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LONGITUDINAL HIGH-DIMENSIONAL PRINCIPAL COMPONENTS
ANALYSIS WITH APPLICATION TO DIFFUSION TENSOR

IMAGING OF MULTIPLE SCLEROSIS
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BRIAN S. CAFFO∗,1, DANIEL S. REICH§,3 AND CIPRIAN M. CRAINICEANU∗,1
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We develop a flexible framework for modeling high-dimensional imag-
ing data observed longitudinally. The approach decomposes the observed
variability of repeatedly measured high-dimensional observations into three
additive components: a subject-specific imaging random intercept that quanti-
fies the cross-sectional variability, a subject-specific imaging slope that quan-
tifies the dynamic irreversible deformation over multiple realizations, and
a subject-visit-specific imaging deviation that quantifies exchangeable effects
between visits. The proposed method is very fast, scalable to studies includ-
ing ultrahigh-dimensional data, and can easily be adapted to and executed on
modest computing infrastructures. The method is applied to the longitudinal
analysis of diffusion tensor imaging (DTI) data of the corpus callosum of
multiple sclerosis (MS) subjects. The study includes 176 subjects observed at
466 visits. For each subject and visit the study contains a registered DTI scan
of the corpus callosum at roughly 30,000 voxels.

1. Introduction. An increasing number of longitudinal studies routinely ac-
quire high-dimensional data, such as brain images or gene expression, at multiple
visits. This led to increased interest in generalizing standard models designed for
longitudinal data analysis to the case when the observed data are massively multi-
variate. In this paper we propose to generalize the random intercept random slope
mixed effects model to the case when instead of a scalar, one measures a high-
dimensional object, such as a brain image. The proposed methods can be applied
to longitudinal studies that include high-dimensional imaging observations with-
out missing data that can be unfolded into a long vector.

Received August 2013; revised March 2014.
1Supported by Grant R01NS060910 from the National Institute of Neurological Disorders and

Stroke and by Award Number EB012547 from the NIH National Institute of Biomedical Imaging
and Bioengineering (NIBIB).

2Supported by the German Research Foundation through the Emmy Noether Programme, Grant
GR 3793/1-1.

3Supported by the Intramural Research Program of the National Institute of Neurological Disorders
and Stroke.

Key words and phrases. Principal components, linear mixed model, diffusion tensor imaging,
brain imaging data, multiple sclerosis.

2175

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS748
http://www.imstat.org


2176 V. ZIPUNNIKOV ET AL.

This paper is motivated by a study of multiple sclerosis (MS) patients [Reich
et al. (2010)]. Multiple sclerosis is a degenerative disease of the central nervous
system. A hallmark of MS is damage to and degeneration of the myelin sheaths
that surround and insulate nerve fibers in the brain. Such damage results in sclerotic
plaques that distort the flow of electrical impulses along the nerves to different
parts of the body [Raine, McFarland and Hohlfeld (2008)]. MS also affects the
neurons themselves and is associated with accelerated brain atrophy.

Our data are derived from a natural history study of 176 MS cases selected from
a population with a wide spectrum of disease severity. Subjects were scanned over
a 5-year period up to 10 times per subject, for a total of 466 scans. The scans have
been aligned (registered) using a 12 degrees of freedom transformation which ac-
counts for rotation, translation, scaling, and shearing, but not for nonlinear defor-
mation. In this study we focus on fractional anisotropy (FA), a useful voxel-level
summary of diffusion tensor imaging (DTI), a type of structural Magnetic Reso-
nance Imaging (MRI). FA is viewed as a measure of tissue integrity and is thought
to be sensitive both to axon fiber density and myelination in white matter. It is
measured on a scale between zero (isotropic diffusion characteristic of fluid-filled
cavities) and one (anisotropic diffusion, characteristic of highly ordered white mat-
ter fiber bundles) [Mori (2007)].

The goal of the study was to quantify the location and size of longitudinal vari-
ability of FA along the corpus callosum. The primary region of interest (ROI) is
a central block of the brain containing the corpus callosum, the major bundle of
neural fibers connecting the left and right cerebral hemispheres. We weight FA at
each voxel in the block with a probability for the voxel to be in the corpus callo-
sum, where the probability is derived from an atlas formed using healthy-volunteer
scans, and study longitudinal changes of weighted FAs in the blocks [Reich et al.
(2010)]. Figure 1 displays the ROI that contains corpus callosum together with its
relative location in a template brain. Each block is of size 38 × 72 × 11, indicating
that there are 38 sagittal, 72 coronal, and 11 axial slices, respectively. Figure 2
displays the 11 axial (horisontal) slices for one of the subjects from bottom to
top. In this paper, we study the FA at every voxel of the blue blocks, which could
be unfolded into an approximately 30,000 dimensional vector that contains the
corresponding FA value at each entry. The variability of these images over mul-
tiple visits and subjects will be described by the combination of the following:
(1) a subject-specific imaging random intercept that quantifies the cross-sectional
variability; (2) a subject-specific imaging slope that quantifies the dynamic irre-
versible deformation over multiple visits; and (3) a subject-visit-specific imaging
deviation that quantifies exchangeable or reversible visit-to-visit changes.

High-dimensional data sets have motivated the statistical and imaging commu-
nities to develop new methodological approaches to data analysis. Successful mod-
eling approaches involving wavelets and splines and adaptive kernels have been
reported in the literature [Bigelow and Dunson (2009), Guo (2002), Hua et al.
(2012), Li et al. (2011), Mohamed and Davatzikos (2004), Morris and Carroll
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FIG. 1. The 3D-rendering of the region of interest (left), a blue block containing corpus callosum,
and the template brain (right). Views: R = Right, L = Left, S = Superior, I = Interior, A = Anterior,
P = Posterior. For the purposes of orientation, major venous structures are displayed in red in the
right half of the template brain. The 3D-renderings are obtained using 3D-Slicer (2011) and 3D
reconstructions of the anatomy from Pujol (2010).

(2006), Morris et al. (2011), Reiss and Ogden (2008, 2010), Reiss et al. (2005),
Rodríguez, Dunson and Gelfand (2009), Yuan et al. (2014), Zhu, Brown and Mor-
ris (2011)]. A different direction of research has focused on principal compo-
nent decompositions [Aston, Chiou and Evans (2010), Crainiceanu, Staicu and
Di (2009), Crainiceanu et al. (2011), Di, Crainiceanu and Jank (2010), Di et al.
(2009), Greven et al. (2010), Staicu, Crainiceanu and Carroll (2010), Zipunnikov
et al. (2011a)], which led to several applications to imaging data [Goldsmith et al.

FIG. 2. The corpus callosum of a randomly chosen subject. Eleven axial slices are shown on the
left. A histogram of the weighted FA values is on the right. Orientation: Interior (slice 0) to Superior
(slice 10), Posterior (top) to Anterior (bottom), Right to Left. The pictures are obtained using MIPAV
(2011).
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(2011), Shinohara et al. (2011), Zipunnikov et al. (2011b)]. However, the high di-
mensionality of new data sets, the inherent complexity of sampling designs and
data collection, and the diversity of new technological measurements raise multi-
ple challenges that are currently unaddressed.

Here we address the problem of exploring and analyzing populations of high-
dimensional images at multiple visits using high-dimensional longitudinal func-
tional principal components analysis (HD-LFPCA). The method decomposes the
longitudinal imaging data into subject-specific, longitudinal subject-specific, and
subject-visit-specific components. The dimension reduction for all components is
done using principal components of the corresponding covariance operators. Note
that we are interested in imaging applications and do not perform smoothing. How-
ever, in Section 3.4, we discuss how the proposed approach can be paired with
smoothing and applied to high-dimensional functional data. The estimation and in-
ferential methods are fast and can be performed on standard personal computers to
analyze hundreds or thousands of high-dimensional images at multiple visits. This
was achieved by the following combination of statistical and computational meth-
ods: (1) relying only on matrix block calculations and sequential access to mem-
ory to avoid loading very large data sets into the computer memory [see Demmel
(1997) and Golub and Van Loan (1996) for a comprehensive review of partitioned
matrix techniques]; (2) using SVD for matrices that have at least one dimension
smaller than 10,000 [Zipunnikov et al. (2011b)]; (3) obtaining best linear unbiased
predictors (BLUPs) of principal scores as a by-product of SVD of the data matrix;
and (4) linking the high-dimensional space to a low-dimensional intrinsic space,
which allows Karhunen–Loève (KL) decompositions of covariance operators that
cannot even be stored in the computer memory. Thus, the proposed methods are
computationally linear in the dimension of images.

