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EQUIVALENCE TESTING FOR FUNCTIONAL DATA WITH
AN APPLICATION TO COMPARING PULMONARY

FUNCTION DEVICES
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Equivalence testing for scalar data has been well addressed in the lit-
erature, however, the same cannot be said for functional data. The resultant
complexity from maintaining the functional structure of the data, rather than
using a scalar transformation to reduce dimensionality, renders the existing
literature on equivalence testing inadequate for the desired inference. We pro-
pose a framework for equivalence testing for functional data within both the
frequentist and Bayesian paradigms. This framework combines extensions
of scalar methodologies with new methodology for functional data. Our fre-
quentist hypothesis test extends the Two One-Sided Testing (TOST) proce-
dure for equivalence testing to the functional regime. We conduct this TOST
procedure through the use of the nonparametric bootstrap. Our Bayesian
methodology employs a functional analysis of variance model, and uses a
flexible class of Gaussian Processes for both modeling our data and as prior
distributions. Through our analysis, we introduce a model for heteroscedastic
variances within a Gaussian Process by modeling variance curves via Log-
Gaussian Process priors. We stress the importance of choosing prior distribu-
tions that are commensurate with the prior state of knowledge and evidence
regarding practical equivalence. We illustrate these testing methods through
data from an ongoing method comparison study between two devices for pul-
monary function testing. In so doing, we provide not only concrete motivation
for equivalence testing for functional data, but also a blueprint for researchers
who hope to conduct similar inference.

1. Introduction. An equivalence test is a statistical hypothesis test whose in-
ferential goal is to establish practical equivalence rather than a statistically sig-
nificant difference [Berger and Hsu (1996)]. These tests arise from the fact that
within the frequentist paradigm, failing to reject a null hypothesis of no difference
is not logically equivalent to accepting said null. Examples of scenarios requiring
equivalence tests include the assessment of a generic drug’s performance relative
to a brand name drug and method comparison studies, in which the agreement
of a new device with the “gold-standard” for measuring a particular phenomenon
must be assured before the new device can replace the old one.

Equivalence tests for scalar data typically involve the establishment of upper and
lower equivalence thresholds dependent on the metric of equivalence being used.
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The inferential aim is to establish that the metric falls within the upper and lower
equivalence thresholds with a prespecified Type I error rate. See Berger and Hsu
(1996) for a comprehensive overview of commonly used procedures. Oftentimes
the use of scalar data is adequate, but in some instances the question of practical
equivalence cannot be reduced to a hypothesis regarding scalar data.

The motivation for this research arose from a method comparison study between
a new device for assessing pulmonary function, Structured Light Plethysmography
(SLP), and the industry standard for such assessments, a spirometer. SLP holds
many advantages over spirometry: it is noninvasive, it can be used to diagnose
patients of a wider range of age and health levels, and it provides detailed informa-
tion regarding specific regions of the lung that may be malfunctioning. Before SLP
may be used extensively for diagnostic purposes it must be assured beyond a rea-
sonable doubt that the measurements obtained by SLP are practically equivalent to
those produced by a spirometer.

Doctors rely on a host of information that can be produced both by SLP and
by spirometry. Some of these measurements are scalar and, hence, their equiva-
lence can be addressed using available scalar methods; however, not all diagnostic
tools utilized are scalar. For example, the “Flow-Volume Loop” is a phase plot of
flow of air into and out of the lungs versus volume of air within the lungs over
time for each breath. This plot allows doctors to investigate the relationship be-
tween flow and volume at various points in time during a given breath, which can
indicate whether one has normally functioning lungs, suffers from an obstructive
airway disease (such as asthma), suffers from a restrictive lung disease (such as
certain types of pneumonia), or rather has another condition altogether. In fact,
certain pulmonary ailments are associated with certain shapes of these loops. Fig-
ure 1 shows Flow-Volume Loops for healthy patients and for patients with varying
pulmonary ailments [Goudsouzian and Karamanian (1984)].

Alberola-Lopez and Martin-Fernandez (2003) discuss a frequentist approach
for comparing two functions through the use of a Fourier basis expansion. Behseta

FIG. 1. Flow-Volume Loops corresponding to various levels of pulmonary health, calculated using
a spirometer. [Reproduced from Goudsouzian, N. and Karamanian, A. (1984). Physiology for the
Anesthesiologist, 2nd ed. Appleton-Century-Crofts, Norwalk, CT, with permission.]
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and Kass (2005) propose a Bayesian method for assessing the equality of two
functions using a nonparametric regression method known as Bayesian adaptive
regression splines (BARS). Neither of these approaches uses the idea of estab-
lishing practical equivalence; rather, both papers test strict equality between the
functions of interest, and in fact set strict equality as the null hypothesis and lack
thereof as the alternative. In this paper, we propose a framework for functional
equivalence testing that is analogous to its univariate counterpart. This involves an
extension of scalar techniques to the functional realm and a modification of said
techniques when a simple extension is not possible. In so doing, the inferential
objective becomes to establish that a functional metric of equivalence lies within a
tolerance region with a prespecified Type I error rate. We then discuss methods for
equivalence testing within the frequentist and Bayesian paradigms, and illustrate
these techniques with data from the method comparison study between SLP and
spirometry. We further introduce a Bayesian model for heteroscedastic functional
data inspired by the work of Barnard, McCulloch and Meng (2000) that separately
places priors on the correlation structure and the underlying variance functions.

2. A framework for equivalence testing.

2.1. Equivalence testing for scalar data. In the scalar case, equivalence testing
begins by defining a metric whose value can be used to assess equivalence between
the two populations of interest, say, θ . Common choices include the difference
between group means, μ1 − μ2, and the difference of logarithms of group means,
log(μ1) − log(μ2) (provided one’s data are strictly positive). One then chooses
lower and upper thresholds, κl and κu, such that we can reject or fail to reject
nonequivalence depending on whether or not θ falls between κl and κu. The null
hypothesis is nonequivalence and the alternative is equivalence:

H0 : θ /∈ (κl, κu),

Ha : θ ∈ (κl, κu).

