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Via a Dirichlet form extension theorem and making full use of two-sided
heat kernel estimates, we establish quenched invariance principles for ran-
dom walks in random environments with a boundary. In particular, we prove
that the random walk on a supercritical percolation cluster or among random
conductances bounded uniformly from below in a half-space, quarter-space,
etc., converges when rescaled diffusively to a reflecting Brownian motion,
which has been one of the important open problems in this area. We establish
a similar result for the random conductance model in a box, which allows us
to improve existing asymptotic estimates for the relevant mixing time. Fur-
thermore, in the uniformly elliptic case, we present quenched invariance prin-
ciples for domains with more general boundaries.

1. Introduction. Invariance principles for random walks in d-dimensional re-
versible random environments date back to the 1980s [29, 40, 42, 43]. The most
robust of the early results in this area concerned scaling limits for the annealed
law, that is, the distribution of the random walk averaged over the possible real-
izations of the environment, or possibly established a slightly stronger statement
involving some form of convergence in probability. Studying the behavior of the
random walks under the quenched law, that is, for a fixed realization of the en-
vironment, has proved to be a much more difficult task, especially when there is
some degeneracy in the model. This is because it is often the case that a typical
environment has “bad” regions that need to be controlled. Nevertheless, over the
last decade significant work has been accomplished in this direction. Indeed, in the
important case of the random walk on the unique infinite cluster of supercritical
(bond) percolation on Zd , building on the detailed transition density estimates of
[6], a Brownian motion scaling limit has now been established [15, 46, 52]. Addi-
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tionally, a number of extensions to more general random conductance models have
also been proved [3, 8, 17, 45].

While the above body of work provides some powerful techniques for overcom-
ing the technical challenges involved in proving quenched invariance principles,
such as studying “the environment viewed from the particle” or the “harmonic
corrector” for the walk (see [16] for a survey of the recent developments in the
area), these are not without their limitations. Most notably, at some point, the ar-
guments applied all depend in a fundamental way on the translation invariance or
ergodicity under random walk transitions of the environment. As a consequence,
some natural variations of the problem are not covered. Consider, for example,
supercritical percolation in a half-space Z+ × Zd−1, or possibly an orthant of Zd .
Again, there is a unique infinite cluster (Figure 1 shows a simulation of such in
the first quadrant of Z2), upon which one can define a random walk. Given the
invariance principle for percolation on Zd , one would reasonably expect that this
process would converge, when rescaled diffusively, to a Brownian motion reflected
at the boundary. After all, as is illustrated in the figure, the “holes” in the perco-
lation cluster that are in contact with the boundary are only on the same scale as
those away from it. However, the presence of a boundary means that the translation
invariance/ergodicity properties necessary for applying the existing arguments are
lacking. For this reason, it has been one of the important open problems in this
area to prove the quenched invariance principle for random walk on a percolation
cluster, or among random conductances more generally, in a half-space (see [15],
Section B and [16], Problem 1.9). Our aim is to provide a new approach for over-

FIG. 1. A section of the unique infinite cluster for supercritical percolation on Z2+ with parameter
p = 0.52.
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coming this issue, and thereby establish invariance principles within some general
framework that includes examples such as those just described.

The approach of this paper is inspired by that of [19, 20], where the invariance
principle for random walk on grids inside a given Euclidean domain D is studied.
It is shown first in [19] for a class of bounded domains including Lipschitz do-
mains and then in [20] for any bounded domain D that the simple random walk
converges to the (normally) reflecting Brownian motion on D when the mesh size
of the grid tends to zero. Heuristically, the normally reflecting Brownian motion is
a continuous Markov process on �D that behaves like Brownian motion in D and
is “pushed back” instantaneously along the inward normal direction when it hits
the boundary. See Section 2 for a precise definition and more details. The main
idea and approach of [19, 20] is as follows: (i) show that random walk killed upon
hitting the boundary converges weakly to the absorbing Brownian motion in D,
which is trivial; (ii) establish tightness for the law of random walks; (iii) show
any sequential limit is a symmetric Markov process and can be identified with re-
flecting Brownian motion via a Dirichlet form characterization. In [19, 20], (ii) is
achieved by using a forward–backward martingale decomposition of the process
and the identification in (iii) is accomplished by using a result from the bound-
ary theory of Dirichlet form, which says that the reflecting Brownian motion on
D is the maximal Silverstein’s extension of the absorbing Brownian motion in D;
see [19], Theorem 1.1 and [23], Theorem 6.6.9.

For quenched invariance principles for random walks in random environments
with a boundary, step (i) above can be established by applying a quenched invari-
ance principle for the full-space case. For step (ii), that is, establishing tightness,
the forward–backward martingale decomposition method does not work well with
unbounded random conductances. To overcome this difficulty, as well as for the
desire to establish an invariance principle for every starting point, we will make
the full use of detailed two-sided heat kernel estimates for random walk on ran-
dom clusters. In particular, we provide sufficient conditions for the subsequential
convergence that involve the Hölder continuity of harmonic functions (see Sec-
tion 2.2). This continuity property can be verified in examples by using existing
two-sided heat kernel bounds. We remark that the corrector-type methods for full-
space models, such as the approach of [15], often require only upper bounds on the
heat kernel. Using the Hölder regularity, we can further show that any subsequen-
tial limit of random walks in random environments is a conservative symmetric
Hunt process with continuous sample paths. In step (iii), we can identify the sub-
sequential limit process with the reflecting Brownian motion by a Dirichlet form
argument (see Theorem 2.1). In summary, our approach for proving quenched in-
variance principles for random walks in random environments with a boundary
encompasses two novel aspects: a Dirichlet form extension argument and the full
use of detailed heat kernel estimates.

The full generality of the random conductance model to which we are able to
apply the above argument is presented in Section 3. As an illustrative application of
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Theorem 2.1, though we state here a theorem that verifies the conjecture described
above concerning the diffusive behavior of the random walk on a supercritical
percolation cluster on a half-space, quarter-space, etc. We recall that the variable
speed random walk (VSRW) on a connected (unweighted) graph is the continuous
time Markov process that jumps from a vertex at a rate equal to its degree to a
uniformly chosen neighbor (see Section 3 for further details). In this setting, sim-
ilar results to that stated can be obtained for the so-called constant speed random
walk (CSRW), which has mean one exponential holding times, or the discrete time
random walk (see Remark 3.18 below).

Let Z+ := {0,1,2, . . .} and R+ := [0,∞). Then the following is our main the-
orem.

THEOREM 1.1. Fix d1, d2 ∈ Z+ such that d1 ≥ 1 and d := d1 + d2 ≥ 2. Let
C1 be the unique infinite cluster of a supercritical bond percolation process on
Zd1+ ×Zd2 , and let Y = (Yt )t≥0 be the associated VSRW. For almost-every realiza-
tion of C1, it holds that the rescaled process Yn = (Y n

t )t≥0, as defined by

Yn
t := n−1Yn2t ,

started from Yn
0 = xn ∈ n−1C1, where xn → x ∈Rd1+ ×Rd2 , converges in distribu-

tion to {Xct ; t ≥ 0}, where c ∈ (0,∞) is a deterministic constant and {Xt ; t ≥ 0}
is the (normally) reflecting Brownian motion on Rd1+ ×Rd2 started from x.

As an alternative to unbounded domains, one could consider compact limiting
sets, replacing Yn in the previous theorem by the rescaled version of the vari-
able speed random walk on the largest percolation cluster contained in a box
[−n,n]d ∩ Zd , for example. As presented in Section 4.1, another application of
Theorem 2.1 allows an invariance principle to be established in this case as well,
with the limiting process being Brownian motion in the box [−1,1]d , reflected at
the boundary. Consequently, we are able to refine the existing knowledge of the
mixing time asymptotics for the sequence of random graphs in question from a
tightness result [13] to an almost-sure convergence one (see Corollary 4.4 below).

Although in the percolation setting we only consider relatively simple domains
with “flat” boundaries, this is mainly for technical reasons so that deriving the
percolation estimates in Section 3.1 required for our proofs is manageable. Indeed,
in the case when we restrict to uniformly elliptic random conductances, so that
controlling the clusters of extreme conductances is no longer an issue, we are able
to derive from Theorem 2.1 quenched invariance principles in any uniform domain,
the collection of which forms a large class of possibly nonsmooth domains that
includes (global) Lipschitz domains and the classical van Koch snowflake planar
domain as special cases. These applications are discussed in Section 4.2.

Homogenization of reflected SDE/PDE on half-planes and more general do-
mains has been studied in various contexts (see, e.g., [5, 14, 41, 51, 53]; we refer to
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[38, 41] and the references therein for the history of homogenization for diffusions
in random environments). In a recent paper [51], Rhodes proves homogenization
(as a convergence in product measure in environment and state space of quenched
distribution, which implies an annealed invariance principle) for symmetric re-
flected diffusions in upper half-spaces. His method is based on the Girsanov for-
mula and a use of subsidiary diffusions with an invariant probability measure,
which is very different from ours. Although we can also only handle symmetric
cases, our methods contribute to this field as well. This is because the analytical
part of our results (namely Section 2) holds for the entire class of uniform do-
mains. Moreover, our results are on the level of quenched invariance principles.
The presentation of how our techniques can be applied in the uniformly elliptic
random divergence form setting appears in Section 4.3. Note further that in this
setting we resolve the open problem on the quenched invariance principle starting
from arbitrary starting points posed in [51], pages 1004–1005.

The remainder of the paper is organized as follows. In Section 2, we introduce
an abstract framework for proving invariance principles for reversible Markov pro-
cesses in a Euclidean domain. This is applied in Section 3 to our main example of
a random conductance model in half-spaces, quarter-spaces, etc. The details of the
other examples discussed above are presented in Section 4. Our results for the ran-
dom conductance model depend on a number of technical percolation estimates,
some of the proofs of which are contained in the Appendix that appears at the end
of this article. The Appendix also contains a proof of a generalization of existing
quenched invariance principles that allows for arbitrary starting points (previous
results have always started the relevant processes from the origin, which will not
be enough for our purposes).

Finally, in this paper, for a locally compact separable metric space E, we use
Cb(E) and C∞(E) to denote the space of bounded continuous functions on E

and the space of continuous functions on E that vanish at infinity, respectively.
The space of continuous functions on E with compact support will be denoted by
Cc(E). For real numbers a, b, we use a∨b and a∧b for max{a, b} and min{a, b},
respectively.

2. Framework. The following definition is taken from Väisälä [55], where
various equivalent definitions are discussed. An open connected subset D of Rd is
called uniform if there exists a constant C such that for every x, y ∈ D there is a
rectifiable curve γ joining x and y in D with length (γ ) ≤ C|x − y| and moreover
min{|x − z|, |z − y|} ≤ C dist(z, ∂D) for all points z ∈ γ . Here, dist(z, ∂D) is the
Euclidean distance between the point z and the set ∂D. Note that a uniform domain
with respect to an inner metric is called inner uniform in [35], Definition 3.6.

For example, the classical van Koch snowflake domain in the conformal map-
ping theory is a uniform domain in R2. Every (global) Lipschitz domain is uni-
form, and every nontangentially accessible domain defined by Jerison and Kenig
in [37] is a uniform domain (see (3.4) of [37]). However, the boundary of a uniform
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domain can be highly nonrectifiable and, in general, no regularity of its boundary
can be inferred (besides the easy fact that the Hausdorff dimension of the boundary
is strictly less than d).

It is known (see Example 4 on page 30 and Proposition 1 in Chapter VIII of [39])
that any uniform domain in Rd has m(∂D) = 0 and there exists a positive constant
c > 0 such that

m
(
D ∩BE(x, r)

) ≥ crn for all x ∈ �D and 0 < r ≤ 1,(2.1)

where m denotes the Lebesgue measure in Rd and BE(x, r) denotes the Euclidean
ball of radius r centered at x.

Let D be a uniform domain in Rd . Suppose (A(x))x∈�D is a measurable sym-
metric d × d matrix-valued function such that

c−1I ≤ A(x) ≤ cI for a.e. x ∈ �D,(2.2)

where I is the d-dimensional identity matrix and c is a constant in [1,∞). Let

E(f, g) := 1

2

∫
D
∇f (x) · A(x)∇g(x) dx for f,g ∈ W 1,2(D),(2.3)

where

W 1,2(D) := {
f ∈ L2(D;m) :∇f ∈ L2(D;m)

}
.

An important property of a uniform domain D ⊂Rd is that there is a bounded lin-
ear extension operator T :W 1,2(D) → W 1,2(Rd) such that Tf = f a.e. on D for
f ∈ W 1,2(D). It follows that (E,W 1,2(D)) is a regular Dirichlet form on L2(�D;m)

and so there is a continuous diffusion process X = (Xt , t ≥ 0;Px, x ∈ �D) associ-
ated with it, starting from E-quasi-every point. Here, a property is said to hold
E-quasi-everywhere means that there is a set N ⊂ �D having zero capacity with
respect to the Dirichlet form (E,W 1,2(D)) so that the property holds for points
in N c. According to [35], Theorem 3.10 and (2.1) (see also [12], (3.6)), X admits
a jointly continuous transition density function p(t, x, y) on R+ × �D × �D and

c1t
−d/2 exp

(
−c2|x − y|2

t

)
≤ p(t, x, y) ≤ c3t

−d/2 exp
(
−c4|x − y|2

t

)
(2.4)

for every x, y ∈ �D and 0 < t ≤ 1. Here, the constants c1, . . . , c4 > 0 depend on the
diffusion matrix A(x) only through the ellipticity bound c in (2.2). Consequently,
X can be refined so that it can start from every point in �D. The process X is
called a symmetric reflecting diffusion on �D. We refer to [21] for sample path
properties of X. When A = I , X is the (normally) reflecting Brownian motion
on �D. Reflecting Brownian motion X on �D in general does not need to be semi-
martingale. When ∂D locally has finite lower Minkowski content, which is the case
when D is a Lipschitz domain, X is a semi-martingale and admits the following
Skorohod decomposition (see [22], Theorem 2.6):

Xt = X0 +Wt +
∫ t

0

n(Xs) dLs, t ≥ 0.(2.5)
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Here, W is the standard Brownian motion in Rd , 
n is the unit inward normal vector
field of D on ∂D, and L is a positive continuous additive functional of X that
increases only when X is on the boundary, that is, Lt = ∫ t

0 1{Xs∈∂D} dLs for t ≥ 0.
Moreover, it is known that the reflecting Brownian motion spends zero Lebesgue
amount of time at the boundary ∂D. These together with (2.5) justify the heuristic
description we gave in the Introduction for the reflecting Brownian motion in D.

2.1. Convergence to reflecting diffusion. In this subsection, D is a uniform do-
main in Rd and X is a reflecting diffusion process on �D associated with the Dirich-
let form (E,W 1,2(D)) on L2(D;m) given by (2.3). Denote by (XD,PD

x , x ∈ �D)

the subprocess of X killed on exiting D. It is known (see, e.g., [23]) that the Dirich-
let form of XD on L2(D;m) is (E,W

1,2
0 (D)), where

W
1,2
0 (D) := {

f ∈ W 1,2(D) :f = 0 E-quasi-everywhere on ∂D
}
.

Suppose that {Dn;n ≥ 1} is a sequence of Borel subsets of �D such that each Dn

supports a measure mn that converges vaguely to the Lebesgue measure m on �D.
The following result plays a key role in our approach to the quenched invariance
principle for random walks in random environments with boundary.

