkiGm1'10m01i Poo) |(Ys) ds
0

which shows that the expectation of the last term in (B.10) is well defined. More-
over, the (everywhere-defined) spatial divergence of g(s, x) := 9,050y ps Us (p5) X
[01/iGme — Ooimi' 10mO1i Poo is L (dx, R?) for a.e. s. For such s and ¢, € C(‘)’o(Rd)
satisfying 0 < ¢, < 1,0 < |V¢,| <1, ¢,(x) =1 for x € B(0,n) and ¢, (x) =0
for x € B(0,2n)¢, we have

0= /Rd V- (n(x)g(s, x))dx

= /Rd Gn(x)V - g(s,x)dx +./I;§d Vo, (x).g(s,x)dx.

Since by Lebesgue’s theorem, the second term on the right-hand side tends to O as
n — oo, the limit fpa V - g(s, x) dx of the first term is equal to 0.

APPENDIX C

In this section we compare our results on the dissipation of the Fisher informa-
tion with the computations and results in [1].

The form of the term tr(AsI") in Proposition 2.2 is inspired from the term
tr(XY) in [1], pages 163-164, where X = 2As. One has

T2 = (V*pa),;0;(0%idkp)oiidip
= %(V*pa)j[aj (0%i Ok )01 01 p + 9 (0191 ) Ok O o ]
- %(v*pa)jaj[alpak,akp] = H(V*pa)V(V*paVp)
which, with g—; :=(9;v;);,j denoting the Jacobian matrix of vector field v, equals

1, 1,
E(V Pa)jaj [Okpax 01 p] = E(V Pa)j(akjpaklalp + 9 [ax1d1p10kp)

*

_-v Vp+ -V
T PR A

1 A(Vp) 1 a(aV/>)*v
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and corresponds to 4Y 1, in [1], page 164 [noting that in their notation, D(x) =
a(x)/2]. Similarly, I'yp = 4Y2,. However I'{| cannot in general be identified with
4Y1;. For instance, in the case of scalar diffusion D(x) = a(x)/2 = D(x)I; for
some real valued function D, the term I"{{(x) above, when written in terms of D,
reads

1 1
SIVDPIVp + S (VD Vp)? +4Dd; Ddi pdijp +4D* 3 (01
ij
for the choice o (x) = +/2D(x)1;, whereas
1

d
4Y 1 = 4(D2 Z(aijp)z + <Z - §>(VP : VD)Z +2D8jD8i,03ijP
ij

1
—D(Vp-VD)Ap+ 5|VD|2|Vp|2).

Moreover, our term ['1; is nonintrinsic, in the sense that it cannot in general be
written in terms of the diffusion matrix a only (without making explicit use of o),
contrary to the term Y ; in the matrix of [1].

We will next check that the criterion in [1] can also be derived from the com-
putations in Proposition 2.2 in case a is nonsingular, which amounts to making an
alternative choice in the expression for d[Uy (p)V*paV p] of the quantities in the
roles of the coefficient I';; and of the term 6. This will also allow us to compare
and combine both criteria.

Recall first that the matrix D(x) in [1] equals half of our matrix a(x), and notice
that our forward drift term writes in their notation b = —DV¢ — DF + V - D,
where (V - D); = 9;D;;, e %= Poo 1s the invariant density, and F a is vector field
satisfying V - (DFe~?) =0. Thus b=aVInps +V-a —b=—-DV¢ + DF +
V.-D.

The factor of Uy (p) in (B.7) takes the intrinsic form

ik’ [0k pO1: Oy POYi + Okt PO O PO Oy + 01 POk 01 g1 POV
+ 91p0k01; 9y PO oy ]
+ 207 0y pay O 01i 01k p + 010y Pakk 'k O1i O1'i — 2411 O POKr Ik’ PO Ok
+ b Omayy 3 p 3y p — 2ay 0y POy by
= ay [0k 1 payy + 20k p A P ayy] + ek d Py POy ayy
— ayp Oy PO P arks + b Omay B pdy p — 2ay/0y P by,

where to the second and third terms in the bracket on the left-hand side, brought
together, we have added the first term after the bracket, and moreover the fourth
term in the bracket on the left-hand side was added to the second term outside the
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bracket. Hence, writing
Q1 = —ay dy Pk PNk’ + by dmayy dpdy p — 21y Py Py by,
Q2 = ag [y pay + 201 pdy pA ay] + arkd Py Py,

and using the last expression for I'j> above, we can write

1
Ed[U{(p)V*paVﬂ]
. u®
=5dM<‘”+ a(p)(Q1+Q )dt + 4(p)|V*pan|2dt
3) .
U 3(V 3aVv
+BT@(v*paMav,o+v*pa (@vp) Vp)dt
. U@
C.1
b U (o) 3(Vp) 3(avp)*
+ L(V*pa aVp+V¥pa V,o)]dt
4 0x ox
U//
+[ 52('0)Q1}dt
U/l( )
[P