A common approach for conducting this hypothesis test within the frequentist
paradigm is known as a Two One-Sided Test (TOST) [Berger and Hsu (1996)].
As the name suggests, this is a two step procedure. In no particular order, one
separately tests for the alternatives that θ < κu and θ > κl with each test being
conducted with size α. If one successfully rejects for both tests, practical equiv-
alence may then be suggested at size α; otherwise, one fails to suggest practical
equivalence. The lack of compensation in the significance level of the individ-
ual tests (say, to α/2) follows immediately from the theory of Intersection-Union
Tests (or IUTs), which are tests for which the null parameter space can be de-
scribed as the union of disjoint sets, and the alternative as the intersection of the
complements of those sets. One can see that an equivalence test is an IUT [Berger
(1982)], as its null region is �0 := {(−∞, κl] ∪ [κu,∞)} and its alternative region
is �a := (κl, κu) = �c

0.
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The TOST testing procedure can suffer from a lack of power. Brown, Hwang
and Munk (1995) and Berger and Hsu (1996) propose procedures which are uni-
formly more powerful for the scalar case, however, these methods are themselves
quite complicated even when dealing with univariate data, to such an extent that
TOST continues to be the method of choice in the vast majority of applications.
We proceed within the TOST framework, which not only has intuitive appeal but
can also be naturally extended to a test of equivalence for functional data within
the frequentist paradigm.

The most common goal of equivalence testing is to prove equivalence of means,
but this may not be sufficient. Anderson and Hauck (1990) and Chow and Liu
(1992) both suggest that in addition to comparing mean responses, the variance
of the two responses should also be compared, as a device or drug with smaller
variability may be preferred. We will thus include a test for equivalence of variance
in our testing procedure.

2.2. Equivalence testing for functional data. We now extend the equivalence
testing framework to the functional regime. Let θ(·) denote a functional measure-
ment of similarity between the location parameters of two functions. One potential
choice for θ(·) is the difference between overall mean functions. μ1(·)−μ2(·), but
the choice of θ(·) should depend on the nature of the inference being conducted.
Let κl(·) and κu(·) denote lower and upper equivalence bands, which again vary
over the same continuum as do the functional data. These bands are chosen such
that practical equivalence can be suggested or refuted depending on whether or not
θ(·) falls entirely within κl(·) and κu(·).

For testing the equivalence of variability of the functional data, let λ(·) be
a measurement of similarity between spreads of the populations. Choices may in-

clude
σ 2

1 (·)
σ 2

2 (·) , the ratio between the variance functions of the two populations, or

σ 2
1 (·) − σ 2

2 (·), the difference between the two variances. We again establish upper
and lower bands, ζl(·) and ζu(·), within which we can suggest practical equivalence
of variance functions.

The null and alternative hypotheses for the tests of location and spread can then
be stated as follows:

Hθ
0 :∃t ∈ T � θ(t) /∈ (

κl(t), κu(t)
)
,

Hθ
a :∀t ∈ T , θ(t) ∈ (

κl(t), κu(t)
)
,

Hλ
0 :∃t ∈ T � λ(t) /∈ (

ζl(t), ζu(t)
)
,

Hλ
a :∀t ∈ T , λ(t) ∈ (

ζl(t), ζu(t)
)
.

Note that the above test, in aggregate, is an IUT; the alternative space is
{θ(·), λ(·) :∀t ∈ T , θ(t) ∈ (κl(t), κu(t)) ∩ λ(t) ∈ (ζl(t), ζu(t))}. In order to test
these hypotheses within the frequentist paradigm, we propose conducting two
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TOST procedures, one each for the location and spread parameters. Since this
is an IUT, each of the four total hypothesis tests can be conducted at significance
level α to arrive at an overall size of α. Details of our frequentist testing procedure
can be found in Section 4. Sections 8 and 9 also discuss conducting this test as a
Bayesian.

Falling outside of the equivalence region for variability need not be a condemna-
tion; to the contrary, whichever population has markedly smaller variability could
be favored on those grounds. If one were comparing a gold standard to a new de-
vice and the new device had markedly lower variation, that would strengthen the
case for the introduction of the new device into the market. Hence, in the case
of method comparison studies, a simple one-sided test of noninferiority may be
sufficient for comparing residual variability.

Note that, in practice, functional data are measured along a finite grid of values.
Thus, the grid must be fine enough such that areas of potential dissimilarity along
the domain are not ignored.

3. Equivalence testing for volume over time functions. As was explained
in Section 1, we are interested in whether or not the Flow-Volume Loops produced
by spirometry are practically equivalent to those produced by SLP in terms of
location and variability. Measurements for volume over time and flow over time
were recorded in 2009 for 16 individuals, with the devices set up such that each
breath was simultaneously recorded by SLP and spirometry. These data were not
the result of a clinical trial and, hence, our use of the data serves exposition of our
methodology rather than an argument for the equivalence of SLP and spirometry.
Our analysis herein focuses on using the 453 pairs of volume over time curves
measured by both devices on these 16 patients to assess the equivalence of SLP
and spirometry. Figure 2 shows the visual correspondence between these volume
over time plots for SLP and spirometry from an individual.

The data require preprocessing before our analysis can proceed, as we must
break our recordings into individual breaths that are aligned between devices and
that are comparable in terms of their domains and scale; see the supplementary ma-
terials [Fogarty and Small (2014)] for details. This results in 453 pairs of breaths,
where each breath is measured at 25 equispaced time points, time is scaled to the
interval [0,1], and time t for SLP corresponds with time t for spirometry within
each pair to the best of our ability.

3.1. A model for volume over time functions. We use a functional analysis
of variance model with cross-covariance between pairs of functions for our data.
Functional analysis of variance models are appropriate when one’s data are com-
prised of functional responses that are believed to differ from one another solely
due to certain categorical variables [Ramsay and Silverman (2005)]. Our model
states that we can express the measured volume in the lungs of person i using both
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FIG. 2. Volume over time obtained using SLP and spirometry for an individual.

devices (denoting SLP by 1 and spirometry by 2) in the kth breath at time t ∈ T as
follows:

[
vi,1,k(t)

vi,2,k(t)

]
=

[
αi,1(t)

αi,2(t)

]
+

[
εi,1,k(t)

εi,2,k(t)

]
,

[
αi,1(t)

αi,2(t)

]
=

[
μ1(t)

μ2(t)

]
+

[
εi,1(t)

εi,2(t)

]
.

In this model [μ1(·),μ2(·)] represent the overall mean volume over time trajec-
tory for each device. We model the pairs {[αi,1(·), αi,2(·)]} as random effects,
as we think of the individuals as draws from a larger population. The terms
{[εi,1,k(·), εi,2,k(·)]} are the mean zero error functions for the realized volume over
time trajectory of each pair of devices, assumed to be independent between breaths
while allowing for both strong autocorrelation along the domain of a given breath
and cross-correlation between two breaths in a given pair. This means that not
only is there correlation between the value of the functions at times t and t ′ for
each breath from a specific device, but there will also be a correlation between the
observation at time t from SLP and the observation at time t ′ from the spirome-
ter. Denote the variance functions of these errors by [σ 2

ε,1(·), σ 2
ε,2(·)]. The terms

{[εi,1(·), εi,2(·)]} are the mean zero error functions for each patient’s pair of ran-
dom effects, assumed to be independent between patients while allowing for both
strong autocorrelation along the domain of a given breath and cross-correlation
between random effects in a given pair. Denote the variance functions of these
random effects by [σ 2

α,1(·), σ 2
α,2(·)].
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FIG. 3. A Volume curve and the corresponding curve with κl(·) and κu(·) applied.