THEOREM 2.1. For each n ∈ N, let (Xn,Pn
x, x ∈ Dn) be an mn-symmetric

Hunt process on Dn. Assume that for every subsequence {nj }, there exists a sub-
subsequence {nj(k)} and a continuous conservative m-symmetric strong Markov
process (X̃, P̃x, x ∈ �D) such that the following three conditions are satisfied:

(i) for every xnj(k)
→ x with xnj(k)

∈ Dnj(k)
, P

nj(k)
xnj (k)

converges weakly in

D([0,∞), �D) to P̃x ;
(ii) X̃D , the subprocess of X̃ killed upon leaving D, has the same distribution

as XD ;
(iii) the Dirichlet form (Ẽ, F̃) of X̃ on L2(D;m) has the properties that

C ⊂ F̃ and Ẽ(f, f ) ≤ C0E(f, f ) for every f ∈ C,(2.6)

where C is a core for the Dirichlet form (E,W 1,2(D)) and C0 ∈ [1,∞) is a con-
stant.

It then holds that for every xn → x with xn ∈ Dn, (Xn,Pn
xn

) converges weakly in
D([0,∞), �D) to (X,Px).

PROOF. With both X̃ and X being m-symmetric Hunt processes on �D, it suf-
fices to show that their corresponding (quasi-regular) Dirichlet forms on L2(D;m)

are the same; that is (Ẽ, F̃) = (E,W 1,2(D)). Condition (iii) immediately implies
that W 1,2(D) ⊂ F̃ and

Ẽ(f, f ) ≤ C0E(f, f ) for every f ∈ W 1,2(D).
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Next, observe that since X̃ is a diffusion process admitting no killings, its associ-
ated Dirichlet form is strongly local. Thus, for every u ∈ F̃ , Ẽ(u,u) = 1

2 μ̃〈u〉(�D),
where μ̃〈u〉 is the energy measure corresponding to u. By the proof of [47], propo-
sition on page 389,

μ̃〈u〉(dx) ≤ C0∇u(x)A(x)∇u(x) dx ≤ cC0
∣∣∇u(x)

∣∣2 dx

on �D for every u ∈ W 1,2(D).

This in particular implies that

μ̃〈u〉(∂D) = 0 for u ∈ W 1,2(D).(2.7)

On the other hand, by the strong local property of μ̃〈u〉 and the fact that X̃D has
the same distribution as XD , we have that every bounded function in F̃—the col-
lection of which we denote by F̃b—is locally in W

1,2
0 (D) and

1D(x)μ̃〈u〉(dx) = 1D(x)∇u(x)A(x)∇u(x) dx for u ∈ F̃b.(2.8)

This together with (2.7) implies that Ẽ(u,u) = E(u,u) for every bounded u ∈
W 1,2(D), and hence for every u ∈ W 1,2(D). Furthermore, (2.8) implies that for
u ∈ F̃b,

∫
D |∇u(x)|2 dx < ∞ and so u ∈ W 1,2(D). Consequently, we have F̃ ⊂

W 1,2(D), and thus (Ẽ, F̃) = (E,W 1,2(D)). �

REMARK 2.2. (i) Note that if (Xn
t )t≥0 is conservative for each n ∈ N and

{Pnj(k)
xnj (k)

} is tight, then X̃ is conservative.

(ii) Theorem 2.1 can be viewed as a variation of [19], Theorem 1.1. The differ-
ence is that in [19], Theorem 1.1, the constant C0 in (2.6) is assumed to be 1 but
the limiting process X̃ only need to be Markov and does not need to be continuous
a priori, while for Theorem 2.1, the condition on the constant C0 is weaker but we
need to assume a priori that the limit process X̃ is continuous.

2.2. Sufficient condition for subsequential convergence. In this subsection, we
give some sufficient conditions for the subsequential convergence of {Xn}; in other
words, sufficient conditions for (i) in Theorem 2.1. For simplicity, we assume that
0 ∈ Dn for all n ≥ 1 throughout this section, though note this restriction can easily
be removed.

We start by introducing our first main assumption, which will allow us to
check an equi-continuity property for the λ-potentials associated with the elements
of {Xn} (see Proposition 2.4 below). In the statement of the assumption, we sup-
pose that (δn)n≥1 is a decreasing sequence in [0,1] with limn→∞ δn = 0 and such
that |x − y| ≥ δn for all distinct x, y ∈ Dn. (When δn ≡ 0, this condition always
holds. However, our assumption will give an additional restriction.) We denote
by τA(Xn) the first exit time of the process Xn from the set A.
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ASSUMPTION 2.3. There exist c1, c2, c3, β, γ ∈ (0,∞), N0 ∈N such that the

following hold for all n ≥ N0, x0 ∈ BE(0, c1n
1/2), and δ

1/2
n ≤ r ≤ 1.

(i) For all x ∈ BE(x0, r/2)∩Dn,

En
x

[
τBE(x0,r)∩Dn

(
Xn)] ≤ c2r

β.

(ii) If hn is bounded in Dn and harmonic (with respect to Xn) in a ball
BE(x0, r), then∣∣hn(x) − hn(y)

∣∣ ≤ c3

( |x − y|
r

)γ

‖hn‖∞ for x, y ∈ BE(x0, r/2) ∩Dn.

Define for λ > 0 the λ-potential

Uλ
n f (x) = En

x

∫ ∞
0

e−λtf
(
Xn

t

)
dt for x ∈ Dn.

PROPOSITION 2.4. Under Assumption 2.3, there exist C = Cλ ∈ (0,∞) and
γ ′ ∈ (0,∞) such that the following holds for any bounded function f on Dn, for
any n ≥ N0 and any x, y ∈ Dn such that x ∈ BE(0, c1n

1/2) and |x − y| < 1/4:∣∣Uλ
n f (x)− Uλ

n f (y)
∣∣ ≤ C|x − y|γ ′‖f ‖∞.(2.9)

In particular, we have

lim
δ→0

sup
n≥N0

sup
x,y∈Dn∩BE(0,c1n

1/2) :
|x−y|<δ

∣∣Uλ
n f (x)− Uλ

n f (y)
∣∣ = 0.(2.10)

PROOF. The proof is similar to that of [11], Proposition 3.3. Fix x0 ∈
BE(0, c1n

1/2) ∩ Dn, let 1 ≥ r ≥ δ
1/2
n , and suppose x, y ∈ BE(x0, r/2). Set τn

r :=
τBE(x0,r)∩Dn(X

n). By the strong Markov property,

Uλ
n f (x) = En

x

∫ τn
r

0
e−λtf

(
Xn

t

)
dt +En

x

[(
e−λτn

r − 1
)
Uλ

n f
(
Xn

τn
r

)] +En
x

[
Uλ

n f
(
Xn

τn
r

)]
= I1 + I2 + I3

and similarly when x is replaced by y. We have by Assumption 2.3(i) that

|I1| ≤ ‖f ‖∞En
xτ

n
r ≤ c2r

β‖f ‖∞
and by noting ‖Uλ

n f ‖∞ ≤ 1
λ
‖f ‖∞ that

|I2| ≤ λEn
xτ

n
r

∥∥Uλ
n f

∥∥∞ ≤ c2r
β‖f ‖∞.

Similar statements also hold when x is replaced by y. So,∣∣Uλ
n f (x) −Uλ

n f (y)
∣∣ ≤ 4c2r

β‖f ‖∞ + ∣∣En
xU

λ
n f

(
Xn

τn
r

) −En
yU

λ
n f

(
Xn

τn
r

)∣∣.(2.11)
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But z → En
zU

λ
n f (Xn

τn
r
) is bounded in Rd and harmonic in BE(x0, r), so by As-

sumption 2.3(ii), the second term in (2.11) is bounded by c3(|x−y|/r)γ ‖Uλ
n f ‖∞.

So by ‖Uλ
n f ‖∞ ≤ 1

λ
‖f ‖∞ again, we have

∣∣Uλ
n f (x) −Uλ

n f (y)
∣∣ ≤ c

(
rβ + λ−1

( |x − y|
r

)γ )
‖f ‖∞

(2.12)
for x, y ∈ BE(x0, r/2).

Now, for distinct x, y ∈ Dn with x ∈ BE(0, c1n
1/2) and (δ

1/2
n )2 ≤ |x − y| < 1/4

(note that since |x − y| ≥ δn for distinct x and y, the first inequality always hold),
let x0 = x and r = |x − y|1/2. Then δn ≤ r < 1/2 and y ∈ BE(x0, r/2) (because
|x0 − y| = r2 < r/2). Thus, we can apply (2.12) to obtain∣∣Uλ

n f (x) −Uλ
n f (y)

∣∣ ≤ c
(|x − y|β/2 + λ−1|x − y|γ /2)‖f ‖∞

≤ c
(
1 + λ−1)|x − y|(β∧γ )/2‖f ‖∞.

So, (2.9) holds with C = c(1 + λ−1) and γ ′ = (β ∧ γ )/2. The result at (2.10) is
immediate from (2.9). �

We note that with an additional mild condition, we can further obtain equi-
Hölder continuity of the associated semigroup. (The next proposition will only
be used in the proof of Theorem 3.13 below.) Set BR := BE(0,R) ∩ Dn for
R ∈ [2,∞). Denote by Xn,BR the subprocess of Xn killed upon exiting BR ,
and {P n,BR

t ; t ≥ 0} the transition semigroup of Xn,BR . [When R = ∞, we set
(P n

t )t≥0 := (P
n,B∞
t )t≥0, i.e., the semigroup of Xn itself.] For p ∈ [1,∞], we use

‖ · ‖p,n,R to denote the Lp-norm with respect to mn on BR .

PROPOSITION 2.5. Let R ∈ [2,∞] and t > 0. Suppose there exist c1 > 0 and
N1 ∈N (that may depend on R and t) such that for every g ∈ L1(BR,mn),∥∥P n,BR

t g
∥∥∞,n,R ≤ c1‖g‖1,n,R for all n ≥ N1.

Suppose in addition that Assumption 2.3 holds with Xn,BR and BR in place of Xn

and Dn, respectively. It then holds that there exist constants c ∈ (0,∞) and N2 ≥ 1
(that also may depend on R and t) such that∣∣P n,BR

t f (x) − P
n,BR
t f (y)

∣∣ ≤ c2|x − y|γ ′‖f ‖2,n,R

for every n ≥ N2, f ∈ L2(BR;mn), and mn-a.e. x, y ∈ BR/2 with |x − y| < 1/4.
Here, γ ′ is the constant of Proposition 2.4.

PROOF. We follow [11], Proposition 3.4. For notational simplicity, we omit
the superscripts n, BR on Pt throughout the proof. Using spectral representation
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theorem for self-adjoint operators, there exist projection operators Eμ = En,R
μ on

the space L2(BR;mn) such that

f =
∫ ∞

0
dEμ(f ), Ptf =

∫ ∞
0

e−μt dEμ(f ),

(2.13)

Uλf =
∫ ∞

0

1

λ+μ
dEμ(f ).

Define

h =
∫ ∞

0
(λ+ μ)e−μt dEμ(f ).

Since supμ(λ +μ)2e−2μt ≤ c, we have

‖h‖2
2 =

∫ ∞
0

(λ+μ)2e−2μt d
〈
Eμ(f ),Eμ(f )

〉 ≤ c

∫ ∞
0

d
〈
Eμ(f ),Eμ(f )

〉 = c‖f ‖2
2,

where for f,g ∈ L2, 〈f,g〉 is the inner product of f and g in L2. Thus, h is a
well-defined function in L2.

Now, suppose g ∈ L1. By the assumption, ‖Ptg‖∞ ≤ c‖g‖1, from which it fol-
lows that ‖Ptg‖2 ≤ c‖g‖1. Since supμ(λ+μ)e−μt/2 ≤ c, using Cauchy–Schwarz,
we have

〈h,g〉 =
∫ ∞

0
(λ +μ)e−μt d

〈
Eμ(f ), g

〉
≤

(∫ ∞
0

(λ+ μ)e−μt d
〈
Eμ(f ), f

〉)1/2(∫ ∞
0

(λ +μ)e−μt d
〈
Eμ(g), g

〉)1/2

≤ c

(∫ ∞
0

d
〈
Eμ(f ), f

〉)1/2(∫ ∞
0

e−μt/2 d
〈
Eμ(g), g

〉)1/2

= c‖f ‖2‖Pt/2g‖2 ≤ c′‖f ‖2‖g‖1.

Taking the supremum over g ∈ L1 with L1 norm less than 1, this yields ‖h‖∞ ≤
c‖f ‖2. Finally, by (2.13),

Uλh =
∫ ∞

0
e−μt dEμ(f ) = Ptf a.e.

and so the Hölder continuity of Ptf follows from Proposition 2.4. �

Let D(R+, �D) be the space of right continuous functions on R+ having left
limits and taking values in �D that is equipped with the Skorohod topology. For
t ≥ 0, we use Xt to denote the coordinate projection map on D(R+, �D); that is,
Xt(ω) = ω(t) for ω ∈ D(R+, �D). For subsequential convergence to a diffusion,
we need the following.
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ASSUMPTION 2.6. (i) For any sequence xn → x with xn ∈ Dn, {Pn
xn
} is tight

in D(R+, �D).
(ii) For any sequence xn → x with xn ∈ Dn and any ε > 0,

lim
δ→0

lim sup
n→∞

Pn
xn

(
J

(
Xn, δ

)
> ε

) = 0,

where J (X, δ) := ∫ ∞
0 e−u(1 ∧ supδ≤t≤u |Xt −Xt−δ|) du.

We need the following well-known fact (see, e.g., [7], Lemma 6.4) in the proof
of Proposition 2.8. For readers’ convenience, we provide a proof here.

LEMMA 2.7. Let K be a compact subset of Rd . Suppose f and fk , k ∈N, are
functions on K such that limk→∞ fk(yk) = f (y) whenever yk ∈ K converges to y.
Then f is continuous on K and fk converges to f uniformly on K .

PROOF. We first show that f is continuous on K . Fix x0 ∈ K . Let xk be any
sequence in K that converges to it. Since limi→∞ fi(x) = f (x) for every x ∈ K ,
there is a sequence nk ∈N that increases to infinity so that |fnk

(xk)−f (xk)| ≤ 2−k

for every k ≥ 1. Since limk→∞ fnk
(xk) = f (x0), it follows that limk→∞ |f (x0) −

f (xk)| = 0. This shows that f is continuous at x0, and hence on K .
We next show that fk converges uniformly to f on K . Suppose not. Then there

is ε > 0 so that for every k ≥ 1, there are nk ≥ k and xnk
∈ K so that |fnk

(xnk
) −

f (xnk
)| > ε. Since K is compact, by selecting a subsequence if necessary, we

may assume without loss of generality that xnk
→ x0 ∈ K . As limk→∞ fnk

(xnk
) =

f (x0) by the assumption, we have lim infk→∞ |f (x0) − f (xnk
)| ≥ ε. This contra-

dicts to the fact that f is continuous on K . �

Now, applying the argument in [7], Section 6, we can prove that any subsequen-
tial limit of the laws of Xn under Pn

xn
is the law of a symmetric diffusion. For

this, we need to introduce a projection map from �D to Dn. For each n ≥ 1, let
φn : �D → Dn be a map that projects each x ∈ �D to some φn(x) ∈ Dn that mini-
mizes |x − y| over y ∈ Dn (if there is more than one such point that does this, we
choose and fix one). If needed, we extend a function f defined on Dn to be a func-
tion on �D by setting f (x) = f (φn(x)). Note that each Dn supports the measure
mn that converges vaguely to m. This implies that for each x ∈ �D and r > 0, there
is an N ≥ 1 so that φn(x) ∈ BE(x, r) for every n ≥ N . From this, one concludes
that

φn(xn) → x0 for every sequence xn ∈ �D that converges to x0.(2.14)

PROPOSITION 2.8. Suppose that Assumptions 2.3 and 2.6 hold and that
{Xn,Pn

x, x ∈ Dn} is conservative for sufficiently large n. For every subse-
quence {nj }, there exists a sub-subsequence {nj(k)} and a continuous conservative
m-symmetric Hunt process (X̃, P̃x, x ∈ �D) such that for every xnj(k)

→ x, P
nj(k)
xnj (k)

converges weakly in D([0,∞), �D) to P̃x .
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PROOF. For notational simplicity, let us relabel the subsequence as {n}. We
first claim that there exists a (sub-)subsequence {nj } such that Uλ

nj
f converges

uniformly on compact sets for each λ > 0 and f ∈ Cb(�D). Indeed, let {λi} be
a dense subset of (0,∞) and {fk} a sequence of functions in Cb(�D) such that
‖fk‖∞ ≤ 1 and whose linear span is dense in (Cb(�D),‖ · ‖∞). For fixed m and i,
by Proposition 2.4 and the Ascoli–Arzelà theorem, there is a subsequence of U

λi
n fk

that converges uniformly on compact sets. By a diagonal selection procedure, we
can choose a subsequence {nj } such that U

λi
nj fk converges uniformly on compact

sets for every m and i to a Hölder continuous function which we denote as Uλifk .
Noting that

Uλ
n − Uβ

n = (β − λ)Uλ
n Uβ

n ,∥∥Uλ
n

∥∥∞→∞ ≤ 1

λ
,(2.15)

∥∥Uλ
n − Uβ

n

∥∥∞→∞ ≤ β − λ

λβ
,

a careful limiting argument shows that Uλ
nj

f converges uniformly on compact sets,
say to Uλf , for any λ > 0 and any continuous function f , and (2.15) holds as well
for {Uλ}. By the equi-continuity of Uλ

nj
f , we also have Uλ

nj
f (xnj

) → Uλf (x) for

each xnj
∈ Dnj

that converges to x ∈ �D.

