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Magnetic resonance imaging (MRI) plays a vital role in the scientific in-
vestigation and clinical management of multiple sclerosis. Analyses of binary
multiple sclerosis lesion maps are typically “mass univariate” and conducted
with standard linear models that are ill suited to the binary nature of the data
and ignore the spatial dependence between nearby voxels (volume elements).
Smoothing the lesion maps does not entirely eliminate the non-Gaussian na-
ture of the data and requires an arbitrary choice of the smoothing parameter.
Here we present a Bayesian spatial model to accurately model binary lesion
maps and to determine if there is spatial dependence between lesion location
and subject specific covariates such as MS subtype, age, gender, disease du-
ration and disease severity measures. We apply our model to binary lesion
maps derived from T2-weighted MRI images from 250 multiple sclerosis pa-
tients classified into five clinical subtypes, and demonstrate unique modeling
and predictive capabilities over existing methods.

1. Introduction. Multiple sclerosis (MS) is an autoimmune disease of the
central nervous system characterized by neuronal demyelination that results in
brain and spinal cord lesions. These lesions can appear throughout the brain but
are more prevalent in white matter. Damage to the myelin and axons, the “wires”
of the central nervous system, affects the ability of nerve cells to communicate
effectively and leads to deficits in the motor, sensory, visual and autonomic sys-
tems [Compston and Coles (2008)]. Clinical symptoms of MS occur in episodic
acute periods of attacks (relapsing forms), in gradual progressive deterioration of
neurologic function (progressive forms) or in a combination of both [Lublin and
Reingold (1996)]. Patients are categorized into different MS subtypes based on
these clinical disease courses. However, the progression of the disease and the for-
mation of lesions are highly heterogeneous both within and between individuals.
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MRI is an established tool in the diagnosis of MS and in monitoring its evo-
lution [Bakshi et al. (2008), Filippi and Rocca (2011)]. A single MRI scanner
can produce a range of different types of images. T1-weighted MRI images show
white matter as most intense, gray matter darker and cerebral spinal fluid darkest.
T2-weighted MRI images show cerebral spinal fluid as most intense, gray matter
darker and white matter darkest; air has no signal in either type of image. In MS,
T1-weighted images identify areas of permanent axonal damage that appear as hy-
pointense “black holes.” T2-weighted images show both new and old lesions as
hyperintense regions. These MRI scans provide complementary information about
the nature of MS and are important tools used to monitor disease course in both
time and space [Neema et al. (2007)]. T1 and T2 images also support various ap-
proaches in lesion detection, lesion segmentation [Anbeek et al. (2004)], patient
phenotyping and patient classification [Bakshi et al. (2008)]. For quantitative anal-
ysis of MS lesions from MRI scans, researchers create lesion maps, binary images
that mark the exact location of the lesions. After registering all subjects to a com-
mon anatomical atlas, they create lesion probability maps (LPM) that show the
empirical lesion rate at each voxel (or volume element).

Despite the importance of MRI for management of MS, clinically observed
disease progression correlates only poorly with conventional MRI findings; this
is so notable that some researchers call the lack of such associations a paradox
[Kacar et al. (2011)]. Possible reasons for this paradox include an underestimation
of brain damage by conventional MRI and a lack of histopathological specificity of
MRI findings [Barkhof (2002)]. This, however, has prompted structural investiga-
tions of the so-called normal-appearing brain tissue outside the MR visible lesions
[Vrenken et al. (2006)]. For example, another type of MRI, diffusion tensor imag-
ing (DTI), is used for measuring changes in the normal appearing brain tissues
[Rovaris et al. (2005)] and is used to investigate the relationship between diffu-
sion abnormalities and clinical disabilities in MS patients [Filippi et al. (2001),
Goldsmith et al. (2011), Roosendaal et al. (2009), Werring et al. (1999)].

To better detect and understand MRI-clinical associations, a number of authors
have focused on voxel-by-voxel analyses of LPMs. Some studies compare dis-
tribution of patterns of lesions from different MS subtypes [Filli et al. (2012),
Holland et al. (2012)]. Others have proposed correlating lesion map data with dif-
ferent types of clinical deficits; “Voxel-based lesion-symptom mapping” (VLSM)
[Bates et al. (2003)] is the name given to voxel-by-voxel modeling of tissue dam-
age with behavioral and clinical correlates. However, these methods are all “mass
univariate” and ignore the spatial dependence between nearby voxels. These meth-
ods also use standard linear models that are inappropriate for binary data. Often,
researchers smooth the lesion maps, but this does not completely eliminate the
non-Gaussian nature of the data and requires an arbitrary choice of the smoothing
parameter [Charil et al. (2003, 2007) Dalton et al. (2012), Kincses et al. (2011)].
For example, Charil et al. (2003) perform voxel-wise linear regressions between
lesion probability and different clinical disability scores to identify the regions
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preferentially responsible for different types of clinical deficits. Charil et al. (2007)
correlate focal cortical thickness with white matter lesion load and with MS dis-
ability scores. In both studies, the authors apply an arbitrary smoothing kernel and
perform the analyses independently at each voxel or cortical vertex.

Our motivation for this work is twofold: (1) to appropriately model these binary
lesion maps and model the local spatial dependence and, more importantly, (2) to
obtain sensitive inferences on the presence of spatial associations between lesion
location and subject specific covariates such as MS subtype, age, gender, disease
duration (DD) and disease severity as measured by the Expanded Disability Status
Scale (EDSS) score and the Paced Auditory Serial Addition Test (PASAT) score.
To this end, we propose a Bayesian spatial model of lesion maps. In particular,
we propose a spatial generalized linear mixed model with spatially varying coef-
ficients. The spatially varying coefficients are latent spatial processes (or fields).
We model these processes jointly using a multivariate pairwise difference prior
model, a particular instance of the multivariate conditional autoregressive model
[Besag (1974, 1993), Mardia (1988)]. Our model fully respects the binary nature
of the data and the spatial structure of the lesion maps as opposed to the afore-
mentioned mass univariate methods. Furthermore, our model produces regularized
(smoothed) estimates of lesion incidence without an arbitrary smoothing parame-
ter. Our model also allows for explicit modeling of the spatially varying effects of
covariates such as age, gender and disabilities scores (e.g., the EDSS and PASAT
scores), producing spatial maps of these effects and their significance, as well as
the (scalar) effect of spatially varying covariates such as the fraction of white mat-
ter in each voxel.