(3) *
LU ) <V*pa8(v'0)an 4+ v*pa 24V V,o>:| dt.
4 ax ax

The latter identity yields the expression for the dissipation of entropy dissipation
computed in [1]. Indeed, denoting, respectively, by Ji, J2 and J3 the expectations
of the first, second and third terms in square brackets on the right-hand side, we
observe that J; is, up to time reversal t — T — 7, exactly equal to the term R,
at the top of page 162 in [1]. Starting from the last expression of 73, page 160,
and the definition (2.23) of R» and 74, and replacing DF by its expression b—
2(aV In(pso) + V - a) in our notation, we get that Ry+ T3+ Tyis equal to

Us (p) Q1 Us' (p)
L2 = [ | @otyandip + 20 patin) | x utay o)

5 (0)
_Aéd [alj ljlpakpakl]p

up to time reversal. The first term corresponds to J,. Integrating by parts the second
term to get rid of the derivative, with respect to the /th coordinate in the second
factor, one checks that its sum with the last one is equal to J3. Hence, up to time
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reversal, we have J; + Jo + J3 = (§1 + 7T3) + (Ez + T4), which is the expression
for the dissipation of entropy dissipation computed in [1], page 160.

In order to recover the Bakry—Emery criterion in [1], we rewrite Q1 + Q7 =
K1(p) + K2(p) where

K1(p) := by dmay 3 pdy p — 2a1p 9y pdkpdi b + a8 pdy pAwayy
and
K> (p) := axk Oripay Oy p + 2ayk Ot p Oy g agyr — agery Oy o gt 0 O Al -

When a is nonsingular, introducing G ji(p) = dypayydpajr and Hjj(p) =
djaydy p, we can write

Ky (p) =t[(aV?p)
=t[(aV2p)* + H(p)aV2p + aH (p)*VZp — G(p)a~'aV?p]

* +2H(p)aV?p — G(p)V?p]

tw[(aV2p)” + L(H(0)aV?p +aH (p)*Vp — G(p)a'aV?p)
+ Q(aVZpH(,o) +aVipaH(p)*a™' —aV?pG(p)a')],

where we have used the cyclicity of the trace and its invariance by transposition.
Following [1], we complete the trace of a squared sum of matrices to get

Ka(p) = tr[aV2p + L (H(p) + aH (p)*a~" — G(p)a™")]?
—Yu[H(p) +aH(p)*a" = G(p)a~'T".

The finite variation part on the right-hand side of the first line in (C.1) therefore
rewrites

U// 1
52(/0) <K1(p) — —tr[H(p) + aH(p)*a™! G(,O)a_l]2>
1 2
+ —U‘Sz(p) tr[avzp + ;(H(,O) +aH(p)*a™! G(p)al):| dt
(C.2)
3) *
+ Us™ (p) (v*paa(Vp)an+V*paM Vp)dt
2 dx 9
4)

The sum of the second, third and fourth lines correspond to the matrix product XY
in [1] and is shown to be nonnegative on page 164 therein. We can then check that
for a smooth function v:R? — R, the term %(Kl (v) — }‘tr[H(v) +aH(@)*a™' —
G(v)a~'1?) is twice the expression on the left-hand side of inequality (2.13) on
page 158 of [1] (with Vv corresponding to their vector field “U’’). Consequently,
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their Bakry—Emery criterion (2.13) corresponds, in our notation, to imposing the
condition
3 > 0 such that for all smooth functions v: R4 — R and all x € R,

LK) = La[Hw) + aH@)*a™" = G)a™ ') (x) = AVv*aVu(x),

which implies exponential convergence at rate 2A of the U -Fisher information and
the U -relative entropy.

We may combine this criterion with ours by introducing some C! function
o :RY — [0, 1] and writing the finite variation part on the right-hand side of the
first line in (C.1) as (1 — «) multiplied by the expression (C.2), plus %oz multiplied
by the finite variation part in the right-hand side of (B.8). Because of the integra-
tion by parts performed in the proof of Theorem 2.4, the mixed criterion involves
the derivatives of «. Let

) i
O == a®y — 50k ([oriamk — Oki@mi 13m0 + [01iAmk — OkiAm110mOor';).

This ultimate mixed criterion writes
32 > 0 such that for all smooth function v:R? — R and all x € RY:

(1 —a))(L(K1(v) = Lu[H@) + aH@)*a™" = Gw)a™ ') (x))
+ Vu*O*Vu(x) > AVv*aVu(x)

and also implies exponential convergence at rate 21 of the U-Fisher information
and the U -relative entropy.
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