We next claim that P
nj
xnj

converges weakly, say to P̃x . Indeed, by Assump-

tion 2.6(i), {Pnj
xnj

} is tight, so it suffices to show that any two limit points agree.

Let P′ and P′′ be any two limit points. Then one sees that

E′
[∫ ∞

0
e−λsf (Xs) ds

]
= Uλf (x) = E′′

[∫ ∞
0

e−λsf (Xs) ds

]
for any f ∈ Cb(�D). So, by the uniqueness of the Laplace transform,

E′[f (Xs)
] = E′′[f (Xs)

]
for almost all s ≥ 0 and hence for every s ≥ 0 since s → Xs is right continuous.
So, the one-dimensional distributions of Xt under P′ and P′′ are the same. Set
Psf (x) := E′f (Xs). We have P

nj
s f (xnj

) → Psf (x) for every sequence xnj
∈

Dnj
that converges to x. Recall the restriction map φn introduced proceeding the

statement of this theorem. It follows from (2.14) that P
nj
s (f ◦φnj

)(ynj
) → Psf (y)

for every sequence ynj
∈ �D that converges to y. Thus, by Lemma 2.7, P

nj
s (f ◦

φnj
) converges to Psf uniformly on compact subsets of �D and Psf ∈ Cb(�D) for

every f ∈ Cc(�D). For f,g ∈ Cc(�D) and 0 ≤ s < t , by the Markov property of X

under P
nj
xnj

,

E
nj
xnj

[
g(Xs)f (Xt)

] = E
nj
xnj

[((
P n

t−sf
)
g
)
(Xs)

]
= E

nj
xnj

[(
(Pt−sf )g

)
(Xs)

] +E
nj
xnj

[((
P n

t−sf − Pt−sf
)
g
)
(Xs)

]
.
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The first term of the right-hand side converges to E′[((Pt−sf )g)(Xs)] by the
above proof, while the second term goes to 0 since P

nj

t−sf → Pt−sf uniformly
on compact sets. Repeating this, we conclude that for every k ≥ 1 and every
0 < s1 < s2 < · · · < sk and fj ∈ Cc(�D),

E′
[

k∏
j=1

fj (Xsj )

]
= E′′

[
k∏

j=1

fj (Xsj )

]
(2.16)

= Ps1

(
f1Ps2−s1

(
f2Ps3−s2(f3 · · ·)))(x).

This proves that the finite-dimensional distributions of X under P′ and P′′ are the
same. Consequently, P′ = P′′, which we now denote as P̃x . Moreover, (2.16) shows
that (X, P̃x, x ∈ �D) is a Markov process with transition semigroup {Pt , t ≥ 0}.

Next, we show that {P̃x :x ∈ �D} is a strong Markov process. Note that X is
conservative with P̃x(X0 = x) = 1, and under Assumption 2.6(ii), Xt is continuous
a.s. under P̃x . We also have Ptf ∈ Cb(�D) for f ∈ Cc(�D). It is easy to deduce from
these properties and (2.16) that for every f ∈ Cc(�D) and every stopping time T ,

Ex

[
f (XT+t )|FT+

] = Ptf (XT ), x ∈ �D.

See the proof of Theorem 2.3.1 on page 56 of [24]. From it, one gets the strong
Markov property of X by a standard measure-theoretic argument (see page 57
of [24]). Since X is continuous and has infinite lifetime, this in fact shows that X

is a continuous conservative Hunt process.
Finally, for f,g ∈ Cc(�D), by the convergence of semigroups and vague conver-

gence of measures, it holds that, for every t > 0,∫
Dn

(
P

nj

t f
)
(x)g(x)mnj

(dx) →
∫
�D
(Ptf )(x)g(x)m(dx).

Since Xnj is mn-symmetric, this readily yields the desired m-symmetry of X̃. �

REMARK 2.9. Note that we did not use any special properties of the Euclidean
metric in this section, so that all the arguments in this section can be extended to a
metric measure space without any changes.

By Theorem 2.1, Remark 2.2(i) and Proposition 2.8, we see that in order to
prove (Xn,Pn

xn
) converges weakly to (X,Px) in D([0,∞), �D) as n → ∞, it suf-

fices to verify conditions (ii) and (iii) in Theorem 2.1, vague convergence of the
measure mn to m on �D, Assumptions 2.3 and 2.6, and the conservativeness of
(Xn,Pn

xn
) for each n ∈N.
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3. Random conductance model in unbounded domains. In this section, we
will obtain, as a first application of our theorem, a quenched invariance principle
for random walk among random conductances on half-spaces, quarter-spaces, etc.
The assumptions we make on the random conductances include the supercritical
percolation model, and random conductances bounded uniformly from below and
with finite first moments. For the main conclusion, see Theorem 3.17.

Fix d1, d2 ∈ Z+ such that d1 ≥ 1 and d := d1 + d2 ≥ 2. Define a graph (L,EL)

by setting L := Zd1+ × Zd2 and EL := {e = {x, y} :x, y ∈ L, |x − y| = 1}. Given
O ⊆ EL, let C∞(L,O) be the infinite connected cluster of (L,O), provided it
exists and is unique [otherwise set C∞(L,O) :=∅].

Let μ = (μe)e∈EL
be a collection of independent and identically distributed

random variables on [0,∞), defined on a probability space (�,P) such that

p1 := P(μe > 0) > pbond
c

(
Zd)

,(3.1)

where pbond
c (Zd) ∈ (0,1) is the critical probability for bond percolation on Zd . We

assume that there is c > 0 so that

P
(
μe ∈ (0, c)

) = 0(3.2)

and

E(μe) < ∞.(3.3)

This framework includes the special cases of supercritical percolation [where
P(μe = 1) = p1 = 1 − P(μe = 0)] and the random conductance model with con-
ductances bounded from below [i.e., P(c ≤ μe < ∞) = 1 for some c > 0] and
having finite first moments. For each x ∈ L, set μx = ∑

y∼x μxy . Set

O1 := {e ∈ EL :μe > 0}, C1 := C∞(L,O1).

Note that for the random conductance model bounded from below, C1 = L.
For each realization of C1, there is a continuous time Markov chain Y = (Yt )t≥0

on C1 with transition probabilities P(x, y) = μxy/μx , and the holding time at each
x ∈ C1 being the exponential distribution with mean μ−1

x . Such a Markov chain
is sometimes called a variable speed random walk (VSRW). The corresponding
Dirichlet form is (E,L2(C1;ν)), where ν is the counting measure on C1 and

E(f, g) = 1

2

∑
x,y∈C1,x∼y

(
f (x) − f (y)

)(
g(x) − g(y)

)
μxy for f,g ∈ L2(C1;ν).

The corresponding discrete Laplace operator is LV f (x) = ∑
y(f (y)− f (x))μxy .

For each f,g that have finite support, we have

E(f, g) =− ∑
x∈C1

(LV f )(x)g(x).

We will establish a quenched invariance principle for Y in Section 3.3, but we first
need to derive some preliminary estimates regarding the geometry of C1 and the
heat kernel associated with Y .
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3.1. Percolation estimates. In this section, we derive a number of useful prop-
erties of the underlying percolation cluster C1. Most importantly, we introduce the
concept of “good” and “very good” balls for the model and provide estimates for
the probability of such occurring; see Definition 3.4 and Proposition 3.5 below.

Since a variety of percolation models will appear in the course of this paper, let
us now make explicit that the critical probability for bond/site percolation on an
infinite connected graph containing the vertex 0 is

pc := inf
{
p ∈ [0,1] :Pp(0 is in an infinite connected

cluster of open bonds/sites) > 0
}
,

where Pp is the law of parameter p bond/site percolation on the graph in question.
Note in particular that the critical probability for bond percolation on L is identical
to pbond

c (Zd); see [32], Theorem 7.2 (which is the bond percolation version of a
result originally proved as [33], Theorem A). Recall

O1 := {e ∈ EL :μe > 0}, C1 := C∞(L,O1).

That C1 is nonempty almost-surely is guaranteed by [10], Corollary to Theorem
1.1 (this covers d ≥ 3, and, as is commented there, the case d = 2 can be tackled
using techniques from [36]).

Now, suppose that μ is actually a restriction of independent and identically dis-
tributed (under P) random variables (μe)e∈E

Zd
, where EZd are the usual nearest-

neighbor edges for the integer lattice Zd , and define

Õ1 := {e ∈ EZd :μe > 0}, C̃1 := C∞
(
Zd, Õ1

)
.

For sufficiently large K , so that

q = q(K) := P
(
0 < μe < K−1) + P(μe > K) < p1 − pbond

c

(
Zd)

and writing ÕI := {e ∈ EZd :μe ∈ I } for I ⊆ [0,∞), we let

ÕR := Õ(0,K−1)∪(K,∞),

ÕS := {
e ∈ Õ1 : e ∩ e′ �=∅ for some e′ ∈ ÕR

}
,

Õ2 := Õ1 \ ÕS.

We will also define O2 := Õ2 ∩ EL, and set C2 := C∞(L,O2)—the next lemma
will guarantee that this set is nonempty almost-surely.

To represent the set of “holes,” let H := C1 \ C2. Moreover, for x ∈ C1, let H(x)

be the connected component of C1 \ C2 containing x. The following lemma pro-
vides control on the size of these components. Since its proof is a somewhat tech-
nical adaptation to our setting of that used to establish [3], Lemma 2.3, which dealt
with the whole Zd model, we defer this to the Appendix. Note, though, that in the
percolation case (i.e., when μe are Bernoulli random variables) or the uniformly
elliptic random conductor case, the proof of the result is immediate; indeed, for
large enough K , we have that O2 =O1, and so H=∅.
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LEMMA 3.1. For sufficiently large K , the following hold:

(i) All the connected components of H are finite. Furthermore, there exist con-
stants c1, c2 such that: for each x ∈ L,

P
(
x ∈ C1 and diam

(
H(x)

) ≥ n
) ≤ c1e

−c2n,

where diam denotes the diameter with respect to the 
∞ metric on Zd .
(ii) There exists a constant α such that, P-a.s., for large enough n, the volume

of any hole intersecting the box [−n,n]d ∩L is bounded above by (logn)α .

In what follows, we will need to make comparisons between two graph metrics
on (C1,O1), and the Euclidean metric. The first of these, d1, will simply be defined
to be the shortest path metric on (C1,O1), considered as an unweighted graph. To
define the second metric, d̄1, we follow [8] by defining edge weights

t (e) := CA ∧ μ−1/2
e ,

where CA < ∞ is a deterministic constant, and then letting d̄1 be the shortest path
metric on (C1,O1), considered as a weighted graph (in [8], the analogous metric
was denoted d̃). We note that the latter metric on C1 satisfies(

C−2
A ∨μ{y,z}

)∣∣d̄1(x, y)− d̄1(x, z)
∣∣2 ≤ 1

for any x, y, z ∈ C1 with {y, z} ∈ O1. Observe that, since the weights t (e) are
bounded above by CA, we immediately have that d̄1 is bounded above by CAd1,
Hence, the following lemma establishes both d̄1 and d1 are comparable to the
Euclidean one. An easy consequence of this is the comparability of balls in the
different metrics; see Lemma 3.3. The proofs of both these results are deferred to
the Appendix.

LEMMA 3.2. There exist constants c1, c2, c3 such that: for R ≥ 1,

sup
x,y∈L :
|x−y|≤R

P
(
x, y ∈ C1 and d1(x, y) ≥ c1R

) ≤ c2e
−c3R(3.4)

and also, for every x, y ∈ L,

P
(
x, y ∈ C1 and d̄1(x, y) ≤ c−1

1 |x − y|) ≤ c2e
−c3|x−y|.(3.5)

LEMMA 3.3. There exist constants c1, c2, c3, c4 such that: for every x ∈ L,
R ≥ 1,

P
({x ∈ C1} ∩ {

C1 ∩BE(x, c1R) ⊆ B1(x,R) ⊆ �B1(x,CAR) ⊆ BE(x, c2R)
}c)

≤ c3e
−c4R,

where B1(x,R) is a ball in the metric space (C1, d1), �B1(x,R) is a ball in (C1, d̄1),
and BE(x,R) is a Euclidean ball.
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We continue by adapting a definition for “good” and “very good” balls from [3].
In preparation for this, we define μ0

e := 1{e∈O1}, set μ0
x := ∑

y∈L μ0{x,y} for x ∈ L,

and then extend μ0 to a measure on L. Moreover, we set β := 1 − 2(1 + d)−1.

DEFINITION 3.4. (i) Let CV ,CP ,CW,CR,CD be fixed strictly positive con-
stants. We say the pair (x,R) ∈ C1 ×R+ is good if

B1
(
x,C−1

A r
) ⊆ �B1(x, r) ⊆ B1(x,CDr) ∀r ≥ R,(3.6)

|y − z| ≥ C−1
R R ∀y ∈ �B1(x,R/2), z ∈ �B1(x,8R/9)c,(3.7)

CV Rd ≤ μ0(�B1(x,R)
)
,(3.8)

diam
(
H(y)

) ≤ Rβ ∀y ∈ BE(x,R)∩ C1(3.9)

and the weak Poincaré inequality∑
y∈B1(x,R)

(
f (y)− f̌B1(x,R)

)2
μ0

y ≤ CP R2
∑

y,z∈B1(x,CW R) :
{y,z}∈O1

∣∣f (y) − f (z)
∣∣2(3.10)

holds for every f :B1(x,CWR) →R. [Here, f̌B1(x,R) is the value which minimizes
the left-hand side of (3.10).]

(ii) We say a pair (x,R) ∈ C1 ×R+ is very good if: there exists N = N(x,R) such
that (y, r) is good whenever y ∈ �B1(x,R) and N ≤ r ≤ R. We can always assume
that N ≥ 2. Moreover, if N ≤ M , we will say that (x,R) is M-very good.

(iii) Let α ∈ (0,1]. For x ∈ C1, we define R
(α)
x to be the smallest integer M such

that (x,R) is Rα-very good for all R ≥ M . We set R
(α)
x = 0 if x /∈ C1.

The following proposition, which is an adaptation of [3], Proposition 2.8, pro-
vides bounds for the probabilities of these events and for the distribution of R

(α)
x .