The idea of spatial modeling with spatially varying coefficient processes traces
back to Gelfand et al. (2003). They model the coefficient surface as a realization
of a Gaussian spatial process. The correlation function of the Gaussian process
determines the smoothness of the process. However, difficulties arise when the
number of sites is large. In particular, inversion of the correlation matrix is compu-
tationally infeasible. To overcome this difficulty, Banerjee et al. (2008) introduce
the Gaussian predictive process. They project the original high-dimensional space
onto a low-dimensional subspace with a reduced set of locations, fit a Gaussian
process on this subspace and then use Kriging [Krige (1951)] to interpolate back
to the original space. Furrer, Genton and Nychka (2006) and Kaufman, Schervish
and Nychka (2008) reduce the computational burden by covariance tapering. Co-
variance tapering is a method whereby the covariance function is attenuated with
an appropriate compactly supported positive definite function such that the covari-
ance between pairs of sites that are farther apart than some prespecified constant
is set to zero. This results in a sparse covariance matrix that can be inverted us-
ing algorithms specifically designed for sparse matrices. A different perspective is
to view both the outcome and the coefficient images as 3-dimensional functions,
and thus use the framework of functional data analysis [Ramsay and Silverman
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(2006)]. In particular, function-on-scalar regression models regress functional out-
comes on scalar predictors (covariates) [Reiss, Huang and Mennes (2010)]. Reiss
and Ogden (2010) propose a functional principle component analysis approach
for scalar outcome generalized linear models with functional predictors and spa-
tially varying coefficients. Crainiceanu, Staicu and Di (2009) introduce generalized
multilevel functional regression that uses a truncated Karhunen–Loève expansion
to estimate spatially varying coefficients. All these alternative approaches rely on
data reduction methods or approximations to the processes. In contrast, our model
does not rely on data reduction methods or approximations. Parallel computing on
a graphical processing unit (GPU) handles the computational burden.

In the next two sections we formulate our Bayesian spatial model and discuss
some important algorithmic issues. In Section 4 we apply our model to binary le-
sion maps derived from T2-weighted, high-resolution MRI images from 250 sub-
jects categorized into the five clinical subtypes of MS. We compare our results
with a mass univariate logistic regression approach, Firth regression [Firth (1993),
Heinze and Schemper (2002)], in terms of both parameter estimates and predictive
performance. Results from a simulation study are reported in Section 5. We con-
clude the paper with a brief discussion. Gibbs sampler details and some theoretical
aspects of our model are given in the supplemental article [Ge et al. (2014)].

2. Spatial generalized linear mixed models. Spatial generalized linear
mixed models are similar to generalized linear mixed models in that both have
a link function, fixed and random components. The difference lies in how both
the data and systematic component are functions of space in the former. We have
binary data Y(s) for each subject, where s ∈ R

d , for d ≥ 1 dimensional space
(we work exclusively with d = 3). The link function is a monotonic function that
relates the expectation of the random outcome to the systematic component. The
systematic component relates a scalar η(s) to a linear combination of the covari-
ates: η(s) = xT(s)β(s). That is, the covariates, parameters and η are functions of
space. This representation of the systematic component is general enough to cover
spatially varying coefficients, spatially varying covariates, spatially constant co-
variates and coefficients, and any combination of the above. Typically for binary
data, either the canonical link, the logit link, with the natural parameter, the log
odds or the probit link is used. For computational reasons, we use the probit link
(see Section 3).

This model, along with appropriate prior distributions for the model parameters,
applies to a wide range of scenarios with spatial binary data on a lattice, though
we focus only on our neuroimaging application.

2.1. The model. We use notation from the spatial literature and refer to each
voxel in the image as a site. Let sj , j = 1, . . . ,M , denote the j th site within
the brain B ⊂ R

3, where the sites are ordered lexicographically. For subject
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i = 1, . . . ,N at site sj , let Yi(sj ) denote a Bernoulli random variable represent-
ing the presence [Yi(sj ) = 1] or absence [Yi(sj ) = 0] of a lesion. For subject i, let
xi denote a column vector of P subject-specific covariates and let w(sj ) denote
a single spatially varying covariate evaluated at site sj that is shared among all
subjects. Our spatial generalized linear mixed model at site sj can then be written
as [

Yi(sj ) | pi(sj )
] ∼ Bernoulli

[
pi(sj )

]
,(1)

�−1{
E

[
Yi(sj ) | pi(sj )

]} = ηi(sj ),(2)

ηi(sj ) = xT
i

[
α + β(sj )

] + w(sj )γ,(3)

reflecting the random, link and systematic component, respectively.
The random component is specified in (1), Yi(sj ) is a Bernoulli random variable

where Pr[Yi(sj ) = 1] = pi(sj ). The link function is the probit link function, �−1,
and the systematic component is given by equation (3). The motivation for this
specific choice of systematic component will become clear in Section 4. Since
the expectation in (2) is equal to the probability that Yi(sj ) = 1, pi(sj ), we can
combine these three components into a spatial probit regression model with mixed
effects:

�−1{
Pr

[
Yi(sj ) = 1 | ηi(sj )

]} = xT
i

[
α + β(sj )

] + w(sj )γ.(4)

The fixed effects in this model are the P -vector of parameters α and the scalar
parameter γ , while the random effects are the P -vectors β(sj ), one at each site.
Note that these random effects are spatially varying random effects and not subject
specific random effects. Finally, w(sj ) is a covariate function of space, typically
called a spatially varying covariate, while the spatially varying random effects are
often called spatially varying coefficients. Note that our model is not implying a
causal pathway. Indeed, demyelination, that appears in T2-weighted MRI imaging
as hyperintense lesions, may cause changes in both EDSS and PASAT. Rather, our
model is an association model, relating lesion prevalence to covariates through the
spatially varying coefficients.

