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Abstract. In this paper we consider the problem of estimating f, the conditional density of ¥ given X, by using an independent
sample distributed as (X, Y) in the multivariate setting. We consider the estimation of f(x, -) where x is a fixed point. We define
two different procedures of estimation, the first one using kernel rules, the second one inspired from projection methods. Both
adaptive estimators are tuned by using the Goldenshluger and Lepski methodology. After deriving lower bounds, we show that these
procedures satisfy oracle inequalities and are optimal from the minimax point of view on anisotropic Holder balls. Furthermore,
our results allow us to measure precisely the influence of fx (x) on rates of convergence, where fy is the density of X. Finally,
some simulations illustrate the good behavior of our tuned estimates in practice.

Résumé. Dans cet article, nous considérons le probléme de I’estimation de f, la densité conditionnelle de Y sachant X, en utilisant
un échantillon de méme loi que (X, Y), dans le cadre multivarié. On considere 1’estimation de f(x,-) ou x est un point fixé.
Nous définissons deux procédures d’estimation différentes, la premicre utilisant des estimateurs a noyau, alors que la seconde
s’inspire des méthodes de projection. Les deux procédures adaptatives sont calibrées en utilisant la méthodologie proposée par
Goldenshulger et Lepski. Une fois obtenu le calcul des bornes inférieures du risque, nous montrons que ces procédures satisfont
des inégalités oracles et sont optimales du point de vue minimax sur les boules de Holder anisotropes. De plus, nos résultats nous
permettent de mesurer précisément 1’influence de fy (x) sur les vitesses convergence, ou fy est la densité de X. Finalement, des
simulations numériques illustrent le bon comportement de nos procédures calibrées en pratique.
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1. Introduction
1.1. Motivation

In this paper, we consider the problem of conditional density estimation. For this purpose, we assume we are given an
ii.d. sample (X;, ¥;) of couples of random vectors (for any i, X; € R4 and ¥; € R%2, withd; > 1 and dp > 1) with
common probability density function fx y and marginal densities fy and fx: forany y € R% and any x € R%1,

fy<y>=/ Fror G, y)du, fX(x)=/ Frr (2, v) dv.
R4 R4
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The conditional density function of ¥; given X; = x is defined by

fxy(x,y)

flx,y)= ()

for all y € R?% and x € R% such that fy (x) > 0. Our goal is to estimate f using the observations (X;, ¥;). The
conditional density is much more informative than the simple regression function and then its estimation has many
practical applications: in Actuaries (Efromovich [17]), Medicine (Takeuchi et al. [37]), Economy (Hall et al. [26]),
Meteorology (Jeon and Taylor [29]) among others. In particular, due to recent advances in ABC methods, the problem
of conditional density estimation in the multivariate setting is of main interest.

Indeed, the ABC methodology, where ABC stands for approximate Bayesian computation, offers a resolution of
untractable-yet-simulable models, that is models for which it is impossible to calculate the likelihood. The standard
ABC procedure is very intuitive and consists in

e simulating a lot of parameters values using the prior distribution and, for each parameter value, a corresponding
dataset;

e comparing this simulated dataset to the observed one;

o finally, keeping the parameter values for which distance between the simulated dataset and the observed one is
smaller than a tolerance level.

That is a crude nonparametric approximation of the target posterior distribution (the conditional distribution of the
parameters given the observation). Even if some nonparametric perspectives have been considered (see Blum [8] or
Biau et al. [6]), we easily imagine that, using the simulated couples (parameters and datasets), a good nonparametric
estimation of the posterior distribution can be a credible alternative to the ABC method. Such a procedure has to
consider that the conditional density has to be estimated only for the observed value in the conditioning.

All previous points clearly motivate our work and in the sequel, we aim at providing an estimate with the follow-
ing 4 requirements:

1. The estimate has to be fully data-driven and implementable in a reasonable computational time.

2. The parameters of the method have to adapt to the function f in the neighborhood of x. Tuning the hyperparameters
of the estimate has to be an easy task.

3. The estimate should be optimal from the theoretical point of view in an asymptotic setting but also in a nonasymp-
totic one.

4. Estimating f in neighborhoods of points x where fx (x) is equal or close to 0 is of course a difficult task and a
loss is unavoidable. Studying this loss and providing estimates that are optimal with respect to this problem are the
fourth motivation of this paper.

To address the problem of conditional density estimation, the first idea of statisticians was to estimate f by the
ratio of a kernel estimator of the joint density fy y and a kernel estimator of fx: see Rosenblatt [33], Chen et al. [12],
or also Hyndman et al. [27], De Gooijer and Zerom [15] for refinements of this method. An important work in this
line is the one of Fan et al. [18] who extend the Rosenblatt estimator by a local polynomial method (see also Hyndman
and Yao [28]). The estimators introduced in the ABC literature are also of this kind: a linear (or quadratic) adjustment
is realized on the data before applying the classic quotient estimator (Beaumont et al. [4], Blum [8]). Other directions
are investigated by Bouaziz and Lopez [9] who use a single-index model, or Gyorfi and Kohler [25] who partition
the space and obtain a piecewise constant estimate. All these papers have in common to involve a ratio between two
density estimates, though we can mention Stone [36] for a spline tensor based maximum likelihood estimator. An
original approach which rather involves a product is the copula one of Faugeras [20]. But his method depends on a
bandwidth, that remains to select from the data. In particular, for all of these methods, the second requirement is not
satisfied.

The practical choice of the bandwidth and cross-validation methods are studied in Bashtannyk and Hyndman
[3] and [19]. However, no theoretical result is associated to this study. The first adaptive results can be found in
Clémencon [13] for the estimation of the transition density of a Markov chain, which is a very similar problem to the
one of conditional density estimation (set ¥; = X;;1). He uses thresholding of wavelet estimator. Afterwards, using
different methods, the works of Brunel et al. [10] or Efromovich [16] yield oracle inequalities and minimax rates of
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convergence for anisotropic conditional densities. The case of inhomogeneous regularities is studied in Akakpo and
Lacour [1] or Sart [34] in the case of Markov chains. Still for global adaptive approach, we can cite Chagny [11] who
applies the Goldenshluger-Lepski methodology to warped bases and Cohen and Le Pennec [14] who use a model
selection approach with Kullback risk. All the previous authors use a global risk and either consider integration with
respect to fy (x) dx or assume that fy is bounded from below by a constant (as it is done in regression estimation). We
are interested in precisely studying this assumption to show that it is unavoidable in some sense.

1.2. Our strategy and our contributions

Our strategy to estimate f is based on the Goldenshluger and Lepski methodology proposed in the seminal papers
Goldenshluger and Lepski [22,23] in the case of density estimation and extended to the white noise and regression
models in Goldenshluger and Lepski [24]. This strategy detailed in Section 2 allows us to derive two procedures:
kernel and projection rules. If they seem different, they are based on similar ideas and they lead to quite similar
theoretical results. Our method automatically selects a regularization parameter, and in particular a bandwidth for
kernel rules. Note that the tolerance level in ABC methods can be reinterpreted as a regularization parameter.

Unlike most of previous works of the literature, we shall not use a global risk and we will evaluate the quality of
an estimator f at a fixed point x € R and in the Ly-norm with respect to the variable y. In other words, we will use
the risk

Re(f.q) = E[IF - r12,])"7, (1.1)

where for any function g,

172
||g||x,z=(f g2<x,y>dy) . (12)
R

The previously mentioned motivating applications show that the tuning parameter has to depend on x, which is
not the case of other cited-above adaptive methods. As shown later, combined with the Goldenshluger and Lepski
methodology, considering this risk allows us to derive estimates satisfying this property. Furthermore, for a given x,
y > f(x,y) is a density, so it is natural for us to study the estimation pointwisely in x.

From the theoretical point of view, we establish nonasymptotic meaningful oracle inequalities and rates of con-
vergence on anisotropic Holder balls H, (e, L). More precisely, in Proposition 1 and Theorem 4, we establish lower
bounds in oracle and minimax settings. Then, upper bounds of the risk for our adaptive kernel procedure are estab-
lished (see Theorems 1, 2 and 5). If the density fx is smooth enough, Corollary 1 shows that upper and lower bounds
match up to constants in the asymptotic setting. Then, there is a natural question: is this assumption on the smooth-
ness of fy mandatory? We prove that the answer is no by establishing the upper bound of the risk for our adaptive
projection estimate (see Theorems 3 and 6). In particular, the latter achieves a polynomial rate of convergence on
anisotropic Holder balls with rate exponent /(2 + 1), where « is the classical anisotropic smoothness index. To
our knowledge, this rate exponent is new in the conditional density estimation setting for the pointwise risk in x. Our
result also explicits the dependence of the rate with respect to L. on the one hand and to fx(x) on the other hand,
which is not classical. Indeed, as previously recalled, estimation is harder when fx (x) is small and this is the reason
why most of the papers assume that fx is bounded from below by a constant. For kernel rules, our study is sharp
enough to measure precisely the influence of fx (x) on the performance of our procedure. Under some conditions and
if the sample size is n, we show that the order of magnitude of minimax rates (that are achieved by our procedure), is
(nfy (x))¥/@&+D We conclude that our setting is equivalent to the setting where fy is locally bounded from 0 by 1
but we observe nfy (x) observations instead of n.

Finally, we study our procedures from a practical point of view. We aim at completing theoretical results by study-
ing tuning issues. More precisely, our procedures are data driven and tuning parameters depend on x and on an
hyperparameter 7, a constant that has to be tuned. We lead a precise study that shows how to choose 7 in practice. We
also show that reconstructions for various examples and various values of n are satisfying. All these results show that
our procedures fulfill requirements listed in Section 1.1.
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1.3. Overview and notations

Our paper is organized as follows. In Section 2, we present the Goldenshluger and Lepski methodology in the setting
of conditional density estimation. In Sections 4 and 5 respectively, kernel and projection rules are derived and studied
in the oracle setting by using assumptions of Section 3. Rates of convergence on anisotropic Holder balls are studied in
Section 6. Then a simulation study is lead in Section 7, where we focus on tuning aspects of our procedures. Finally,
in Section 8 and in the Appendix, we prove our results. To avoid too tedious technical aspects, most of proofs are
only given for di = dy = 1 but can easily be extended to the general case. In the sequel, we assume that the sample

size is 2n. The first n observations (X1, Y1), ..., (X,, ¥;,) are used to estimate f, whereas X, +1, ..., X2, are used to
estimate fy when necessary. We recall that for any i, X; € R and Y e R% and we setd =d; + d>.
In addition to notations Ry (-,-) and || - || 2 introduced in (1.1) and (1.2), we use for any 1 < g < o0 | - |4, the

classical IL;-norm of any function g:

lgld =/\g<x)|"dx.