The rest of the manuscript is organized as follows. Section 2 reviews LFPCA
and discusses its limitation in high-dimensional settings. In Section 3 we intro-
duce HD-LFPCA, which provides a new statistical and computational framework
for LFPCA. This will circumvent the problems associated with LFPCA in high-
dimensional settings. Simulation studies are provided in Section 4. Our methods
are applied to the MS data in Section 5. Section 6 concludes the paper with a
discussion.

2. Longitudinal FPCA. In this section we review the LFPCA framework in-
troduced by Greven et al. (2010). We develop an estimation procedure based on
the original one in Greven et al. (2010), but we heavily modify it to make it prac-
tical for applications to imaging high-dimensional data. We also present the major
reasons why the original methods cannot be applied to high-dimensional data.

2.1. Model. A brain imaging longitudinal study usually contains a sample of
images Yij , where Yij is a recorded brain image of the ith subject, i = 1, . . . , I ,
scanned at times Tij , j = 1, . . . , Ji . The total number of subjects is denoted by I .
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The times Tij are subject specific. Different subjects could have a different number
of visits (scans), Ji . The images are stored in 3-dimensional array structures of
dimension p = p1 × p2 × p3. For example, in the MS data p = 38 × 72 × 11 =
30,096. Note that our approach is not limited to the case when data are in a 3-
dimensional array. Instead, it can be applied directly to any data structure where
the voxels (or pixels, or locations, etc.) are the same across subjects and visits, and
data can be unfolded into a vector. Following Greven et al. (2010), we consider the
LFPCA model

Yij (v) = η(v) + Xi,0(v) + Xi,1(v)Tij + Wij (v),(1)

where v denotes a voxel, η(v) is a fixed main effect, Xi,0(v) is the random imag-
ing intercept for subject i, Xi,1(v) is the random imaging slope for subject i, Tij is
the time of visit j for subject i, Wij (v) is the random subject/visit-specific imag-
ing deviation. For simplicity, the main effect η(·) does not depend on i and j . As
discussed in Greven et al. (2010), model (1) and the more general model (8) in
Section 3.2 are similar to functional models with uncorrelated [Guo (2002)] and
correlated [Morris and Carroll (2006)] random functional effects. Instead of using
smoothing splines and wavelets as in Guo (2002), Morris and Carroll (2006), our
approach models the covariance structures using functional principal component
analysis; we have found this approach to lead to the major computational advan-
tages, as further discussed in Section 3.

In the remainder of the paper, we unfold the data Yij and represent it as
a p × 1 dimensional vector containing the voxels in a particular order, where
the order is preserved across all subjects and visits. We assume that η(v) is
a fixed surface/image and the latent (unobserved) bivariate process Xi(v) =
(X′

i,0(v),X′
i,1(v))′ and process Wij (v) are square-integrable stochastic processes.

We also assume that Xi(v) and Wij (v) are uncorrelated. We denote by KX(v1, v2)

and KW(v1, v2) their covariance operators, respectively. Assuming that KX(v1, v2)

and KW(v1, v2) are continuous, we can use the standard Karhunen–Loève ex-
pansions of the random processes [Karhunen (1947), Loève (1978)] and rep-
resent Xi(v) = ∑∞

k=1 ξikφ
X
k (v) with φX

k (v) = (φ
X,0
k (v),φ

X,1
k (v)) and Wij (v) =∑∞

l=1 ζij lφ
W
l (v), where φX

k and φW
l are the eigenfunctions of the KX and KW

operators, respectively. Note that KX and KW will be estimated by their sample
counterparts on finite 2p×2p and p×p grids, respectively. Hence, we can always
make a working assumption of continuity for KX and KW . The LFPCA model be-
comes the mixed effects model⎧⎪⎪⎨

⎪⎪⎩
Yij (v) = η(v) + Z′

ij

∞∑
k=1

ξikφ
X
k (v) +

∞∑
l=1

ζij lφ
W
l (v),

(ξik1, ξik2) ∼ (
0,0;λX

k1
, λX

k2
,0

); (ζij l1, ζij l2) ∼ (
0,0;λW

l1
, λW

l2
,0

)
,

(2)

where Zij = (1, Tij )
′ and “∼ (0,0;λX

k1
, λX

k2
,0)” indicates that a pair of variables

is uncorrelated with mean zero and variances λX
k1

and λX
k2

, respectively. Variances
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λX
k ’s are nonincreasing, that is, λX

k1
≥ λX

k2
if k1 ≤ k2. We do not require normality

of the scores in the model. The only assumption is the existence of second order
moments of the distribution of scores. In addition, the assumption that Xi(v) and
Wij (v) are uncorrelated is ensured by the assumption that {ξik}∞k=1 and {ζij l}∞l=1
are uncorrelated. Note that model (2) may be extended to include a more general
vector of covariates Zij . We discuss a general functional mixed model in Sec-
tion 3.2.

In practice, model 2 is projected onto the first NX and NW components of KX

and KW , respectively. Assuming that NX and NW are known, the model becomes⎧⎪⎪⎨
⎪⎪⎩

Yij (v) = η(v) + Z′
ij

NX∑
k=1

ξikφ
X
k (v) +

NW∑
l=1

ζij lφ
W
l (v),

(ξik1, ξik2) ∼ (
0,0;λX

k1
, λX

k2
,0

); (ζij l1, ζij l2) ∼ (
0,0;λW

l1
, λW

l2
,0

)
.

(3)

The choice of the number of principal components NX and NW is discussed in
Di et al. (2009), Greven et al. (2010). Typically, NX and NW are small and (3)
provides significant dimension reduction of the family of images and their longi-
tudinal dynamics. The main reason why the LFPCA model (3) cannot be fit when
data are high dimensional is that the empirical covariance matrices KX and KW

cannot be calculated, stored, or diagonalized. Indeed, in our case these operators
would be 30,000 by 30,000 dimensional, which would have around 1 billion en-
tries. In other applications these operators would be even bigger.

2.2. Estimation. Our estimation is based on the methods of moments (MoM)
for pairwise quadratics E(Yij1Y′

kj2
). The computationally intensive part of fit-

ting (3) is estimating the following massively multivariate model:

Yij = η +
NX∑
k=1

ξikφ
X,0
k + Tij

NX∑
k=1

ξikφ
X,1
k +

NW∑
l=1

ζij lφ
W
l

(4)
= η + �X,0ξ i + Tij�

X,1ξ i + �W ζ ij ,

where η = (η(v1), . . . , η(vp)), Yij = {Yij (v1), . . . , Yij (vp)} are p × 1 dimen-
sional vectors, φX,0

k , φX,1
k , and φW

l are correspondingly vectorized eigenvectors,

�X,0 = [φX,0
1 , . . . ,φX,0

NX
] and �X,1 = [φX,1

1 , . . . ,φX,1
NX

] are p × NX dimensional

matrices, �W = [φW
1 , . . . ,φW

NW
] is a p ×NW dimensional matrix, principal scores

ξ i = (ξi1, . . . , ξiNX
)′ and ζ ij = (ζij1, . . . , ζijNU

)′ are uncorrelated with diagonal
covariance matrices E(ξ iξ

′
i ) = �X = diag(λX

1 , . . . , λX
NX

) and E(ζ ijζ
′
ij ) = �W =

diag(λW
1 , . . . , λW

NW
), respectively.

To obtain the eigenvectors and eigenvalues in model (4), the spectral decom-
positions of KX and KW need to be constructed. The first NX and NW eigen-
vectors and eigenvalues are retained after this, that is, KX ≈ �X�X�X′

and
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KW ≈ �W�W�W ′
, where �X = [�X,0′

,�X,1′ ]′ denotes a 2p × NX matrix with
orthonormal columns and �W is a p × NW matrix with orthonormal columns.

LEMMA 1. The MoM estimators of the covariance operators and the mean
in (4) are unbiased and given by

K̂00
X = ∑

i,j1,j2

Ỹij1Ỹ′
ij2

h1
ij1j2

, K̂01
X = ∑

i,j1,j2

Ỹij1Ỹ′
ij2

h2
ij1j2

,

K̂10
X = ∑

i,j1,j2

Ỹij1Ỹ′
ij2

h3
ij1j2

, K̂11
X = ∑

i,j1,j2

Ỹij1Ỹ′
ij2

h4
ij1j2

,(5)

K̂W = ∑
i,j1,j2

Ỹij1Ỹ′
ij2

h5
ij1j2

, η̂ = 1

n

I∑
i=1

Ji∑
j=1

Yij ,

where Ỹij = Yij − η̂, the 2p × 2p matrix KX = [K00
X

...K01
X ;K10

X

...K11
X ], with Kks

X =
E{�X,kξ i (�

X,sξ i )
′} for k, s ∈ {0,1}, the weights hl

ij1j2
are elements of the lth

column of the matrix Hm×5 = F′(FF′)−1, the matrix F5×m has columns equal to
fij1j2 = (1, Tij2, Tij1, Tij1Tij2, δj1j2)

′, and m = ∑I
i=1 J 2

i .