We conclude our model specification by assigning priors to all parameters. The
fixed effect parameters have flat, improper, uninformative priors: π(α) ∝ 1 and
π(γ ) ∝ 1, as is standard for fixed effects regression parameters in Bayesian regres-
sion. Spatial parameters have Markov random field or conditional autoregressive
model priors to account for the spatial structure. Neighborhood systems of sites
define these priors. We regard two sites (i.e., voxels) as neighbors if they share a
common face and, thus, a site can have a maximum of six neighbors. If sites sj
and sk are neighbors, we write sj ∼ sk , and we denote the set of neighbors of site
sj by ∂sj = {sk : sk ∼ sj } and the cardinality of this set by n(sj ).

The spatial random effect parameters have zero-centered multivariate condi-
tional autoregressive model (MCAR) priors as follows. Define βT = [βT(s1), . . . ,
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βT(sM)]: a PM-length column vector. Following the notation in Mardia (1988),
the full conditional distribution of β(sj ) is multivariate normal:

[
β(sj ) | β(−sj ),�

] ∼ MVN
[∑

sr∈∂sj
β(sr )

n(sj )
,

�

n(sj )

]
,(5)

where � is a P × P symmetric positive definite matrix and β(−sj ) denotes the
vector β without the P components at site sj . Note here that over most of the
interior of the brain n(sj ) = 6 and on the surface of the brain n(sj ) < 6. Thus, this
implies a spatially constant covariance over most of the brain. In the discussion we
show how this assumption can be relaxed.

By Brook’s lemma [Brook (1964)], the joint distribution, up to a constant of
proportionality, is

π [β | �] ∝ exp
{
−1

2

∑
si∼sj

[
β(si) − β(sj )

]T
�−1[

β(si) − β(sj )
]}

.(6)

This joint distribution is improper and is not identifiable [Besag (1986)], as we can
add an arbitrary constant to β without changing the joint distribution. Nevertheless,
as long as there is information in the data regarding β , the posterior of β will be
proper. Last, we need to place a prior distribution on the hyperprior parameter �
or, equivalently, on the precision matrix �−1. We assign a Wishart prior with ν

degrees of freedom and P × P identity scale matrix, I, to the precision: �−1 ∼
W(ν, I). In the analysis below, we assign an improper, uninformative prior to the
precision matrix by setting ν = 0 while noting that the posterior is proper.

3. Some algorithmic issues. The full conditional posterior distribution of
β(sj ) is not easy to sample. We can resort to the Metropolis–Hastings algorithm
[Hastings (1970)] or we can introduce continuous latent variables that turn the spa-
tial generalized linear mixed model into a spatial linear mixed model [Albert and
Chib (1993)]. We adopt the latter approach, as then all full conditional posterior
distributions are easy to sample via Gibbs sampling [Gelfand and Smith (1990),
Geman and Geman (1984)]. We begin by introducing N × M independent contin-
uous normal latent variables Zi(sj ), i = 1, . . . ,N and j = 1, . . . ,M , such that[

Zi(sj ) | ηi(sj )
] ∼ N

[
ηi(sj ),1

]
.(7)

Now define the conditional probability that Yi(sj ) = 1 given Zi(sj ) by

Pr
[
Yi(sj ) = 1 | Zi(sj )

] =
{ 1, Zi(sj ) > 0,

0, Zi(sj ) ≤ 0.

The spatial linear mixed model is now given by (7) and (3) along with the priors
specified above. All full conditional posterior distributions are now known distri-
butions that are easy to sample. Thus, the joint posterior of all model parameters,
given the latent variables, are updated using a Gibbs sampler.
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To show equivalence between the two models (the probit model and the la-
tent variable model), we integrate out the latent variables to recover our probit
model (4):

Pr
[
Yi(sj ) = 1 | ηi(sj )

]
=

∫ +∞
−∞

Pr
[
Yi(sj ) = 1 | zi(sj )

]
π

[
zi(sj ) | ηi(sj )

]
dzi(sj )

= 1 − �
[−ηi(sj )

] = �
[
ηi(sj )

]
.

The full conditional distributions of the latent variables are truncated normal
distributions:

[
Zi(sj ) | Yi(sj ), ηi(sj )

] ∼
{

N
(
ηi(sj ),1

) × I
(
Zi(sj ) > 0

)
, Yi(sj ) = 1,

N
(
ηi(sj ),1

) × I
(
Zi(sj ) < 0

)
, Yi(sj ) = 0,

where I (·) is the indicator function. We use Robert’s algorithm [Robert (1995)] to
efficiently sample these full conditionals. We provide all full conditional posterior
distributions in the supplemental article [Ge et al. (2014)].

Another issue is the extremely slow mixing (high autocorrelation) of the fixed
effects parameters α, as we initially observed and as reported by others [Gelfand
et al. (2003)]. We accelerate the mixing by noting that our primary interest is not
in the fixed effects, α, but rather in the spatially varying coefficients, α + β(sj ).
We also note that the posterior variances of the components of α are much
smaller than the posterior variances of the components of the β(sj ) and that the
β(sj ) do not suffer from slow mixing. Thus, by reparameterizing the model with
β∗(sj ) = α + β(sj ) and placing a nonzero-centered MCAR prior on the β∗(sj ),
we speed up mixing to acceptable levels (see time series and autocorrelation func-
tion plots shown in Figure 1). One can easily recover the marginal posteriors of the
components of α by simply taking the average of each component of β∗(sj ) over
B during the posterior simulation, that is, at each iteration of the Gibbs sampling
algorithm.