Some assumptions on functions f and fy, specified in Section 3, will depend on the following neighborhood of x,
denoted V,,(x): Given A a positive real number and (k,), any positive sequence larger than 1 only depending on n
and such that k,, goes to 400, we set:

d

2A 2A
Va(x) = l_[[xi - it k—}
i=1 n n

Note that the size of V,,(x) goes to 0. Then, we set

[ flloo= sup sup f(z,y) €[0,+o0], Ifxlloc = sup fx(r) € [0, +o0]
teVy(x) yeRdZ teVy(x)

and

d= inf fx(r)>0.
teV,(x)

Our results will strongly depend on these quantities. Finally, for any u € R, we set {#}+ = max(u, 0).

2. Methodology
2.1. The Goldenshluger—Lepski methodology

This section is devoted to the description of the Goldenshluger—Lepski methodology (GLM for short) in the setting of
conditional density estimation.

The GLM consists in selecting an estimate from a family of estimates, each of them depending on a parameter m.
Most of the time, choosing this tuning parameter can be associated to a regularization scheme: if we take m too small,
then the estimate oversmooths; if we take m too large, data are overfitted.

So, given a set of parameters M,,, for any m € M, we assume we are given a smoothing linear operator denoted
K» and an estimate fm. For any m € M,,, fm is related to /Cp, (f) via its expectation and we assume that E[ fm] is
close to (or equal to) /Cp, (f). The main assumptions needed for applying the GLM are

Ko Ky =Ky o Kiy 2.1)
and

Kon (fon) = Ko () 2.2)
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for any m,m’ € M,,. The GLM is a convenient way to select an estimate among ( fm)me M, Wwhich amounts to
selecting m € M,, and can be described as follows: For || - || a given norm and o a function to be chosen later, we set
for any m in M,,,

AGm) = sup {[| o = Ko (fa) | = (m')} .

m'eM,
Then we estimate f by using f = f,;,, where 1 is selected as follows:

m:= argmin{A(m) + U(m)}.
meM,

This choice can be seen as a bias—variance tradeoff, with o (m) an estimator of the standard deviation of fm and A(m)
an estimator of the bias (see later). Let us now fix m € M,,. Using (2.2), we have:

If= £l =1fa— £l
< | £ = Ka ()| + | K (Fi) = Fn | + 1 fn = £1I
< A(m) + 0 (i) + AGh) + o (m) + || fu — f
< 2A(m) + 20 (m) + || f — K (O] + | K (£) = £

But

Ay = sup || for = Ko ()| = (m)}
m'eM,
<&@m)+ B(m)
with for any m € M,,,

Em):= sup {[|(fw — K () = (K (fin) = Ko 0 Ki)()) | =0 (m')},

m'eM,
and
B(m) := m’Seuj{)/l,, Ko () = o 0 ) ()]
We finally obtain:

If — fIl <2B(m) +20 m) + || fon — K (O | + || f = K ()| +28m). (2.3)

Now, let us assume that

I = sup (1K Il < o0, (2.4)
meM,
where |||/Cp,, ||| is the operator norm of /C,, associated with || - ||. In this case, B(m) is upper bounded by || f — Cp, ()|

up to the constant ||| /C|||, which corresponds to the bias of fm if
K (f) =El fn]. 2.5)
Furthermore, using (2.1) and (2.2), for any m € M,,,

gm) < sup {(1+ K| fow = K ()| = o (m)} .

m'eM,
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Then we choose o such that, with high probability, for any m € M,,

| fon = Ko ()| < o)/ (KN +1). (2.6)

So, (2.3) gives that, with high probability,

IIf—fIISCmg; 1f = Kn(H| + o)}, 2.7)

where C depends only on ||/C|||. Since under (2.5), o (m) controls the fluctuations of fm around its expectation,
o2 (m) can be viewed as a variance term and the oracle inequality (2.7) justifies our procedure. Previous computations
combined with the upper bound of A(m) also justify why A(m) is viewed as an estimator of the bias.

Now, we illustrate this methodology with two natural smoothing linear operators: convolution and projection. The
natural estimates associated with these operators are kernel rules and projection rules respectively. Next paragraphs
describe the main aspects of both procedures and discuss assumptions (2.1), (2.2), (2.4) and (2.5) which are the key
steps of the GLM.

2.2. Convolution and kernel rules

Kernel rules are the most classical procedures for conditional density estimation. To estimate f, the natural approach
consists in considering the ratio of a kernel estimate of fx y with a kernel estimate of fx. Actually, we use an alterna-
tive approach and to present our main ideas, we assume for a while that fy is known and positive.

We introduce a kernel K, namely a bounded integrable function K such that [ K (u, v)dudv =1and || K ||2 < oo.
Then, given a regularization parameter, namely a d-dimensional bandwidth & belonging to a set H, to be specified
later, we set

Kn(u,v) =

! (u_l g vV
I vhi \h ha, haj+1 ha

1=

>, ueRdl,veRdz.

Then, we use the setting of Section 2.1 except that regularization parameters are denoted /4, instead of m to match with
usual notation of the literature. Similarly, the set of bandwidths is denoted by #,,, instead of M,,. For any & € H,,, we
set:

Vegelo, Ki(g@=Kn*g,

where * denotes the standard convolution product and

n

~ 1 1
Fnx,y) :;ZT‘fX(Xi)Kh(x—Xi,y—Yi). (2.8)

The regularization operator Ky, corresponds to the convolution with K. Note that

E[ fn(x, )] = (Ki * f)(x, ).

Therefore 3 of 4 assumptions of the GLM are satisfied, namely (2.1), (2.2) and (2.5). Unfortunately, (2.4) is satisfied
with || - || the classic LLp-norm but not with || - || 2, as adopted in this paper. We shall see how to overcome this problem
later on.

Another drawback of this description is that fh is based on the knowledge of fx. A kernel rule based on %X, an
estimate of fy, is proposed in Section 4.2 where we define o (see (2.6)) to apply the GLM methodology and then to
obtain oracle inequalities similar to (2.7). Additional terms in oracle inequalities will be the price to pay for using fx
instead of fx.
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2.3. Projection

We introduce a collection of models (S;;)meam, and for any m, we denote KC,, the projection on (S, (-, -)x) where
(-, -)x 1is the scalar product defined by:

Vg (8.8)y= / / 2, )8, )Py () du dy. 29)

Of course, (2.1) is satisfied, but as for kernel rules, (2.4) is not valid with || - || = || - ||x,2. Now, we introduce the
following empirical contrast:

n

1
for all functionz, y,(t) = — Z[/ tz(Xi, y)dy — 2t (X;, Y,~):|,
n R

i=1

so that E(y,(¢)) is minimum when # = f (see Lemma 1 in Section 5.2). Given m in M,,, the conditional density can
be estimated by:

fin € argmin y,, (7). (2.10)

teSy

Unlike kernel rulAes, this estimate does not depend on fy but (2.2) and (2.5) are not satisfied even if for large values of
n, KCn (f) = E[ fin]. Therefore, we modify this approach to overcome this problem. The idea is the following. Let us
denote Sy, nm = Sy N S, . Taking inspiration from the fact that K, o ICp (f) = Kpam' (f), set for any (m, m’) € M?>

Iam(fm/) = fm/\m"

This operator is only defined on the set of the estimators fm but verifies (2.2). Now the previous reasoning can be
reproduced and the GLM described in Section 2.1 can be applied by replacing K, by IC;,y in A(m) and by setting

§my = sup {[[(for =Ko (1)) = (K (o) = Ko 0 Kn) (D) | = (') .

In Section 5.2, we define o such that for all m,m’ € M,,, o(m A m’) < o(m’) and similarly to (2.6), with high
probability, for any m € M,,

o(m)
5
Then, for all m, m’ € M,,,

.. n omam’) o@m)

[ () = Kor @ Knd (D = [ Fmrimt = Ko (]| = ———— = =5

so that £(m) vanishes with high probability. Thus, we shall be able to derive oracle inequalities in this case as well.
2.4. Discussion

We have described two estimation schemes for which the GLM is appropriate: kernel and projection rules. In these
schemes, the main commutative properties of the GLM, namely (2.1) and (2.2), are satisfied. Due to the particular
choice of the loss-function || - || 2, the property (2.4) is not satisfied. However in both schemes, we shall be able to
prove that for any function g

1Kn(@)],=C sup liglli2 (2.11)

teVy(x)

where C is a constant, V,(x) is the neighborhood of x introduced in Section 1.3, and this property will allow us to
control the bias term B(m), as well as the term &(m). In the sequel, we shall cope with the following specific features
of each scheme:
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e For kernel rules, when fyx is known, (2.5) is satisfied and these estimates lead to straightforward application of the
GLM. But, when fx is unknown, serious difficulties will arise.

e For projection rules, the dependence on the knowledge of fxy will be weaker but since (2.5) is not satisfied, the
control of the bias term will not be straightforward.

Beyond these aspects, our main task in next sections will be to derive for each estimation scheme a function o that
conveniently controls the fluctuations of preliminary estimates as explained in Section 2.1.

3. Assumptions

In this section, we state our assumptions on f and fy.

(H;) The conditional density f is uniformly bounded on V, (x) x R%: || f]loo < 00.

(H>) The density fy is uniformly bounded on V,,(x): ||fx|lcc < 00.

(H3) The density fy is bounded away from 0 on V,(x): § > 0. In the sequel, without loss of generality, we assume
that § < 1.

Assumptions (H;) and (Hy) are very mild. Note that under (Hy), since f is a conditional density, for any 7 € V, (x),
[ ft,v)dv=1and

sup IfI2, < sup () / £, v)dv = flloe < 00. (3.1)

1€V, (x) 1€V, (x),yeR%

Assumption (H3) is not mild but is in some sense unavoidable. As said in Introduction, one goal of this paper is to
measure the influence of the parameter § on the performance of the estimators of f.

For the procedures considered in this paper, if fx is unknown, we need a preliminary estimator of fy denoted fx
that is constructed with observations (X;);=n+1.... 2n. Then, we first assume that fX satisfies the following condition:

§:= inf [fx(®)]>0. (3.2)
teVy(x)

For estimating fy, %X has to be rather accurate:

VA >0, IP’( sup
teVy(x)

where « is a constant only depending on A and fx. Theorem 4 in Bertin et al. [S] proves the existence of an estimate
fx satisfying these properties.

fx (1) — x (1)
fx (1)

> A) <k exp{—(logn)*?}, (3.3)

4. Kernel rules

In this section, we study the data-driven kernel rules we propose for estimating the conditional density f. They are
precisely defined in Section 4.2 and their theoretical performances in the oracle setting are studied in Section 4.3.
Before doing this, in Section 4.1, we establish a lower bound of the risk for any kernel estimate.

4.1. Lower bound for kernel rules

In this section, we consider the kernel estimate fh defined in (2.8) for i € H,,. In particular, fx is assumed to be known.