PROPOSITION 3.5. There exist c1, c2,CV ,CP ,CW,CR,CD (depending on
the law of μ and the dimension d) such that the following holds. For x ∈ L, R ≥ 1,
α ∈ (0,1],

P
(
x ∈ C1, (x,R) is not good

) ≤ c1e
−c2R

β

,(3.11)

P
(
x ∈ C1, (x,R) is not Rα-very good

) ≤ c1e
−c2R

αβ

.(3.12)

Hence,

P
(
x ∈ C1,R

(α)
x ≥ n

) ≤ c1e
−c2n

αβ

.(3.13)

PROOF. That

P
(
x ∈ C1, (3.6) does not hold

) ≤ c3e
−c4R

is a straightforward consequence of Lemma 3.3.
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For the second property, we have

P
(
x ∈ C1, (3.7) does not hold

)
= P

(
x ∈ C1,∃y ∈ �B1(x,R/2), z ∈ �B1(x,8R/9)c : |y − z| < C−1

R R
)

≤ P
(
x ∈ C1,∃y ∈ BE(x, c5R)∩ �B1(x,R/2),

z ∈ �B1(x,8R/9)c : |y − z| < C−1
R R

) + c6e
−c7R

≤ c6e
−c7R + ∑

y∈BE(x,c5R)

∑
z∈BE(y,C−1

R R)

P
(
y, z ∈ C1, d̄1(y, z) > R/3

)
≤ c8e

−c9R,

where we apply Lemma 3.3 to deduce the first inequality, and (3.4) to obtain the
final one.

For (3.8), applying Lemma 3.3 again yields

P
(
x ∈ C1, (3.8) does not hold

)
= P

(
x ∈ C1,μ

0(�B1(x,R)
)
< CV Rd)

≤ c10e
−c11R + P

(
x ∈ C1, |C1 ∩BE(x, c12R)| < CV Rd)

.

Now, let Q ⊆ BE(x, c12R) ∩ L be a cube of side-length c13R such that
infy∈L\Q |x − y| ≥ c13R/2. Moreover, if we let C+(Q) be the largest connected
component of the graph (Q,O1), then

P
(
x ∈ C1, (3.8) does not hold

)
≤ P

(
x ∈ C1 ∩ C+(Q), |C1 ∩Q| < CV Rd) + P

(
x ∈ C1 \ C+(Q)

) + c10e
−c11R

≤ P
(∣∣C+(Q)

∣∣ < CV Rd) + P
(
x ∈ C̃1 \ C+(Q)

) + c10e
−c11R.

This bound is now expressed in terms of the full Zd model, for which appropri-
ate estimates already exist. In particular, the first term here is bounded above by
P(G(Q)c), where G(Q) is the event that |C+(Q)| ≥ 1

2P(0 ∈ C̃1)|Q| [recall that
C̃1 := C∞(Zd, Õ1)]. Consequently, by simply translating the relevant part of [3],
Lemma 2.6, to our setting (taking K =∞), we obtain that it is bounded above by
c13e

−c14R
β
. That the second term is bounded above by c15e

−c16R can be established
by applying [6], Lemma 2.8.

To check the fourth property, we simply note

P
(
x ∈ C1, (3.9) does not hold

) ≤ ∑
y∈BE(x,R)∩L

P
(
y ∈ C1,diam

(
H(y)

)
> Rβ)

,

which may be bounded above by c17e
−c18R

β
by applying Lemma 3.1.

Finally, for the Poincaré inequality, we will apply [6], Proposition 2.12. In par-
ticular, this result yields that if Q is a cube of side-length 2R contained in L,
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C+(Q) is the largest connected component of the graph (Q,O1), and H(Q) is the
event that

min
a

∑
y∈C+(Q)

(
f (y)− a

)2
μ0

y ≤ CR2
∑

y,z∈C+(Q) :
{y,z}∈O1

∣∣f (y) − f (z)
∣∣2

for every f :C+(Q) → R, then P(H(Q)c) ≤ c19e
−c20R

β
. Furthermore, it is clear

that if H(Q) holds and also B1(x,R) ⊆ C+(Q) ⊆ B1(x, c21R), then (3.10) holds.
This means that

P
(
x ∈ C1, (3.10) does not hold

)
≤ c22e

−c23R
β + P

({x ∈ C1} ∩ {
B1(x,R) ⊆ C+(Q) ⊆ B1(x, c21R)

}c)
,

where Q is chosen such that BE(x,R) ∩ L⊆ Q. Noting as above that P(x ∈ C1 \
C+(Q)) ≤ c24e

−c25R , at the expense of adjusting constants, we may replace {x ∈
C1} by {x ∈ C1 ∩ C+(Q)} in the above bound. On the event {x ∈ C1 ∩ C+(Q)} ∩
{B1(x,R) ⊆ C+(Q)}c, it is elementary to check that B1(x,R) � BE(x,R), which
is impossible. Since C+(Q) ⊆ BE(x,2R), we have thus shown that

P
(
x ∈ C1, (3.10) does not hold

)
≤ c26e

−c27R
β + P

({x ∈ C1} ∩ {
BE(x,2R) ⊆ B1(x, cR)

}c)
.

By applying Lemma 3.3 once again, this expression is bounded above by
c28e

−c29R
β
, and so we have completed the proof of (3.11).

Given (3.11), a simple union bound subsequently yields (3.12), and the inequal-
ity at (3.13) is a straightforward consequence of this. �

REMARK 3.6. It only requires a simple argument to check that if (x,R) is
good and y ∈ C1 satisfies d1(x, y) ≥ CDR, then

C−1
D d1(x, y) ≤ d̄1(x, y) ≤ CAd1(x, y)

(cf. [8], Lemma 2.10(a)).

Finally, we state a bound that allows us to compare ν with ν̃, which is the
measure-defined similarly from the whole Zd model, that is, uniform measure
on C̃1. Its proof can be found in the Appendix.

LEMMA 3.7. There exists a constant c such that if Q ⊆ L is a cube of side
length n, then

P
(
ν̃(Q)− ν(Q) ≥ nd−1(logn)d+1) ≤ cn−2.

3.2. Heat kernel estimates. Let Dn = n−1C1, �D = Rd1+ × Rd2 (recall R+ :=
[0,∞)). Let Y be the VSRW on C1, and for a given realization of C1 = C1(ω),
ω ∈ �, write P ω

x for the law of Y started from x ∈ C1. Moreover, define Z to be the
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trace of Y on C2, that is, the time change of Y by the inverse of At = ∫ t
0 1(Ys∈C2) ds.

Specifically, writing at = inf{s :As > t} for the right-continuous inverse of A, we
set

Zt = Yat , t ≥ 0.

Note that unlike Y , the process Z may perform long jumps by jumping over
the holes of C2. If x ∈ C2(ω) then we have Z0 = Y0 = x, P ω

x -a.s., but otherwise
Z0 = Ya0 .

Given the percolation estimates of Section 3.1, we can follow [3], Section 4,
to establish the following theorems, which correspond to Proposition 4.7(c) and
Theorem 4.11 in [3]. We remark that the second of the two results will be used
in this paper only for the proof of Theorem 3.12. Since it is the case that, given
Proposition 3.5, the proofs are a simple modification of those in [3], we omit them.
For the statement of the first result, we set

�(R, t) =
{

e−R2/t , if t > e−1R,
e−R log(R/t), if t < e−1R.

PROPOSITION 3.8. Write τZ
A = inf{t :Zt /∈ A}, τY

A = inf{t :Yt /∈ A}. There ex-
ist constants δ, ci ∈ (0,∞) and random variables (Rx, x ∈ L) with

P(Rx ≥ n,x ∈ C1) ≤ c1e
−c2n

δ

,(3.14)

such that the following holds: for x ∈ C1, t > 0 and R ≥ Rx ,

P ω
x

(
τZ
BE(x,R) < t

) ≤ c3�(c4R, t),

P ω
x

(
τY
BE(x,R) < t

) ≤ c3�(c4R, t).

THEOREM 3.9. There exist: constants δ, ci ∈ (0,∞); a set �1 ⊂ � with
P(�1) = 1; and random variables (Sx, x ∈ L) satisfying Sx(ω) < ∞ for each
ω ∈ �1 and x ∈ C2(ω), and

P(Sx ≥ n,x ∈ C2) ≤ c1e
−c2n

δ ;
such that the following statements hold.

(a) For x, y ∈ C2(ω) the transition density of Z, as defined by setting
qZ
t (x, y) := P ω

x (Zt = y), satisfies

qZ
t (x, y) ≤ c3t

−d/2 exp
(−c4|x − y|2/t

)
, t ≥ |x − y| ∨ Sx,

qZ
t (x, y) ≥ c5t

−d/2 exp
(−c6|x − y|2/t

)
, t ≥ |x − y|3/2 ∨ Sx.

(b) Further, if x ∈ C2(ω), t ≥ Sx and B = B2(x,2
√

t) then

q
Z,B
t (x, y) ≥ c7t

−d/2 for y ∈ B2(x,
√

t),

where B2(x,R) is a ball in the (unweighted) graph (C2,O2), and qZ,B is the tran-
sition of Z killed on exiting B , that is, q

Z,B
t (x, y) := P ω

x (Zt = y, τZ
B > t).
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Applying Proposition 3.8, we can establish the following, which corresponds
to [3], Proposition 5.13(b). To state the result, we introduce the rescaled process
Yn = (Y n

t )t≥0 by setting

Yn
t := n−1Yn2t .

PROPOSITION 3.10 (Tightness). Let K,T , r > 0. For P-a.e. ω, the following
is true: if xn ∈ Dn,n ≥ 1, x ∈ BE(0,K) are such that xn → x, then

lim
R→∞ lim sup

n→∞
P ω

nxn

(
sup
s≤T

∣∣Yn
s

∣∣ > R
)
= 0,(3.15)

lim
δ→0

lim sup
n→∞

P ω
nxn

(
sup

|s1−s2|≤δ,si≤T

∣∣Yn
s2
− Yn

s1

∣∣ > r
)
= 0.(3.16)

In particular, for P-a.e. ω, if xn ∈ Dn,n ≥ 1, x ∈ �D are such that xn → x, un-
der P ω

nxn
, the family of processes (Y n

t )t≥0, n ∈N is tight in D([0,∞), �D).

PROOF. Since the statement is slightly different from [3], Proposition 5.13, we
sketch the proof. Note that since xn → x ∈ BE(0,K), then by setting M = K + 1
we have that nxn ∈ BE(0, nM) for all n suitably large. Let nR > supn Rnxn . Then,
by Proposition 3.8,

P ω
nxn

(
sup
s≤T

∣∣Yn
s

∣∣ > R
)
= P ω

nxn

(
τY
BE(0,nR) < n2T

) ≤ c1�
(
c2nR,n2T

)
.

Considering separately the cases 1/n < T/R and 1/n ≥ T/R, we deduce that

P ω
nxn

(
sup
s≤T

∣∣Yn
s

∣∣ > R
)
≤ c3e

−c4R
2/T ∨ e−R.

Since lim supn Rnxn/n ≤ lim supn supx∈BE(0,Mn) Rx/n < ∞, P-a.s., due to the
Borel–Cantelli argument using (3.14), we obtain (3.15).

We next prove (3.16). Write

p(x,T , δ, r) = P ω
x

(
sup

|s1−s2|≤δ,si≤T

|Ys2 − Ys1 | > r
)
,

so that

P ω
nxn

(
sup

|s1−s2|≤δ,si≤T

∣∣Yn
s2
− Yn

s1

∣∣ > r
)
= p

(
nxn,n

2T ,n2δ, nr
)
.

Arguing similar to the proof of [3], Proposition 5.13, we have

p
(
nxn,n

2T ,n2δ,2nr
) ≤ c exp

(−cnT 1/2) + c(T /δ) exp
(−cr2/δ

)
,

provided

T 1/2 ≥ n−1R2/3
x , δ > n−1r, r ≥ n−1 max

y∈BE(nxn,n3/2T 3/4)
Ry.(3.17)
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Note that BE(nxn,n
3/2T 3/4) ⊂ BE(0, nM + n3/2T 3/4) for large n. If T , r and

δ are fixed, due to the Borel–Cantelli argument using (3.14), each of conditions
in (3.17) holds when n is large enough. So, for P-a.e. ω,

lim sup
n→∞

p
(
nxn,n

2T ,n2δ,2nr
) ≤ c(T /δ) exp

(−cr2/δ
)

and (3.16) follows.
Using (3.15) and (3.16), we have tightness for {P ω

nxn
} by [31], Corollary 3.7.4.

�

We can further establish the following theorems, which correspond
to [17], Lemma 5.6, Proposition 6.1 and [3], Theorem 7.3. We denote by
(qY

t (x, y))x,y∈C1,t>0 the heat kernel associated with Y , that is, for x, y ∈ C1, t > 0,

qY
t (x, y) := P ω

x (Yt = y).

(We recall that the invariant measure of Y is the uniform measure ν on C1.)

PROPOSITION 3.11. There exist c1, c2, c3, γ ∈ (0,∞) (nonrandom) and ran-
dom variables (Rx, x ∈ L) with

P(Rx ≥ n,x ∈ C1) ≤ exp
(−c1n

γ )
,(3.18)

such that if x, y ∈ C1, then

qY
t (x, y) ≤ c2t

−d/2 for t ≥ (
c3 ∨ 2d1(x, y)∨ Rx

)1/4
.

PROOF. Note that the corresponding result for Z-process is given in [3],
Corollary 4.3. We need to obtain similar result for Y -process. First, note that be-
cause we have Proposition 3.5, the proof of [3], Proposition 4.1 and Corollary
4.3 (with ε = 1/4 for simplicity) goes through once (4.7) in [3] is verified. To
check [3], (4.7), we use [8], Theorem 2.3, which can be proved almost identically
in our case. Note that in [8], Theorem 2.3, the metric d̃ is used, but thanks to Re-
mark 3.6, we can obtain the same estimates using the metric d1. Finally, using
Cauchy–Schwarz, we obtain the desired inequality. �

For G ⊂ C1, we define ∂out(G) to be the exterior boundary of G in the graph
(C1,O1), that is, those vertices of C1 \G that are connected to G by an edge in O1,
and set cl(G) = G∪ ∂out(G). We say that a function h is Y -harmonic in A ⊂ C1 if
h is defined on cl(A) and LV h(x) = 0 for x ∈ A.

THEOREM 3.12 (Elliptic Harnack inequality). There exist random variables
(R′

x, x ∈ L) with

P
(
x ∈ C1,R

′
x ≥ n

) ≤ ce−c′nδ
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and a constant CE such that if x0 ∈ C1, R ≥ R′
x0

and h : cl(B1(x0,R)) → R+ is
Y -harmonic on B1 = B1(x0,R), then writing B ′

1 = B1(x0,R/2),

sup
B ′

1

h ≤ CE inf
B ′

1

h.

PROOF. Given Lemma 3.1, the proof is almost identical to that of [3], Theo-
rem 7.3. �

3.3. Quenched invariance principle. To prove a quenched invariance principle
for Y (see Theorem 3.17 below), we will check the conditions of Theorem 2.1 one
by one. We choose δn = c2∗/n, where c∗ is a constant that will be chosen later.
First, since Xn is a continuous time Markov chain with holding time at x being
an exponential random variable of mean μ−1

x , it is conservative. Condition (ii) in
Theorem 2.1 is a consequence of the quenched invariance principle for the whole
space (cf. [3]) and the fact that C1 ⊆ C̃1, which is a consequence of the uniqueness
of the infinite percolation clusters in the two settings. Since in the original papers
quenched invariance principles are uniformly stated in terms of the random walk
started from the origin, whereas we require such to hold from an arbitrary starting
point, we state the following generalization of existing results. We will suppose
that P̃ ω

y refers to the quenched law of the VSRW Ỹ on C̃1 started from y ∈ C̃1, and
Ỹ n refers to the rescaled process defined by setting Ỹ n

t := n−1Ỹn2t . The proof of
the result can be found in the Appendix.