The final issue is the sheer size of both data and parameters. In our application
data set there are N = 250 subjects, with M = 274,596 observed Bernoulli random
variables per subject for a total of 68,649,000 observations. The length of each
vector β∗(sj ) in our application is 10. Thus, the total number of spatially varying
coefficients that we need to estimate is 2,745,960 along with the 10×10 covariance
matrix �. Therefore, simulating from the full posterior is an onerous task. We
reduce this computational burden by coding the problem to run in parallel on a
GPU.

We use a NVIDIA Tesla C2050 GPU card that has 3 Gb of main memory and
448 threads (independent processing units). All data and code fit in 522 Mb of
memory using floating point memory for real-valued variables. We run the algo-
rithm for 150 thousand iterations, discarding the first 50 thousand as burn-in, at



1102 T. GE ET AL.

FIG. 1. Trace plots and autocorrelation functions (ACFs) for assessing the mixing of our posterior
sampler. Top row: Disease duration fixed effect (spatially constant) after the burn-in period, showing
extremely strong autocorrelation. Middle and bottom rows: After reparameterizing with sum of fixed
and random effects, the autocorrelation is reduced to acceptable levels; middle row shows a voxel
with large empirical probability of lesion, while bottom row shows a voxel with an empirical proba-
bility of zero. We found similar results for mixed effects estimates at randomly selected locations in
the brain.

which time the Markov chain has reached its stationary distribution. The algo-
rithm runs in just under 8 hours real time. This is approximately an increase in
speed of 45 times: decreasing the real time from 15 days of computing on a single
CPU (on a 3 GHz Intel processor, coded in C++) to just 8 hours of computing on
the GPU.
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One trick is necessary when updating the β∗(sj ), as they are not independent,
creating a problem when parallelizing the code. By leveraging the a priori and a
posteriori conditional independence of these vectors, we break the problem into
two independent parts. We explain this for the case of a 2-dimensional image,
though the extension to 3-dimensions is trivial (and is what we use in practice). The
pixels in a 2-dimensional image can be thought of as squares on a checkerboard,
alternately colored black and red. Given the first order neighborhood system, the
parameters, β∗(sj ), on the red squares are conditionally independent given the
parameters on the black squares. Similarly, the parameters on the black squares
are conditionally independent given the parameters on the red squares. However,
neighbors are dependent on one another. Thus, to parallelize this problem, we di-
vide and conquer, by extracting all “black square” parameter vectors and updat-
ing them in parallel conditional on the current parameter vector values on the red
squares. Likewise, we extract the “red square” parameter vectors and update them
in parallel conditional on the current parameter values on the black squares. This
divide-and-conquer scheme respects the dependence of neighbors during the pa-
rameter updates and, thus, the entire algorithm remains a valid Gibbs updating
algorithm.

4. Analysis of MS lesions. Our motivating data set consists of 250 MS pa-
tients, each classified into one of five clinical subtypes of MS. In increasing or-
der of clinical severity, these subtypes are clinically isolated syndrome (CIS, 11
subjects), relapsed remitting (RLRM, 173 subjects), primary progressive (PRP, 13
subjects), secondary chronic progressive (SCP, 43 subjects) and primary relaps-
ing (PRL, 10 subjects). We note that CIS is not a true MS subtype, but rather
is the first clinical sign that MS may be imminent. Between 30–70% of patients
diagnosed with CIS go on to develop MS [Compston and Coles (2008), Miller
et al. (2005)]. Lesions were identified on T2-weighted images in native resolu-
tion, 0.977 × 0.977 × 3.000 mm3. Two neuropathologists independently outline
lesions on the MRI scans using a semi-automated approach, and a third radiologist
mediates any discrepancies. The result is a binary lesion map with 1 indicating
the presence of a lesion and 0 the absence of a lesion at each voxel. The images
are then affine registered to the Montreal Neurological Institute (MNI) template at
1×1×1 mm3 resolution using trilinear interpolation, and thresholded at 0.5 to re-
tain binary values. To reduce the overall size of the images, over 2 million voxels,
we subsample every other voxel in each of the x-, y- and z-directions, resulting in
binary images with voxel size 2 × 2 × 2 mm3 for a total of M = 274,596 voxels.

Finally, we note that our model is not dependent on the method of lesion identifi-
cation and will work with any type of atlas-registered binary image data exhibiting
spatial dependence.

In the analysis we use six patient specific covariates: clinical subtype (coded as
five dummy variables), age, gender, DD, EDSS score, PASAT score and one spa-
tially varying covariate shared by all subjects, the white matter probability map.
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The EDSS score is an ordinal measure of overall disability, ranging from zero to
ten in increments of one half [Kurtzke (1983)]. The PASAT score is a neuropsy-
chological test that assesses the capacity and rate of information processing as
well as sustained and divided attention [Spreen and Strauss (1998)]. We treat clin-
ical subtype as a nominal variable. Subtype classification is based on the clinical
course of the disease. Patients classified as RLRM may convert to SCP, but, in
general, patients do not progress through the five disease subtypes and, thus, we
do not consider subtype as ordinal. The white matter probability map, w(sj ), is the
sole spatially varying covariate. MS is primarily a white matter disease, yet due to
imperfect inter-subject registration of the brain images, each subject’s white mat-
ter voxels will not perfectly overlap. Thus, instead of constraining our analysis to
a set of voxels defining white matter, we choose to analyze all brain voxels and
use the white matter spatial covariate to account for the gross differences in lesion
incidence over the brain.