For any fixed h € H,,, we provide a lower bound of the risk of ﬁ, with ¢ = 2 by using the following bias—variance
decomposition:

RX(fn.2)=E[lfa— FI32] = 1Kn* f— flI25+ / var(fi(x, y)) dy.
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Proposition 1. Assume that (Hy) is satisfied. Then if K (x, y) = KD (x)K @ (y) with KV supported by [—A, A]%,
for any h € H,,, we have for any n,

» 1K@ |3 [KD(s)]? C
R2(f.2) = 1K+ f — f1%, + 2 / ds+ <L,
< f= Il n I, hi fx(x — (s1h1, ..., Sahay)) n

where C1 depends on || K ||1 and || f ||l co- If we further assume that fx is positive and continuous on a neighborhood of
x, then if max H, — 0 when n — 400,

IK 13

RZfn, )= 1Kn* f— flI2 )+ ——2—
* Tty on TR A

1
x (1+o(1) +0( = ). @.1)
)

when n — +00.

The proof of Proposition 1 is given in Section 8. The lower bounds of Proposition 1 can be viewed as benchmarks
for our procedures. In particular, our challenge is to build a data-driven kernel procedure whose risk achieves the lower
bound given in (4.1). It is the goal of the next section where we modify fj by estimating fx when fx is unknown.

4.2. Kernel estimator

Let us now define more precisely our kernel estimator. We consider the kernel K defined in Section 2.2, but following
assumptions of Proposition 1, we further assume until the end of the paper that following conditions are satisfied.

e The kernel K is of the form K (u, v) = KD u)K® (v), u e R4, v € R%.
e The function KV is supported by [—A, A]4.

Our data-driven procedure is based on fx (see Section 3) and is defined in the following way. We naturally replace fh
defined in (2.8) with

n

Flx )—12 ! Kn(x — Xi,y—Y;) (4.2)
h{X, Y _nizl%x(X,') h iy i) .

Then, we set

X
,/Sn 1_[?:1 hi

where § is defined in (3.2) and n > 0 is a tuning parameter. The choice of this parameter will be discussed in Section 7
but all theoretical results are true for any n > 0. We also specify the set H,,:

o(h) = with x = (1+m) (1 + 1K 1)K |12, (4.3)

(CK) For any h = (hy,...,hg) € H,, we have for any i, h;l is a positive integer and
k<~ Vie(l....d) 1 d log?n) < — 1 <
n= 7 l y e A1y, = an og'n) < —— <n.
hi [T, i~ (logn)? et hi

The GLM described in Section 2.2 can be applied and we estimate f with f = fh where

h=h(x):= argmin{A(h) + o (h)},
heH,

Ah) = sup {ll fir = fuwllx2 — o(h)},.

heH,
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and

n

~ 1 A _ A
Foweo) == 3 (i X)) ™ (Knx Kin) (v = Xioy = ¥i) = (K  fi) (. 9). 4.4)
i=1

In the case where fx is known, fx is replaced by fx and 5 by &. In particular, we obtain the expressions of Section 2.2
except that now o is specified.

4.3. Oracle inequalities for kernel rules

We establish in this section oracle inequalities for our estimator f with in mind the benchmarks given in (4.1). To
shed lights on the performance of our procedure and on the role of §, we first deal with the case where fy is known.
We first state a trajectorial oracle inequality and then a control of the risk.

Theorem 1. Assume that the density fx is known so that fx = fx. We also assume that (Hy), (H3) and (CK) are
satisfied. If Sn > 1, we have with probability larger than 1 — C exp{—(logn)>/*},

R ) C>
If— fllx2 < inf {Cl sup IIKh*f—fIIz,2+—}, 4.5)
heH, teV,(x) Sn 1_[?:1 h;

where C1 =1+ 2||K|l1, C2o= 0+ n)IK|23+2||K|l1) and C depends on K, n and || f ||co. Furthermore, for any
qg=>1,

X - 1 G
R:(f,q) <Cy inf { sup |Kp* f— fli2+ ——m—m—mx=t+—, (4.6)
€tn ltev,(x) Sn H?:l h; \/ﬁ

where C depend on K, n and q and Gy depends on K, 1, || f oo and q.

Due to the assumptions on H,, the last term of the right hand side of (4.6), namely C, /+/n, is negligible with
respect to the first one. Furthermore, since o2(h) is proportional to (8n [T, h;)~!, the latter can be viewed as a
variance term (see Section 2.1). Then right hand sides of (4.5) and (4.6) correspond to the best tradeoff between a
bias term and a variance term, so (4.5) and (4.6) correspond indeed to oracle inequalities. Next, we can compare
the (squared) upper bound of (4.6) and the lower bound of (4.1) when ¢ =2 and fy is continuous. We note that
these bounds match up to leading constants, asymptotically negligible terms and up to the fact that terms of (4.6) are
computed on V,(x) instead at x (note that the size of V, (x) goes to 0 when n — +o00 and § and fx(x) are close).
Actually, since (2.4) is not valid for || - || = || - ||Ix,2, we use Inequality (2.11). This explains why we need to compute
suprema of the bias term on V;,(x). Theorem 1 shows the optimality of our kernel rule.

From these results, we can also draw interesting conclusions with respect to the term § that appears in the variance
term. From (4.1), we already know that the term ¢ is unavoidable. Of course, the lower § the worse the performance
of f . Actually, in the oracle context, our setting is (roughly speaking) equivalent to the classical setting where fy is
lower bounded by an absolute constant (see Brunel et al. [10] for instance), but with 6n observations to estimate f
instead of n. A similar remark will hold in the minimax framework of Section 6.

The following theorem deals with the general case where fx is unknown and estimated by fy.

Theorem 2. We assume that (Hy), (H), (H3), (CK), (3.2) and (3.3) are satisfied. If 5n > 1, we have with probability
larger than 1 — C exp{—(logn)>/*},

A ) C> Cs A
||f—f||x,2§hler;£ {Cl sup ||Kh*f_f||t,2+7}+— sup |fx(t)—fx(t), @7

1€V (x) [8n T, by 1€V (x)
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where C1 =14 2||K |1, Co =1 +0)|IK|2(3+2||K|l1), C3 depends on K, n and || f ||oc and C depends on K, 1, fx
and || f |co. Furthermore, for any g > 1,

}+91E‘/‘1( sup |%X(t)—fx(t)|‘1)+2

R.(f,q)<Cy inf { sup |[Kp* f— fllr2+ ,
teVy(x) ﬁ

1
EHn Ltev,(x) /anl—[?’:lhi

where C| depend on K, n and q, C» depends on K, n, q and || f||co and C; depends on K, n, fx, || flloo and q.

The main difference between Theorems 2 and 1 lie in the terms involving SUP;evy, (x) |fX (t) — fx (¢)] in right hand

sides. Of course, if fx is regular enough, we can build fx so that this term is negligible. But in full generality, this
unavoidable term due to the strong dependence of fh on fy, may be cumbersome. Therefore, even if Theorem 1
established the optimality of kernel rules in the case where fx is known, it seems reasonable to investigate other rules
to overcome this problem.

5. Projection rules

Unlike previous kernel rules that strongly depend on the estimation of fx, this section presents estimates based on the

least squares principle. The dependence on fy is only expressed via the use of § and ||fx lloo := SUP;ev, (x) Ifx (t)]. For
ease of presentation, we assume that d; = d, = 1 but following results can be easily extended to the general case (see
Section 6.3).

5.1. Models

As previously, we are interested in the estimation of f when the first variable is in the neighborhood of x, so we still
use V;,(x) defined in Section 1.3. We introduce a collection of models (Sy)mem,, -

Definition 1. Let M, be a finite subset of {0,1,2,...Y>. For each m = (m1,m) € M, and given two Lo (R)-
orthonormal systems of bounded functions ((pT) jedm and (Y kek,,» we set

Fn, = Span((pj-”,j € Jm), Hy, = Span(wlzn’ k e Km)

and the model S,, is

S = Fp, ® Hy, = {t, ()= Y ale @Y (). aly GR}.

jednkeky,
Finally, we denote
Dy, =1|Jnl and Dy, =|Kyl,
respectively the dimension of F,,, and Hy,,.

In this paper, we only focus on systems ((p;.”) jeJ,, based on Legendre polynomials. More precisely, the estimation
interval [x —2A, x 4+ 2A] is split into 2™! intervals of length 44271

L=1"=[x—-2A44A1—- 127" x —2A+4A127™), [=1,...,2M.
[

Then J,, ={(,d),[=1,...,2",d=0,...,r}, Dy, = (r +1)2" and for any u,

2me [2d 4+ 1
0 = ¢l w0 =\ = | 2 P (T ) 1 @),
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where P; is the Legendre polynomial with degree d on [—1, 1], and 7; is the affine map which transforms /; into
[—1,1].

In the y-direction, we shall also take piecewise polynomials. In the sequel, we only use the following two assump-
tions: for all m, m’ € M,,, Dy, < Dm'z = Hy, C Hm’z» and there exists a positive real number ¢; such that for all
me M, forall u e R,

> (W) @) < ¢2Duy.

kekK,,

Note that this assumption is also true for Fj,,. Indeed the spaces spanned by the (p;f“s are nested and, for all u €
[x —2A,x +2A],

My

m L 2d 41 2m r+1
2.2 A’ =3 s Taar Tt =y
=1 d=0 d=0

Dy,

using properties of the Legendre polynomials. Therefore, with ¢1 = (r + 1)/(4A), for any u € [x —2A, x + 2A4],
2
> (@) ) < 61D,
J
5.2. Projection estimator

As in Brunel et al. [10] and following Section 2.3, we introduce the following empirical contrast:

n

_1 2%, (X Y,
Vn(t)—;Z[/Rt (Xi, y)dy 2t(Xl’Y1)i|-

i=1

We have the following lemma whose proof is easy by using straightforward computations. We use the norm || - || x
associated with the dot product (-, -) x defined in (2.9), so we have for any ¢,

||t||§(=// 2, y)fx () dudy,

Lemma 1. Assume that the function ) i Y ke K, &;”kw;" V! minimizes the empirical contrast function y, on Sy,
then

GmAm :Zm7 (51)

where A, denotes the matrix with coefficients (&;?,lk) JE€Im k€K m >

. 1 n . 1 n
G = (; ;%’} (Xi)go;?;(xl-)) and  Z = (; ;go?(xi)w,?(m)
1= 1=
Similarly, if IC,, (f) is the orthogonal projection of f on (S, (-, -)x), it minimizes on Sy,
tey @) =t = fI% = 1 1% =E(m®)

and if K, (f) = ZjeJm ZkeKm a;?fk(p;."l/f,? then,
GmAm = Zm’

J1,J2€Im jejrnskEKm

where Ay, denotes the matrix with coefficients (a;.'fk)jejlmkekm, G =E(Gp) = (((p;f:, (pjn;)x)jl’jze‘]m and

T =EZn) = ( [ [erwurorratwa dy)

J€JIm kEKm
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From this lemma, we obtain that E(y, (¢)) is minimum when ¢ = f, which justifies the use of y,,.

Then, to derive fm an estimate of f, we use (5.1) as a natural consequence of the minimization problem (2.10).
But if ém is not invertible, Am can be not uniquely defined.