THEOREM 3.13. There exists a deterministic constant c ∈ (0,∞) such that,
for P-a.e. ω, the laws of the processes Ỹ n under P̃ ω

nxn
, where nxn ∈ C1 and xn → x,

converge weakly to the laws of (Bct )t≥0, where (Bt )t≥0 is standard Brownian mo-
tion on Rd started from x.

Concerning Assumption 2.3(i), we will prove the following: there exist c∗, c1 ∈
(0,∞) (nonrandom) and N0(ω) such that for all n ≥ N0(ω), x0, x ∈ BE(0, n1/2)∩
Dn and c∗/n1/2 ≤ r ′ ≤ 1,

Eω
x

(
τBE(x0,r

′)∩Dn

(
Yn)) ≤ c1r

′2.(3.19)

Applying Proposition 3.11, we have the following: for all x0, x ∈ BE(0, n3/2)∩ C1
and r ≤ n, if c2r

2 ≥ (c3 ∨ 2 supz∈BE(x0,r)∩C1
d1(x, z)∨ Rx)

1/4, then

P ω
x

(
τY
BE(x0,r)∩L ≥ c2r

2) ≤ P ω
x

(
Yc2r

2 ∈ BE(x0, r)
)

=
∫
BE(x0,r)

qY
c2r

2(x, z)μ0(dz)(3.20)

≤ c

(c2r2)d/2 μ0(
BE(x0, r)

) ≤ cc4r
d

c
d/2
2 rd

≤ 1/2,
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where we used μ0(BE(x0, r)) ≤ c4r
d and we set c2 := (2cc4)

2/d ∨ c
1/4
3 . Now, us-

ing Lemma 3.3, there exists N1(ω) ∈ N that satisfies P(N1(ω) ≥ m) ≤ c1e
−c2m

such that BE(x, c1R) ⊂ B1(x,R) for x ∈ BE(0,R) ∩ C1 and R ≥ N1(ω). On
the other hand, |x − z| ≤ |x| + |x0| + |x0 − z| ≤ 2n3/2 + r for z ∈ BE(x0, r),
so taking r ≥ c∗n1/2 with c∗ large enough, there exists N2(ω) that satisfies
P(N2(ω) ≥ m) ≤ c1e

−c2m such that c2r
2 ≥ (2 supz∈BE(x0,r)∩C1

d1(x, z))1/4 holds
for n ≥ N2(ω). Next, by (3.18),

P
(

sup
x∈BE(0,n3/2)∩C1

Rx ≥ n
)
≤ n3d/2e−c1n

γ

.

Summarizing, (3.20) holds for all x0, x ∈ BE(0, n3/2) ∩ C1, c∗n1/2 ≤ r ≤ n and
n ≥ N0(ω) := N2(ω) ∨ N3(ω), where N3(ω) := supx∈BE(0,n3/2)∩C1

Rx . Moreover,
the random variable N0(ω) is almost-surely finite; in fact, we have the following
tail bound for it, which will be useful in Example 4.1 below:

P
(
N0(ω) ≥ m

) ≤ c1e
−c2m

γ

.(3.21)

Using the Markov property, we can inductively obtain

P ω
x

(
τY
BE(x0,r)∩L ≥ kc2r

2) ≤ (1/2)k ∀k ∈N.

So,

Eω
x

(
τY
BE(x0,r)∩L

) ≤ ∑
k

(k + 1)c2r
2P ω

x

(
kc2r

2 ≤ τY
BE(x0,r)∩L < (k + 1)c2r

2)
≤ 3c2r

2.

For Yn = n−1Yn2t , we therefore have: for n ≥ N0(ω), x0 ∈ BE(0, n1/2) ∩ Dn, x ∈
BE(0, n1/2)∩Dn and c∗/n1/2 ≤ r ′ ≤ 1,

Eω
nx

(
τBE(x0,r

′)∩Dn

(
Yn)) ≤ 1

n2 Eω
nx

(
τY
BE(nx0,r)∩L

) ≤ 1

n2 · 3c2r
2 = 3c2r

′2,

where r = nr ′. Thus, (3.19) holds, and so Assumption 2.3(i) holds with δn = c2∗/n,
β = 2.

Regarding Assumption 2.3(ii) we observe that, using Theorem 3.12, the relevant
condition can be obtained similar to [9], Proposition 3.2. (Note that Proposition 3.2
in [9] is a parabolic version, whereas we just need an elliptic version.) Indeed,
taking (logn)2/δ as n in Theorem 3.12,

P
(

sup
x∈BE(0,cn2)∩C1

R′
x ≥ (logn)2/δ

)
≤ cdn2de−c′(logn)2 ≤ c′/n2.

Thus, by the Borel–Cantelli lemma, there exists N1(ω) ∈N such that

sup
x∈BE(0,cn2)∩C1

R′
x ≤ (logn)2/δ ∀n ≥ N1(ω),
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so the elliptic Harnack inequality holds for Y -harmonic functions on balls
BE(x0,R) with x0 ∈ BE(0, cn2), R ≥ (logn)2/δ . By scaling Yn(t) = n−1Yn2t ,
the elliptic Harnack inequality holds uniformly for Yn-harmonic functions on
BE(x0,R) with x0 ∈ BE(0, cn), R ≥ (logn)2/δ/n. Given the elliptic Harnack in-
equality, we can obtain the desired Hölder continuity in a similar way as in the
proof of Proposition 3.2 of [9]. Thus, setting δn := c2∗/n, Assumption 2.3(ii) holds

for R ≥ δ
1/2
n , since δ

1/2
n ≥ (logn)2/δ/n.

Next, we remark that part (i) of Assumption 2.6 is direct from Proposition 3.10,
and part (ii) follows from Proposition 3.10 [especially (3.16) implies the condi-
tion].

The following proposition gives the appropriate convergence for the sequence
of measures (mn)n≥1 defined by setting mn := n−dν(n·). (Recall that ν is the in-
variant measure for Y , and so the measure mn is invariant for Yn.)

PROPOSITION 3.14. P-a.s., the measures (mn)n≥1 converge vaguely to m,
a deterministic multiple of Lebesgue measure on �D.

PROOF. First note that if Q ⊂ �D is a cube of side length λ, then applying
Lemma 3.7 in a Borel–Cantelli argument yields that, P-a.s.,

ν̃(nQ) − ν(nQ)

nd
→ 0.(3.22)

Next, consider a rectangle of the form R = [0, λ1] × · · · × [0, λd ]. Since the full
Zd model is ergodic under coordinate shifts, a simple application of a multidimen-
sional ergodic theorem yields that, P-a.s.,

ν̃(nR)

nd
→ c1

d∏
i=1

λi,

where c1 := P(0 ∈ C̃1) ∈ (0,1]. An inclusion–exclusion argument allows one to
extend this result to any rectangle of the form [x1, x1 + λ1] × · · · × [xd, xd + λd ],
where xi ≥ 0 for i = 1, . . . , d . Clearly, the particular orthant is not important, so
the result can be further extended to cover any rectangle R ⊂ �D, and, in particular,
we have that, P-a.s.,

ν̃(nQ)

nd
→ c1λ

d.

Applying (3.22), we obtain that the above limit still holds when ν̃ is replaced by ν.
The proposition follows. �

Finally, in order to verify condition (iii) in Theorem 2.1, we first give a lemma.
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LEMMA 3.15. Let {ηi}i≥1 be independent and identically distributed with
E|η1| < ∞. Suppose {an

k }nk=1 is a sequence of real numbers with |an
k | ≤ M for

all k,n (here M > 0 is some fixed constant) such that the following two limits
exist:

a := lim
n→∞

1

n

n∑
k=1

an
k , lim

n→∞
1

n

n∑
k=1

∣∣an
k

∣∣.
It then holds that 1

n

∑n
k=1 an

k ηk converges to aE[η1] almost surely as n →∞.

PROOF. This can be proved similarly to Etemadi’s proof of the strong law of
large numbers (see [30]). �

PROPOSITION 3.16. If C0 := E(μe) < ∞, then P-a.s.,

Ẽ(f, f ) ≤ lim sup
n→∞

E (n)(f, f ) ≤ C0

∫
�D
∣∣∇f (x)

∣∣2 dx ∀f ∈ C2
c (�D),(3.23)

where C2
c (�D) is the space of compactly supported functions on �D with a continu-

ous second derivative, and

E (n)(f, f ) := n2−d

2

∑
x,y∈C1 :
{x,y}∈O1

(
f (x/n) − f (y/n)

)2
μx,y

is the Dirichlet form on L2(Dn;mn) corresponding to Yn. In particular, condi-
tion (iii) in Theorem 2.1 holds.

PROOF. The first inequality of (3.23) is standard. Indeed,

Ẽ(f, f ) = sup
t>0

1

t
(f − Ptf,f ) = sup

t>0
lim inf
k→∞

1

t

(
f − P

nj(k)

t f, f
)

≤ lim inf
k→∞ sup

t>0

1

t

(
f − P

nj(k)

t f, f
) = lim inf

k→∞ E (nj (k))(f, f ),

where the first inner product is in L2(�D;m), and the other two are in
L2(Dnj(k)

;mnj(k)
). Moreover, to establish the second inequality of (3.23), we apply

the local uniform convergence of P
nj(k)

t f to Ptf (cf. the proof of Proposition 2.8)
and the vague convergence of mnj(k)

to m (Lemma 3.14). We now prove the second
inequality. Suppose Suppf ⊂ BE(0,M)∩ �D for some M > 0, then

E (n)(f, f ) = n2−d

2

∑
(x,y)∈Hn,M

(
f (x/n) − f (y/n)

)2
μx,y,

where Hn,M := {(x, y) :x, y ∈ BE(0, nM)∩C1, {x, y} ∈O1}. Clearly, this quantity
increases when Hn,M is replaced by H ′

n,M := {(x, y) :x ∈ BE(0, nM)∩L, {x, y} ∈
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EZd }. Note that #H ′
n,M ∼ c1(nM)d . Moreover, set an

(x,y) := n2(f (x/n) −
f (y/n))2 and η(x,y) := μx,y . Then, since f ∈ C2

c , 0 ≤ a(x,y) ≤ M ′ for some
M ′ > 0, and further,

lim
n→∞

(
2c1(nM)d

)−1 ∑
(x,y)∈H ′

n,M

an
(x,y) = c−1

1 M−d
∫
�D
∣∣∇f (x)

∣∣2 dx

by applying Lemma 3.15, we obtain that, P-a.s.,

lim
n→∞n−d

∑
(x,y)∈H ′

n,M

an
(x,y)η(x,y) = 2C0

∫
�D
∣∣∇f (x)

∣∣2 dx.

The result at (3.23) follows. �

Putting together the above results, we conclude the following.

THEOREM 3.17. For the random conductance model on L with independent
and identically distributed conductances (μe)e∈EL

satisfying (3.1), (3.2) and (3.3),
there exists a deterministic constant c ∈ (0,∞) such that, for P-a.e. ω, the laws
of the processes Yn under P ω

nxn
, where nxn ∈ C1 and xn → x, converge weakly to

the laws of {Xct ; t ≥ 0}, where {Xt ; t ≥ 0} is the reflecting Brownian motion on �D
started from x.

REMARK 3.18. (i) The diffusion constant c is the same for the model re-
stricted to L as for the full Zd model.

(ii) When the conductance is not bounded from below, we cannot apply our
theorem because Assumption 2.3(i) does not hold in general, and we do not
know how to obtain the quenched invariance principle without this. Indeed, con-
sider the realization of edge weights shown in Figure 2, where the conductance
on {x, y} is 1 and it is O(n−α) on {y, z} where α > 2. One can easily com-
pute that Eω

x τBE(x,2)(Y ) ≥ c1n
α � n2. Let p0 = P(μe = 0) and p1 = P(μe = 1).

Then the probability that such a trap configuration appears is p4d−3
0 p1P(0 <

μe ≤ n−α) = c2P(0 < μe ≤ n−α). Now let �n := {∃xn ∈ BE(0, n/2) such that
Eω

xn
τBE(xn,2)(Y ) ≥ c3n

α}. If we have P(0 < μe ≤ x) ≥ c4x
d/α for small x > 0,

FIG. 2. An example trap structure.
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then P(�n) ≥ 1 − (1 − c4n
−d)n

d ≥ 1 − e−c5 for large n. In particular, lim supn �n

occurs with positive probability. Set Xn
t := n−1Yn2t . Then, for ω ∈ �n, we have

Eω
n−1xn

(
τBE(0,1)∩Dn

(
Xn)) = Eω

xn

(
τBE(0,n)∩D0(Yn2·)

)
≥ Eω

xn

(
τBE(xn,2)(Yn2·)

) ≥ c3n
α−2.

Since �n occurs infinitely often with positive probability, Assumption 2.3(i) does
not hold for any choice of β > 0 (by choosing x0 = 0, r = 1).

(iii) There is another natural continuous time Markov chain on C1, namely with
transition probability P(x, y) = μxy/μx and the holding time being the exponen-
tial distribution with mean one for each point. [Such a Markov chain is sometimes
called a constant speed random walk (CSRW).] It is a time change of the VSRW;
the corresponding Dirichlet form is (E,L2(C1;μ)), and the corresponding discrete
Laplace operator is LCf (x) = 1

μx

∑
y(f (y)−f (x))μxy . For the whole space case,

one can deduce the quenched invariance principle of CSRW from that of VSRW
by an ergodic theorem. (See [3], Section 6.2 and [8], Section 5. Note that the lim-
iting process degenerates if Eμe =∞.) Since our state space L features a lack of
translation invariance, we cannot use the ergodic theorem. So far, we do not know
how to circumvent this issue to prove the quenched invariance principle for gen-
eral CSRW on L. (However, we do note that for the case of random walk on a
supercritical percolation cluster, the CSRW and VSRW behave similarly, and the
quenched invariance principle for the CSRW can be proved in a similar way as for
the VSRW case. Moreover, the quenched invariance principle for the discrete time
simple random walk on C1 follows easily from that for the CSRW.)

(iv) To extend Theorem 3.17 to apply to more general domains, it will be enough
to check the percolation estimates from which we deduced Assumptions 2.3
and 2.6 in these settings. While we believe doing so should be possible, at least
under certain smoothness assumptions on the domain boundary, we do not feel
the article would benefit significantly by the increased technical complication of
pursuing such results, and consequently omit to do so here. Instead, we restrict our
discussion of more general domains to the case of uniformly elliptic conductances,
where the relevant estimates are straightforward to check (see Section 4.2 below).
Similarly, given suitable full-space quenched invariance principles and percola-
tion estimates (namely the estimates given in Lemmas 3.1–3.3), our results should
readily adapt to percolation models on other lattices.

(v) Given the various estimates we have established so far, it is possible to ex-
tend the quenched invariance principle of Theorem 3.17 to a local limit theorem,
that is, a result describing the uniform convergence of transition densities. More
specifically, the additional ingredient needed for this is an equi-continuity result
for the rescaled transition densities on C1, which can be obtained by applying an
argument similar to that used to deduce Assumption 2.3(ii), together with the heat
kernel upper bound estimate of Proposition 3.11. Since the proof of such a result
is relatively standard (cf. [9, 25]), we will only write out the details in the compact
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box case (see Section 4.1 below), where convergence of transition densities is also
useful for establishing convergence of mixing times.