Thus, the covariate vector xi has ten components. Associated with each compo-
nent is a spatially varying coefficient. The first five are the intercepts for the five
subtypes, and the remaining are the slopes for age, gender, DD, EDSS score and
PASAT score. We do not model interactions between subtypes and covariates, as
some subtypes have very little data (e.g., CIS with 11 subjects). We mean-center
age, DD, EDSS and PASAT scores prior to the analysis.

4.1. Estimation. We estimate the posterior distribution via Markov chain
Monte Carlo (MCMC). In particular, since all full conditional distributions have
closed form, we use the Gibbs sampler. We simulate 100,000 draws from the pos-
terior after a burn-in of 50,000, by which time the chain has converged to its sta-
tionary distribution, the posterior.

Figure 2 (left) shows the empirical lesion probabilities for the five MS subtypes.
RLRM and SCP appear to have the most spatially extensive distribution of lesions.
This, however, is an artifact of those groups having the most subjects. Figure 2
(right) shows the estimated mean posterior probabilities from our model. Only the
CIS patients show a dramatically different spatial distribution of lesion incidence
compared to the other subtypes. This likely corresponds to the fact that CIS pa-
tients are those first showing signs of having MS and thus have the lowest lesion
load. Furthermore, only 11 of the 250 subjects are classified as CIS. However,
other subtle differences are evident. For example, PRL patients appear to have the
highest overall lesion prevalence.

Figure 3 is a comparison of the thresholded (at ±2) statistical maps (spatially
varying coefficient estimates divided by their standard deviations) for the covari-
ates. On the left are Bayesian standardized spatial maps (posterior mean divided by
posterior standard deviation) for age, gender, DD, EDSS and PASAT scores, and
on the right are classical statistic spatial maps (mean divided by standard devia-
tion) from a mass univariate approach using Firth logistic regression [Firth (1993),
Heinze and Schemper (2002)]. (Note that we compare with Firth regression as
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FIG. 2. Comparison of the empirical probabilities (left) and the estimated mean posterior prob-
abilities from our model (right) for each of the five MS subtypes. Model estimates exhibit greater
smoothness due to our spatial MCAR prior.

opposed to other published methods [e.g., Kincses et al. (2011)] that use a stan-
dard linear model to fit the binary data; as we state in the Introduction, such linear
models are inappropriate for binary data.) Firth regression avoids the complete sep-
aration problem by shrinking parameter estimates using a penalized likelihood ap-
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FIG. 3. A comparison of thresholded statistical significance maps for covariates. On the left are
Bayesian standardized spatial maps (posterior mean divided by posterior standard deviation) for
age, gender, disease duration, EDSS and PASAT scores, and on the right are classical statistic spa-
tial maps (mean divided by standard deviation) from the mass univariate Firth logistic regression.
Color scale is set from 2 to 5 for positive values (values below 2 are not shown, values of 5 or greater
have maximal yellow color), and from −5 to −2 for negative values (values above −2 are not shown,
values of −5 or smaller have the lightest blue color). The statistic values from Firth logistic regres-
sion are significantly attenuated and spatially contracted compared to our model estimates.

proach. For Firth regression, the mass univariate regressors include the five dummy
variables for clinical subtypes: age, gender, DD, EDSS and PASAT scores. There-
fore, the Firth regression model shares the same subject specific covariates with
our Bayesian spatial model, excluding the white matter spatial regressor, but of
course ignores any spatial dependence. (While we could have included the white
matter term, each voxel would have a different estimate, whereas it is shared across
all voxels in our model.) Firth regression is performed in R with the logistf
package (http://cran.r-project.org/web/packages/logistf). In Figure 3, one can see
that the standardized parameters from our model are substantially larger and more
spatially extensive compared to those from Firth regression. Table 1 numerically
contrasts the extent of spatial differences between our model and Firth regression.

http://cran.r-project.org/web/packages/logistf
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TABLE 1
Proportion of voxels that have standardized coefficients more extreme than ±2. Our model results in
a larger proportion of voxels that are substantially large compared to Firth logistic regression. This

is due to the borrowing of strength from neighboring voxels in our model

Gender Age DD EDSS PASAT

Bayesian spatial model 3.78% 5.17% 4.73% 4.08% 5.08%
Firth logistic regression 0.75% 1.43% 1.11% 1.80% 1.76%

The scatterplots of standardized parameter estimates in Figure 4 show the strength-
ening of these estimates. For EDSS, for large positive coefficients, standardized
parameter estimates from our spatial model tend to be larger than those from Firth
regression. Likewise, for PASAT, both for large positive and negative coefficients,
standardized parameter estimates from our model tend to be larger than those from
Firth regression. This is a direct consequence of the MCAR prior, allowing pa-
rameter estimates from neighboring voxels to borrow strength from one another,
producing smaller posterior estimates of the parameter variances. The final result
is an increase in standardized parameter estimates and larger spatial extent of the
signal.

We consider age, gender and disease duration as nuisance parameters. Our main
interest is in the EDSS and PASAT scores. Figure 5 shows a single sagittal slice of
standardized PASAT and EDSS parameter estimates (top left and right, resp.). For
reference, the bottom panel shows the reference MRI template (left) and empirical
lesion counts overlaid on the reference template (right). PASAT scores are nega-
tively correlated (blue voxels, top left) with lesion occurrence as evident through-

FIG. 4. Scatterplots of standardized parameter estimates from our model versus those from Firth
logistic regression on a voxel-by-voxel basis. These plots show that statistic estimates from our model
tend to have greater magnitude at both large negative and positive values. Vertical streaks reflect how
many Firth statistic estimates are the same at different voxels (e.g., where there are no lesions), while
our estimates vary. Our model tends to spread out these coefficients due to the spatial smoothing
induced by the prior and, to a lesser extent, MCMC error.
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FIG. 5. A comparison of statistical significance maps for PASAT and EDSS covariates. A single
sagittal slice showing the standardized PASAT and EDSS parameter estimates (top left and right,
resp.). High PASAT scores correspond to less damage from MS, and hence negative correlation be-
tween PASAT score and lesion occurrence can be seen, especially along the corpus callosum. Higher
EDSS scores correspond to more severe MS, and hence the positive correlation between EDSS score
and lesion occurrence in the minor and major forceps (anterior and posterior medial white matter
tracks, see arrows in the figure) can be seen. For reference, the bottom panel shows the reference T1
MRI template (left) and the same with empirical counts overlaid (right).