Since x is fixed, we can define, for each m = (m, m>), the index [,,;;, = I, (x) such that x belongs to Ilml (actually,
1—1

since the estimation interval is centered in x, [,,, =2"!7" 4 1). Furthermore, since we use a piecewise polynomial

system, the Gram matrix Gm is a block diagonal matrix with blocks Gf,} ), e G,(,f " ), where

. 1 n
Gy = (; Dol (X,»)qo;f’dz(xi)> :
0<dy,dr<r

i=1
In the same way, we can define for/ =1, ...,2™!
zZy) = (1 Z ’" (X»)W"(Y-))
"o\n izl P Oga’gr,keKm.

Now, and by naturally using the blockwise representation of G, we define the collection of estimators ( fAm)mE M,
as:

.
Iy =30 >0 ag g aCOVEO)

d=0kek,,

and

~ AUm ) 1 5Wm) . . A my) — Q
@ o Domtorrex ;:Af,i'"”;:{(cm D12 i min(Sp(Gh™ ) > (1472058,
e 0 otherwise,

where 7 is a positive real number. Here, for a symmetric matrix M, Sp(M) denotes the spectrum of M, i.e. the set of
its eigenvalues. This expression allows us to overcome problems if G, is not invertible. Note that, when » = 0, where
r is maximal degree of Legendre polynomials, this estimator can be written

. 27:1¢;!1(Xi)1/f/:'1(yi) ” ”
Iny=3"%" STy Y Y ).

j€dmkekKy

Now, to choose a final estimator among this collection, as explained in Section 2.3, we denote m A j = (m1 A ji,
my A jp) = (min(m1, j1), min(mo, j2)) and by using fy introduced in Section 3, we set

. |Dm,D o I floc
o(m)=3 % with 22 = (1 + ) (4¢1¢2(r + 1)) I ’}”“’, (5.2)
n

where ||f/X||\oo = ||fX lloo and § is defined in (3.2). We also specify the models we use: The following condition is the
analog of (CK):

(CM) For any m € M,,

8
ko(r +1) < Dy, < ———  and  log?(n) < Dy, <n.
(logn)?
The GLM described in Section 2.2 can be applied and we estimate f with f = fm where

m=m(x):= argmin{A(m) + o(m)}
meM,
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and

A(m) = sup [“fm’ - fm’Am”x,Z - G(m/)]+‘
m'e M,

The next section studies the performance of the estimate f.
5.3. Oracle inequality for projection estimators

We establish in this section oracle inequalities for the projection estimate in the same spirit as for the kernel rule. We
recall that C,,, (f) is the orthogonal projection of f on (S, (-, -)x) where (-, -)x is the dot product defined in (2.9).
The following result is the analog of Theorem 2.

Theorem 3. We assume that (Hy), (H2), (H3), (CM), (3.2) and (3.3) are satisfied. If n > 1, we have with probability
larger than 1 — C exp{—(log n)>/4},

. . Dy, Do,
I f— fllx2< inf <C1 sup || (f) — f 1—)
f=flez= inf ,ev,f(’x)” m(F) = fll2+ 5

with % defined in (5.2), Cy =14 2(r + )8 Y||fx|loo and C depends on ¢1, 2, r, 1, || f lloo and fx. Furthermore, for
any g > 1

Dmle2> + Q
NS

where C\ depends on 1, ¢2. 7,1, |Ifx lloo. 8§ and q and C; depends on ¢y, ¢2.7, 1, || f llo. fx and q.

Rl =6 it (s [eatn - o], a+

me teV,(x) én

As for Theorem 2, using the definition of o, the right hand sides correspond to the best tradeoff between a bias term
and a variance term. Note that unlike kernel rules, the performances of f do not depend on the rate of convergence
of Ty for estimating . But there is a price to pay: due to a rougher control of the bias term, ¥ depends on § and the
leading constants C; and C 1 depend on §. In particular, when fx is known, conclusions drawn from Theorem 1 do not
hold here. However, in the case where r = 0 (the basis in the first coordinate is simply the histogram basis), we can
use the simpler penalty term x = (1 + 1)+/4¢1¢$> and the previous result still holds. To prove this, it is sufficient to
use the basis (||¢; ||}1goj ® ¥i) j,k which is orthonormal for the scalar product (-, -) x.

6. Rates of convergence

In this section, minimax rates of convergence will be computed on Holder balls H; (e, L). We recall that for two
d-tuples of positive reals &« = (a1, ...,04) and L= (L1,..., Ly),

=Lim=0,..., o]

o]

Hd(oc,L)={f R? > Rs.t. V1<z<d‘

i

I-‘XIJ I_alJ
and for all r e R f( +te;) — f() 5Li|t|ai—LaiJ i
ox |_ il ax I_Otj

where for any i, |o; | = max{/ € N: [ < «;} and ¢; is the vector where all coordinates are null except the ith one which
is equal to 1. In the sequel, we use the classical anisotropic smoothness index defined by

and introduced in the seminal paper Kerkyacharian et al. [30]. See also Goldenshluger and Lepski [21].
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6.1. Lower bound

We have the following result that holds without making any assumption. It is proved in Section 8.3 of Bertin et al. [5].

Theorem 4. There exists a positive constant C not depending on L nor n such that, if n is large enough,

d
inf sup { (B ) R f 12, = C(l"[ L/ /it
i=1

&)/ (2a+1)
™" (fi0ef@L) )

where the infimum is taken over all estimators T, of [ based on the observations (X;, Y;)i=1, . and 7:[(01, L) is the
set such that the conditional density f belongs to Hq(a, L) and the marginal density fx is continuous.

Note that we consider the ball H (e, L) which may be (slightly) smaller than the ball H (e, L). Actually, we wish
to point out the dependence of the lower bound with respect to n, & and L as usual but also to fx (x), which is less
classical. The goal in next sections is to show that our procedures achieve the lower bound of Theorem 4.

6.2. Upper bound for kernel rules

In this section, we need an additional assumption on f.

(H4) There exists a compact set B, such that for all # € V,,(x), the function y — f (¢, y) has a support included into B.
We denote by | B| the length of the compact set B.

This assumption could be avoided at the price of studying the risk restricted on B. Moreover, to study the bias of the
kernel estimator, we consider for any M = (M, ..., My) the following condition.

(BKm) Foranyi e {l,...,d}, forany 1 < j < M;, we have
/|xi|j|K(x)|dxi<oo and /xl.jK(x)dxizo.
R R

We refer the reader to Kerkyacharian et al. [30] for the construction of a kernel K satisfying (BKy1) and previous
required conditions. We obtain the following result showing the optimality of our first procedure from the minimax
point of view, up to the rate for estimating fy.

Theorem 5. We assume that (Hy), (H2), (Hz), (Hy), (CK), (3.2) and (3.3) are satisfied. Let M = (M, ..., Mg) such
that (BKw) is satisfied. Then if f belongs to Hy(ee, L) such that |o;] < M; foralli =1, ...,d, the kernel rule f
satisfies for any ¢ > 1,

s C N ~
(n8)~ /D 4 2B ( sup [Fe(n) = tx)]") + Can ™92,

d (qo0)/(2a+1)
) teVy(x)

where C, depend on K, n and q, Gy depends on K, n, q and || f |0 and C; depends on K, n, fx, || flloo and q.

If the leading term in the last expression is the first one, then, up to some constants, the upper bound of Theorem 5
matches with the lower bound obtained in Theorem 4 (note that § is close to fy(x)) when g = 2. In this case, our
estimate is adaptive minimax. To study the second term, we can use Theorem 4 of Bertin et al. [5] that proves that,
in our setting, there exists an estimate fx achieving the rate (log/n)f/CP+D if fy € Ha, (B, L) and we obtain the
following corollary.
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Corollary 1. We assume that (Hy), (H), (H3), (Hs), (CK) and (BKwy) are satisfied. We also assume that fx €
Ha, (B, L) such that foranyi =1, ...,d1, Li>0and0<p; < ﬂi(m) with some known ,Bl.(m) > 0. Then if f belongs to
Ha(ee, L) such that o | < M foralli =1,...,d, the kernel rule f satisfies for any g > 1,

X < o 1 (logn @P/CR+D
RIG oy =cil (] (n5)<qa>/(2a+1>+_< ) +Con—1P,
i=1

84 n
where C1 is a constant not depending on L, n and § and C3 is a constant not depending on L and n.

) (q@)/(2a+1)

From the corollary, we deduce that if ,3_ > ¢ and if § is viewed as a constant, then the leading term is the first one.
Furthermore, in this case, the rate is polynomial and the rate exponent is the classical ratio associated with anisotropic
Holder balls: &/ (2a + 1). Our result also explicits the dependence of the rate with respect to L and §.

6.3. Upper bound for projection estimates

In the same way, we can control the bias for our second procedure of estimation in order to study the rate of conver-
gence. Let us briefly explain how the procedure defined in Section 5 can be extended to the estimation of conditional
anisotropic densities f : RY x R% — R with d;, dy > 2. The contrast is still the same and the estimators fm have
to be defined for m = (my, ..., my) with a polynomial basis on hyperrectangles: see Akakpo and Lacour [1] for a
precise definition. The model dimension is now

d

Dml = Hrl-Z””,

i=1

where rq, ..., rq, are the maximum degrees. Then, the selection rule to define f is unchanged, except that in (5.2)

O\ il
22=(1+n)2<4¢1¢21'[n) XS‘”.

i=1
In order to control precisely the bias, we introduce the following condition.
(BM;) H,,, is a space of piecewise polynomials with degrees bounded by r4, 41, ..., 74, with Dy, = ]_[f:d] 2™
This allows us to state the following result.
Theorem 6. We assume that (Hy), (Hy), (H3), (Hs), (CM), (3.2) and (3.3) are satisfied. Letxr = (r1, ..., ¥q) §uch that

(BM,) is satisfied. Then if f belongs to Hg(et, L) such that a; <ri foralli =1, ...,d, the projection rule f satisfies
forany g > 1,

d (qa)/Qa+1)
) n— @)/ Qo+l

7 ~ 1/ai
Rf{(f,q>sc(]"[L,. .
i=1

where C dependon A, |B|,r,a,§ and ||fx | co-

Thus, even if the control of § is less accurate, the projection estimator achieves the optimal rate of convergence
whatever the regularity of fy.

7. Simulations

In this section we focus on the numerical performances of our estimators. We first describe the algorithms. Then, we
introduce the studied examples and we illustrate the performances of our procedures with some figures and tables.
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7.1. Estimation algorithms

For both methods (kernel or projection), we need a preliminary estimator of fy. In order to obtain an accurate estimator
of fx, we use a pointwise Goldenshluger—Lepski procedure which consists in the following for estimating fx at x.
This preliminary estimator is constructed using the sample (X;);=n+1,... 2, Let us define for 2 > 0,

log h|f
pen(n,h)=2.2||K||2(1+||K||1)‘/|Ogn#, a1

where fx is a preliminary estimator of fx obtained by the rule of thumb (see Silverman [35]), and K is the classical
Gaussian kernel. The value 2.2 is the adjusted tuning constant which was convenient on a set of preliminary simula-
tions. Given H a finite set of bandwidths (actually H is a set of 10 bandwidths centered at the bandwidth obtained by
the rule of thumb) and for h, h’ € H, consider

2n 2n
o 1 A 1
fr(x) = p E Kp(x — Xi) and fpr(x)= p E (Kn* Kp)(x — Xi).
i=n+1 i=n+1

We consider
Ah, x):= }I}lél;(]{ |fh,h/(x) — fh/(x)| — pen(n, h’)}+.
Finally we define h¢ by

ho := argmin{A(h, x) + pen(n, h)} (7.2)
heH

and we consider the following procedure of estimation: %X x)= fho (x).