3.2. Defining equivalence bands. For our analysis, we define θ(·) � μ1(·) −
μ2(·), λ(·) � σ 2

ε,1(·)/σ 2
ε,2(·). In addition, we want to assure ourselves that the vari-

abilities of the random effect functions are similar between the two populations;
otherwise, there may be evidence of a systematic bias. As such, we define a third
metric of equivalence as ψ(·) � σ 2

α,1(·)/σ 2
α,2(·). Research is currently being con-

ducted to ascertain proper values for upper and lower equivalence bands for our
measures of equivalence of location and spread. These equivalence bands must be
established via consultation of field experts (in our case, with pulmonary special-
ists). For the purpose of illustrating the methodology outlined herein, however, we
set reasonable equivalence bands based on the fact that the time points immedi-
ately before, during, and immediately after maximal volume is attained are critical
for diagnostic purposes: κl(t) � −0.05 cos(2πt) − 0.15; κu(t) � 0.05 cos(2πt) +
0.15; ζu(t) � 0.1 cos(2πt) + 1.8; ζl(t) � 1/(0.1 cos(2πt) + 1.8).

We use the same sets of equivalence bands for the error variances and the ran-
dom effect variances, although in practice these should be chosen separately. The
class of equivalence bands need not be symmetric, as this assumption may be un-
realistic; we have merely done so for simplicity. Figure 3 shows the locational
discrepancy between volume curves if the true differences between devices truly
were at the upper and lower thresholds of equivalence we have specified.

4. Frequentist equivalence testing for functional data. We propose using
the nonparametric bootstrap [Efron and Tibshirani (1993)] for assessing equiva-
lence by constructing pointwise confidence intervals for each metric of equiva-
lence, and then using the duality between confidence intervals and pointwise hy-
pothesis tests to conduct our inference. We begin with a testing procedure for i.i.d.
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data, as we imagine many situations encountered in practice will be of this form.
We then discuss a procedure for testing within a random effects model. Allowing
for random effects is useful for repeated measures data such as our pulmonary
device data. Through our exposition, we illustrate why pointwise coverage of our
confidence intervals is actually sufficient for guaranteeing that the resultant infer-
ence is of the desired size.

4.1. IID data, independence between populations. We use the difference in
mean functions, θ(·) � μ1(·) − μ2(·) and the ratio of variance functions λ(·) �
σ 2

ε,1(·)
σ 2

ε,2(·)
, as metrics for equivalence. Let y1,1(·), . . . , y1,n1(·) and y2,1(·), . . . , y2,n2(·)

denote the n1 and n2 observations from groups 1 and 2, respectively, and let ȳ1(·)−
ȳ2(·) denote the sample mean functions.

We use θ̂ (·) � ȳ1(·)− ȳ2(·) and λ̂(·) � s2
ε,1(·)

s2
ε,2(·)

as our test statistics for the hypoth-

esis test, and use the nonparametric bootstrap to derive pointwise confidence inter-
vals for the corresponding parameters. We then use the duality between one-sided
confidence intervals and one-sided tests to reject or fail to reject nonequivalence.

In each bootstrap simulation, we do the following:

1. Sample n1 curves with replacement from the curves in group 1, and sample
n2 curves with replacement from the modified curves in group 2.

2. Compute the pointwise mean curve from these samples and the pointwise
variance curves for each population. Denote these as {ȳ∗

i (·)} and {s2∗
i (·)}.

3. Compute θ̂∗(·) � ȳ∗
1 (·) − ȳ∗

2 (·) and λ̂∗(·) � s2∗
1 (·)

s2∗
2 (·) .

4. Store this value.

Next, we find upper and lower one-sided pointwise 100(1 − α) confidence in-
tervals. Let qp[X(t)] denote the p-quantile for the distribution of X evaluated at
time t . Then, we define our upper and lower pointwise confidence intervals for
θ(t) using a bias correcting percentile-based bootstrap as discussed in Davison
and Hinkley (1997):

Cu
1−α

(
θ(t)

) = [
2θ̂ (t) − qα

[
θ̂∗(t)

]
,∞)

,

Cl
1−α

(
θ(t)

) = (−∞,2θ̂ (t) − q1−α

[
θ̂∗(t)

])
.

At any particular poin t , Cu
1−α(θ(t)) and Cl

1−α(θ(t)) can be interpreted as the set of
all θ0 such that we fail to reject the null that θ(t) ≤ θ0 and θ(t) ≥ θ0, respectively.
As such, if our lower equivalence band at time t , κl(t), is outside of Cu

1−α(θ(t)),
then we can reject the null that θ(t) ≤ κl(t) at the point t . Likewise, if κu(t) is
outside of Cl

1−α(θ(t)), then we can reject the null that θ(t) ≥ κl(t) at the point t .
Our upper and lower pointwise confidence interval for λ(t) take on a different

form. This is because dispersion measures are not typically variance stabilized. In
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such cases, conventional bootstrap intervals fail to attain their advertised cover-
age probabilities in small samples. We imagine that most test statistics for testing
equivalence of dispersion will be based on the sample variance. For many distri-
butions (including the normal), transforming by the logarithm results in an esti-
mator whose variance is stabilized. Hence, we instead construct upper and lower
one-sided confidence intervals for the variance stabilized quantity log(λ(t)), and
then utilize the monotonicity of the log transform to result in confidence intervals
for λ(t),

Cu
1−α

(
λ(t)

) = [(
λ̂(t)

)2 × q1−α

[
1/λ̂∗(t)

]
,∞)

,

Cl
1−α

(
λ(t)

) = (
0,

(
λ̂(t)

)2 × qα

[
1/λ̂∗(t)

]]
.

These intervals can be used to test whether λ(t) is below the upper equivalence
band and above the lower equivalence band at any point t . If one is concerned
about the log transform providing variance stabilization, another approach to con-
structing these confidence intervals would be to estimate a variance stabilizing
transformation within the bootstrap framework [see Davison and Hinkley (1997),
Tibshirani (1988)].