out areas of high lesion counts (lower PASAT scores correspond to greater men-
tal deficits). EDSS scores are positively correlated (red voxels, top right) with le-
sion occurrence within the minor and major forceps (anterior and posterior medial
white matter tracks that connect the prefrontal cortex between the two hemispheres
of the brain and the parietal/occipital lobes between the two hemispheres, resp.),
which is consistent with higher EDSS scores corresponding to more severe MS.
To the best of our knowledge, these findings have not been previously reported.

4.2. Prediction. Using our detailed Bayesian model, it is straightforward to
make predictions using Bayes’ theorem. In particular, there is immense potential
clinical value in predicting an individual’s MS subtype based on their MRI lesion
map, along with their age, gender, DD, EDSS and PASAT scores. To assess the
predictive capabilities of our model, we use a cross-validation approach, leaving
one subject out at a time. Direct implementation of leave-one-out cross-validation
(LOOCV) would be very time consuming, as omitting one subject and rerunning
the model would take 8 hours for each of 250 subjects. Thus, we adopt an impor-
tance sampling approach originally proposed by Gelfand, Dey and Chang (1992)
where we need to run the model only once: We remove each subject’s contribution
to the model by adjusting the posterior at each iteration with an importance sam-
ple, thus allowing held-out predictions for that subject. We provide details of this
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TABLE 2
The confusion matrices of the LOOCV classification using our Bayesian spatial model (top) based
on all in-mask voxels, compared to a Naïve Bayesian classifier (NBC) (middle) and Firth logistic

regression (bottom) based on voxels that have at least two lesions across subjects. Equal prior
probability is assigned to each subtype when using the Bayesian model. The true subtype is shown

in each row and the estimated subtype is shown in each column. The overall and the average
classification rates for our Bayesian model are 0.772 ± 0.052 and 0.828 ± 0.047, respectively. The

overall and the average classification rates for NBC are 0.552 ± 0.062 and 0.245 ± 0.053,
respectively. The overall and the average classification rates for Firth logistic regression are

0.672 ± 0.058 and 0.300 ± 0.057, respectively

CIS RLRM PRP SCP PRL

The Bayesian spatial model
CIS 1.000 0.000 0.000 0.000 0.000
RLRM 0.243 0.734 0.000 0.023 0.000
PRP 0.154 0.000 0.846 0.000 0.000
SCP 0.140 0.000 0.000 0.860 0.000
PRL 0.100 0.000 0.100 0.100 0.700

Naïve Bayesian classifier
CIS 0.000 1.000 0.000 0.000 0.000
RLRM 0.046 0.757 0.017 0.093 0.087
PRP 0.077 0.769 0.000 0.077 0.077
SCP 0.023 0.744 0.023 0.070 0.140
PRL 0.000 0.600 0.000 0.000 0.400

Firth logistic regression
CIS 0.000 1.000 0.000 0.000 0.000
RLRM 0.052 0.821 0.006 0.087 0.034
PRP 0.000 0.538 0.000 0.385 0.077
SCP 0.000 0.302 0.023 0.582 0.093
PRL 0.000 0.400 0.000 0.500 0.100

importance sampling approach in the supplemental article [Ge et al. (2014)]. We
assign, a priori, a categorical distribution to clinical subtype with equal probability
of 0.2 to each of the 5 subtypes.

Table 2 (top) shows the LOOCV classification results from our model. The rows
show the true clinical subtype, while the columns show our predicted subtype. The
overall correct classification rate is 0.772 ± 0.052 (X ± 0.052 denotes the limits of
an approximate 95% confidence interval centered at X based on a normal approx-
imation to a binomial sample proportion). The average classification rate, the un-
weighted average of the per-subtype correct classification rates, is 0.828 ± 0.047.
Due to the imbalance in group sizes, we find the average classification rate is much
more interpretable than the overall correct classification rate. Consider a simple,
obviously poor classifier that classifies every one of the 250 subjects as RLRM
(when in fact only 173 subjects have this subtype). The overall correct classifica-
tion rate in this case is 173/250 = 0.692, while the average classification rate is
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0.2. The average classification rate balances out extremely high correct classifica-
tion rates in one or two subtypes that have the largest samples sizes with extremely
low correct classification rates in subtypes that have very few subjects. We see in
Table 2 (top) that if there is a misclassification, that misclassification tends to be
in the CIS subtype. We investigated this further and found that those patients that
are misclassified to CIS tend to have fewer and smaller lesions than those correctly
classified (see Figure S1 in the supplemental article [Ge et al. (2014)]).

As a comparison, we also perform LOOCV using a naïve Bayesian classifier
(NBC) and Firth logistic regression. Both NBC and Firth logistic regression as-
sumes all voxels are mutually independent, ignoring spatial dependence, but NBC
bases predictions on the empirical lesion rates alone (see supplemental article [Ge
et al. (2014)] for NBC details). While assuming spatial independence seems like
a gross oversimplification, empirically NBC often outperforms more sophisticated
and computationally expensive approaches [and there are theoretical arguments
for this; see Zhang (2004)]. Table 2 (middle and bottom) shows the NBC and Firth
regression LOOCV classification results, based on only those voxels that have at
least two lesions across all subjects. This ensures that for each voxel, after leaving
one subject out, there is at least one lesion in the remaining subjects (classifica-
tion based on all in-mask voxels produced much worse results). The results of
the NBC and Firth regression are largely biased to the RLRM subtype. The over-
all and the average correct classification rates for the NBC are 0.552 ± 0.062 and
0.245±0.053, respectively. The overall and the average correct classification rates
for Firth regression are 0.672 ± 0.058 and 0.300 ± 0.057, respectively. Despite
the theoretical reasons offered by Zhang (2004), for this data set, our modeling
approach significantly outperforms NBC in correctly classifying subtype, and it
significantly outperforms Firth regression as well.