Now, the algorithm for the kernel estimation of f is entirely described in Section 4.2 and we perform it with K the
Gaussian kernel and a set of 10 bandwidths in each direction, that means that the size of 7, is 10417 The quantity
[I ﬁ,r — fh’ ' llx.2 1s made easy to compute with some preliminary theoretical computations (in particular, note that for
the Gaussian kernel K, * K| = Kj,» with h”> = h? + h'%). The only remaining parameter to tune is 7 which appears
in the penalty term o (see (4.3)).

In the same way, we follow Section 5.2 to implement the projection estimator. Matrix computations are easy to
implement and make the implementation very fast. We only present the case of polynomials with degrees r =s =0,
i.e. histograms, since the performance is already good in this case. Again, the only remaining parameter to tune is n
which appears in the penalty term o (see (5.2)). Note that in the programes, it is possible to use nonintegers m; and in
fact this improves the performance of the estimation. However, to match with the theory we shall not tackle this issue.

7.2. Simulation study and analysis

We apply our procedures to different examples of conditional density functions with d; = dy = 1. More precisely, we
observe (X;, Y;);=1,...n such that

Example 1. The X;’s are i.i.d. uniform variables on [0, 1] and

Y, =2X2+5+6(13- 1) i=1,...n,
where the €;’s are i.i.d. reduced and centered Gaussian variables, independent of the X;’s. Note that we also studied
heavy-tailed noises in this example (i.e. the €;’s are variables with a standard Cauchy distribution) and the results
were almost identical.

Example 2. The X;’s are i.i.d. uniform variables on [0, 1] and the distribution of the Y;’s is a mixture of a normal
distribution and an exponential distribution: Y; ~ 0.75¢; +0.25(2 + E;), where €; is a zero-mean normal distribution
with standard deviation 2 + X; and E; is exponential with parameter 2.
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Fig. 1. Plots of true function f(x, -) (plain line) versus kernel estimator f (x, -) (dashed line) and projection estimator f (x, -) (dot-dashed line) in
x =0 (n =1000) for Example 3 (left) and Example 4 (right).

Example 3. The X;’s are i.i.d. and their common distribution is a mixture of two normal distributions,
0.5N(0,1/81) +0.5NM (1, 1/16) and

1/2 .
Y= X2+ 1+e(13+1%)7 i=1,...n,
where the g;’s are i.i.d. reduced and centered Gaussian variables, independent of the X;’s.

Example 4. The X;’s are i.id. and their common distribution is a mixture of two normal distributions,
0.5N(0,1/81) + 0.5N (1, 1/16) and the distribution of the Y;’s is a mixture of a normal distribution and an expo-
nential distribution: Y; ~ 0.75¢; +0.25(2 + E;), where ¢; is a zero-mean normal distribution with standard deviation
2 4+ X; and E; is exponential with parameter 2.

We simulate our observations for three sample sizes: n = 250, n = 500 and n = 1000. In Figure 1, we illustrate the
quality of reconstructions for both estimates when fx is unknown. We use n = —0.2 for the projection estimator and
n = 1 for the kernel estimator (see the discussion below).

To go further, for each sample size, we evaluate the mean squared error of the estimators, in other words

MSE(f) = / (F,y) = fx, y) dy,

where f is either the kernel rule or the projection estimate. In Appendix B, we give approximations of the MSE based
on N = 100 samples for different values of 7.

Now, let us comment our results from the point of view of tuning, namely we try to answer the question: how to
choose the parameter n? We first focus on kernel rules. Tables of Appendix B show that, often, the optimal value is
n = 1. More precisely, it is always the case for Examples 1 and 2. For Examples 3 and 4, when n = 1 is not the optimal
value, taking n = 1 does not deteriorate the risk too much. So, for kernel rules, the choice n = 1 is recommended even
if larger values can be convenient in some situations. To shed more lights on these numerical results, in Figure 2, we
draw the MSE for the kernel rule in function of the parameter . We observe that the shape of the curve is the same
whatever the example. If 7 is too small the risk blows up, which shows that the assumption 7 > 0 in theoretical results
is unavoidable at least asymptotically. Furthermore, we observe that if 7 is too large, then the estimate oversmooths
and the risk increases but without explosion for 1 not too far from the minimizer. Similar phenomena have already
been observed for wavelet thresholding rules for density estimation (see Section 2.2 of Reynaud-Bouret et al. [32]).
Tuning kernel rules is then achieved.
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Fig. 2. MSE(f) for n =500, Example 1 (x = 0.5), Example 2 (x = 0.5), Example 3 (x = 0), Example 4 (x = 0).

We now deal with projection rules. Unfortunately, the plateau phenomenon of Figure 2 does not happen for projec-
tion estimators. In this case, the optimal value for 1 seems to change according to the example. Tuning this procedure
is not so obvious. Note that performances of kernel and projections rules are hardly comparable since they are respec-
tively based on a Gaussian kernel function and piecewise constant functions.

For kernel rules, we study the influence of the knowledge of fy. Tables B.1 and B.3 show that when fx is known
results are a bit better as expected, but the difference is not very significant. Since projections rules are less sensitive
to the estimate fx, we only show results with fy unknown. Finally, to study the dependence of estimation with respect
to x, we focus on Tables B.5 and B.6 that show that in Example 3 estimation is better at x =0 and x = 1 than at
x = 0.36. This was expected since the density design is smaller at x = 0.36 and this confirms the role of § in the
rate of convergence of both estimators (see Theorems 2 and 3). Similar conclusions can be drawn for Example 4.
Finally, we wish to mention that the ratio between the risk of our procedures and the oracle risk (the upper bounds of
Theorems 1, 2 and 3) remains bounded with respect to n, which corroborates our theoretical results.

8. Proofs

In this section, after giving intermediate technical results, we prove the results of our paper. Most of the time, as
explained in Introduction, we only consider the case di = d» = 1. We use notations that we have previously defined.
The classical Euclidean norm is denoted || - ||. Except if the context is ambiguous, from now on, the || - || so-norm shall
denote the supremum either on R, on V,,(x) or on V,(x) x R. We shall also use for any function g

lglloc,2 := sup [Igll,2.
teVy(x)

This section is divided into two parts: Section 8.1 (respectively Section 8.2) is devoted to the proofs of the results
for the kernel rules (respectively for the projection rules). We first prove in Section 8.1.1 the lower bound stated in
Proposition 1. Main results for kernel rules, namely Theorems 1 and 2 are proved in Section 8.1.2. They depend
on several intermediate results that are proved in Sections 8.1.3-8.1.6 (see the sketch of proofs in Section 8.1.2).
Theorem 5 that derives rates for kernel rules is proved in Section 8.1.7. For projection rules, the main theorem, namely
Theorem 3, is proved in Section 8.2.1. It is based on intermediate results shown in Sections 8.2.2-8.2.4. Finally,
Theorem 6 that derives rates for projection rules is proved in Section 8.2.5. As usual in nonparametric statistics, our
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results are based on sharp concentration inequalities that are stated in Lemmas 2, 3 and 4. These lemmas and other
technical results stated in Lemmas 5 and 6 are proved in Appendix A.

Lemma 2 (Bernstein Inequality). Let (U;) be a sequence of i.i.d. variables uniformly bounded by a positive constant
¢ and such that I[“EUI2 <wv. Then

_ (ne? ne
P >¢ | <2exp| —min{ —, — ] ].
4v " 4dc

Note that Lemma 2 is a simple consequence of Birgé and Massart [7], p. 366.

1 n
- ZUi - E[U;]
i

Lemma 3 (Talagrand Inequality). Let Uy, ..., U, be i.i.d. random variables and v,(a) = %Z?zl[ra(Ui) —
E(t,(U;))] for a belonging to A a countable subset of functions. For any ¢ > 0,

c2 nH? min(¢, 1)¢ nH
P(asgg|vn(a)| >+ 2§)H) < 2max<exp(—€T>,exp<—Tﬁ))

with

supsup|ra(u)| <M, E[sup|vn(a)|] <H, supVar(ra(Ul)) <wv.
acA acA

aceA u
Let p > 1 and consider the event
Ap={p7'8 <5 <ps} N {p 2 Ifxllo < Ifxlloc < A7 IIfxlloo]-
We have the following lemma.
Lemma 4. Condition (3.3) implies that
P(AS) < Bretoen™
with some positive constant By that depends on fx and p.

Lemma 5. For any integrable functions fi and f», if the support of u > f>(u, y) is included in [—2A ) ky, 24/ kn]®!
for all y, then we have

I f1% falle2 = sup ([ fille,2 x Nl f2llh,
1€V (x)

Lemma 6. We use notations of Definition 1. Let m = (m1, my) be fixed. For any function t, the projection K,,(t) of
T on Sy, verifies

1K@, 5 < ¢+ Dlifxllocd™ sup liellio-
’ teVy(x)

8.1. Proofs for the kernel estimator

8.1.1. Proof of Proposition 1
We just need to control:

~ 1 _
/ var(fp(x,y))dy = - / var([fx (XD)] " Kn(x — X1,y — Y1) dy
1 _
=- f(E[[fX(Xl)] 2K2(x — X1,y — ¥1)]

— @[t (x0] T Ku = X1,y = 1)) dy.
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First, by using Lemma 5 and (3.1),

/ (E[[tx XD] ™ Kn(x — X1y — ¥]) dy = / (Kp % £)°(x. y) dy

< UIKnllF < sup [£1I72 < IKITIF lloo-
teVy(x)

Furthermore,

/‘]E[[fX(Xl)]izK%(x—Xl,y—Yl)]dyz/// K}%(x—u,y—v)f(u,v)[fx(u)]qdudvdy

@2
= /(K,(,:))z(x — u)[fx(u)]_1 du x ||Kh_||2
2

IK@|3 / [KD(s))?
= X
hiha fx(x —shy)

Now assume that fy is positive and continuous on a neighborhood of x. Since max H,, — 0 when n — 400, then
hi — 0. Then we have

/fx(x)[K()(S) 2 </[K(1)(S)]2 B0y
fx(x —shy) - fx(x —shy)
fx (x) _ 1) 2.
= |reww | [0 @ o

8.1.2. Proof of Theorems 1 and 2
We introduce

fxy(x,y)  fxx)
(x,y) = 2% O
SEN=T e Y

We consider the set I" = I} N I where

2 X1
= {Vh,h’ € Hut | Kn s frr — Kn* Kpy % gllx2 < Ai}
\/Snh' k)

2 X2
= {Vh' €Hu: I fw — Kp xgllx2 < 7}

NETV AR
and

xr=0+mIK[1IK]2, x2=0+mlKl2.