We now have tests for whether or not we have equivalence of location and
spread at any point t . To test for overall equivalence, we conduct tests at each
domain point based on the 100(1 − α) pointwise interval at all points t ∈ T and
reject the null of nonequivalence only if all of the individual tests result in a re-
jection. To see why there is no need to correct for simultaneous comparisons, let
T0 ∪ Ta = T be a partition of the domain where T0 contains the points for which
the null hypothesis is true and Ta contains the points for which the alternative is
true for any true metric of equivalence in the set of nonequivalence. Then, the
probability of a false rejection is bounded as follows:

P(Type I error) = P(falsely reject all of T0, correctly reject all of Ta)

≤ P(falsely reject all of T0)

≤ P(falsely reject a particular t0 ∈ T0)

= α.

Hence, pointwise α tests of hypothesis guarantee size of at most α. In fact, if one
had further information regarding the correlation between test statistics, these tests
could be done at a size larger than α, since our decision to reject nonequivalence
is an intersection of tests. As an example, if our function were defined on a grid of
size |T | = 20, our test statistics were independent, and we wanted an overall size
of α = 0.05, we could then run our tests using α∗ = α1/20 = 0.87. In the absence of
such knowledge, conducting the pointwise tests at size α is actually a tight upper
bound. To see this, consider an equivalence metric that is in the equivalence region
at all points along the domain except for t0, at which its value equals that of the
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equivalence band. If the probabilities of correct rejection at all points T /{t0} are
sufficiently close to one, then essentially the type one error rate is the size of the
test at t0, which is α. In Section 10.1, we give an example where the overall size
approaches the upper bound α.

4.2. IID matched pairs. For paired functions (commonly arising in compar-
ison studies where simultaneous measurements using two devices are possible),
slight alterations are required in the bootstrapping procedure. We again use the
difference in mean functions, θ(·) � μ1(·) − μ2(·) and the ratio of variance func-

tions λ(·) � σ 2
1 (·)

σ 2
2 (·) , as metrics for equivalence. Let {y1,i (·), y2,i(·)} be the paired

curves, and let n denote the total number of pairs. The bootstrap procedure is as
follows:

1. Sample n pairs of curves with replacement from the original sample.
2. Compute the pointwise mean curve from these samples and the point-

wise variance curves for each population. Denote these as [ȳ∗
1 (·), ȳ∗

2 (·)] and
[s2∗

1 (·), s2∗
2 (·)].

3. Compute θ̂∗(·) � ȳ∗
1 (·) − ȳ∗

2 (·) and λ̂∗(·) � s2∗
1 (·)

s2∗
2 (·) .

4. Record this value.

Now that our bootstrap samples have been acquired, the rest of the procedure is
identical to that explained in Section 4.1.

4.3. Random effects with matched pairs. We now describe a nonparametric
bootstrap procedure for paired random effects and paired responses. The proce-
dure for nonmatched data would replace sampling pairs with sampling individu-
ally from two populations and, hence, we omit its discussion herein. See Chambers
and Chandra (2013) for an overview of random effect bootstrapping procedures.

Suppose our data consist of A individuals with pairs of random effects

[αi,1(·), αi,2(·)] i.i.d.∼ F with mean [μ1(·),μ2(·)] and variance [σ 2
α,1(·), σ 2

α,2(·)]. For

each individual i ∈ [A], we observe ni pairs of curves with [yi,1,k(·), yi,2,k(·)] i.i.d.∼
Gi with mean [αi,1(·), αi,2(·)] and variance [σ 2

ε,1(·), σ 2
ε,2(·)]. Let N = ∑A

i=1 ni de-
note the total number of curves. Our test for equivalence will, as before, focus on
the location metric θ(·) � μ1(·) − μ2(·) and metric of equivalence of error vari-

abilities, λ(·) � σ 2
ε,1(·)

σ 2
ε,2(·)

. As described in Section 3.2, we also include a third metric,

the ratio of random effect variances of the two populations: ψ(·) � σ 2
α,1(·)

σ 2
α,2(·)

.

Let ȳj (·) � 1
N

∑A
i=1

∑ni

k=1 yi,j,k(·) be the overall mean curve for coordinate j

and let ȳi,j � 1
ni

∑ni

k=1 yi,j,k(·) be the mean curve for coordinate j of individ-

ual i. Now, define SSEj (·) � ∑A
i=1

∑ni

k=1(yi,j,k(·) − ȳj (·))2, and let SSAj (·) �∑A
i=1 ni(ȳi,j − ȳj )

2. Our estimators for these metrics of equivalence will be



2012 C. B. FOGARTY AND D. S. SMALL

based on their univariate random effect counterparts derived via ANOVA. See
Searle, Casella and McCulloch (1992) for a description of methods for uni-
variate random effect analysis. Begin by defining our estimate of the random
effect variance curve by s2

α,j (·) = (SSA1(·)/(A − 1) − SSE1(·)/(N − 1))/n∗,

n∗ = (N − (
∑

n2
i )/N)/(A − 1). Then, we define our test statistics as λ̂(·) =

SSE1(·)
SSE2(·) and ψ̂(·) = s2

α,1(·)/s2
α,2(·). Our estimators for the random effects will

be α̂i,j (·) = ȳi,j (·). Based on these, we estimate our location metric, θ(·), by
θ̂ (·) = 1

A

∑A
i=1(α̂i,1(·) − α̂i,2(·)).

Denote ri,j,k(·) = yi,j,k(·) − α̂i,j (·). We then consider these N pairs as a reser-
voir from which to draw error functions in the bootstrap simulation, rather than
maintaining a correspondence between random effects and residuals from that ran-
dom effect’s group. This ignores the sample covariance between residuals from the
same group and slight heteroscedasticity if the design is unbalanced. We doubt that
this would have a substantial impact on the inference being performed (which the
simulation studies of Section 10 seem to suggest), but leave a proper investigation
for future work.

Before beginning the bootstrap, we adjust our estimates of the random effects
such that the ratio of the variances of the pool of random effects used in the boot-
strap matches up with our estimate of the random effect variance. We define the
following adjusted random effects:

âi,j (·) = ȳj (·) − (
α̂i,j (·) − ȳj (·)) sα,j (·)

SD(α̂i,j (·)) .

Here, SD(α̂i,j (·)) is the standard deviation of our estimated group means evaluated
pointwise. This transformation guarantees that the variances of the random effects
used in the bootstrap are the same as our estimate of that variance. As noted in Shao
and Tu (1995) and Chambers and Chandra (2013), this step is required to assure
that the confidence intervals produced by the bootstrap procedure are consistent.
We then proceed as follows:

1. Sample A pairs of random effects from {[âi,1(·), âi,2(·)]} with replacement.
Call them {[âi,1(·), âi,2(·)]∗}. The first pair drawn gets assigned n1 as the number
of pairs of curves to be drawn within that group, the second gets assigned n2, etc.