The proof of the lemma is given in the Appendix. The MoM estimators (5)
define the symmetric matrices K̂X and K̂W . Identifiability of model (4) requires
that some subjects have more than two visits, that is, Ji ≥ 3. Note that if one is only
interested in estimating covariances, η can be eliminated as a nuisance parameter
by using MoMs for quadratics of differences E(Yij1 − Ykj2)(Yij1 − Ykj2)

′ as in
Shou et al. (2013).

Estimating the covariance matrices is a crucial first step. However, constructing
and storing these matrices requires O(p2) calculations and O(p2) memory units.
Even if it were possible to calculate and store these covariances, obtaining the
spectral decompositions would be infeasible. Indeed, KX is a 2p × 2p and KW

is a p × p dimensional matrix, which would require O(p3) operations, making
diagonalization infeasible for p > 104. Therefore, LFPCA, which performs well
when the functional dimensionality is moderate, fails in very high and ultrahigh-
dimensional settings.

In the next section we develop a methodology capable of handling longitudinal
models of very high dimensionality. The main reason why these methods work
efficiently is because the intrinsic dimensionality of the model is controlled by
the sample size of the study, which is much smaller compared to the number of
voxels. The core part of the methodology is to carefully exploit this underlying
low-dimensional space.

3. HD-LFPCA. In this section we provide our statistical model and inferen-
tial methods. The main emphasis is on providing a new methodological approach
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with the ultimate goal of solving the intractable computational problems discussed
in the previous section.

3.1. Eigenanalysis. In Section 2 we established that the main computational
bottleneck for standard LFPCA of Greven et al. (2010) is constructing, storing,
and decomposing the relevant covariance operators. In this section we propose
an algorithm that allows efficient calculation of the eigenvectors and eigenvalues
of these covariance operators without either calculating or storing the covariance
operators. In addition, we demonstrate how all necessary calculations can be done
using sequential access to data. One of the main assumptions of this section is
that the sample size, n = ∑I

j=1 Ji , is moderate, so calculations of order O(n3) are
feasible. In Section 6 we discuss ways to extend our approach to situations when
this assumption is violated.

Write Ỹ = (Ỹ1, . . . , ỸI ), where Ỹi = (Ỹi1, . . . , ỸiJi
) is a centered p × Ji ma-

trix and the column j , j = 1, . . . , Ji , contains the unfolded image for subject i

at visit j . Note that the matrix Ỹi contains all the data for subject i with each
column corresponding to a particular visit. The matrix Ỹ is the p × n matrix ob-
tained by column-binding the centered subject-specific data matrices Ỹi . Thus, if
Ỹi = (Ỹi1, . . . , ỸiJi

), then Ỹ = (Ỹ1, . . . , ỸI ). Our approach starts with construct-
ing the SVD of the matrix Ỹ:

Ỹ = VS1/2U′.(6)

Here, the matrix V is p × n dimensional with n orthonormal columns, S is a diag-
onal n × n dimensional matrix, and U is an n × n dimensional orthogonal matrix.
Calculating the SVD of Ỹ requires only a number of operations linear in the num-
ber of parameters p. Indeed, consider the n × n symmetric matrix Ỹ′Ỹ with its
spectral decomposition Ỹ′Ỹ = USU′. Note that for high-dimensional p the matrix
Ỹ cannot be loaded into the memory. The solution is to partition it into L slices as
Ỹ′ = [(Ỹ1)′|(Ỹ2)′| · · · |(ỸL)′], where the size of the lth slice, Ỹl , is (p/L) × n and
can be adapted to the available computer memory and optimized to reduce imple-
mentation time. The matrix Ỹ′Ỹ is then calculated as

∑L
l=1(Ỹ

l)′Ỹl by streaming
the individual blocks. This step calculates singular value decomposition of the
p × n matrix Ỹ. Note that for any permutation of components v, model (3) will be
valid and the covariance structure imposed by the model can be recovered by doing
the inverse permutation. If smoothing of the covariance matrix is desirable, then
this step can be efficiently combined with Fast Covariance Estimation [FACE, Xiao
et al. (2013)], a computationally efficient smoother of (low-rank) high-dimensional
covariance matrices with p up to 100,000.

From the SVD (6) the p × n matrix V can be obtained as V = ỸUS−1/2. The
actual calculations can be performed on the slices of the partitioned matrix Ỹ
as Vl = ỸlUS−1/2, l = 1, . . . ,L. The concatenated slices [(V1)′|(V2)′| · · · |(VL)′]
form the matrix of the left singular vectors V′. Therefore, the SVD (6) can be
constructed with sequential access to the data Ỹ with p-linear effort.
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After obtaining the SVD of Ỹ, each image Ỹij can be represented as Ỹij =
VS1/2Uij , where Uij is a corresponding column of matrix U′. Therefore, the vec-
tors Ỹij differ only through the vector factors Uij of dimension n × 1. Compar-
ing this SVD representation of Ỹij with the right-hand side of (4), it follows that
cross-sectional and longitudinal variability controlled by the principal scores ξ i ,
ζ ij , and time variables Tij must be completely determined by the low-dimensional
vectors Uij . This is the key observation which makes the approach feasible. Below,
we provide more intuition behind our approach. The formal argument is presented
in Lemma 2.

First, we substitute the left-hand side of (4) with its SVD representation of Ỹij

to get VS1/2Uij = �X,0ξ i + Tij�
X,1ξ i + �W ζ ij . Now we can multiply by V′

both sides of the equation to get S1/2Uij = V′�X,0ξ i + Tij V′�X,1ξ i + V′�W ζ ij .
If we denote AX,0 = V′�X,0 of size n × NX , AX,1 = V′�X,1 of size n × NX , and
AW = V′�U of size n × NW , we obtain

S1/2Uij = AX,0ξ i + Tij AX,1ξ i + AW ζ ij .(7)

Conditionally on the observed data, Ỹ, models (4) and (7) are equivalent. Indeed,
model (4) is a linear model for the n vectors Ỹij ’s. These vectors span an (at most)
n-dimensional linear subspace. Hence, the columns of the matrix V, the right sin-
gular vectors of Ỹ, could be thought of as an orthonormal basis, while S1/2Uij are
the coordinates of Ỹij in this basis. Multiplication by V′ can be seen as a linear
mapping from model (4) for the high-dimensional observed data Ỹ′

ij s to model (7)

for the low-dimensional data S1/2Uij . Additionally, even though VV′ 
= Ip , the
projection defined by V is lossless in the sense that model (4) can be recovered
from model (7) using the identity VV′Ỹij = Ỹij . Hence, model (7) has an “in-
trinsic” dimensionality induced by the study sample size, n. We can estimate the
low-dimensional model (7) using the LFPCA methods described in Section 2. This
step is now feasible, as it requires only O(n3) calculations. The formal result pre-
sented below shows that fitting model (7) is an essential step for getting the high-
dimensional principal components in p-linear time.

LEMMA 2. The eigenvectors of the estimated covariance operators (5) can

be calculated as �̂
X,0 = VÂX,0, �̂

X,1 = VÂX,1, �̂
W = VÂW , where the matrices

ÂX,0, ÂX,1, ÂW are obtained from fitting model (7). The estimated matrices of

eigenvalues �̂
X

and �̂
W

are the same for both model (4) and model (7).

The proof of the lemma is given in the Appendix. This result is a generalization
of the HD-MFPCA result in Zipunnikov et al. (2011a), which was obtained in the
case when there is no longitudinal component �X,1. In the next section we provide
more insights into the intrinsic model (7).
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3.2. The general functional mixed model. A natural way to generalize
model (3) is to consider the following model:

Yij = η + Zij,0

NX∑
k=1

ξikφ
X,0
k + Zij,1

NX∑
k=1

ξikφ
X,1
k + · · ·

(8)

+ Zij,q

NX∑
k=1

ξikφ
X,q
k +

NW∑
l=1

ζij lφ
W
l ,

where the (q + 1)-dimensional vector of covariates Zij = (Zij,0,Zij,1, . . . ,Zij,q)

may include, for instance, polynomial terms of Tij and other covariates of interest.
The fitting approach is essentially the same as the one described for the LFPCA

model in Section 3.1. As before, the right singular vectors Uij contain the longi-
tudinal information about ξ i , ζ i , and covariates Zij . The following two results are
direct generalizations of Lemmas 1 and 2.