We shall use following propositions that deal with the general case when fy is estimated by fx. When fx is known,
it can easily be checked that these propositions also hold with g replaced by f and 5 by 8. We also use the set A,
studied in Lemma 4 with p = (1 + n/2)2.

Let us give a sketch of the proof. The main steps for proving Theorems 1 and 2 are the following. We first prove
an oracle inequality for the function g on the set I" (Proposition 2). Then, in Proposition 3, we prove that the event
I'" occurs with large probability by using Lemma 3. Finally, Proposition 4 studies the impact of replacing g by f.
Proposition 5 gives a polynomial control in n of our estimate that is enough to control its risk on "¢ by using
Proposition 3 and Lemma 4.
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Proposition 2. On the set I", we have the following result.

1
,/thlhz},

where C1 =14 2||K||1 and Co = (1 +|IK |23+ 2|K|[1).

If —glso < inf {CIHKh * & — 8lloc,2 + C2
heH,

Proposition 3. Under (Hy), (H3) and (CK), we have:
IP’(FC N Ap) < Cexp{—(logn)5/4},

where C depends on K, n and || f || co-

Proposition 4. Assume that (Hy), (Hz) and (CK) are satisfied. On A:
1K * g — glloo2 < 1K * £ — fllso2 + C8HIfx — fx oo
lg = flle.2 < €8x — fx oo,

where C depends on n, K and || f || co-

Proposition 5. Assume that (CK) is satisfied. For any h € H,,
I fulleo < |[KV] K@, 0ogn) n?2.

The first part of Theorem 1 can be deduced from Propositions 2 and 3. Note that in the case of Theorem 1, since
fx is known, g = f and P(A,) = 1. The second part of Theorem 1 is a consequence of Proposition 5, (3.1) and (4.5).
Since

If = fllea<Ilf —gllea+llg— Flo2
and
rnA,=(ruaAg)na,,

the first part of Theorem 2 is a consequence of Propositions 2, 3 and 4 combined with Lemma 4. The second part of
Theorem 2 is a consequence of Proposition 5, (3.1) and (4.7).

8.1.3. Proof of Proposition 2 .
We apply the GLM as explained in Section 2 with fj given in (4.2) for estimating g, M, =H,, || - | =l - llx.2,

o(h) = X/\/gnhlhz, and the operator Xy, is the convolution product with Kj. Note that (2.1), (2.2) and (2.5) are
satisfied but not (2.4). But we have:

B(h)= sup |[Ku(g) = (K o Ki)(@)|, , < IIKll1 sup g —Kn(@], ,,
hWeH, teVy(x)

using Lemma 5 and the equality || K|l = || K ||1. Let us fix & € H,,. We obtain Inequality (2.3) in our case:
1 = gllv2 2B +20(h) + || fo = K@) |, » + [ g = Kn (@] , +2£)
with

500 = sup {[[(fie =K (®) = (K (f) = Ky e K@) ], = (W)} .
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But, on I, YA, ' € Ho, || fir — K (&) llx.2 < x2/+/Snh kil and K (fn) — K 0 Kn) (@) Ilx2 < X1/+/Snh k), so that
&(h) =0. Then,on I,

; x2
I/ = gllx2 <2B(h) + 20 (h) + —=

v/ dnhihy

2x +
< IKIh+1) sup |g—Kn(@|,,+ AR

tE€Va(x) \/thlhz

with 2x + x2 =2x1 +3x2 = 1+ CIK 1 + 3K ]2

+e—Kn@l],,

8.1.4. Proof of Proposition 3
We respectively denote [P and [E the probability distribution and the expectation associated with (X1, Y1), ..., (X, ¥y).
Thus

2 =2 X1
n= {Vh, h' € Hu: | foaw —ElLfnwl] < 7}
! 1,/
\/onh'h,
X2
x2 = S h 1 }
\/onh'hy
To prove Proposition 3, we study I' N A, and Iy N A,. So first, let assume we are on the event A,. Note that on

Ay, we have §71< 8" and for all u € V,(x), |g(u, v)| < f(u,v)p (see the proof of Lemma 4). We denote for any
x,y,uand v,

Fz = {Vh/ c Hni ||fh’ - IF:[fh’]

w(x,y,u,v)= [fx(u)]il(Kh * Kp)(x —u,y —v).

We can then write:
1 n
Jnw (. y) = D wx,y, Xi, Yi)
i=1

and with B the unit ball in L, (R) endowed with the classical norm and .4 a dense countable subset of 13,

I Fow —Elfun] 2= Sug/d(Y)(fh,h’ (x,y) — E[fh,h'(x, »])dy

= suﬁ/a(y)(fh,w(x,y)—E[fh,hf(x,y)])dy

1 s
= sup — /a(y)[w(x, v, Xi, Yi) = E(w(x, y, X;, ¥7))]dy.
acA T

Hence, one will apply the inequality of Lemma 3 with 7, (X;, ¥;) = f a(y)w(x,y, X;, Y;)dy. First, we have:
B[ foe = Bl )7 < B fu = LA ]

]E[/ (frw e, y) — ]E[fh,h’(x, )’)])2 dy:|

/ var( . (x, y)) dy
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962
= %/Var([%x(xl)]il(l(h * Kp)(x — X1,y — Y1) dy
< %/JE([%X(XI)]*Z(K/@ * Kp)2(x — X1,y — Y1) dy
< i///(Kh * Kp)>(x —u, y — v)g(u, v) dudvdy.
But we have

2
(Kn* Kp)*(x —u,y —v) = (// Kh/(x—u—s,y—v—t)Kh(s,t)dsdt>
5/fK,f,(x—u—s,y—v—t)|1(h(s,t)|dsdtx 1K 1.
Therefore, since for any u, ff(u, v)dv=1and K (x,y) = K(l)(x)K(z)(y),
(E[” Fu — I~E[fh,h/]HM])z
_ Kl 2
<= |Kn(s, 1) Kp(x—u—s,y—v—1)gu,v)dudvdy | dsds
I|K||1 k(D)2 K@
|Kh( t)| ( h/) (x—u— s)( )(y v—1t)dy |g(u,v)dv |du ) dsdr

2
_||1<||15||1; "2p//|1<< m(/ (K u_s)du)dsdt

CIKIRIKVIZIK P50 IKITIK 150
Snh' iy Snhinly

Consequently, we obtain IE[Hfh,h/ — ]E[fh,h’]ﬂx,z] < H, with

K11 K202
1K IKll2p " @®.1)

/dnh'
1772

Now, let us deal with v which is an upper bound of sup, ¢ 4 var(z, x (X1, ¥1)).

H=

2
sup var(zq,x (X1, Y1) < SHP]EK/a(y)w(x,y,Xl,Yl)dy) }
acA acA
< supEUlw(x v, XI,Y1>|dy/a ) |w(x, y,Xl,Yoldy]
< sup/|w(x, v, u, v)\ dy sup]EHw(x, v, X1, Y1)|].
u,v y

Now,

sup/|w(x,y,u,v)|dy=sup/}[lﬁx(u)]7](1(h *Kh/)(x—u,y—v)|dy

1
< Fsup /V/ K“) s)K(z)(y—v—t)Kh(s,t)dsdt d
u,
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g //‘K11(S t)}</|1((1) M_S)HK;(I?()’—U—I)‘dy> ds dr

_ KK @ 1K Do
Sh!,

and

sup]EHw(x, vy, X1, Y1)|] = supf/|w(x, y, u, v)|fX’y(u, v)dudv
y y

= sup/ |(Kh * Kp)(x —u,y — v)|g(u, v)du dv
y

< ||g||msup//<//|Kh(x—u—s,y—v—t)HKh/(s,t)|dsdt)dudv
y

< lgloollKIT < I f o 1K I}

since on A, [Iglloc < oIl flloc and where [glloc = sUP(; y)ev, (x)xR |18, v)|. Thus, we set

_ K ||1<<2>||1||I<“>||oop||f||oo
5h’

8.2)

Finally, we deal with M which has to be an upper bound of sup,. 4 sup, sup, | f a()w(x,y,u,v)dy|

sup sup sup
acA u v

/a(y)w(x, y,u,v) dy‘ = sup“w(x, U, V) H2

12
P(/(Kh*Kh’) (x —u, y—v)dy) )

=<

E
We have:

2
/(Kh*Kh’)z(x—u,y—v)dy=/<//l(h/(x—u—s,y—v—t)Kh(s,t)dsdt> dy
< ||K||1//’Kh(s,t)‘</l(,§,(x—u—s,y—v—t)dy)dsdt

_ IKIRIK VI 1K 213
< ; .
hihy

Therefore, we can set

K KD K®
Mo K]l flooll ||2_ (8.3)

NS
So, since p = (1 + n/2)2, Lemma 3 implies that for any ¢ > 0,
KK (2T + n/2)>

Jdnh'
17°2

2
< 2max<exp{—%’,”ﬂb®) } exp{—; min(1, )Cr (K, n) nh’lg})
2

I@(” Fuw = ELfun]

.= (+20)
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where C1(K, || flloo) and C2(K, 1) are positive constants that depend on K and || || and K and 7 respectively.
Similarly we have for any ¢ > 0,

Bl £, — &/ K|2(1 2
(1~ Bl = 0 4 2 K20 1/2)

NI A

2
< 2max<exp{—§ C3(K’h7,7’ PAED }, exp{—; min(1, £)C4(K, n) nh/lg}),
2

where C3(K, 1, || flloo) and C4(K, 1) are positive constants that depend on K, 1 and || f||o and K and 5 respectively.

Let £ = /(4 + 2) so that (1+2¢)(1 + 1/2) = (1 4+ 7). For (h}, h}) € H,, (“’g") < “;%7} < (‘°§:)3 <h <1and

/
<h,<

m. So, —,/nh’lzs < —(logn)3/? and _E < —(logn)? + 1. Therefore, on Ay,

o KK :
3 ]P(Hfh w =B, , > 1+ ELIETR ”2)_p2n4e—cs<l<,n,|f|oo>aogn>*/2

hoh' €My, ,/(thlh’z

< Co(K. 1, || flloo)e™ o2, (8.4)
with Cs(K, n, || flleo) and Ce(K, 1, || f |lco) positive constants depending on K,  and || f||oc. We have a similar result
for Zh/e’)-[ I@’(H fh/ E[fh/ lx2>(14+n) \/&) Now to conclude, note that the right hand side of Inequality (8.4)

" dnh'\h

iy
is not random. This allows us to obtain the result of the proposition.