Although our model tends to misclassify a few patients into the somewhat
milder CIS subtype than the other methods, it is much better at correctly classi-
fying patients in the other four subtypes, particularly PRL patients, than the other
methods (0.70 versus 0.40 and 0.10; cf. the last entry in each panel). Furthermore,
our overall correct and average classification rates are much higher than either the
NBC approach or Firth logistic regression. Both of these methods tend to classify
most subjects into the RLRM, the subtype with the largest number of patients.

Finally, to confirm that it is the imaging data and not just demographic and clin-
ical variables that are driving prediction, we use a polytomous logistic regression
(baseline categories model) with no lesion data to perform this same classification.
We found accuracy rates of 0.776 ± 0.052 (overall) and 0.419 ± 0.061 (average),
demonstrating that it is the imaging data driving prediction accuracy.

4.3. Model diagnostics. As with any regression analyses, model diagnostics
should be performed. For binary regression models these include investigation of
outlying and influential observations. This should be done for each covariate at
each voxel for each subject. However, the sheer size of the problem and data make
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FIG. 6. Upper panel: the proton density image (left) of the outlying subject and the standardized
age coefficients overlaid on the brain atlas (right). The lesion is seen on the proton density image
and the standardized age coefficients (above and below the thresholds, 2 and −2, are shown). Lower
panel: the fitted posterior lesion probabilities (blue line) as a function of age for a selected voxel
(see cross-hairs in upper panel) in “average” RLRM females (gender, disease duration, EDSS and
PASAT scores all set to 0). Also shown are the responses for all individuals at the selected voxel.

this untenable. However, careful scrutiny of the coefficient maps, together with
estimated mean posterior probability maps, revealed a potential outlier. Figure 6
shows a coronal view of a proton density image (upper left) and the standard-
ized (posterior mean divided by posterior standard deviation) coefficient map (up-
per right) for age (thresholded at ±2). The region in question is demarcated by
cross-hairs and was identified by its location near the superior cortical gray matter.
Although this region has large negative standardized coefficients (voxel at cross-
hairs, −4.3), the posterior mean coefficient is only −0.076 and the mean posterior
probability is only 2.5 × 10−4 (bottom panel). We find that there is one subject
with a lesion in this location and she is the second youngest patient in the data
set and has no discernible clinical disabilities from her disease. An investigation
of her images reveals that there is indeed a lesion located in this region. Thus, al-
though there is strong statistical evidence that younger patients are more likely to
have a lesion in this location, there is little scientific significance (an increase in
probability of about 2.5 × 10−4 over a subject one decade older).
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Each area that may be of interest should be carefully examined, as we have
above. This is true for all imaging based models. We therefore caution that the re-
sults require careful interpretation along with the empirical and/or posterior prob-
ability maps to determine if the results are reliable or are simply the result of an
error in marking of a lesion. The area of model diagnostics for large imaging prob-
lems is an open problem that requires further work (not only for our model, but for
large imaging problems in general), where traditional model diagnostics methods,
that rely heavily on graphical outputs, are not feasible.

4.4. Convergence diagnostics. MCMC algorithms must be monitored for con-
vergence. This is typically done by saving the chains for all parameters and assess-
ing convergence either visually or by Markov chain diagnostic methods. Obvi-
ously, monitoring the approximately 2.75 million parameters in our model is not
feasible. Thus, we selected 10 voxels where we monitor convergence. Some of
these voxels are located in regions of high lesion prevalence and others in low le-
sion prevalence. We ran the model from three random initial parameter settings.
Convergence was assessed using the Gelman–Rubin convergence diagnostic for
multiple chains [Gelman and Rubin (1992)]. The largest scale reduction factor ob-
served was 1.01, indicating convergence. As another check, we examined the 5
posterior mean coefficient maps of interest (age, gender, disease duration, EDSS
and PASAT scores) and searched for the largest difference (in absolute value) be-
tween the three possible pairs of runs for each of the 5 coefficient maps. After
locating the voxel at which the maximum difference occurs, using the same initial
settings and seeds, we reran the 3 simulations, saving the draws of the coefficients
at these voxels. Gelman–Rubin convergence diagnostics revealed a largest scale
reduction factor of 1.01, indicating convergence at each of these voxels as well.

5. Simulation study. We now present a simulation study to assess our model
when ground truth is known. We create 2-dimensional, 100 × 100, images with
different behaviors in each of four 50 × 50 squares. We assume that there are two
groups of subjects consisting of both males and females. The number of lesions
in each quadrant is drawn from a Poisson distribution. On average, within the
same group, females and males have the same number of lesions on the left two
quadrants, while for each quadrant on the right, females have 4 more lesions than
males. Similarly, on average, for the same gender, subjects in groups 1 and 2 have
the same number of lesions on the top two quadrants, while for each quadrant at
the bottom, subjects in group 1 have 4 more lesions than subjects in group 2. The
locations of the lesions are uniformly distributed on each quadrant. Each lesion is
modeled as a square with side length a random variable uniformly distributed on
the set {1,3,5}. Lesions are allowed to intersect with each other and merge into
larger lesions. Figure 7(A) shows the binary images from some randomly selected
subjects. For each combination of male vs. female and group 1 vs. group 2, we
simulated binary data for ten thousand subjects. With the large number of subjects,
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FIG. 7. Simulated data results. (A) Lesion patterns from randomly selected subjects. (B) Empirical
lesion rates based on 100 randomly generated subjects. (C) Estimated lesion probabilities from the
Bayesian spatial model. (D) Histograms of the difference between the estimated probabilities from
the Bayesian spatial model and the true probability in the interior area of each quadrant. (E) His-
tograms of the difference between the estimated probabilities from Firth logistic regression and the
true probability in the interior area of each quadrant.

an accurate estimation of true lesion probability can be obtained by calculating the
empirical lesion rate at each pixel and averaging over each quadrant excluding the
outer two edge pixels on all sides to reduce edge effects. For example, the “true”
lesion rates for the males in group 1 (the first column in Figure 7) are thus 0.0455,
0.0366, 0.0546 and 0.0459, clockwise, starting with the upper left quadrant.