4. Other examples.

4.1. Random conductance model in a box. The purpose of this section is to
explain how to adapt the results of Section 3 to the compact space case. For d ≥ 2
fixed, set B(n) := [−n,n]d ∩Zd , let EB(n) = {e = {x, y} :x, y ∈ B(n), |x−y| = 1}
be the set of nearest neighbor bonds, and suppose μ = (μe)e∈E

Zd
is a collection

of independent random variables satisfying the assumptions made on the weights
in Section 3, that is, (3.1), (3.2) and (3.3). For each n and each realization of μ,
let C1(n) be the largest component of B(n) that is connected by edges satisfying
μe > 0, and let Yn be the VSRW on C1(n). We will write P ω

n,x for the quenched
law of Yn started from x ∈ C1(n). The aim of this section is to show, via another
application of Theorem 2.1, that Xn = (Xn

t )t≥0, defined by setting

Xn
t := n−1Yn

n2t
,

converges as n →∞ to reflecting Brownian motion on D = [−1,1]d , for almost-
every realization of the random environment μ. We observe that, in the case of
uniformly elliptic random conductances, this result was recently established using
an alternative argument in [18]. Note also that, by applying a result from [26],
the above functional scaling limit readily yields the corresponding convergence of
mixing times (see Corollary 4.4 below for a precise statement).

To prove the results described in the previous paragraph, we start by considering
a decomposition of B(n). In particular, fix ε ∈ (0,1) and for i = (i1, . . . , id) ∈
{−1,1}d , let Bε

i (n) be the cube of side-length �n(1 + ε) which has a corner at ni

and contains 0. Within each of the 2d sets of the form Bε
i (n), the random walk on

C1(n) reflects only at the faces of the box adjacent to the single corner vertex ni.
As a consequence, we will be able to transfer a number of key estimates to the
current framework from the unbounded case considered in Section 3—note that
the reason for taking ε > 0 is so that the boxes Bε

i (n) overlap, which will allow us
to “patch” together results proved for different parts of the box. For the purpose of
transferring results from Section 3, the following lemma will be useful. Its proof
can be found in the Appendix.

LEMMA 4.1. There exist constants c1, c2 such that if Q1,Q2 ⊆ Zd+ are the
cubes of side length �n(1+ε) , 2n containing 0, respectively, C+(Q2) is the largest
connected component of the graph (Q2,O1), and C1 is the unique infinite compo-
nent of (Zd+,O1), then

P
(
C+(Q2) ∩Q1 �= C1 ∩Q1

) ≤ c1e
−c2n.
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FIG. 3. Schematic illustration of how, for large n, the largest cluster C1(n) (dark-grey) in B(n)

(square with solid boundary) and the largest cluster Ci
1(n) (light-grey) in the quarter-plane with

corner in and containing 0 agree within Bε
i (n) (square with dashed boundary).

In particular, if Ci
1(n) is the unique infinite percolation cluster on the copy of Zd+

that has corner vertex ni and contains 0, then the above result implies that with
probability at least 1 − c1e

−c2n (or, by Borel–Cantelli, almost-surely for large n)
we have that

C1(n) ∩Bε
i (n) = Ci

1(n) ∩Bε
i (n) ⊆ C̃1 ∀i ∈ {−1,1}d,(4.1)

where the inclusion is a consequence of the uniqueness of the infinite percolation
clusters in question. (This result is summarized by Figure 3.)

We now check the conditions listed at the end of Section 2 one by one. Since in
light of (4.1), most of these are straightforward adaptations of the arguments given
in Section 3, we will only provide a brief description of how to do this. First, as
was the case in the L setting, since Xn is a continuous time Markov chain with
holding time at x being exp(μx), it is conservative. Second, given (4.1), condi-
tion (ii) in Theorem 2.1 is a consequence of the quenched invariance principle for
the whole space stated as Theorem 3.13. Moreover, since C1(n) agrees with C̃1 up
to a distance c logn of the boundary, at least for large n (see [13], Proposition 1.2),
by applying the full Zd version of Proposition 3.14, we have that the measures mn,
defined analogously to the previous section, P-a.s. converge weakly to (a suitably
rescaled version of) Lebesgue measure on [−1,1]d . Similarly, the Dirichlet form
comparison of (iii) can be obtained by following the same argument used to prove
the corresponding result in Section 3—Proposition 3.16. Applying (4.1), we are
also able to deduce the following tightness result, which is analogous to Proposi-
tion 3.10, and from which Assumption 2.6 is readily obtained.
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PROPOSITION 4.2. For P-a.e. ω, if xn ∈ n−1C1(n), n ≥ 1 is such that
xn → x ∈ �D, then under P ω

n,nxn
, the family of processes (Xn

t )t≥0, n ∈ N is
tight in D([0,∞), [0,1]d), and any convergent subsequence has limit in
C([0,∞), [0,1]d).

PROOF. Note that in the bounded case the limit corresponding to (3.15) is
immediate, and hence it will suffice to check the limit corresponding to (3.16). To
do this, the same argument can be applied, so long as one can check the following:
for any r ∈ (0, ε), there exist ci and random variables (Rn

x , x ∈ B(n), n ≥ 1) with

P
(
Rn

x ≥ rn, x ∈ C1(n)
) ≤ c1e

−c2n
δ

,

such that if x ∈ C1(n), t > 0 and R ≥ Rn
x , then

P ω
n,x

(
τYn

BE(x,R) < t
) ≤ c3�(c4R, t).(4.2)

For this purpose, if x ∈ B0
i (n), set R̃n

x to be equal to Rn,i
x , the quantity defined in

Proposition 3.8 with C1 replaced by Ci
1(n). If R̃n

x ≤ εn and the part of C1(n) con-
tained in BE(x, εn) is identical to the part of Ci

1(n) contained in this set, then set
Rn

x = R̃n
x . Else, set Rn

x = 3n. The required exponential decay for the distributional
tail of Rn

x then follows from Proposition 3.8 and (4.1). Moreover, since the prob-
ability on the left-hand side of (4.2) is 0 for R ≥ 3n, the bound at (4.2) follows.

�

It remains to check Assumption 2.3. For part (i), we simply note that the combi-
nation of (3.19) [or more precisely, the exponential tail bound for N0 that appears
as (3.21)] and (4.1) in a standard Borel–Cantelli argument implies the following:
there exist c∗, c1 > 0 (nonrandom) and N0(ω) such that if n ≥ N0(ω), then, for
each x0, x ∈ n−1C1(n) and c∗/n1/2 ≤ r ′ ≤ 1,

Eω
n,x

(
τBE(x0,r

′)
(
Xn)) ≤ c1r

′2

as desired. For part (ii) of this assumption, first note that we can obtain the elliptic
Harnack inequality uniformly for Xn-harmonic functions on BE(x0,R), where
x0 ∈ n−1C1(n) and (logn)2/δ/n ≤ R ≤ 1 for large n. [This can be proved similarly
as before, namely when x0 ∈ B0

i (n), Theorem 3.12 can be applied by replacing C1

by Ci
1(n) due to (4.1).] Given the elliptic Harnack inequality, we can obtain Hölder

continuity in a similar way as in the proof of [9], Proposition 3.2, for example.
Hence, we have established the following.

THEOREM 4.3. There exists a constant c ∈ (0,∞) such that, for P-a.e. ω,
the process Xn under P ω

n,nxn
, where nxn ∈ C1 and xn → x ∈ [−1,1]d , converges

in distribution to (Bct )t≥0, where (Bt )t≥0 is the reflecting Brownian motion on
[−1,1]d started from x.
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Next, for p ∈ [1,∞], define the Lp mixing time of the VSRW on C1(n) to be

t
p
mix

(
C1(n)

)
(4.3)

:= inf
{
t > 0 : sup

x∈C1(n)

(∫
C1(n)

∣∣qn
t (x, y)− 1

∣∣pπn(dy)

)1/p

<
1

4

}
,

where we denote by qn the transition density of the VSRW with respect to its
(unique) invariant probability measure πn. The above result then has the following
corollary. Note that in the percolation setting, the obvious adaptation of this result
to discrete time gives a refinement of the first statement of [13], Theorem 1.1.

COROLLARY 4.4. Fix p ∈ [1,∞]. For P-a.e. ω, we have that

n−2t
p
mix

(
C1(n)

) → c−1t
p
mix

([−1,1]d)
,

where c is the constant of Theorem 4.3, and t
p
mix([−1,1]d) is the mixing time of

reflecting Brownian motion on [−1,1]d [defined analogously to (4.3)].

PROOF. First note that a simple rescaling yields that, P-a.s., πn converges
weakly to a rescaled version of Lebesgue measure on [−1,1]d . The P-a.s. Haus-
dorff convergence of n−1C1(n) (equipped with Euclidean distance) to [−1,1]d is
a straightforward consequence of this. To establish the corollary by applying [26],
Theorem 1.4, it will thus be enough to extend the weak convergence result of The-
orem 4.3 to a uniform convergence of transition densities (so as to satisfy [26],
Assumption 1). According to [26], Proposition 2.4 (cf. [25], Theorem 15) and the
quenched invariance principle mentioned above, it is enough to show [26], (2.11),
namely, for any 0 < a < b < ∞,

lim
δ→0

lim sup
n→∞

sup
x,y,z∈n−1C1(n) :
dE(ny,nz)≤nδ

sup
t∈[a,b]

∣∣qn
n2t

(nx,ny)− qn
n2t

(nx,nz)
∣∣ = 0.(4.4)

To prove this, first we have the following Hölder continuity, which can be checked
similarly to Assumption 2.3(ii):∣∣qn

n2t
(nx,ny)− qn

n2t
(nx,nz)

∣∣ ≤ c1|y − z|γ ∥∥qn
n2t

(nx, ·)∥∥∞
(4.5)

∀x, y, z ∈ n−1C1(n).

For 0 < a ≤ t < 1, say, a compact version of Proposition 3.11 and scaling gives
that ∥∥qn

n2t
(nx, ·)∥∥∞ ≤ c3

∣∣C1(n)
∣∣(n2t

)−d/2 ≤ c3a
−d/2

for large n. For t ≥ 1, Cauchy–Schwarz and monotonicity of qn
n2t

(nx,nx) implies
‖qn

n2t
(nx, ·)‖∞ ≤ c4. In particular,∥∥qn

n2t
(nx, ·)∥∥∞ ≤ c2(a)(4.6)
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uniformly in x ∈ Dn, t ≥ a, for large n, P-a.s. Thus, for t ∈ [a, b], the right-hand
side of (4.5) is bounded from above by c3(a)|y − z|γ . Taking n → ∞ and then
δ → 0, we obtain (4.4). �

Finally, as a corollary of the heat kernel continuity derived in the proof of
the previous result, we obtain the following local central limit theorem. We let
gn : [−1,1]d → C1(n) be such that gn(x) is a closest point in C1(n) to nx in the
| · |∞-norm. (If there is more than one such point, we choose one arbitrarily.)

COROLLARY 4.5. Let qt (·, ·) be the heat kernel of the reflecting Brownian
motion on [−1,1]d . For P-a.e. ω and for any 0 < a < b < ∞, we have that

lim
n→∞ sup

x,y∈[−1,1]d
sup

t∈[a,b]
∣∣qn

nt

(
gn(x), gn(y)

) − qct (x, y)
∣∣ = 0,(4.7)

where c is the constant of Theorem 4.3.

PROOF. Given the above results, the proof is standard. By (4.5) and (4.6) and
the Ascoli–Arzelà theorem (along with the Hausdorff convergence of n−1C1(n)

to [−1,1]d ), there exists a subsequence of qn
nt (gn(·), gn(·)) that converges uni-

formly to a jointly continuous function on [a, b] × [−1,1]d × [−1,1]d . Using
Theorem 4.3, it can be checked that this function is the heat kernel of the limiting
process. Since the limiting process is unique, we have the convergence of the full
sequence of qn

nt (gn(·), gn(·)). The uniform convergence in (4.7) is then another
consequence of (4.5) and (4.6). �

4.2. Uniformly elliptic random conductances in uniform domains. When the
conductances are uniform elliptic, that is, bounded from above and below by fixed
positive constants, we can obtain quenched invariance principles for a much wider
class of domains than those considered in the examples presented so far. In partic-
ular, let D be a uniform domain in Rd , d ≥ 2. For each n ≥ 1, let D̂n be the largest
connected component of nD∩Zd , and set ED̂n

= {e = {x, y} :x, y ∈ D̂n, |x−y| =
1}. Suppose μ = (μe)e∈E

Zd
is a collection of independent random variables such

that

P(C1 ≤ μe ≤ C2) = 1 ∀e ∈ EZd ,

where C1,C2 are nonrandom positive constants. Let Yn be either VSRW or CSRW
on D̂n. Moreover, set Dn := n−1D̂n and define Xn

t := n−1Yn
n2t

. It is then the case
that Xn = (Xn

t )t≥0 converges as n → ∞ to a (constant time change of) reflecting
Brownian motion on D, for P-almost-every realization of the random environ-
ment μ.

Since checking the details for this case is much simpler than for previous set-
tings, we will not provide a full proof of the result described in the previous
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paragraph, but merely indicate how to establish the key estimates. Indeed, in the
uniformly elliptic case, we have

c1R
d ≤ n−d

∣∣BE(x,R)∩ Dn

∣∣ ≤ c2R
d,

c3R
d ≤ n−dμ

(
BE(x,nR)∩ D̂n

) ≤ c4R
d

for all large n and all n−1 ≤ R ≤ diam(D), x ∈ D, where ci are nonrandom posi-
tive constants. Furthermore, the weak Poincaré inequality (3.10) holds both for the
counting measure and n−dμ uniformly for n−1 ≤ R ≤ diam(D), in the sense that
the constants do not depend on n. Given these, we can apply [27] (and the natural
relations between heat kernels of discrete and continuous time Markov chains) to
deduce

c5t
−d/2 exp

(−c6|x − y|2/t
) ≤ qn

t (x, y) ≤ c7t
−d/2 exp

(−c8|x − y|2/t
)
,

|x − y| ≤ t ≤ diam(D),

where qn
t (x, y) is defined as n−dP ω

x (Xn
t = y) for the VSRW and n−dμ(ny)−1 ×

P ω
x (Xn

t = y) for the CSRW. Given these heat kernel estimates, it is then straight-
forward to verify the conditions required for the quenched invariance principle by
applying similar arguments to those of Sections 3 and 4.1.

4.3. Uniform elliptic random divergence form in domains. In this section, we
explain how Theorem 2.1 can be applied in the random divergence form setting.
Let D be a uniform domain in Rd , d ≥ 2. Assume that we have a random diver-
gence form as follows. There exists a probability space (�,P) with shift operators
(τx)x∈Rd that are ergodic, and a symmetric d × d matrix Aω(x) for each x ∈ Rd

and ω ∈ � such that Aω(x) = Aτxω(0) and

P
(
c1I ≤ Aω(x) ≤ c2I

) = 1 ∀x ∈Rd,

where c1, c2 ∈ (0,∞) are deterministic constants. For n ≥ 1, let

En(f, f ) = 1

2

∫
nD

∇f (x)Aω(x)∇f (x) dx.

Let (Y n
t )t≥0 be the reflected diffusion process on n�D associated with the regular

Dirichlet form (En,W 1,2(nD)) on L2(nD;dx), and set Xn
t := n−1Yn

n2t
. [A natu-

ral setting would be to take D to be a cone. In this case nD = D, so the random
diffusion matrix Aω(x) only needs to be defined for x ∈ D rather than for x ∈Rd .]
Observe that process Xn takes value in �D. It is then the case that Xn = (Xn

t )t≥0
converges as n → ∞ to a reflecting Brownian motion on D with some strictly
positive covariance matrix B , for P-almost-every realization of the random envi-
ronment ω. (Note that B is determined by the invariance principle on the whole
space Rd .) Indeed, the Dirichlet form of Xn on L2(D;dx) is

n2−dEn(fn, fn) = 1

2

∫
D
∇f (x)A(nx)∇f (x) dx,
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where fn(x) := f (n−1x). In view of Section 2.1, the transition density function
of Xn has estimates (2.4) with constants c1, . . . , c4 independent of n. In this case,
the quenched invariance principle on Rd is proved in [48]. (To be precise, in the
paper the author assumed C2 smoothness for the coefficients. However, this was
to apply the Itô formula, and could be avoided by using the Fukushima decompo-
sition instead.) Given these, one can easily verify the conditions required for the
quenched invariance principle in D. (Note that because of the uniform ellipticity,
condition (iii) in Theorem 2.1 is trivial in this case. Moreover, one can extend the
quenched invariance principle of [48] to arbitrary starting points by applying the
argument of Theorem 3.13.) Thus, for P-almost-every realization of the random
environment ω and for every starting point x ∈ �D, the reflecting diffusion Xn con-
verges weakly to a reflecting Brownian motion on D. This gives an affirmative
answer to the open problem of [51], pages 1004–1005.