LEMMA 3. The MoM estimators of the covariance operators and the mean
in (8) are unbiased and given by

K̂ks
X = ∑

i,j1,j2

Ỹij1Ỹ′
ij2

h
1+s+k(q+1)
ij1j2

, K̂W = ∑
i,j1,j2

Ỹij1Ỹ′
ij2

h
(q+1)2+1
ij1j2

,

η̂ = 1

n

I∑
i=1

Ji∑
j=1

Yij ,

where Ỹij = Yij − η̂, the (q + 1)p × (q + 1)p block-matrix KX is composed of
p × p matrices Kks

X = E{�X,kξ i (�
X,sξ i )

′} for k, s ∈ {0,1, . . . , q}, the weights
hl

ij1j2
are elements of the lth column of matrix Hm×((q+1)2+1) = F′(FF′)−1, the

matrix F((q+1)2+1)×m has columns equal to fij1j2 = (vec(Zij1 ⊗ Zij2), δj1j2)
′, and

m = ∑I
i=1 J 2

i .

LEMMA 4. The eigenvectors of the estimated covariance operators for (8) can

be calculated as �̂
X,k = VÂX,k, k = 0,1, . . . , q, �̂

W = VÂW , where the matrices
ÂX,k, k = 0,1, . . . , q , and ÂW are obtained from fitting the intrinsic model

S1/2Uij = Zij,0

NX∑
k=1

ξikAX,0
k + Zij,1

NX∑
k=1

ξikAX,1
k + · · ·

(9)

+ Zij,q

NX∑
k=1

ξikAX,q
k +

NW∑
l=1

ζij lAW
l .

The estimated matrices of eigenvalues �̂
X

and �̂
W

are the same for both model (8)
and model (9).
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3.3. Estimation of principal scores. The principal scores are the coordinates
of Ỹij in the basis defined by the LFPCA model (8). In this section we propose
an approach to calculating BLUP of the scores that is computationally feasible for
samples of high-resolution images.

First, we introduce some notation. In Section 3.1 we showed that the SVD of the
matrix Ỹ can be written as Ỹi = VS1/2U′

i , where the n×Ji matrix U′
i corresponds

to the subject i. Model (8) can be rewritten as

vec(Ỹi ) = Biωi ,(10)

where Bi = [BX
i

...BW
i ], BX

i = Zi,0 ⊗�X,0 +Zi,1 ⊗�X,1 +· · ·+Zi,q ⊗�X,q , BW
i =

IJi
⊗ �W , Zi,k = (Zi1,k, . . . ,ZiJi,k)

′, ωi = (ξ ′
i , ζ

′
i )

′, the subject level principal
scores ζ i = (ζ ′

i1, . . . , ζ
′
iJi

)′, ⊗ is the Kronecker product of matrices, and operation
vec(·) stacks the columns of a matrix on top of each other. The following lemma
contains the main result of this section; it shows how the estimated BLUPs can be
calculated for the LFPCA model.

LEMMA 5. Under the general LFPCA model (8), the estimated best linear
unbiased predictor (EBLUP) of ξ i and ζ i is given by(

ξ̂ i

ζ̂ i

)
= (

B̂′
iB̂i

)−1B̂′
i vec(Ỹi),(11)

where all matrix factors on the right-hand side can be written in terms of the low-
dimensional right singular vectors.

The proof of the lemma is given in the Appendix. The EBLUPs calculations
are almost instantaneous, as the matrices involved in (11) are low-dimensional and
do not depend on the dimension p. Section A.1 in the Appendix briefly describes
how the framework can be adapted to settings with tens or hundreds of thousands
images.

3.4. HF-LFPCA model with white noise. The original LFPCA model in
Greven et al. (2010) was developed for functional observations and contained an
additional white noise term. In this section, we show how the HD-LFPCA frame-
work can be extended to accommodate such a term and how the extended model
can be estimated.

We now seek to fit the following model:

Yij = η + Zij,0

NX∑
k=1

ξikφ
X,0
k + Zij,1

NX∑
k=1

ξikφ
X,1
k + · · ·

(12)

+ Zij,q

NX∑
k=1

ξikφ
X,q
k +

NW∑
l=1

ζij lφ
W
l + εij ,
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where εij is a p-dimensional white noise variable, that is, E(εij ) = 0p for any i, j

and E(εi1j1εi2j2) = σ 2δi1i2δj1j2Ip . The white noise process εij (v) is assumed to be
uncorrelated with processes Xi(v) and Wij (v).

Lemma 3 applied to (12) shows that K̂W
σ 2 = ∑

i,j1,j2
Ỹij1Ỹ′

ij2
h

(q+1)2+1
ij1j2

is an

unbiased estimator of KW + σ 2Ip . To estimate σ 2 in a functional case, we
can follow the method in Greven et al. (2010): (i) drop the diagonal elements
of K̂W

σ 2 and use a bivariate smoother to get K̃W
σ 2 , (ii) calculate an estimator

σ̂ 2 = max{(tr(K̂W
σ 2) − tr(K̃W

σ 2)/p,0}. To make this approach feasible in very high-
dimensional settings (p ∼ 100,000), we can use the fast covariance estimation
(FACE) developed in Xiao et al. (2013), a bivariate smoother that scales up linearly
with respect to p and preserves the low dimensionality of the estimated covariance
operator. Thus, HD-LFPCA remains feasible after smoothing by FACE.

When the observations Yij ’s are nonfunctional, the off-diagonal smoothing ap-
proach cannot be used. In this case, if one assumes that model (12) is low-rank,
then σ 2 can be estimated as (tr(K̂W

σ 2) − ∑NW

k=1 λ̂W
k )/(p − NW). Bayesian model

selection approaches that estimate both the rank of PCA models and variance σ 2

are discussed in Everson and Roberts (2000) and Minka (2000).

4. Simulations. In this section three simulation studies are used to explore
the properties of our proposed methods. In the first study, we replicate several
simulation scenarios in Greven et al. (2010) for functional curves, but we focus on
using a number of parameters up to two orders of magnitude larger than the ones in
the original scenarios. This increase in dimensionality could not be handled by the
original LFPCA approach. In the second study, we explore how methods recover
3D spatial bases when the approach of Greven et al. (2010) cannot be implemented.
In the third study, we replicate the unbalanced design in and use time variable Tij

from our DTI application and generate data using principal components estimated
in Section 5. For each scenario, we simulated 100 data sets. All three studies were
run on a four core i7-2.67 GHz PC with 6 Gb of RAM memory using Matlab
2010a. The software is available upon request.

First scenario (1D, functional curves). We follow Greven et al. (2010) and gen-
erate data as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yij (v) =
NX∑
k=1

ξikφ
X,0
k (v) + Tij

NX∑
k=1

ξikφ
X,1
k (v) +

NW∑
l=1

ζij lφ
W
l (v) + εij (v),

v ∈ V,

ξik
i.i.d.∼ 0.5N

(
−

√
λX

k /2, λX
k /2

)
+ 0.5N

(√
λX

k /2, λX
k /2

)
,

ζij l
i.i.d.∼ 0.5N

(
−

√
λW

l /2, λW
l /2

)
+ 0.5N

(√
λW

l /2, λW
l /2

)
,

where ξik
i.i.d.∼ 0.5N(−

√
λX

k /2, λX
k /2) + 0.5N(

√
λX

k /2, λX
k /2) means that the

scores ξik are simulated from a mixture of two normals, N(−
√

λX
k /2, λX

k /2) and
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N(
√

λX
k /2, λX

k /2) with equal probabilities; a similar notation holds for ζij l . The
scores ξik’s and ζij l’s are mutually independent. We set I = 100, Ji = 4, i =
1, . . . , I , and the number of eigenfunctions NX = NW = 4. The true eigenvalues
are the same, λX