8.1.5. Proof of Proposition 4
We have the following decomposition

Kpnxg—g=Kpxg—Kpn*xf+Kpxf—f+f—g. (8.5)

Next, on Ay,

Ky % g(x0y) — K £x.y)| = '// Kn(r — 1,y — )(g( v) — . v)) dud

'f/Kh(x—u y—v)f(u( ))(fx(u)—%x(u))dudu

< sup [t =B @5 [ [ IRt =y = o) F vy duo
teV,(x)

< sup |fx(t>—fx<t)|6—1pff|1<h(x—u,y—v)|f<u,v)dudv.
teV,(x)

Now by using (3.1), we have:

2
/(//|Kh(x—u,y—v)|f(u,v)dudv) dy

< ||K||1///|Kh(x—u,y—v)|f2(u,v)dudvdy

<||K||1||K<2>||1//\K<‘><x—u>|f vy dudo < || flaIKI2.
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Then we deduce that

K% g —Kn* flloop <C8" sup |fx (1) — fx (1)
teVy(x)

: (8.6)

where C depends on p, || f|loc and K. Moreover we have on A,:

2
lg— f12,= / L )t (0) dy
2

< I flaod2[Fx (1) — tx ()" < C872|fx () — Tx (O],

where C depends on p and || f||so- The last line, (8.5) and (8.6) allow us to conclude.

8.1.6. Proof of Proposition 5
For any h € ‘H,,, we have

1 1 1
— < —0, — =<n.
ndh; ~ (logn)3 hy
Therefore,

1

hy

2
£ R 1 x — X; y—Y;
”fh”;%zf/(; Z}fx(xl-)| E’K(])(h—ll> K(2)< = z)') dy
i=1
11 1 Y\~
< -N kD _'K(2)<y— z)‘ d
(g ke () @

i=1
oy =Y
h

n
<ntogm [k VY [
i=1 2

<nogm) |k V|2 | k@],

2
dy

which proves the result.

8.1.7. Proof of Theorem 5
We first assume that di = d» = 1. Using conditions (BKyp), we then have:

(Kn* f)(x,y) = f(x,y)
=/fK(u,v)[f(x—uh1,y—vhz)—f(x,y)]dudv

- // K v)[f(x —uhy,y — vha) — fx.y — vha) + fx,y — vha) — f(x. )] dudv

(—uhp)loerl / glenl _ dletl
~ [ [ ko] o F O @y = wha) = (e v why) ) [ dudy

Lo ]
(—vhy)leal 7 gleal _ dleal
+ [ [ xa, v)[ Al (dyw Py 4 o) = S f y))} dudv,

where |i| < |u| and |v| < |v|. If f € Hp(e, L), this implies that

|(Kn* f)(x,y) = f(x, )| < CLL1AT + CaLah5?,
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where Cy and C, depend on o1, @y and K. We can easily generalize this result to the case dj, d» > 2 and we obtain:

d
(K% ), 3) = fx, )| <C Y Likf,

i=1

with a constant C depending on & and K. Now taking
d —a/Qa+1)
hi — L[—l/ai A;I/Cl!i7 An — (1_[ Lll/a,) (an)a/(2a+1)’

we obtain that
1

yéon 1_[?:1 hi

:An—l

and
&/(a+1)
sup ||Kp % f— flli2 < C(8n)~%/@a+D HLl/a, ’
teVy(x) i

using (H4) and where C is a positive constant that does not depend on §, n and L. By using Theorem 2, this concludes
the proof of Theorem 5.

8.2. Proofs for the projection estimator

The structure of the proof of the main theorem, namely Theorem 3, is similar to the structure of the proofs for kernel
rules. It is detailed along Section 8.2.1.

8.2.1. Proof of Theorem 3
First, let

r={¥meMy: | fu —Kn(N],, <o0m)/2}.

To prove Theorem 3, we follow the GLM, as explained in Section 2, with || - || = || - ||x.2, and the operator KC,, is the
projection on S,,. In this case, using Lemma 6,

Bim)= sup [[Kp(f) = K 0 Kn) ()], < O+ Dllfxllocd™" sup |f = Kn (D,

m'eM, teV,(x)

Moreover for all m,m’ € M, K,y o Ky = Kypam, With m Am" = (min(my, m'), min(mz, m})), and o(m Am’) <
o (m’). As already explained in Section 2, we introduce Ko ( fm/) = fm Am’ and

gmy= sup {[|(fw = K () = (K (fin) = K 0 K)(D) [, , = (m)} .

m'e
Let us fix m € M,,. We obtain inequality (2.3) in our case:
1 = Flle2 <2B0m) +20(m) + | fn = Kn(F) | o + | £ = K (D) 5 +28m).

But, on I, for all m,m’ in M,,, ||fm/ — K (Hllx2 <o(m’)/2 and ||fmAm/ — Kopm (Hlx2 <o (m’)/2, so that
&(m) =0.Then, on I,

If - f||xz<2B(m)+2o(m)+—+||f Kn(D,

<20+ Dlfxllocd™ +1) sup | f—Kn D2+ 3 2 (m). (8.7)

teVy(x)
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Now, let || - ||, be the empirical norm defined by

1 1/2
—_| = 20y,
el = (n Et (x,>)

and /,,,, be the index such that x belongs to the interval I;m1 .Forp=(1+ n)l/ 3 let

2,= {Vm,Vt € Span(gf o<y 717 = 07" /tz(u)fx(u)du}.
The heart of the proof of Theorem 3 is the following concentration result:

Proposition 6. Assume that assumptions (Hy), (Hz), (H3) and (CM) are satisfied. There exists C > 0 only depending
onn, 1,2, 1, || flleo and ||fx oo and 8 such that

P(Ir‘na,Nn$,) < Cexp{—(logn)5/4}.
Proposition 6 and the following result show that the event I" occurs with large probability.
Proposition 7. Assume that assumptions (Hz), (H3) and (CM) are satisfied. Then,
P(£25N A,) < Cexp{—(logn)**},
where C is a constant only depending on p, @1, 1, ||fx||co and 8.
Then, using Lemma 4 and Propositions 6 and 7,
P(I) <P((5'N A, N 2,)°) =B(I' N A, N 2,) +P(250 A,) +P(AS) < Ke™ 02 ) (8.8)

with K depending on n, @1, ¢2,7, || fllcc and fx. Then, the first part of Theorem 3 is proved. To deduce the second
part, we use the following proposition.

Proposition 8. For allm € M,,
If = funll2 2 <20 flloo + 201 +m*3872(r + )2 Dy Dp,.

Using assumption (CM), it implies that || f — fm ||§ ) < C~'32n4, where C3 depends on 7, r, ¢1, ¢2 and || f||co. Then,

by using (8.7) which is true on I" N A, we have

Elf = fI%, =EIf = £ ,0rna, +EIf = £ 50004,

. f Dy Dy \? =
§C4< sup ||f—lCm(f)||t2+\/” XS""O\/ ”’é ’”2) + CInMP((I' N A, N £2,)°),
1€Vn (x) ’ n

where Cy4 depends on 7, ¢1, @2, 1, |[fx|lcc and §. Using (8.8), this concludes the proof of Theorem 3.

8.2.2. Proof of Proposition 6
First, we introduce some preliminary material. For any matrix M, we denote

I Mx]| 12
1M 2 = sup C M= ()] 1M
a0 lxll T
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the operator norm and the Frobenius norm. We shall use that for any matrices M and N,
M2 < IM]lF, IMNIl2 < M2 Nl2, IMNIlF < IMI20 NIl F-

Now we fix m € M,,. Then the index [, such that x belongs to the interval 1, is fixed. For the sake of simplicity,
we denote it by /. Note that [; C V,,(x), since 27" < kn’l. We set

!
Fy) = Span(@]"y )y,
Moreover we denote
G=G6Y, Zz=2", A=AD, 0a =)y, Y =y

The elements of A are denoted (a4 k)4 k instead of (&Z’m ) i )d k- We also introduce
L)),

G = E(é) = (((Pdl P §0d2>X)05d1,d2§,

and

Z=E@Z) = ( / / WP (y) £ s y)Ex () du dy)

0<d<rkekK,,

By using Lemma 1, the coefficients (a;?fk) of I,y (f) in the basis verify the matrix equation GA = Z where the
coefficients of the matrix A are Ay = aZ’ Ak but are denoted ay  for short. We shall use the following algebra
)711 ’ ’

result. If M is a symmetric matrix,

. o u*Mu
m1n(Sp(M)) = min
u  u*u
Then
*G 2 (uw)fx (u)d
min(Sp(G)) = min —— = min Jrxwdu (8.9)
p * 2
" u-u teF,ﬁfl) ”t”z
and, in the same way,
. *G t 2
min(Sp(G)) =minu " 4 min | ”;,
W e 3
so that
on 2, min(Sp(G))=>p's. (8.10)

Now, let us begin the proof of Proposition 6. Since

r

(for = K (D) @) =Y > (Gak — ag.)9a )Y (y)

d=0keK,,
we deduce

2
| fn = KD}, = Z(Z(&d,k — a4 )9d (x)) <D0 DY Gak —aar)
d d k d

k

< @1 D, ||A — A%
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On A,, 8 > p~'5. Then, using (8.10), on £2, N A,, min(Sp(G)) > p~28 = (1 +1)~%/38, so we are in the case where
A = G~'Z. From now on, we always assume that we are on §£2, N A,. We have:

IA—Alr<|(6'-G6Yz| . + |67 Z -2,
<G =G Izl + |G ,NZ ~ ZIlp.

Since G is symmetric, || G! |l2 is equal to the spectral radius of G~!. And, using (8.10), its eigenvalues are positive,
then

|G, = (min(Sp(G))) ™" < ps~".
In the same way, using (8.9),
|G|, = (min(sp(c))) " <57,
Then,
|67 =67, =G""G - 66|, < ps 721G = Gll2 < p8 211G — Gl
Thus
1A= Alr <ps21G = GlFIZlr+ps~ 1 Z = Z| F.
Moreover, since for any function s, 3_, (s, ¢4)% < i s2(u) du, where (-, ) denotes the standard LL, dot product,

r 2
1ZIF=y 3" < / a ) f (u, Yfx (1) due, wk>

d=0kek,,

r 2
<> / ( / w(u)f(u,y)fx(u)du) dy
d=0

< ff 2 ) ) duedy < I 12 ] lloo (4A27™).
I
Finally (still on £2, N A)),
| fn =K (D)2 < C31G = Gllr + p8~' V¢ Doy 12 = ZIl .

Here C3 = ||fx [loo08 2 (r 4+ 1)/T flloo. Thus, with P,()=P(-NA,NS2,), we can write:

A o(m)
P,0 ”fm _Km(f)Hx,z = T < Pim +P2,m
with
— 7 _ o(m)
P],m —]P),O(HZ Z”F = zpza_]m)a
Py =P,(IG = Gllr = %2 (p = 1)).