2. For each i, draw ni pairs of residuals with replacement from {[ri,1,k(·),
ri,2,k(·)]}. Call these {[ri,1,k(·), ri,2,k(·)]∗}.

3. Define [yi,1,k(·), yi,2,k(·)]∗ = [âi,1(·), âi,2(·)]∗ + [ri,1,k(·), ri,2,k(·)]∗.
4. Estimate ȳ∗

j (·), ȳ∗
i,j (·),SSE∗

j (·),SSA∗
j (·) based on the bootstrap sample

{[yi,1,k(·), yi,2,k(·)]∗}.
5. Estimate θ̂∗(·), λ̂∗(·), ψ̂∗(·) based on these quantities.

We can create pointwise 100(1 − α) confidence intervals for θ(·) and λ(·) just
as we did in Section 4.1. For ψ(·), we define our confidence intervals in the same
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manner as we did with λ(·),
Cu

1−α

(
ψ(t)

) = [(
ψ̂(t)

)2 × q1−α

[
1/ψ̂∗(t)

]
,∞)

,

Cl
1−α

(
ψ(t)

) = (
0,

(
ψ̂(t)

)2 × qα

[
1/ψ̂∗(t)

]]
.

As before, these confidence intervals can be used to test whether ψ(t) is below the
upper equivalence band and above the lower equivalence band at any point t .

5. A frequentist test of equivalence for lung volume functional data. We
now conduct our equivalence test using the methods described in Section 4 for
paired random effects. We drew 10,000 bootstrap samples and used α = 0.05 to
carry out these tests. We find that Figure 4 is a powerful visual display of the results

FIG. 4. Equivalence Test for the difference of means (top left), ratio of error variances (top right),
and the ratio of random effect variance curves (bottom).



2014 C. B. FOGARTY AND D. S. SMALL

of this TOST procedure. In each plot, we display the upper and lower equivalence
bands. We also display the upper band of the region Cl

0.95(·) and the lower band
of the region Cu

0.95(·). Recall that we can reject the null if the upper equivalence
band lies entirely outside the region Cl

0.95(·) and if the lower equivalence band lies
entirely outside the region Cu

0.95(·). Hence, it is sufficient to check whether or not
either the upper or lower equivalence band at any point intersect the region defined
by the overlap of the two one-sided confidence regions, which is shaded in the
plots. Intersection implies failure to reject, and lack thereof implies rejection of
nonequivalence in favor of equivalence.

Based on Figure 4, we conclude that we can suggest equivalence for our loca-
tional metric, but fail to reject the null of nonequivalence for variability of both
errors and random effects. We believe it will always be the case that a two-sided
test for the variability of random effects is appropriate, as deviations in either di-
rection indicate substantial differences in the distribution of the individual level
mean curves; however, for certain applications (ours included), lower error vari-
ance will be strictly preferred. If we thus restrict ourselves to only having the ratio
of error variances below the upper equivalence threshold, then we would also re-
ject the null of noninferiority of error variability. Note that there does appear to be
an inflation of error variance by a factor of 1.5 at the beginning of each breath for
SLP relative to spirometry. Though the ratio between the two variances is high at
this point, the actual magnitude of the variances at the beginning of these curves
is extremely small for both devices, which results in the high value for the ratio of
variances.

6. A Bayesian paradigm for equivalence testing. As in the frequentist case,
we suggest using functional measures of location and spread to assess practical
equivalence, however, carrying out a TOST hypothesis test is not required within
the Bayesian paradigm. Rather than conducting a stochastic proof by contradic-
tion, the Bayesian paradigm allows us to directly compute posterior probabilities
of our functional metrics of equivalence falling entirely within specified equiv-
alence ranges. That is, the Bayesian paradigm allows for direct computation of
P{Ha|Data} for each of the equivalence hypotheses. In light of this, we propose
that the researcher conduct the following three steps when using the Bayesian
framework for equivalence testing:

1. Define an equivalence region through expert consultation.
2. Define a probability value, call it γ , such that if P{Ha|Data} ≥ γ , equiva-

lence may be suggested. Using the suggestions of Jeffreys (1961) and Kass and
Raftery (1995), a value of γ = 0.75 or γ = 0.95 may be appropriate.

3. Specify prior distributions for the metrics of equivalence that are commen-
surate with the researcher’s prior belief of the alternative being true relative to the
null.
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The specifics of this implementation depend on the types of prior distributions
used to model the parameters and data. In Section 7 we discuss the use of Gaus-
sian Processes in modeling both our data and parameters and describe a model that
allows for specification of priors and posterior inference for our metrics of equiva-
lence. Though Gaussian Processes are a rich and flexible class of distributions for
functional data, a valuable extension of our work would be conducting Bayesian
equivalence testing for functional data using nonparametric models.

7. Bayesian functional equivalence testing for lung volume data. Kaufman
and Sain (2010) discuss using functional ANOVA modeling within the Bayesian
paradigm. They begin by assuming that the functional data are realizations of an
underlying Gaussian process with a mean function depending on the factor levels
and a covariance function that describes the dependence between points along the
function’s domain. They further assume that the covariance between errors can be
aptly specified as a member of the class of Matérn covariance functions [Matérn
(1986)]. The specification of a correlation function works to impose smoothness
between estimated function values and to allow for interpolation at unobserved
domain values. Gaussian process priors with Matérn covariance functions are used
for the mean functions themselves, which allows for the incorporation of a priori
beliefs about both smoothness and location.

The assumption of homoscedastic variances along the function’s domain
is problematic for us, as allowing the error and random effect variances to
change with time is vital to our investigation of equivalence. We consider a
more flexible class of covariance and cross-covariance functions: Vi,j (t, t

′) =
σi(t)σj (t

′)Ri,j (t, t
′). Here, σε,i(t) is the error standard deviation function for de-

vice j evaluated at time t , and Rε,i,j (t, t
′) is either the correlation function for

device j for observations at times t and t ′ if i = j or the cross-correlation function
between the error at time t for device i and the error at time t ′ for device j if i �= j .

To simplify notation, let � denote the set containing all of our parameters. Then,
we can write our Multivariate Gaussian Process model for our responses:

[
vi,1,k(·)
vi,2,k(·)

]∣∣∣∣� indep∼ MVGP
([

αi,1(·)
αi,2(·)

]
,

[
Vε,1,1(·, ·) Vε,1,2(·, ·)
Vε,1,2(·, ·) Vε,2,2(·, ·)

])
.