As we mentioned briefly in the Introduction, homogenization of reflected
SDE/PDE on half-planes has been studied for periodic coefficients in [5, 14, 53],
etc., and for random divergence forms in [51]. (Note that their equations contain
additional reflection terms, though the precise framework varies in each paper.)
Homogenization for random divergence forms without extra reflection terms on
bounded C2 domains is discussed in [41], Section 14.4. Although we can only
handle symmetric cases, our results hold for general uniform domains.

APPENDIX

A.1. Proofs for percolation estimates. The aim of this section is to verify
the percolation estimates stated as Lemmas 3.1–3.3, 3.7 and 4.1.

For the purpose of proving Lemma 3.1, it will be useful to note that for large
K the collection of edges Õ2 stochastically dominates Õ3, the edges of a bond
percolation process on EZd with probability p3 = p3(K), where the parameter
p3 can be chosen to satisfy limK→∞ p3 = p1 (see [3], Proposition 2.2). In fact,
the proof of this result from [3] further shows that, for a given value of K (i.e.,
suitably large), it is possible to couple all the relevant random variables in such a
way that Õ3 ⊆ Õ2 almost-surely. We will henceforth assume that this is the case,
where K is fixed large enough to ensure that p3 > pbond

c (Zd). We will also define
O3 := Õ3 ∩EL and C3 := C∞(L,O3). Note that C3 is nonempty by the uniqueness
of infinite supercritical bond percolation clusters on L.

PROOF OF LEMMA 3.1. First observe that O3 ⊆ O2 ⊆ O1. It follows that
there exists an infinite connected component C of (L,O2) such that C3 ⊆ C ⊆ C1.
For such a C (at the moment, we do not know its uniqueness), we have that C1 \C ⊆
H3 ⊆ L \ C3. Denote by G(x) the connected component of L \ C3 containing x

[if x ∈ C3, we set G(x) =∅]. To prove part (i) of the lemma, it suffice to show that
there exist constants c1, c2 such that: for each x ∈ L,

P
(
diam

(
G(x)

) ≥ n
) ≤ c1e

−c2n.(A.1)
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For this, we will follow the renormalization argument used in the proof of [17],
Proposition 2.3, making the adaptations necessary to deal with the boundary issues
that arise in our setting.

We start by coupling a finite range-dependent site percolation model with our
bond percolation process. For L ∈N, x ∈ Zd , define

QL(x) := L(x + e1 + · · · + ed1) + [0,L]d ∩Zd,

Q̃3L(x) := L(x + e1 + · · · + ed1) + [−L,2L]d ∩Zd,

where e1, . . . , ed are the standard basis vectors for Zd . Given these sets, let GL(x)

be the event such that:

• there exists an Õ3-crossing cluster for QL(x) in Q̃3L(x), that is, there is a
Õ3-connected cluster in Q̃3L(x) that, for all d directions, joins the ‘left face’
to the ‘right face’ of QL(x),

• all paths along edges of Õ3 that are contained in Q̃3L(x) and have diameter
greater than L are connected to the (necessarily unique) crossing cluster.

We will say that x ∈ Zd is “white” if GL(x) holds and “black” otherwise, and
make the important observation that if two neighboring vertices are white, then
their crossing clusters must be connected. Since p3 > pbond

c (Zd), we can apply (the
bond percolation version of) [49], Theorem 5, for d = 2 and [50], Theorem 3.1,
for d ≥ 3 to deduce that

lim
L→∞P

(
GL(x)

) = 1(A.2)

(cf. [4], (2.24)). Moreover, although (1GL(x))x∈Zd are not independent, the de-
pendence between these random variables is of finite range. Thus, by [44], The-
orem 0.0, one can suppose that, for suitably large L, the collection (1GL(x))x∈Zd

dominates a site percolation process on Zd of density arbitrarily close to 1. Noting
that for any infinite connected graph G with maximal vertex degree � the critical
site and bond percolation probabilities satisfy

psite
c (G) ≤ 1 − (

1 − pbond
c (G)

)�−1

([34], Theorem 3), we have that psite
c (L) is bounded above by 1 − (1 −

pbond
c (Zd))2d−1 < 1. Hence, by taking L suitably large, it is possible to assume

that there is a nonzero probability of 0 being contained in an infinite cluster of
white vertices in L. From this result, a standard ergodicity argument with respect
to the shift x !→ x + e1 + · · · + ed1 allows one to check that, P-a.s., there exists at
least one infinite connected cluster of white sites in L. In particular, writing D(x)

for the connected cluster of white sites containing a particular vertex x ∈ L [taking
D(x) :=∅ if GL(x) does not occur], we obtain that the set

D∞ := {
x ∈ L :D(x) is infinite

}
(A.3)
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is nonempty, P-a.s.
Let C(x) be the connected component of L \D∞ containing x (we set this to be

the empty set if x ∈D∞). The next step of the proof is to check that: for x ∈ L,

P
(
diam

(
C(x)

) ≥ n
) ≤ c3e

−c4n.(A.4)

To do this, we start by introducing some notions of set boundaries that will be
useful. For x /∈D∞, the inner boundary of C(x) is the set

∂ inC(x) := {
y ∈ C(x) :y is adjacent to a vertex in L \ C(x)

}
.

It is simple to check from its construction that all the vertices in this set are black.
Since L \ C(x) ⊇D∞ �=∅, then L \ C(x) contains at least one infinite connected
component, D say. The outer boundary of D is given by

∂outD := {y ∈ L \D :y is adjacent to a vertex in D}.(A.5)

With D being disjoint from C(x), we can also define the part of its outer boundary
visible from C(x) by setting

∂visC(x)D := {
y ∈ ∂outD : there exists a path from y to C(x)

(A.6)
in L that is disjoint from D

}
.

We claim the following relationship between the various boundary sets:

∂visC(x)D = ∂outD ⊆ ∂ inC(x).(A.7)

To verify the equality, first suppose that there exists a vertex y ∈ ∂outD \ C(x),
then y ∈ L \ C(x) and we can find a vertex z ∈ D ⊆ L \ C(x) such that y and z

are adjacent. This implies that y and z are in the same connected component of
L \ C(x), which is a contradiction because y /∈ D by definition. Hence ∂outD ⊆
C(x), and so [noting that C(x) \D = C(x)]

∂outD = {
y ∈ C(x) :y is adjacent to a vertex in D

} ⊆ ∂visC(x)D.

Since the opposite inclusion is trivial, we obtain the equality at (A.7). From
∂outD ⊆ C(x), the inclusion at (A.7) is also clear.

We proceed by applying the conclusion of the previous paragraph to show that
D = L \ C(x). First, the boundary connectivity result of [54], Lemma 2, implies
that ∂visC(x)D is ∗-connected. Combining this with (A.7), we obtain that ∂outD is
a ∗-connected set of black vertices [recall that the vertices of ∂ inC(x) are black].
Secondly, note that if Pp is the law of a parameter p site percolation process on
Zd and C∗ is the corresponding ∗-connected component of closed vertices contain-
ing 0, then for suitably large p we have that

Pp

(
C∗ ≥ n

) ≤ c5e
−c6n(A.8)

(see [1], Theorem 7.3 and [2], Proposition 7.6). In particular, it is easy to check
from this that all ∗-connected components of closed vertices in the site percolation



1632 Z.-Q. CHEN, D. A. CROYDON AND T. KUMAGAI

process with this choice of p are finite, Pp-a.s. Hence, because (1GL(x))x∈Zd dom-
inates a site percolation process whose parameter can be made arbitrarily close
to 1 by taking L suitably large, it must be the case that, for large L, ∂outD is P-a.s.
a finite set. Since D is infinite, it readily follows that L \ D is also finite. Now,
suppose D1 is a connected component of L \ C(x) distinct from D and such that
D1 ∩D∞ �=∅. By the definition of D∞, it holds that D1 ∩D(y) �=∅ for some y

such that D(y) is an infinite set. Since D1 ∪D(y) is an infinite connected compo-
nent of L\C(x), it must be the case that D1 is infinite. However, this contradicts the
finiteness of L\D, and so no such D1 can exist. Thus, it must be the case that if D1

is a connected component of L \ C(x) distinct from D, then D1 ∩D∞ =∅. Since,
similar to the results of the previous paragraph, we have that ∂outD1 ⊆ ∂ inC(x),
the set D1 ∪ C(x) must be a connected component of L \D∞. By the definition of
C(x), this implies that D1 =∅, which yields D = L \ C(x) as required.

An immediate corollary of the equality D = L \ C(x) is that ∂ inC(x) = ∂outD,
which as we have already established, is a finite ∗-connected component of
black vertices. We will use these results to finally prove (A.4). Note first that
diam(C(x)) = diam(∂ inC(x)). Hence, writing ∂B(x,m) for the vertices of L at
an 
∞ distance m from x,

P
(
diam

(
C(x)

) ≥ n
) ≤ ∞∑

m=0

P
(
diam

(
∂ inC(x)

) ≥ n, ∂ inC(x) ∩ ∂B(x,m) �=∅
)

≤
∞∑

m=0

∑
y∈∂B(x,m)

P
(
diam

(
C∗(y)

) ≥ n∨ m
)
,

where C∗(y) is the ∗-connected component of black vertices in Zd containing y.
By again comparing (1GL(x))x∈Zd to a site percolation process, it is possible to
apply (A.8) to deduce that the tail of the probability in the above sum is bounded
above by c5e

−c6(n∨m). The estimate at (A.4) follows.
We now return to the problem of deriving the estimate at (A.1). For x ∈ Zd ,

define the set Q′
L(x) := L(x + e1 +· · ·+ ed1)+[0,L)d ∩Zd , so that (Q′

L(x))x∈Zd

is a partition of Zd . For x ∈ L, let a(x) be the closest element of L, with respect
to 
1 distance, to the x′ ∈ Zd such that x ∈ Q′

L(x′). [Only when x is within a
distance L of the boundary of L does x′ �= a(x).] It is then easy to check that if
diam(G(x)) ≥ L, then

G(x) ⊆ ⋃
x′∈C(a(x))

Q̃3L

(
x′)(A.9)

(cf. [17], (3.7)). In particular, this implies that, if diam(G(x)) ≥ L, then it must
be the case that diam(G(x)) ≤ 3Ldiam(C(a(x))). Consequently, (A.1) follows
from (A.4), and thus the proof of part (i) is complete.
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Given part (i), we observe

P
(∃x ∈ [−n,n]d ∩L : #H(x) ≥ (logn)d+1)

≤ (2n + 1)d sup
x∈L

P
(
x ∈ C1,#H(x) ≥ (logn)d+1)

≤ (2n + 1)d sup
x∈L

P
(
x ∈ C1,diam

(
H(x)

) ≥ (logn)(d+1)/d)
≤ (2n + 1)dc1e

−c2(logn)(d+1)/d

.

Since this is summable in n, part (ii) follows by a Borel–Cantelli argument. �

We now work toward the proof of Lemma 3.2.

PROOF OF LEMMA 3.2. To establish the bound in (3.4), let us start by recall-
ing/adapting some definitions from the previous proof. In particular, for x ∈ Zd ,
define QL(x) and Q̃3L(x) as in the proof of Lemma 3.1. Moreover, let GL(x)

be defined similarly, but with Õ3 replaced by Õ1, and redefine x being “white”
to mean that this version of GL(x) holds (and say x is “black” otherwise). Note
that the statement (A.2) remains true with this definition of GL(x), and the de-
pendence between the random variables (1GL(x))x∈Zd is only finite range, and so
we can suppose that it dominates a dominates a site percolation process on Zd of
density arbitrarily close to 1.

Now, fix x, y ∈ L, and recall the definition of a(x) from the proof of Lemma 3.1.
If n is the 
1 distance between a(x) and a(y), then there exists a nearest neighbor
path a0, . . . , an in L such that a0 = a(x) and an = a(y). We claim that if x and y

are both contained in C1, then there exists a path from x to y along edges of O1
whose vertices all lie in

n⋃
i=0

⋃
b∈�C∗(ai )

Q̃3L(b),(A.10)

where �C∗(a) := {a} if a is white, otherwise �C∗(a) := C∗(a) ∪ ∂outC∗(a), where
C∗(a) is the ∗-connected component of black sites in L containing a [∂outC∗(a)

is the outer boundary of C∗(a), defined similarly to (A.5)]. This is essentially [4],
Proposition 3.1, rewritten for L instead of Zd . The one slight issue with modifying
the proof of this result to our situation is that, unlike the Zd case, the outer bound-
ary in L of a finite connected cluster of vertices, C say, is no longer ∗-connected in
general and so it is not possible to run around it in quite the same way. However,
this problem is readily overcome by applying [54], Lemma 2, which implies that
for each x /∈ C, the part of the outer boundary of C that is visible from x, ∂vis(x)C
[cf. (A.6)], is ∗-connected. A simple estimate of the number of vertices in the set
at (A.10) yields

d1(x, y) ≤ (3L + 1)d
n∑

i=0

#�C∗(ai) ≤ (3L + 1)d
n∑

i=0

(
1 + 3d#C∗(ai)

)
.
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[We take C∗(a) :=∅ if a is white.] Clearly, C∗(a) ⊆ C̃∗(a), where C̃∗(a) is the ∗-
connected component of black sites in Zd containing a. Consequently, we obtain
that

P
(
x, y ∈ C1 and d1(x, y) ≥ cR

) ≤ P

(
(3L + 1)d

n∑
i=0

(
1 + 3d#C̃∗(ai)

) ≥ cR

)
.

Moreover, applying [28], Lemma 2.3, as in the proof of [4], Theorem 1.1, we may
replace the summands on the right-hand side by independent ones, each with the
same distribution as the term they are replacing. Recalling from (A.8) the exponen-
tial bound for the size of a ∗-connected vacant cluster in a site percolation process
of parameter p close to 1, one readily obtains from this the bound at (3.4). (It is
useful to also note that n ≤ c|x − y|/L.)

We proceed next with the proof of the second bound. In this direction, let us
begin by defining a metric dZ on C2 related to the process Z introduced in Sec-
tion 3.2, that is, the time change of Y with time in H cut out. Assume that K is
large enough so that the conclusions of Lemma 3.1 hold. Define a set of edges E′

Z

by supposing, for x, y ∈ C2, {x, y} ∈ E′
Z if and only if {x, y} /∈O2 and also there

exists a path x = z0, z1, . . . , zk = y such that z1, . . . , zk−1 ∈H and {zi−1, zi} ∈O1
for i = 1, . . . , k. Thus, the jumps of Z will be on edges in either O2 or E′

Z . Set
EZ :=O2 ∪ E′

Z , and let dZ be the graph distance on (C2,EZ). Our first goal will
be to prove that there exist constants c1, c2, c3 such that: for every x, y ∈ L,

P
(
x, y ∈ C2 and dZ(x, y) ≤ c−1

1 |x − y|) ≤ c2e
−c3|x−y|,(A.11)

where |x − y| is the Euclidean distance between x and y.
For proving (A.11), we suppose that the definition of GL(x) reverts to that given

in the proof of Lemma 3.1, that is, in terms of Õ3. Also, define G′
L(x) to be the

event that there are no edges of the set Õ1 \ Õ3 connecting two vertices of Q̃3L(x),
so that if GL(x) ∩ G′

L(x) holds, then so do the defining properties of GL(x)

when Õ3 is replaced by Õ2. Clearly, for fixed L, P(G′
L(x)c) → 0 as p3 → p1

(i.e., K → ∞). Hence, for any δ, by first choosing L and then K large, we can
ensure P(GL(x)∩G′

L(x)) ≥ 1 − δ. For the remainder of this proof, we redefine x

being “white” to mean that GL(x)∩G′
L(x) holds, and say x is “black” otherwise.