k = λW
k = 0.5k−1, k = 1,2,3,4. The orthogonal but not mutually

orthogonal bases were

φ
X,0
1 (v) =

√
2/3 sin(2πv), φ

X,1
1 (v) = 1/2, φW

1 = √
4φ

X,1
1 ,

φ
X,0
2 (v) =

√
2/3 cos(2πv), φ

X,1
2 (v) = √

3(2v − 1)/2, φW
2 =

√
4/3φ

X,0
1 ,

φ
X,0
3 (v) =

√
2/3 sin(4πv), φ

X,1
3 (v) = √

5
(
6v2 − 6v + 1

)
/2,

φW
3 =

√
4/3φ

X,0
2 ,

φ
X,0
4 (v) =

√
2/3 cos(4πv), φ

X,1
4 (v) = √

7
(
20v3 − 30v2 + 12v − 1

)
/2,

φW
4 =

√
4/3φ

X,0
3 ,

which are measured on a regular grid of p equidistant points in the interval [0,1].
To explore scalability, we consider several grids with an increasing number of sam-
pling points, p, equal to 750,3000, 12,000,24,000,48,000, and 96,000. Note that
a brute-force extension of the standard LFPCA would be at the edge of feasibility
for such a large p. For each i, the first time Ti1 is generated from the uniform
distribution over interval (0,1) denoted by U(0,1). Then differences (Tij+1 −Tij )

are also generated from U(0,1) for 1 ≤ j ≤ 3. The times Ti1, . . . , Ti4 are normal-
ized to have sample mean zero and variance one. Although no measurement noise
is assumed in model (3), we simulate data that also contains white noise, εij (v).
The purpose of this is twofold. First, it is of interest to explore how the presence
of white noise affects the performance of methods which do not model it explic-
itly. Second, the choice of the eigenfunctions in the original simulation scenario of
Greven et al. (2010) makes the estimation problem ill-posed if data does not con-
tain white noise. The white noise εij (v) is assumed to be i.i.d. N(0, σ 2) for each
i, j, v and independent of all other latent processes. To evaluate different signal-to-
noise ratios, we consider values of σ 2 equal to 0.0001,0.0005,0.001,0.005,0.01.
Note that we normalized each of the data generating eigenvectors to have norm
one. Thus, the signal-to-noise ratio, (

∑4
k=1 λX

k + ∑4
k=1 λW

k )/(pσ 2), ranges from
50 (for p = 750 and σ 2 = 0.0001) to 0.004 (for p = 96,000 and σ 2 = 0.01).

Table 1 and Tables 1 and 2 in the online supplement [Zipunnikov et al. (2014)]
report the average L2 distances between the estimated and true eigenvectors for
Xi,0(v), Xi,1(v), and Wij (v), respectively. The averages are calculated based on
100 simulated data sets for each (p,σ 2) combination. Standard deviations are
shown in brackets. Three trends are obvious: (i) eigenvectors with larger eigen-
values are estimated with higher accuracy, (ii) larger white noise corresponds to a
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TABLE 1
Based on 100 simulated data sets, average distances between estimated and true eigenvectors of

Xi,0(v); standard deviations are given in parentheses

(p, σ 2) ‖φ
X,0
1 − φ̂

X,0
1 ‖2 ‖φ

X,0
2 − φ̂

X,0
2 ‖2 ‖φ

X,0
3 − φ̂

X,0
3 ‖2 ‖φ

X,0
4 − φ̂

X,0
4 ‖2

(750, 1e–04) 0.034 (0.048) 0.07 (0.069) 0.074 (0.053) 0.081 (0.07)

(750, 5e–04) 0.031 (0.031) 0.055 (0.051) 0.084 (0.097) 0.112 (0.151)

(750, 0.001) 0.035 (0.039) 0.062 (0.054) 0.078 (0.059) 0.139 (0.206)

(750, 0.005) 0.035 (0.039) 0.072 (0.062) 0.096 (0.063) 0.159 (0.084)

(750, 0.01) 0.045 (0.036) 0.079 (0.054) 0.129 (0.102) 0.234 (0.103)

(3000, 1e–04) 0.031 (0.028) 0.064 (0.118) 0.09 (0.13) 0.109 (0.126)

(3000, 5e–04) 0.037 (0.032) 0.065 (0.048) 0.077 (0.06) 0.14 (0.136)

(3000, 0.001) 0.031 (0.027) 0.06 (0.044) 0.087 (0.062) 0.131 (0.07)

(3000, 0.005) 0.058 (0.035) 0.106 (0.058) 0.171 (0.09) 0.324 (0.096)

(3000, 0.01) 0.073 (0.028) 0.142 (0.048) 0.236 (0.074) 0.508 (0.072)

(12,000, 1e–04) 0.031 (0.028) 0.062 (0.048) 0.077 (0.056) 0.134 (0.165)

(12,000, 5e–04) 0.041 (0.036) 0.078 (0.05) 0.121 (0.069) 0.201 (0.081)

(12,000, 0.001) 0.047 (0.04) 0.083 (0.054) 0.164 (0.114) 0.295 (0.118)

(12,000, 0.005) 0.112 (0.032) 0.217 (0.064) 0.44 (0.216) 0.758 (0.153)

(12,000, 0.01) 0.175 (0.031) 0.338 (0.093) 0.554 (0.132) 0.987 (0.071)

(24,000, 1e–04) 0.035 (0.032) 0.066 (0.049) 0.09 (0.141) 0.146 (0.173)

(24,000, 5e–04) 0.055 (0.045) 0.097 (0.061) 0.146 (0.09) 0.266 (0.098)

(24,000, 0.001) 0.07 (0.038) 0.125 (0.047) 0.23 (0.167) 0.43 (0.15)

(24,000, 0.005) 0.183 (0.049) 0.348 (0.097) 0.622 (0.208) 0.998 (0.11)

(24,000, 0.01) 0.295 (0.043) 0.518 (0.117) 0.742 (0.102) 1.184 (0.07)

(48,000, 1e–04) 0.046 (0.068) 0.076 (0.067) 0.103 (0.059) 0.175 (0.122)

(48,000, 5e–04) 0.073 (0.035) 0.13 (0.056) 0.234 (0.1) 0.437 (0.099)

(48,000, 0.001) 0.105 (0.051) 0.183 (0.065) 0.407 (0.23) 0.695 (0.192)

(48,000, 0.005) 0.307 (0.08) 0.532 (0.151) 0.824 (0.208) 1.19 (0.086)

(48,000, 0.01) 0.458 (0.084) 0.712 (0.1) 0.938 (0.074) 1.186 (0.126)

(96,000, 1e–04) 0.045 (0.033) 0.087 (0.059) 0.146 (0.103) 0.246 (0.107)

(96,000, 5e–04) 0.116 (0.081) 0.194 (0.094) 0.431 (0.268) 0.721 (0.218)

(96,000, 0.001) 0.188 (0.089) 0.32 (0.121) 0.787 (0.339) 1.062 (0.216)

(96,000, 0.005) 0.457 (0.065) 0.707 (0.107) 0.954 (0.125) 1.298 (0.074)

(96,000, 0.01) 0.662 (0.105) 0.926 (0.103) 1.116 (0.075) 1.143 (0.153)

decreasing accuracy, (iii) for identical levels of white noise, accuracy goes down
when the dimension p goes up. Similar trends are observed for average distances
between estimated and true eigenvalues reported in Tables 3 and 4. These trends
follow from the fact that for any fixed σ 2, the signal-to-noise ratio decreases with
increasing p and the performance of the approach quickly deteriorates once the
signal-to-noise ratio becomes smaller than one.

Figure 1 in the online supplement [Zipunnikov et al. (2014)] displays the true
and estimated eigenfunctions for the case when p = 12,000 and σ 2 = 0.012 and
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FIG. 3. Boxplots of the normalized estimated eigenvalues for process Xi(v), (λ̂X
k − λX

k )/λX
k (left

box), and the normalized estimated eigenvalues for process Wij (v), (λ̂W
l − λW

l )/λW
l (right box),

based on scenario 1 with 100 replications. The zero is shown by the solid black line.

shows the complete agreement with Figure 2 in Greven et al. (2010). The boxplots
of the estimated eigenvalues are displayed in Figure 3. In Figure 4, panels one
and three report the boxplots of and panels two and four display the medians and

quantiles of the distribution of the normalized estimated scores, (ξik − ξ̂ik)/
√

λX
k

and (ζij l − ζ̂ij l)/
√

λW
l , respectively. This indicates that the estimation procedures

provides unbiased estimates.
Second scenario (3D). Data sets in this study replicate the 3D ROI blocks from

the DTI MS data set. We simulated 100 data sets from the model⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Yij (v) =
NX∑
k=1

ξikφ
X,0
k (v) + Tij

NX∑
k=1

ξikφ
X,1
k (v) +

NW∑
l=1

ζij lφ
W
l (v), v ∈ V,

ξik
i.i.d.∼ N

(
0, λX

k

)
and ζij l

i.i.d.∼ N
(
0, λW

l

)
,

where V = [1,38] × [1,72] × [1,11]. Eigenimages (φX,0
k , φ

X,1
k ) and φW

l are dis-
played in Figure 5. The images in this scenario can be thought of as 3D images
with voxel intensities on the [0,1] scale. The voxels within each sub-block (eigen-
image) are set to 1 and outside voxels are set to 0. There are four blue and red
sub-blocks corresponding to φ

X,0
k and φ

X,1
k , respectively. The eigenfunctions clos-

FIG. 4. The left two panels show the distribution of the normalized estimated scores of process

Xi(v), (ξik − ξ̂ik)/
√

λX
k . Boxplots are given in the left column. The right column shows the medians

(black marker), 5% and 95% quantiles (blue markers), and 0.5% and 99.5% quantiles (red markers).