Note that, in practice, our response functions are measured only at a predeter-
mined set of grid points, t = {t1, . . . , tT } ⊂ T . To distinguish this, let the nota-
tion [vi,1,k(t),vi,2,k(t)] represent the vector whose coordinates are the response
as measured at each of the T grid points, and let the analogous notation hold
for the functional parameters of our models. Hence, [vi,1,k(t),vi,2,k(t)]′ repre-
sents a 2T × 1 vector. Using the decomposition proposed in Barnard, McCul-
loch and Meng (2000), our covariance functions evaluated at t can be described
in matrix notation as Vε,i,j (t, t) � Diag(σε,i(t))Rε,i,j (t, t)Diag(σε,j (t)), where
Diag(σε,j (t)) denotes a T × T matrix whose diagonal elements are σε,j (t).
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Our assumption of a Multivariate Gaussian Process results in [vi,1,k(t),vi,2,k(t)]
following a Multivariate Normal distribution when we consider observations at
the set of gridpoints t with the fixed grid analogues for the mean and covariance
structure.

8. Bayesian methodology.

8.1. Correlation structure. Our data set consists of a total of 453 breaths col-
lected from 16 individuals, where each breath was measured at 25 equispaced time
points using both SLP and spirometry. Our desire to model cross-covariances be-
tween devices results in our matrices of observations being 50 dimensional. For
modeling the error correlation, this is not an issue, as we have 453 observations,
however, as we only have 16 individuals, a simplifying assumption must be made
to proceed. In many functional data settings, the goal of the data analysis is mean
function estimation and prediction at new locations (kriging). To facilitate this,
modelers typically restrict themselves to a particular class of correlation functions.
Unfortunately, the distribution of posterior variance functions is highly dependent
on the correlation structure. Hence, misspecification of the correlation model can
result in estimates for variance parameters that are biased and wildly misleading.
As we would like to conduct inference for the ratio of variance functions of both
errors and random effects, we are left searching for an alternative. More advanced
methods that make no assumptions on the correlation function class have been sug-
gested in the geostatistics literature [see Fuentes (2002), Fuentes and Smith (2001),
Nychka, Wikle and Royle (2002), Paciorek and Schervish (2006)] and elsewhere
[see Chen and Müller (2012), Morris and Carroll (2006)], but none of these works
have directly focused on the accuracy of the resultant variance estimates. Estima-
tion of correlation functions for repeatedly observed functional data remains an
active area of research, particularly in the regime where the number of functional
observations is small relative to the grid size.

Our recommendation is that if the researcher has sufficient data to flexibly
model the correlation structure of both the random effects and the errors, then
this should be the course pursued. As we do not, we instead make a modeling de-
cision that will facilitate valid inference for our variance functions. We assume the
following structure for the correlation of our errors and random effects:

Ri,j

(
t, t ′

) =
⎧⎨
⎩

1, i = j, t = t ′,
ρ(t), i �= j, t = t ′,
0, otherwise.

We thus primarily focus on the marginal distributions for estimation of our mean
functions and variances. This has the obvious drawback of not fully exploiting the
functional nature of our data, but allows for estimation of marginal variances with-
out the risk of biases due to misspecification of the correlation structure. This is
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an interesting instance where the simplifying assumptions made to facilitate in-
ference would not necessarily align with ones made if the goal was estimation of
mean functions or prediction of values at unmeasured locations. In the latter case,
one would likely enforce a restriction to a specific class of correlation functions
which would result in both smooth curve estimates and a principled manner by
which interpolation and prediction could be performed; however, this would result
in misleading estimates for the variance components of the model, which is unac-
ceptable for testing equivalence of variance functions. In Section 10 we investigate
the ramifications of this modeling decision on the resultant inference.

8.2. Prior distributions. Specification of priors for σε,1(·) and σε,2(·) must
be done carefully, as practical equivalence of error variability is tested using a
function of these parameters. We model these functions as themselves being real-
izations of independent stochastic processes. Specifically, we extend the work of
Barnard, McCulloch and Meng (2000) to the functional regime by modeling the
standard deviation curves as emanating from Log-Gaussian Processes:

log
(
σ 2

ε,1(·)
) ∼ GP

(
τε(·), s2

ε �ε(·, ·)),
log

(
σ 2

ε,2(·)
) ∼ GP

(
τ 2
ε (·) − δε(·), s2

ε �ε(·, ·)),
log

(
σε,1(·)) ⊥⊥ log

(
σε,2(·)),

p
(
τε(·)) ∝ 1,

δε(·) ∼ 1
21

{
δε(·) = log

(
ζl(·))} + 1

21
{
δε(·) = log

(
ζu(·))},

where �ε(·, ·) = 1
2(|t − t ′|/aε)

2K2(d(t, t ′)/aε) is a standard Matérn correlation
function [Matérn (1986)] with smoothness parameter ν = 2.

We use the ratio
σ 2

ε,1(·)
σ 2

ε,2(·)
as our comparative measure for the error variability of

the two devices. Our prior on the standard deviations yields the following prior for
this ratio:

σ 2
ε,1(·)

σ 2
ε,2(·)

∼ 1

2

(
Log-GP

(
log

(
ζl(·)),2s2

ε Rσ (·, ·)))

+ 1

2

(
Log-GP

(
log

(
ζu(·)),2s2

ε Rσ (·, ·))).
This is a 50/50 mixture of two Log-Gaussian Processes with medians at the upper
and lower equivalence thresholds respectively. Hence, we can place prior probabil-
ities on falling within the equivalence region by careful choices of s2

ε �ε(·, ·). Bor-
rowing from the frequentist paradigm in which it is incumbent upon the researcher
to prove his or her hypothesis beyond a reasonable doubt, we set the values of these
hyperparameters such that the a priori probability of equivalence is quite small.
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We set s2
ε = 5 and aε = 0.1, which results in a prior probability of falling entirely

within the equivalence region of P{σ 2
ε,1(t)/σ

2
ε,2(t) ∈ (ζl(t), ζu(t))} ≈ 5 × 10−8.

For the correlations resulting from the paired nature of our data, we set ρε(t) ∼
U[−1,1] for all t .

For our random effects, {[αi,1(·), αi,2(·)]}, we use a Hierarchical Gaussian Pro-
cess prior:

[
αi,1(·)
αi,2(·)

]
i.i.d.∼ GP

([
μ1(·)
μ2(·)

]
,

[
Vα,1,1(·, ·) Vα,1,2(·, ·)
Vα,1,2(·, ·) Vα,2,2(·, ·)

])
.