We then randomly selected 100 subjects from each combination, creating a sam-
ple size of 400, and fitted our model. The empirical lesion rates from the selected
subjects are shown in Figure 7(B). The regressors in the model are gender and
two random intercepts corresponding to the two groups. All regressors are asso-
ciated with spatially varying coefficients. Females are coded 0 and males 1. We
consider two pixels to be neighbors if they shared a common edge. The posterior
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FIG. 8. Simulated data results. (A) Standardized spatially varying coefficients of gender and the
difference between the two intercepts. (B) Standardized coefficient maps produced by Firth logistic
regression.

distributions of the parameters are approximated by running the Gibbs sampler
for 12,000 iterations, discarding the first 2000 as burn-in. Figure 7(C) shows the
estimated lesion probabilities from our Bayesian spatial model. Compared to the
empirical rates in Figure 7(B), the smoothing effect is evident. Figure 7(D) shows
histograms of the difference between the estimated probabilities from the Bayesian
spatial model and the “true” lesion rates in each quadrant. The mean squared er-
ror (MSE), averaged over all pixels, is 1.20 × 10−4. As a comparison, we also
performed Firth logistic regression at each pixel. The histograms of the difference
between the estimated probabilities from Firth logistic regression and the “true” le-
sion rates in each quadrant are shown in Figure 7(E). These histograms are wider,
and the MSE is 3.33 × 10−4: approximately 3 times larger.

Figure 8(A) shows the standardized spatially varying coefficients of gender and
the difference between the two intercepts (Group1–Group2). The spatial coeffi-
cient maps clearly reflect the spatially varying effect of gender and the group dif-
ference. Figure 8(B) shows the standardized coefficient maps from Firth logistic
regression. Without spatial regularization, the significance map is attenuated rel-
ative to that from our model. We note here that the true coefficient maps are not
available and that the comparisons made here are relative between the two models.

6. Discussion. In this paper we present a Bayesian spatial model that respects
the binary nature of the data and exploits the spatial structure of MS lesion maps
without use of an arbitrary smoothing parameter. The method is suitable to model
any patterns of lesions, including T2 lesions, which show a variety of sizes and
shapes, T1 “black-hole” lesions and any other types of lesions from which a binary
image marking the location of the lesions can be derived. By explicitly including
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covariates and allowing for spatially varying coefficients, our model provides spa-
tial information that most current empirical approaches cannot; for example, we
obtain estimates and estimator precisions for the spatially varying effects of age,
gender, DD, EDSS and PASAT.

Our model provides excellent classification accuracy for predicting clinical sub-
types of MS based on the entire pattern of lesions over the brain, as well as demo-
graphic and behavioral variables. As noted in the Introduction, associations be-
tween MRI findings and clinical outcomes have been paradoxically weak. Hence,
our construction of a model that not only finds disease subtype differences but also
provides high prediction accuracies is an important advance for this area. Specif-
ically, we know of no other work that performs such 5-way classification over
disease subtypes. It appears that, by borrowing strength from neighboring voxels
and respecting the binary nature of the data, our modeling approach overcomes
this paradox to some degree.

Our model is easily extended to include EDSS sub-scores (i.e., disabilities in
7 functional systems) or other diagnostic measures. Last, in Section 2.1 we note
that the covariance matrix was constant over much of the brain. This can easily
be relaxed by allowing a voxel specific covariance matrix, �j , at the expense of
larger computational burden.

The large data set analyzed in this paper, 3-dimensional images each with about
275K voxels from 250 subjects, consists of approximately 70 million observed
outcomes, represents a challenge for any spatial data analysis. There are several
spatial models, as reviewed in the Introduction, with spatially varying coefficient
processes which in principle could be used, but, to our knowledge, have not been
applied to such a large problem. Compared to these methods, our model does not
require any approximation or data reduction method.

One limitation of our data is the use of affine registration to align subjects to a
common space and, thus, a future direction is to use high-dimensional nonlinear
registration that can better align brain structures across subjects. We could then
investigate whether the predictive accuracy or covariate maps will be improved
by the better structural alignment afforded by nonlinear registration. However, an
issue with nonlinear registration is that lesion volumes may not change proportion-
ally as they do with affine registration. For a given subject, some lesions may shrink
by nonlinear registration while others become larger. When a lesion is shrunk, we
are implicitly stating that this lesion is less important for that subject. Thus, an in-
triguing methodological direction is the development of a model for binary lesion
data that accounts for local volume change induced by nonlinear registration, as
Voxel Based Morphometry [Ashburner and Friston (2000)] does with its Jacobian-
based adjustment.

All code, both CPU and GPU versions, is available by contacting the authors or
online at http://go.warwick.ac.uk/tenichols/BSGLMM.

http://go.warwick.ac.uk/tenichols/BSGLMM
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SUPPLEMENTARY MATERIAL

Supplement to “Analysis of multiple sclerosis lesions via spatially varying
coefficients” (DOI: 10.1214/14-AOAS718SUPP; .pdf). This supplement contains
full details of the Gibbs sampler, leave-one-out cross-validation and the naïve
Bayesian classifier. It also contains supplementary figures.
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