Similarly, the distribution of the normalized estimated scores of process Wij (v), (ζij l − ζ̂ij l )/
√

λX
l

is provided at the right two panels.
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FIG. 5. 3D eigenimages of the 2nd simulation scenario. From left to right: φ
X,0
k are in blue,

φ
X,1
k are in red, φW

k are in green, the most right one shows the overlap of all eigenimages. Views:
R = Right, L = Left, S = Superior, I = Interior, A = Anterior, P = Posterior. The 3D-renderings are
obtained using 3D-Slicer (2011).

est to the anterior side of the brain (labeled A in Figure 1) are φ
X,0
1 and φ

X,1
1 ,

which have the strongest signal proportional to the largest eigenvalue (variance),
λX

1 . The eigenvectors that are progressively closer to the posterior part of the brain
(labeled P) correspond to smaller eigenvalues represented as lighter shades of blue
and red, respectively. The sub-blocks closest to the P have the smallest signal,
which is proportional to λX

4 . The eigenimages φW
k shown in green are ordered the

same way. Note that φ
X,0
k are uncorrelated with φW

l . However, both φ
X,0
k and φW

l

are correlated with the φ
X,1
k ’s describing the random slope Xi,1(v). We assume that

I = 150, Ji = 6, i = 1, . . . , I , and the true eigenvalues λX
k = 0.5k−1, k = 1,2,3,

and λW
l = 0.5l−1, l = 1,2. The times Tij were generated as in the first simula-

tion scenario. To apply HD-LFPCA, we unfold each image Yij and obtain vectors
of size p = 38 × 72 × 11 = 30,096. The entire simulation study took 20 min-
utes or approximately 12 seconds per data set. Figures 4, 5 and 6 in the online
supplement [Zipunnikov et al. (2014)] display the medians of the estimated eigen-
images and the voxelwise 5th and 95th percentile images, respectively. All axial
slices, or z slices in a x–y–z coordinate system, are the same. Therefore, we dis-
play only one z-slice, which is representative of the entire 3D image. To obtain a
grayscale image with voxel values in the [0,1] interval, each estimated eigenvec-
tor, φ̂ = (φ̂1, . . . , φ̂p), was normalized as φ̂ → (φ̂−mins φ̂s)/(maxs φ̂s −mins φ̂s).
Figure 4 in the online supplement [Zipunnikov et al. (2014)] displays the voxelwise
medians of the estimator, indicating that the method recovers the spatial configu-
ration of both bases. The 5-percentile and 95-percentile images are displayed in
Figures 5 and 6 in the online supplement [Zipunnikov et al. (2014)], respectively.
Overall, the original pattern is recovered with some small distortions most likely
due to the correlation between bases (please note the light gray patches).

The boxplots of the estimated normalized eigenvalues (λ̂X
k −λX

k )/λX
k and (λ̂W

l −
λW

l )/λW
l are displayed in Figure 2 in the online supplement [Zipunnikov et al.

(2014)]. The eigenvalues are estimated consistently. However, in 6 out of 100 cases
(extreme values shown in red), the estimation procedure did not distinguish well
between φW

3 and φW
4 . This is probably due the relatively low signal.
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The boxplots of the estimated eigenscores are displayed in Figure 3 in the on-
line supplement [Zipunnikov et al. (2014)]. In this scenario, the total number of the
estimated scores ξik is 15,000 for each k and there are 90,000 estimated scores ζij l

for each l. The distributions of the normalized estimated scores (ξik − ξ̂ik)/
√

λX
k

and (ζij l − ζ̂ij l)/
√

λW
l are displayed in the first and third panels of Figure 3 in the

online supplement [Zipunnikov et al. (2014)], respectively. The spread of the dis-
tributions increases as the signal-to-noise ratio decreases. The second and fourth
panels of Figure 3 in the online supplement [Zipunnikov et al. (2014)] display the
medians, 0.5%, 5%, 95%, and 99.5% quantiles of the distribution of the normal-
ized estimated scores.

Third scenario (3D, empirical basis). We generate data using the first ten prin-
cipal components estimated in Section 5. We replicated the unbalanced design of
the MS study and used the same time variable Tij ’s. The principal scores ξik and
ζijk were simulated as in Scenario 1 with λX

k = λW
k = 0.5k−1, k = 1, . . . ,10. The

white noise variance σ 2 was set to 10−4. Thus, SNR is equal to 1.32. The results
are reported in Table 5 in the online supplement [Zipunnikov et al. (2014)]. The av-
erage distances between estimated and true eigenvectors for Xi(v) and Wij (v) are
calculated based on 100 simulated data sets. Principal components and principal
scores become less accurate as the signal-to-noise gets smaller.

5. Longitudinal analysis of brain fractional anisotropy in MS patients. In
this section we apply HD-LFPCA to the DTI images of MS patients. The study
population included individuals with no, mild, moderate, and severe disability.
Over the follow-up period (as long as 5 years in some cases), there was little
change in the median disability level of the cohort. Cohort characteristics are re-
ported in Table 7 in the online supplement [Zipunnikov et al. (2014)]. The scans
have been aligned using a 12 degrees of freedom transformation, meaning that
we accounted for rotation, translation, scaling, and shearing, but not for nonlinear
deformation. As described in Section 1, the primary region of interest is a cen-
tral block of the brain of size 38 × 72 × 11 displayed in Figure 1. We weighted
each voxel in the block with a probability for the voxel to be in the corpus cal-
losum and study longitudinal changes of weighted voxels in the blocks [Reich
et al. (2010)]. Probabilities less than 0.05 were set to zero. Below we model lon-
gitudinal variability of the weighted FA at every voxel of the blocks. The entire
analysis performed in Matlab 2010a took only 3 seconds on a PC with a quad
core i7-2.67 GHz processor and 6 Gb of RAM memory. First, we unfolded each
block into a 30,096 dimensional vector that contained the corresponding weighted
FA values. In addition to high dimensionality, another difficulty of analyzing this
study was the unbalanced distribution of scans across subjects (see Table 6 in the
online supplement [Zipunnikov et al. (2014)]); this is a typical problem in natural
history studies. After forming the data matrix Y, we estimated the overall mean
as η̂ = 1

n

∑I
i=1

∑Ji

j=1 Yij and de-meaned the data. The estimated mean is shown
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TABLE 2
Model 1 (Tij change): Cumulative variability explained by the first 10 eigenimages

k φ
X,0
k φ

X,1
k φW

k Cumulative

1 22.13 0.08 7.12 29.33
2 10.66 0.11 3.20 43.29
3 5.99 0.13 2.04 51.44
4 4.84 0.08 1.44 57.80
5 2.80 0.06 0.90 61.56
6 2.39 0.07 0.83 64.85
7 1.94 0.10 0.63 67.52
8 1.72 0.08 0.50 69.82
9 1.55 0.05 0.45 71.86

10 1.20 0.05 0.39 73.50

55.20 0.80 17.50 73.50

in Figure 7 in the online supplement [Zipunnikov et al. (2014)]. The mean image
across subjects and visits indicates a shape characterized by our scientific collabo-
rators as a “standard corpus callosum template.”

Model 1: First, we start by fitting a random intercept and random slope
model (1). To enable comparison of the variability explained by processes Xi(v)

and Wij (v), we followed the normalization procedure in Section 3.4 in Greven
et al. (2010): Tij ’s were normalized to have sample mean zero and sample variance
one. The estimated covariance matrices are not necessarily nonnegative definite.
Indeed, we have obtained small negative eigenvalues of the covariance operators
K̂X and K̂W . Following Hall, Müller and Yao (2008), all the negative eigenvalues
were set to zero. The total variation was decomposed into the “subject-specific”
part modeled by process Xi and the “exchangeable visit-to-visit” part modeled by
the process Wij . Most of the total variability, 70.8%, is explained by Xi (subject-
specific variability) with the trace of KX = 122.53, while 29.2% is explained by
Wij (exchangeable visit-to-visit variability) with the trace of KW = 50.47. Two
major contributions of our approach are to separate the processes Xi and Wij and
quantify their corresponding contributions to the total variability.