Similarly to above, the finite range dependence of the random variables in ques-
tion means that it is possible to suppose that (1GL(x)∩G′

L(x))x∈Zd stochastically
dominates a collection (η(x))x∈Zd of independent and identical Bernoulli ran-
dom variables whose parameter p is arbitrarily close to 1. Let C∞ be the vertices
of L that are contained in an infinite connected component of {x ∈ L :η(x) = 1}
[cf. (A.3)]. By arguments from the proof of Lemma 3.1, we have that if p is large
enough, then this set is nonempty and its complement in L consists of finite con-
nected components, P-a.s. Now, as in the proof of [17], Lemma 3.1, we “wire”
the holes of C∞ by adding edges between every pair of sites that are contained in
a connected component of L \ C∞ or its outer boundary, and denote the induced



QUENCHED INVARIANCE PRINCIPLES FOR RANDOM MEDIA 1635

graph distance by d ′. By proceeding almost exactly as in [17], it is then possible
to show that, for suitably large L and K : for x, y ∈ L,

P
(
d ′(x, y) ≤ 1

2 |x − y|) ≤ e−|x−y|.(A.12)

[The one modification needed depends on the observation that, similar to what
was deduced in the proof of Lemma 3.1, the inner boundary of any connected
component of L\C∞ is ∗-connected and consists solely of vertices with η(x) = 0.]
Finally, a minor adaptation of (A.9) yields, for x ∈ C1 with diam(H(x)) ≥ L,

H(x) ⊆ ⋃
x′∈C(a(x))

Q̃3L

(
x′),

where C(a(x)) is now the connected component of L \ C∞ containing a(x). It fol-
lows that if x, y ∈ C2, then dZ(x, y) ≥ d ′(a(x), a(y)), cf. [17], (3.10). Therefore,
since it also holds for |x − y| ≥ 3L that |a(x) − a(y)| ≥ c|x − y|/L, the bound
at (A.11) can be obtained from (A.12).

Finally, note that, since μe ∈ [K−1,K] for every e ∈O1 such that e∩e′ �=∅ for
some e′ ∈O2, it holds that t (e) ∈ [CA ∧ K−1/2,K1/2] for such edges. Moreover,
for every other e ∈ O1, we have t (e) ≥ 0. As a consequence, the metric d̄1 is
bounded below by a constant multiple of dZ on C2. Applying this, as well as setting
∂outH(x) = {x} for x /∈H, it follows that

P
(
x, y ∈ C1 and d̄1(x, y) ≤ c−1

4 |x − y|)
≤ P

(
x, y ∈ C1 and inf

x′∈∂outH(x),y′∈∂outH(y)
dZ

(
x′, y′) ≤ c−1

5 |x − y|
)

≤ ∑
x′,y′ : |x−x′|,|y−y′|≤|x−y|/4

P
(
x′, y′ ∈ C2 and dZ

(
x′, y′) ≤ c−1

5 |x − y|)
+ 2P

(
x ∈ C1 and diam

(
H(x)

) + 1 ≥ |x − y|/4
)
.

From this, the bound at (3.5) is a straightforward consequence of Lemma 3.1(i)
and (A.11). �

Given Lemma 3.2, the proof of Lemma 3.3 is straightforward.

PROOF OF LEMMA 3.3. Since d̄1 ≤ CAd1, the inclusion B1(x,R) ⊆
�B1(x,CAR) always holds. We will thus concern ourselves with the other two
inclusions only. First, by the inequality at (3.5),

P
(
x ∈ C1 and �B1(x,CAR)� BE(x, c2R)

)
≤ ∑

y /∈BE(x,c2R)

P
(
x, y ∈ C1 and d̄1(x, y) ≤ CAR

)
≤ c5e

−c6R
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for suitably large c2. Second,

P
(
x ∈ C1 and C1 ∩BE(x, c1R)� B1(x,R)

)
≤ ∑

y∈BE(x,c1R)

P
(
x, y ∈ C1 and d1(x, y) ≥ R

)
and applying (3.4) yields a bound of the form c7e

−c8R , thereby completing the
proof. �

Next, the comparison of measures stated as Lemma 3.7.

PROOF OF LEMMA 3.7. First note that any point x ∈ Q that is contained in
C̃1 \ C1 must lie in a connected component of (Q \ C1,O1) that meets the inner
boundary of Q, which we denote here by ∂ inQ. Moreover, we recall that any points
x ∈ Q that are contained in C1 must also be contained in C̃1. It follows that

ν̃(Q) − ν(Q) ≤ ∑
x∈∂ inQ

#F(x),

where F(x) is the connected component of L \ C1 containing x. Now, similar to
(A.1), we have that

P
(
diam

(
F(x)

) ≥ n
) ≤ c1e

−c2n,

uniformly in x ∈ L. Since #∂ inQ is bounded above by c3n
d−1, the lemma follows.

�

Finally, we prove Lemma 4.1.

PROOF OF LEMMA 4.1. First, observe that

P
(
C+(Q2)� C1

)
≤ P

(
C+(Q2) ≤ ε|Q2|) + P

(
diam

(
C+(Q2)

) ≥ ε1/d(2n + 1),C+(Q2)� C1
)
.

As in the proof of Proposition 3.5, the first term here is bounded above by c1e
−c2n.

The second term is bounded above by

c3n
d sup

x∈Q2

P
(
the diameter of the connected component

of Zd+ \ C1 containing x is ≥ c4n
)
.

That this admits a bound of the form c5e
−c6n follows from (A.1) (replacing C3

by C1).
Consequently, to complete the proof, it will suffice to show that

P
(
C+(Q2) ∩Q1 ⊂ C1 ∩Q1

) ≤ c7e
−c8n.
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For the event on the left-hand side of the above to hold, it must be the case that
there exists an open path in (Q2,O1) of diameter at least (1−ε)n that is not part of
C+(Q2). Moreover, as in the previous paragraph, we have that, with probability at
least 1 − c1e

−c2n, diam(C+(Q2)) ≥ ε1/d(2n+ 1). However, by (the bond percola-
tion version of) [49], Theorem 5, we have that with probability at least 1−c9e

−c10n,
there is a unique open cluster in (Q2,O1) of diameter at least ε1/d(2n+1). Hence,
by taking ε suitably small, the result follows. �

A.2. Arbitrary starting point quenched invariance principle. This section
contains the proof of Theorem 3.13. For it, we note that the full Zd model also
satisfies the conclusions of Propositions 3.10 and 3.11, as well as Assumption 2.3
(in the same sense as we checked for the L model in Section 3.3).

PROOF OF THEOREM 3.13. To begin with, we recall the quenched invariance
principle of [3], Theorem 1.1(a), for the VSRW started at the origin: there exists
a deterministic constant c > 0 such that, for P1-a.e. ω, the laws of the processes
Ỹ n under P̃ ω

0 converge weakly to the law of (Bct )t≥0, where (Bt )t≥0 is standard
Brownian motion on Rd started from 0. Here, P1 is the conditional law P(·|0 ∈ C̃1).
Moreover, we note that by proceeding as in [3], Remark 5.16, one can check that
the result remains true if P1 is replaced by P, and P̃ ω

0 is replaced by P̃ ω
x0

, where x0
is chosen to be the (not necessarily uniquely defined) closest point to the origin in
the infinite cluster C̃1.

Given the above result, the argument of this paragraph applies for P-a.e. ω. Fix
x ∈Rd , ε > 0, and define

τn := inf
{
t > 0 : Ỹ n

t ∈ BE(x, ε)
}
,

τB := inf
{
t > 0 :Bct ∈ BE(x, ε)

}
.

A standard argument gives us that, jointly with the convergence of the previous
paragraph, τn converges in distribution to τB . Letting T > 0 be a deterministic
constant, it follows that the laws of the processes (Ỹ n

τn+t )t≥0 under P̃ ω
x0

(·|τn ≤
T ) converge weakly to the law of (Bc(τ+t))t≥0, started from 0 and conditional
on τ ≤ T . Consequently, the Markov property gives us that for every bounded,
continuous function f :C([0,∞),Rd) →R,∫

�BE(x,ε)
Ẽω

nyf
(
Ỹ n)

P ω
x0

(
Ỹ n

τn ∈ dy|τn ≤ T
)

(A.13)
→

∫
�BE(x,ε)

EB
y f (Bc·)P B

0
(
BcτB ∈ dy|τB ≤ T

)
,

where �BE(x, ε) is the closure of BE(x, ε), P B
x is the law of the standard Brownian

motion B started from x, and EB
x is the corresponding expectation. Furthermore,
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it is elementary to check for such f that, as ε → 0,∫
�BE(x,ε)

EB
y f (Bc·)P B

0
(
BcτB ∈ dy|τB ≤ T

) → EB
x f (Bc·).(A.14)

Suppose that the following also holds for every sequence of starting points xn ∈
n−1C̃1 such that xn → x, every finite collection of times 0 < t1 < t2 < · · · < tk and
all bounded, continuous functions fi :Rd →R, i = 1, . . . , k,

lim
ε→0

lim sup
n→∞

∣∣∣∣∫�BE(x,ε)
Ẽω

nyf
(
Ỹ n

t
)
P ω

x0

(
Ỹ n

τn ∈ dy|τn ≤ T
) − Ẽω

nxn
f

(
Ỹ n

t
)∣∣∣∣ = 0,(A.15)

where Ỹ n
t := (Ỹ n

t1
, Ỹ n

t2
, . . . , Ỹ n

tk
). Combining (A.13), (A.14) and (A.15) readily

yields that the finite-dimensional distributions of Ỹ n (under P ω
nxn

) converge to
those of Bc· (under P B

x ). Moreover, from the full plane version of Proposition 3.10,
we have that the laws of Ỹ n under P ω

nxn
are tight. These two facts yields the desired

quenched invariance principle.
To complete the argument of the previous paragraph and the proof of the theo-

rem, it remains to check the limit at (A.15) holds [simultaneously over sequences
of starting points xn → x, times t = (t1, . . . , tk), and functions f ] for P-a.e. ω.
In fact, using the independent increments property of Ỹ n and some standard anal-
ysis, it will suffice to check the result for k = 2 and for functions f of the form
f (Ỹ n

t1
, Ỹ n

t2
) = f1(Ỹ

n
t1
)f2(Ỹ

n
t2
). Writing the semigroup of Ỹ n as P̃ n, we have for such

a function f that∣∣∣∣∫�BE(x,ε)
Ẽω

nyf
(
Ỹ n

t1
, Ỹ n

t2

)
P ω

x0

(
Ỹ n

τn ∈ dy|τn ≤ T
) − Ẽω

nxn
f

(
Ỹ n

t1
, Ỹ n

t2

)∣∣∣∣
=

∣∣∣∣∫�BE(x,ε)
P̃ n

t1
g(y)P ω

x0

(
Ỹ n

τn ∈ dy|τn ≤ T
) − P̃ n

t1
g(xn)

∣∣∣∣(A.16)

≤ sup
y∈�BE(x,ε)∩n−1C̃1

∣∣P̃ n
t1
g(y)− P̃ n

t1
g(xn)

∣∣,
where g := f1 × (P̃ n

t2−t1
f2) (which is a bounded, continuous function). Take R > 2

with x ∈ BE(0,R/2) ∩ n−1C̃1. For each λ > 1, it holds that

P̃ n
t g = P̃

n,BλR
t (g1BλR

) + (
P̃ n

t − P̃
n,BλR
t

)
(g1BλR

)+ P̃ n
t (g1Bc

λR
),

where Bs := BE(0, s)∩ n−1C̃1. We have∣∣(P̃ n
t − P̃

n,BλR
t

)
(g1BλR

)(z)+ P̃ n
t (g1Bc

λR
)(z)

∣∣
≤ ‖g‖∞P̃ z

ω

(
τ̃ n
BλR

≤ t
) + ‖g‖∞P̃ z

ω

(
Ỹ n

t ∈ Bc
λR

)
≤ 2‖g‖∞P̃ z

ω

(
τ̃ n
BλR

≤ t
)
.
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So, setting �Bx,ε := �BE(x, ε)∩ n−1C̃1, for large n we have

sup
y∈�Bx,ε

∣∣P̃ n
t1
g(y) − P̃ n

t1
g(xn)

∣∣
≤ sup

y∈�Bx,ε

∣∣P̃ n,BλR
t1

(g1BλR
)(y)− P̃

n,BλR
t1

(g1BλR
)(xn)

∣∣
+ 4‖g‖∞ sup

z∈�Bx,2ε

P̃ z
ω

(
τ̃ n
BλR

≤ t
)

=: I1 + 4‖g‖∞I2.

Now let us note that Assumption 2.3 holds for Xn killed on exiting BλR when Dn

is replaced by BλR (which can be verified similar to the discussion in Section 3.3
for the L case; for this, it is useful to note that the killing does not have any effect
since points in BλR/2 are suitably far away from the boundary of BλR). Moreover,

applying the scaling relation q̃n
t (x, y) = ndqỸ

tn2(nx,ny), by Proposition 3.11 (for

the full Zd model) we have, ‖P n,BλR
t g‖∞,n,λR ≤ c1t

−d/2‖g‖1,n,λR whenever we

also have tn2 ≥ c2(supx∈BλR
Rx ∨ 1 ∨ supx,y∈BλR

2d1(x, y))1/4, where Rx is de-
fined as in Proposition 3.11. Hence, a simple Borel–Cantelli argument using the
tail estimate of that proposition to control supx∈BλR

Rx and Lemma 3.2 to con-
trol supx,y∈BλR

2d1(x, y) yields that the above bound holds true for all large n,

P-a.s. Hence, by applying Proposition 2.5, we have I1 ≤ Ct(2ε)γ
′‖g‖2,n,λR for all

x ∈ BR/2 and all large n, P-a.s. By applying the full Zd version of Proposition 3.14,
that is, the vague convergence of mn to a multiple of Lebesgue, it follows that for
P-a.e. ω: for t > 0, R > 2 and λ > 1,

lim
ε→0

lim sup
n→∞

sup
x∈�BR/2

I1 = 0.

For I2, we will apply the full Zd version of the exit time bound of Proposition 3.8.
In particular, this result implies that for P-a.e. ω: for t > 0, R > 2 and λ > 1,

lim
ε→0

lim sup
n→∞

sup
x∈�BR/2

I2 ≤ lim
ε→0

lim sup
n→∞

c2�
(
c3(λR/2 − 2ε)n, tn2) = c2e

−c3λ
2R2/t .

(Note that a Borel–Cantelli argument that depends on the tail estimate for Rx of
Proposition 3.8 is hidden in the inequality.) Letting λ → ∞, this converges to 0.
Thus, we deduce that for fixed R > 2 and P-a.e.-ω that: for every sequence of
starting points xn ∈ n−1C̃1 such that xn → x ∈ BE(0,R/2), for every 0 < t1 < t2,
for every bounded, continuous f1, f2, the expression at (A.16) converges to 0 as
n →∞ and then ε → 0. Since there is no problem in extending this result to allow
any x ∈Rd , we have thus completed the proof of (A.15). �
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