The priors on the variance functions of our random effects, [σ 2
α,1(·), σ 2

α,2(·)],
and the correlation structure are identical to the one used for the error variances.

The posterior distribution for the difference between the device specific curves,
μ1(·) − μ2(·), is of interest for assessing locational equivalence. Thus, proper at-
tention must be paid to the prior placed on {μ1(·),μ2(·)} such that the prior does
not unduly force the posterior distribution toward the prespecified equivalence re-
gion. Our priors for μ1(·) and μ2(·) are as follows:

μ1(·) ∼ GP
(
μ0(·), s2

μ�μ(·, ·)),
μ2(·) ∼ GP

(
μ0(·) − δμ(·), s2

μ�μ(·, ·)),
μ1(·) ⊥⊥ μ2(·),

p
(
μ0(·)) ∝ 1,

δμ(·) ∼ 1
21

{
δμ(·) = κl(·)} + 1

21
{
δμ(·) = κu(·)},

where �μ(t, t ′) is a Matérn correlation function with smoothness parameter ν = 2.
This then implies that our difference of means has the following prior:

μ1(·) − μ2(·) ∼ 1
2

(
GP

(
κl(·),2s2

μ�μ(·, ·))) + 1
2

(
GP

(
κu(·),2s2

μ�μ(·, ·))).
In other words, our prior on the difference in device means is a 50/50 mix-
ture of two Gaussian Processes, with means at the upper and lower equivalence
thresholds respectively. We choose a prior that places 1% likelihood in the equiv-
alence region and the remaining 99% outside of it. To achieve this, we fixed a
value of aμ = 0.3, and then used the uniroot() and pmvnorm() functions
in R [R Development Core Team (2011)] to solve for the value of s2

μ such that
P{μ1(t)−μ2(t) ∈ (κl(t), κu(t))} = 0.01. This value was found to be 0.1. Note that
if one has a sense of an appropriate basis for the mean functions, one could place
a prior μ0(·) ∼ N (

∑
akφk(·), σ 2

μ) instead of p(μ0(·)) ∝ 1. This could allow for
regularization of the functional fits based on this basis while not restricting them
to entirely follow said basis, and would still facilitate our strategy of putting priors
on equivalence commensurate with prior knowledge.
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8.3. Posterior sampling. Before conducting inference based on our model
specification, we must devise a sampling schema for the posterior distribution of
our parameters. We use a Metropolis-within-Gibbs sampling algorithm; see the
supplementary materials [Fogarty and Small (2014)] for details.

9. Posterior analysis. To conduct our posterior analysis, we ran our Gibbs
sampler from three distinct starting values for 10,500 iterations per starting value
(for a total of 31,500 iterations). We discarded the first 500 iterations as burn-in
for each chain and took every 10 samples thenceforth for a total of 1000 samples
per starting value, which were then chained together, resulting in 3000 roughly
independent samples. See the supplementary material [Fogarty and Small (2014)]
for convergence diagnostics.

Figure 5 shows the posterior distribution for the three metrics of interest. We
summarize the posterior distributions of our metrics of equivalence by the poste-
rior mean curve and 95% simultaneous posterior bands. These bands are computed
using the multiplier based method of Buja and Rolke (2003). The posterior bands
are unnecessary for inference, as the computation of P{Ha|Data} depends solely on
how many posterior curves fall within the equivalence region, but nonetheless pro-
vide a useful graphical aid. For our locational metric, μ1(·)−μ2(·), we found that
all 3000 of our samples from the posterior distribution fell within the prespecified
equivalence range, suggesting overwhelming evidence in favor of the hypothesis
that these two curves, in terms of location, can be considered practically equiva-
lent. For the ratio of error variances, σ 2

ε,1(·)/σ 2
ε,2(·), we note that if it is the case

that lower variability is strictly more desirable, then 2998 out of 3000 samples fall
strictly below the upper equivalence band; however, if one desires adherence to
the lower equivalence band as well, then our posterior probability of equivalence
is 0.0007, since our posterior bands regularly violate the lower tolerance thresh-
old toward the middle of the breaths (around t = 0.5). For the ratio of random
effect variances, σ 2

α,1(·)/σ 2
α,2(·), we note that although the posterior median falls

well within the equivalence range, only 18.2% of the posterior samples fell en-
tirely within the equivalence region. Hence, although we can suggest equivalence
of both means and error variances, we lack sufficient power to suggest equivalence
of random effect variances.

10. Comparing the frequentist and Bayesian methods. We have presented
methods for equivalence testing within the frequentist and Bayesian paradigms.
From a pragmatic perspective, the relative computational intensity of both meth-
ods is of interest to practitioners. In this respect, our frequentist method is domi-
nant, as within each bootstrap iteration, only simple vector operations are required.
The Bayesian approach requires sampling from multivariate distributions, matrix
multiplication, matrix inversion, and determinant calculation within each step. Fur-
thermore, thinning of one out of every 10 iterations was required. Hence, to get the
same effective sample size, we needed to do 10 times as many iterations for the
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FIG. 5. 95% simultaneous credible bands for μ1(·) − μ2(·) (top left), σ 2
ε,1(·)/σ 2

ε,2(·) (top right),

and σ 2
α,1(·)/σ 2

α,2(·) (bottom), along with upper and lower equivalence bands.

frequentist procedure as we did for the Bayesian one. To attain 1000 independent
samples via the Bayesian methodology, we needed to run 10,500 iterations of our
sampling algorithm, which took 22.6 minutes on a personal laptop with 4 GB RAM
and a 2.7 GHz processor. The bootstrap procedure took 16.1 seconds to run 1000
iterations on the same laptop. This discrepancy will only increase as the granu-
larity of the grid the user implements increases, as both determinant and inverse
calculation are O(p3) in their simplest implementation.

Frequentist and Bayesian inference are not coherent with one another, in that
frequentist inference has a built in preference for the null hypothesis. For the fre-
quentist, the null is the status quo, and the goal of the inference is to refute it via
a “proof by contradiction.” The Bayesian framework, on the other hand, allows
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the user to put varying degrees of a priori preference on one hypothesis versus the
other. In our Bayesian analysis we have placed heavy preference on the null and
thus require very strong evidence from the data to put the posterior probability in
the proper region, but this may not always be appropriate. The Bayesian paradigm
allows for a principled manner for incorporating the results of past studies in the
form of the priors placed on equivalence vs nonequivalence, a feature not offered
by the frequentist framework.