Table 2 reports the percentage explained by the first 10 eigenimages. The first 10
random intercept eigenimages explain roughly 55% of the total variability, while
the effect of the random slope is accounting for only 0.80% of the total variability.
The exchangeable variability captured by Wij (v) accounts for 17.5% of the total
variation.

The first three estimated random intercept and slope eigenimages are shown in
pairs in Figures 6, 7, and in 8, 9, 10, 11 in the online supplement [Zipunnikov et al.
(2014)], respectively. Figures 12, 13 and 14 in the online supplement [Zipunnikov
et al. (2014)] display the first three eigenimages of the exchangeable measurement
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FIG. 6. Eleven slices of φ̂
X,0
1 . A histogram of the voxel intensities is on the right. The pictures are

obtained using MIPAV (2011).

error process Wij (v). Each eigenimage is accompanied with the histogram of its
voxel values. Recall that the eigenimages were obtained by folding the unit length
eigenvectors of p ≈ 3 · 104 voxels. Therefore, each voxel is represented by a small
value. For principal scores, negative and positive voxel values correspond to op-
posite loadings (directions) of variation. Each histogram has a peak at zero due to
the existence of the threshold for the probability maps indicating if a voxel is in
the corpus callosum. This peak is a convenient visual divider of the color spectrum
into the loading specific colors. Because of the sign invariance of the SVD, the
separation between positive and negative loadings is comparable only within the
same eigenimage. However, the loadings of the random intercept and slope within
an eigenimage of the process Xi(v) can be compared as they share the same prin-
cipal score. This allows us to contrast the time invariant random intercept with
the longitudinal random slope and, thus, to localize regions that exhibit the largest
longitudinal variability. This could be used to analyze the longitudinal changes of
brain imaging in a particular disease or to help generate new scientific hypotheses.

We now interpret the random intercept and slope parts of the eigenimages ob-
tained for the MS data. Figures 6 and 7 show the random intercept and slope parts
of the first eigenimage φX

1 , respectively. The negatively loaded voxels of the ran-
dom intercept, φ

X,0
1 , essentially compose the entire corpus callosum. This indi-

cates an overall shift in the mean FA of the corpus callosum. This is expected
and is a widely observed empirical feature of principal components. The random
slope part, φ

X,1
1 , has both positively and negatively loaded areas in the corpus cal-

losum. The areas colored in blue shades share the sign of the random intercept
φ

X,0
1 , whereas the red shades have the opposite sign. The extreme colors of the

spectrum of φ
X,1
1 show a clear separation into negative and positive loadings, es-

pecially accentuated in the splenium (posterior) and the genu (anterior) areas of
the corpus callosum; please note the upper and lower areas in panels 0 through
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FIG. 7. Eleven slices of φ̂
X,1
1 . A histogram of the voxel intensities is on the right. The pictures are

obtained using MIPAV (2011).

5 of Figure 7. This implies that a subject with a positive first component score
ξi1 > 0 would tend to have a smaller mean FA over the entire corpus callosum
and the FA would tend to decrease with time in the negatively loaded parts of the
splenium. The reverse will be true for a subject with a negative score ξi1. The other
two eigenimages of Xi(v) and eigenimages of Wij (v) are discussed in the online
supplement [Zipunnikov et al. (2014)].

Next, we explored whether the deviation process Wij (v) depends on MS sever-
ity by analyzing the corresponding eigenscores. To do this, we divided subjects
according to their MS type into three subgroups: relapsing-remitting (RR, 102
subjects), secondary progressive (SP, 40 subjects), and primary progressive (PP,
25 subjects). For each of the first ten eigenimages, we formally tested whether
there are differences between the distributions of the scores of the three groups
using the t-test and the Mann–Whitney–Wilcoxon-rank test for equality of means
and the Kolmogorov–Smirnov test for equality of distributions. For the first eigen-
image, the scores in the SP group have been significantly different from both those
in RR and PP groups (p-values <0.005 for all three tests). For the second eigen-
image, scores in the RR group were significantly different from both SP and PP
(p-values <0.01 for all three tests). The two left images of Figure 8 display the
group beanplots of the scores for the first eigenimage and the second eigenimage
of Wij (v), respectively.

In addition to MS type, the EDSS scores were recorded at each visit. We di-
vided subjects into two groups according to their EDSS score: (i) smaller than 5
and (ii) larger than or equal to 5. As with MS type, we have conducted tests for the
equality of distributions of the eigenscores of these two groups for all ten eigen-
images. For eigenimages one and two, the distributions of eigenscores have been
found to be significantly different (p-values <0.001 for all three tests). The two
right images on Figure 8 display group beanplots of the scores for the first eigen-
image and the second eigenimage of Wij (v), respectively.
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FIG. 8. Model 1: Group beanplots according to MS type (top) and according to EDSS score (bot-
tom).

We have also conducted a standard analysis based on the scalar mean FA over
the CC for each subject/visit and fitted a scalar random intercept/random slope
model. In this model, the random intercept explains roughly 94% of the total varia-
tion of the mean FAs. Figure 15 in the online supplement [Zipunnikov et al. (2014)]
displays beanplots of the estimated random intercepts stratified by EDDS score and
MS type. For both cases there was a statistically significant difference between the
distributions of the random intercepts (EDSS: p-values < 0.001; MS-type, SP vs.
RR and PP, p-values < 0.002, for all three tests). Similar tests for the distributions
of the random slopes did not identify statistically significant differences between
groups. We conclude that this simple model agrees with the full HD-LFPCA mode,
though the multivariate model provides a detailed decomposition of the total FA
variation together with localization variability in the original 3D-space.

Model 2. Second, we fit model (8) using Zij,1 equal to a visit-specific EDSS
score. Again, Zij,1’s were normalized to have sample mean 0 and sample vari-
ance 1. Table 3 reports percentages explained by the first 10 eigenimages in
model 2. Interestingly, the total variation explained by the random intercept and
random slope in both models is approximately the same, with 56.0% in model 1
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TABLE 3
Model 2 (Zij change): Cumulative variability explained by the first 10 eigenimages

k φ
X,0
k φ

X,1
k φW

k Cumulative

1 17.79 0.42 5.59 23.80
2 0.53 8.46 1.99 34.78
3 6.92 0.39 1.55 43.64
4 4.68 0.76 1.05 50.13
5 3.02 0.52 0.80 54.46
6 2.44 0.29 0.69 57.88
7 1.63 0.77 0.54 60.82
8 1.48 0.67 0.39 63.36
9 1.41 0.51 0.35 65.64

10 1.19 0.38 0.33 67.54

41.09 13.17 13.28 67.54

vs. 54.2% for model 2. However, the random slope in model 2 explains a much
higher proportion of the total variation: 13.2% in model 2 using EDSS versus
model 1 using time. The second component of the random slope explains al-
most 8.5% of the total variation. We have also explored whether the scores of
Wij (v) depend on MS type and EDSS score using the t-test, the Mann–Whitney–
Wilcoxon-rank test, and the Kolmogorov–Smirnov test. For the first eigenimage,
the SP type was significantly different from the RR (p-values < 0.01 for all three
tests), though it was not significantly different from the PP group. For the sec-
ond eigenimage, the distribution of eigenscores for the SP type was significantly
different from that of the scores for the RR (p-values < 0.05 for all three tests),
and not significantly different from the distribution of the scores of the PP type.
For grouping according to EDSS score, the distributions of the eigenscores of
the first two eigenimages have been found to be statistically different (p-values
< 0.01 for all three tests). Figure 9 displays beanplots similar to Figure 8 for
the distributions of the scores in the groups defined by MS types and EDSS.
This indicates that the deviation process Wij (v) in models 1 and 2 carries not
only useful but also almost identical remaining information regarding severity of
MS.

6. Discussion. The methods developed in this paper increase the scope and
general applicability of LFPCA to very high-dimensional settings. The base model
decomposes the longitudinal data into three main components: a subject-specific
random intercept, a subject-specific random slope, and reversible visit-to-visit de-
viation. We described and addressed computational difficulties that arise with high-
dimensional data using a powerful approach referred to as HD-LFPCA. We have
developed a procedure designed to identify a low-dimensional space that contains



HD-LFPCA 2197

FIG. 9. Model 2: Group beanplots according to MS type (top) and according to EDSS score (bot-
tom).

all the information for estimating of the model. This significantly extended the
previous related efforts in the clustered functional principal components models,
MFPCA [Di et al. (2009)] and HD-MFPCA [Zipunnikov et al. (2011a)].

We applied HD-LFPCA to a novel imaging setting considering DTI and MS in
a primary white matter structure. Our investigation characterized longitudinal and
cross-sectional variation in the corpus callosum.

There are several outstanding issues for HD-LFPCA that need to be addressed.
First, a key assumption of our methods is that they require a moderate sample
size that does not exceed ten thousands, or so, images. This limitation can be cir-
cumvented by adopting the methods discussed in the Appendix. Second, we have
not formally included white noise in our model. Simulation studies in Section 4
demonstrated that a moderate amount of white noise does not have a serious effect
on the estimation procedure. However, a more systematic treatment of the related
issues is required.

In summary, HD-LFPCA provides a powerful conceptual and practical step to-
ward developing estimation methods for structured ultrahigh-dimensional data.
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APPENDIX

A.1. Large sample size. The main assumption which has been made in the
paper is that the sample size, n = ∑I

j=1 Ji , is sufficiently small to guarantee that

calculations of order O(n3) are feasible. Below we briefly describe how our frame-
work can be adapted to settings with many more scans—on the order of tens or
hundreds of thousands.

LFPCA equation (4) models each vector Ỹij as a linear combination of columns
of matrices �X,0, �X,1, �W . Assuming that 2NX + NW < n, each Ỹij belongs to
an at most (2NX +NW)-dimensional linear space L(�X,0,�X,1,�W) spanned by
those columns. Thus, if model (4) holds exactly the rank of the matrix, Ỹ does
not exceed (2NX + NW) and at most 2NX + NW columns of V correspond to
nonzero singular values. This implies that the intrinsic model (7) can be obtained
by projecting onto the first 2NX + NW columns of V and the sizes of matrices
AX,0,AX,1,AW in (7) will be (2NX +NW)×NX , (2NX +NW)×NX , and (2NX +
NW)×NW , respectively. Therefore, the most computationally intensive part would
require finding the first 2NX +NW left singular vectors of Ỹ. Of course, in practice,
model (4) never holds exactly. Hence, the number of columns of matrix V should
be chosen to be large enough to either reasonably exceed (2NX +NW) or to capture
the most variability in data. The latter can be estimated by tracking down the sums
of the squares of the corresponding first singular vectors. Thus, this provides a
constructive way to handle situations when n is too large to calculate the SVD
of Ỹ.

There are computationally efficient ways to calculate the first k singular vectors
of a large matrix. One way is to adapt streaming algorithms [Budavari et al. (2009),
Weng, Zhang and Hwang (2003), Zhao, Yuen and Kwok (2006)]. These algorithms
usually require only one pass through the data matrix Ỹ during which information
about the first k singular vectors is accumulated sequentially. Their complexity is
of order O(k3p). An alternate approach is to use iterative power methods [see,
e.g., Roweis (1997)]. As the dimension of the intrinsic model, 2NX + NW , is not
known in advance, the number of left singular vectors to keep and project onto
can be adaptively estimated based on the singular values of the matrix Ỹ. Further
development in this direction is beyond the scope of this paper.

A.2. Proofs.

PROOF OF LEMMA 1. Using the independence of Yi and Yk , the expectation
of pairwise quadratics is

E
(
Yij1Y′

kj2

)
(13)

=
⎧⎪⎨
⎪⎩

ηη′, if k 
= i,

ηη′ + K00
X + Tij2K01

X + Tij1K10
X + Tij1Tij2K11

X + δj1j2KW,

if i = k,
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where δj1j2 is 1 if j1 = j2 and 0 otherwise. From the top equality we get the
MM estimator of the mean, η̂ = n−1 ∑

i,j Yij . The covariances KX and KW can
be estimated by de-meaning Yij as Ỹij = Yij − η̂ and regressing Ỹij1Ỹ′

ij2
on

1, Tij2, Tij1, Tij1Tij2 , and δj1j2 . The bottom equality can be written as E(Ỹv
ij1j2

) =
Kvfij1j2 , where Ỹv

ij1j2
= Ỹij2 ⊗ Ỹij1 is a p2 × 1 dimensional vector, the parameter

of interest is the p2 × 5 matrix Kv = [vec(K00
X ),vec(K01

X ),vec(K10
X ),vec(K11

X ),
vec(KW)], and the covariates are entries in the 5 × 1 vector fij1j2 = (1, Tij2,

Tij1, Tij1Tij2, δj1j2)
′. With this notation EYv = KvF, where Ỹv is p2 × m dimen-

sional with m = ∑I
i=1 J 2

i and F is a 5 × m dimensional matrix with columns
equal to fij1j2, i = 1, . . . , I and j1, j2 = 1, . . . , Ji . The MM estimator of Kv is
thus K̂v = ỸvF′(FF′)−1, which provides unbiased estimators of the covariances
KX and KW . If we denote H = F′(FF′)−1, we get the result of the lemma. �

PROOF OF LEMMA 2. Let us denote by K̂X
U and K̂W

U the matrices defined
by equations (5) with S1/2Uij1U′

ij2
S1/2 substituted for Ỹij1Ỹ′

ij2
. The 2n × 2n di-

mensional matrix K̂X
U and the n × n dimensional matrix K̂W

U are low-dimensional

counterparts of K̂X and K̂W , respectively. Using the SVD representation Ỹij =
VS1/2Uij , the estimated high-dimensional covariance matrices can be represented
as K̂X = DK̂X

UD′ and K̂W = VK̂W
U V′, where the matrix D is 2p × 2n dimensional

with orthonormal columns defined as

D =
(

V 0p×n

0p×n V

)
.(14)

From the constructive definition of H, it follows that the matrices K̂X
U and K̂W

U
are symmetric. Thus, we can construct their spectral decompositions, K̂X

U =
ÂX�̂

X
ÂX′

and K̂W
U = ÂW �̂

W
ÂW ′

. Hence, high-dimensional covariance matri-

ces can be represented as K̂X = DÂX�̂
X

ÂX′
D′ and K̂W = VÂW �̂

W
ÂW ′

V′, re-
spectively. The result of the lemma now follows from the orthonormality of the
columns of matrices D and V. �

PROOF OF LEMMA 3. With notational changes, the proof is identical to the
proof of Lemma 1. �

PROOF OF LEMMA 4. With notational changes, the proof is identical to the
proof of Lemma 2. �

PROOF OF LEMMA 5. The main idea of the proof is similar to that of
Zipunnikov et al. (2011a). We assume that function η(v,Tij ) = 0. From the model
it follows that ωi ∼ (0,�ω), where �ω is a covariance matrix of ωi . When p ≤
NX +JiNW the BLUP of ωi is given by ω̂i = Cov(ωi ,vec(Ỹi ))Var(vec(Ỹi ))

−1 ×
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vec(Ỹi) = �ωB′
i (Bi�ωB′

i )
−1 vec(Ỹi ) [see McCulloch and Searle (2001), Sec-

tion 9]. The BLUP is essentially a projection and, thus, it does not require
any distributional assumptions. It may be defined in terms of a projection ma-
trix. If ξ i and ζ ij are normal, then the BLUP is the best predictor. When p >

NX + JiNW the matrix Bi�ωB′
i is not invertible and the generalized inverse of

Bi�ωB′
i is used [Harville (1976)]. In that case, ω̂i = �ωB′

i (Bi�ωB′
i )

− vec(Ỹi) =
�

1/2
ω (�

1/2
ω B′

iBi�
1/2
ω )−1�

1/2
ω B′

i vec(Ỹi ) = (B′
iBi )

−1B′
i vec(Ỹi ). Note that it coin-

cides with the OLS estimator for ωi if ωi were a fixed parameter. Thus, the esti-
mated BLUPs are given by ω̂i = (B̂′

iB̂i )
−1B̂′

i vec(Ỹi ). �

Acknowledgments. The authors would like to thank Jeff Goldsmith for his
help with data management. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institute of
Neurological Disorders and Stroke or the National Institute of Biomedical Imaging
and Bioengineering or the National Institutes of Health.

SUPPLEMENTARY MATERIAL

Supplement to “Longitudinal high-dimensional principal components
analysis with application to diffusion tensor imaging of multiple sclerosis”
(DOI: 10.1214/14-AOAS748SUPP; .pdf). We provide extra figures and tables
summarizing the results of simulation studies and the analysis of DTI images
of MS patients.
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