With these caveats in mind, we investigate the size and power of our methodolo-
gies, using the threshold of α = 0.05 in the frequentist procedure. For our Bayesian
procedure, we use γ = 0.95 as our threshold for the posterior probability of equiv-
alence. In our investigation, we continue to place heavy a priori preference on
nonequivalence for our Bayesian methodology.

10.1. Type I error. We restrict our investigation to the Type I error rates of our
tests for location and error variances. We simulate 20 matched pair random effects,
and then simulate 20 matched functional responses for each subpopulation. This
results in 400 breaths total. To investigate the true size of our methods, we define
a sequence of true values for our metrics of equivalence where equivalence is vio-
lated at one point along the domain, and the other points move farther and farther
into the equivalence region. These sequences and numerical labels are shown in
Figure 6. The remaining values of parameters needed for simulation are based on
the posterior means from our data set. Additionally, we used an estimate of the cor-
relation structure of our error functions as the true correlation for simulating both
error functions and random effect functions. This allows us to assess the robustness
of our Bayesian procedure to the assumption of Section 8.1

For each of the nine function values in the sequence, we simulated 500 data sets
and ran both the frequentist and Bayesian methdologies on them. Figure 6 shows
the result of this study. We see that for testing the equivalence of mean functions,
the Bayesian procedure is far more conservative than our frequentist procedure,
which appears to be due to the assumption on the correlation structure made in
our Bayesian procedure. As expected, the frequentist procedure is initially conser-
vative, but has size that approaches 0.05 as the test becomes increasingly reliant
on our data’s behavior at one domain point (the one at which equivalence is vi-
olated). Figure 6 also demonstrates that the test is roughly unbiased in terms of
purported size. For testing the equivalence of variances, the Bayesian and frequen-
tist procedures initially exhibit similar Type I error rates, and also both appear to
be slighty anti-conservative; however, the Bayesian procedure is anti-conservative
to a far more egregious degree by the end of the sequence of functions, having an
estimated size of 0.072 for the 9th function in the sequence versus an estimated
size of 0.056 for the frequentist procedure at this value for the true ratio of error
variances.
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FIG. 6. Sequence of true values and corresponding Type I error rates for μ1(·) − μ2(·) (top) and
σ 2
ε,1(·)/σ 2

ε,2(·) (bottom) along with upper and lower equivalence bands used for Type I error study.

10.2. Power. To investigate the power of our methods, we define a sequence of
true values for our metrics of equivalence that fall entirely between the upper and
lower equivalence thresholds. These sequences and numerical labels are shown
in Figure 7. The rest of our simulation procedure mirrors that of our simulation
for testing the Type I error rate. Figure 7 shows the results of this study. We see
that for testing equivalence of means, the frequentist procedure appears to be sub-
stantially more powerful than its Bayesian counterpart. For testing equivalence of
variances, the frequentist and Bayesian procedures behave quite similarly, with no
clear indication that one procedure is any more powerful than the other.

11. Discussion. We have presented a broad framework for equivalence test-
ing when one’s data are intrinsically functional. This framework begins with def-
initions of metrics of equivalence, and correspondingly with the establishment of
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FIG. 7. Sequence of true values and corresponding power of μ1(·)−μ2(·) (top) and σ 2
ε,1(·)/σ 2

ε,2(·)
(bottom) along with upper and lower equivalence bands used for the power study.

upper and lower equivalence bands which are themselves functions of the contin-
uum over which the functional data is defined. We have stressed the importance of
using metrics that are able to discern similarity of location and of spread, as nei-
ther individually is sufficient for suggesting equivalence. We illustrated the proper
use of these frameworks using data from a method comparison study assessing the
performance of a new device for testing pulmonary function, SLP, relative to the
gold standard for pulmonary diagnoses, the spirometer.

Our model presently makes an assumption that all individuals are drawn from
the same population. For our application this makes sense, as we are solely looking
at healthy individuals. For other applications, the individuals for which repeated
measurements are attained may be draws from multiple populations. In our ap-
plication, one could potentially have individuals of varying degrees of pulmonary
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health (e.g., healthy, asthmatic, smokers). Our model can easily adapt to this, as
this simply requires adding an additional level to the hierarchy. We could either say
that health level specific means are drawn from a population with an overall mean,
and then individual means are drawn from these health level specific populations,
or we could model the health level means as fixed effects and result in a functional
mixed effects model.

Using the difference between mean functions to test locational disparity is a
natural choice, and the extent to which magnitude of differences are important can
be controlled by tightening or loosening the equivalence bands. For testing the
disparity between variances of both errors and random effects, we have followed
the prevalent choice in the scalar equivalence testing literature [see Chow and Liu
(1992)] and have used the ratio between variances, σ 2

1 (·)/σ 2
2 (·). On the one hand,

this unitless measure has appeal in that it has potential for standardization across
applications. On the other hand, we lose a sense of the absolute difference between
the quantities. For some applications, the difference between a variance of 0.01
and 0.02 could be inconsequential, yet the difference between 0.04 and 0.08 could
be enough to warrant using one device over another. If one were using ratios for
assessing a discrepancy, however, these quantities would be identically different.
We thus suggest that the difference between variances, σ 2

1 (·) − σ 2
1 (·), may be an

additional metric for equivalence that could be used in tandem with the ratio of
variances to test for equivalence of variability.

Note that there may be additional facets of the underlying distributions of func-
tions to be addressed beyond location and variability, depending on the application.
For example, one may be interested not only in the difference in the mean func-
tions being within an equivalence region, but also in the derivative of the difference
between mean functions being small in absolute value. We leave the development
of proper methodology for these questions as a topic for future research, but the
strategy of supplying upper and lower equivalence bands would certainly be ap-
propriate.

We hope that this paper serves as a valuable contribution to the literature on
equivalence testing and that its extension to the realm of functional data will be
useful for a host of applied users, including but not limited to practitioners looking
to compare devices whose measurements cannot be summarized as scalar quan-
tities. Comparison studies are of the utmost importance, as oftentimes the emer-
gence of newer and better devices can have salubrious outcomes for society in
general. Our goal is that this paper properly emphasizes the importance of equiva-
lence testing in general, and provides traction for researchers who aim to suggest
that two populations of functions are practically equivalent rather than to suggest
that they are different.
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SUPPLEMENTARY MATERIAL

Supplement to “Equivalence testing for functional data with an application
to comparing pulmonary function devices” (DOI: 10.1214/14-AOAS763SUPP;
.pdf). We provide a description of the preprocessing that our data underwent, a de-
tailed derivation of our Metropolis-within-Gibbs sampling algorithm, and diagnos-
tic plots showing convergence of our Gibbs sampler when used on our data.
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