[1] Study of Py m: Let v, (1) = L 3 1(X;, ¥i) —E((X;, Y;)) and

n

,
SW=F @ Huy=t.1Gc.9) =Y > baxpa(®)yu(y). bax €RY.
d=0kek,,
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Then,
2

1 .
=D eaXyi(Yy) = E(pa Xy (¥)| =112 = ZI7.
i=1

sup v =Y |m@a @ v =
d.k

resy litlla<1 dk

We are reduced to bound:

PP( sup ‘Vn(t)|z#>
resy o<1 2026 \/$1 Dy,

To deal with this term, we use Lemma 3. So, we consider .4 a dense subset of {r € S,,(?, llt]l2 < 1} and we compute
M, H and v.
o First, if r = Zd,k bakpa @ Yy then

2
|, )| =

<3633 lea@) v < 111361 D, 2Dy

d.k d.k

> barga ()Y (v)
d.k

Thus sup;c 4 Itlloo < +/®1¢2Dm; Din, and we can take M = \/@1¢2 Dy Dy, .
e Secondly, we recall

sup ) =Y

€Sy il <1 d.k

2

l n
=D ea(Xy(YD) = B(ga(X)yn(Y))

i=1

Since the data are independent,

l & 1
Vaf(; Z(ﬂd(Xi)lﬂk(Yi)) = Var(pq (X )y (Y1)).

i=1

We deduce:

Y E

2
= %//‘pﬁ(”);ﬁ(v)fx(u)f(u,v)dudu

< 92Dm / wﬁ(u)fx(u)< / f(u,v)dv) du
n

< ¢2Dm2

1 n
=D 9a(Xyi(Yy) = E(pa (X))

i=1

Ifx lloo-

Hence,

¢2Dm2

Esup vy (1) < (r + Dlifx o
teA

so that we can take H? = (r + DIfx lloc®2 D, /7.
e Thirdly

Var(1 (X1, Y1) < E|r(Xy, )|
S//tz(u,v)fx(u)f(u,v)dudv

2
= Nel0 flloollfx lloo

and then we can take v = || f || oo Ifx || 00-
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Finally
t*nH* 2+ Dy
6v  6lflle
min(¢, DenH  min(g, D¢/ + Dlfxlloe [ 7
21M - 211 Dy,

According to condition (CM), on A, since § <1, Dy, < pn/(log n)? and Dy, > (log n)2. Thus Talagrand’s Inequal-
ity gives

Pp[sup|vn(t)| >+ 2§)H] < 2exp(—Clog3/2(n))
teA

with C only depending on 7, ¢, r, ¢1, @2, || f oo, lIfx ||co- Moreover,

Dy,
(A+20H =1 +20)v( + Dlifxlloop2y/ — 2

and, since § > p~'8 and [fx [loo > p~2lIfx lloo ON Ay,

T 1 G Dl egay
2025~ \/$1 Dy e

Then, since p> = 1 4 1, choosing ¢ such that 1 + 2¢ = p gives

o (m)
2:028_1\/ ¢1 Dml

and then

>(1+20)H

Py < 2exp(—Clog3/2(n)).

[2] Study of Pa,»: We now have to bound (with large probability) the term

IG-GlE=)

d,d

2

1 n
p Z vapa (Xi) — E[paga (X)]]| -
i=1

We use Bernstein’s Inequality (Lemma 2): Since sup,, < |¢q (u)@q (1) |oo < ¢1 Dy, and

2
Elpapa (X1)|” < f f @202, (u)fx ) du < ¢1)Ifx lloo D, »

the assumptions of Lemma 2 are satisfied with ¢ = ¢1D,,; and v = ¢1||fx ||oo D, . If we set &€ = Cy/ M, with
Cy=(p — D1+ nVP12lTx oo/ (0> C38+/r + 1) then, on A,

(p — Do (m)
< — -,
T 20C3(r+1)

Moreover on A, since § < 1,

ne  Cj b = c3 logn)’
—= my Z ogn)”,
v drllfxllee P1lifxlloo

Ezﬂ ”sz Ca (logn)s/zzi(logn)s/z.
¢ o1\ Dmy — ¢14/p8 d1/p
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Then, using Lemma 2,

Pu[IG =Gl = (- D < ZP<
d,d

< 2(r + 1)* exp(—Cs log*(n)).

—1
(X)) — Egaga (X; )]‘ M)

= 2pC3(r + 1)

i=1

with Cs only depending on 1, r, ¢1, $2, || fllco, Ifx |lcc and §. Finally, we denote
M, = {(m1,m2),2™ < pén, Dy, <n}

which verifies M,, € M,, on A o~ Gathering all the terms together, we obtain

]P)p(zlm Ean fm _’Cm(f)”xZ = @) S]P)p<3m EM, i fm _’Cm(f)”x,Z = @)
=< Z Pl,m+P2,m
meM,
< ) 40+ 17 exp(—Cslog*?(m))
meM,

<4(r + 1)2,08112 exp(—C6 10g3/2(n)),
with C¢ depending on n, 7, ¢1, ¢2, || f oo, lIfx|lco @and 8§, which yields Proposition 6.

8.2.3. Proof of Proposition 7
In this section, we denote

1% ::/tz(u)fx(u)du.
We recall that [, is the index such that x belongs to the interval /;, and as in Section 8.2.2, we set:

(m )
F : _Span( m d)0<d<r

We want to bound
P(2°NAy) =P(3my,3t e Span((pl’:’nl @)o<d=r 212 < p~Iel% and Ap).

Under (CM), we have: k,(r + 1) < D,,, < Sn/(logn)3, and on A,, we have: 2™ < pdn. Let u, be the empirical
process defined by

1 n
pn(t) = — 3 1(Xi) —E(1(X).
i=1
Then, w,(t2) = ||t|2 — [|]|%, which implies that

IP’(SZC N Ap) < Z IP’( sup |,un(tz)| >1-— p_]).

¢
my,2" <pén zeFm’l’” Aellx=1

But, forall ¢ € F('"‘)

()P =872 2 (ol et o).
d,d

such that ||¢]|lx =1
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Using Lemma 2, we easily prove as in Section 8.2.2 that Vimm € M,
P(|wnleiy, aiy, )| > (1=p7"1)8/(r + 1)) = 2exp(=K (logn)?)

with K depending on p, ¢1, 1, ||[fx |0, 6. Then

P(2°NA)) < Y P(Z @l avl ) > (8(1 = P_l))2>

m1,2™1 <pén d,d

= Z ZP(}“H(‘/’;ZMJ(P;ZPC,/)‘>8(]—p*1)/(r+1))

m1,2™" <pénd,d

<2(r+1)? Z exp(—K (logn)*) <2(r + 1)*psnexp(—K log*(n)),

m1,2M1 <pén
which yields the result.
8.2.4. Proof of Proposition 8

First, as already noticed, || f ||)2C 5 < I flloo- Now let m be a fixed element of M,,. Then we denote / = [, the index
such that x belongs to the interval /; and moreover we denote

G=GP, z=z0, A=AD,  gi=9¢"y Y=

The elements of A are denoted (a4 x)a k instead of (&6’ 9 Wd.k-
7711 ’ i

If Sp(G) > (1 + n)~2/3§ (otherwise A = 0),
167", =p(G7") = (min(Sp(6))) " < (1 +m?35".

Therefore, we have:

2

1AIE < 167 31215 < (a1 +m*3872 Y
d.k

< (1 +n)*872) " ¢1¢2 D, D,
d.k

< (L+*°872(r + Dp1¢2Dm, D

1 n
= ga(X)yr(¥)
n

i=1

Finally

2
.
Ifnlio=>" (Zadkwdm) < | All7¢1 D,

keKy, \d=0

< (L+*3572(r + 1)¢}¢a D2 D, .

8.2.5. Proof of Theorem 6

We first assume that di = d> = 1. We denote IC,]n the projection on F,,, endowed with the scalar product (g, h)x =
[ g(2)h(z)fx(z)dz, and IC,Zn the projection on H,,, endowed with the usual scalar product (g, h),s = [ g(z)h(z) dz.
The projection /Cp, (f) can be written for any u and any y,

K (1)) =D (F @), ) W 0) = Ko (1, ) 0,

kekK,,
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where f1(-,y) =K} (f(-, ¥)). Thus we have the factorization

(K (f) = f)u, ) =12 (F ) — fu, ) + K2 (F @, ) — fu,-)

and applying Pythagora’s theorem
1K () = £lsn = 1K (F oy = £ [ + K5 (£ (x) = 0]
<[ '@ = Feo+ I (FG ) = Fa

Now, we shall use the following result. Let T be a univariate function belonging to the Holder space Hi(«, L) on a
interval with length b. If S is the space of piecewise polynomials of degree bounded by » > o — 1 based on the regular
partition with 27 pieces, then there exists a constant C (e, b) only depending on « and b such that

deo(z, S) := in§||t — Tlloo < Cla, b)L277¢
te

(see for example Lemma 12 in Barron et al. [2]). Let /C the orthogonal projection on S endowed with some scalar
product. We denote

1K oo

I =
reLoo\[0} 1 lloo

Then, for all ¢ € S, since K(t) =1,
|« —/C(T)HOO =|r—t+K@- f)||oo < (LMK = Tlloo-
‘We obtain:

It =K@ | < 1+ Kl Inf|f — 7floo < (1+ 1K) C (@, yL277e.

It remains to bound ||| C||| in the following cases.
e Case 1: S is the space of piecewise polynomials of degree bounded by r|, endowed with (-, )x (S = Fy,,

K= IC,ln). It is sufficient to apply Lemma 6 to the function 7 (u, y) =t (u) ;" () to obtain [| K| < (r; + Dllfxllocd™".
e Case 2: S is the space of piecewise polynomials of degree bounded by r;, endowed with the usual dot product
(S=Hp,, K= IC%). Then it is sufficient to apply the previous case with fx identically equal to 1, to obtain ||K]|| <
(r2+1).
Finally, we have obtained the following result: if T is a univariate function belonging to the Holder space H (o, L)
then

It =K (0 <Cle A, ri, [Ifxlloo/8) LDy,
|t = K5 (0| <Cle |Bl.r2)LD,c.

Now f(x, -) belongs to the Holder space Hi(cez, L2) then
K2 (f(x.0) = fx, )|, < C2LaDy2

with C, depending on as, | B| and r». Moreover, for all y € B, f(-, y) belongs to the Holder space 7 (a1, L1) then
|1y = fa | < KL (£ ) = FE | o < Ci(ens A r lifxlloo/8) L1 Dy

with C not depending on y. Finally, since the support of f(x,-), f(x,-), lC,zn (f(x,-)) is compact, we obtain

|1Kn (f) = f 2 < Co(L1 Dy + LoD, 22)

1



Adaptive pointwise estimation of conditional density function 975

with Cp depending on A, |B|,r, o1, oy and |[fx||c and §. We can easily generalize this result to the case dj, d > 2
and we obtain:

d
HICm(f) - f“x’2 < CZLizfa,-m,-
i=1

for C a constant. To conclude, by using Theorem 3, it remains to find (m1, ..., my) that minimizes

d d .

—a;m; [1izi 2™
— L;2~dimi ==

(my mq) ; i + 5

Solving this minimization problem shows that 2% has to be equal to Ll/ o Al/ %

d —a/Qa+1)
A, = (l—[ Ll_l/af) (5n)&/(2a+1).
i=1

It gives the result.

up to a constant and

Appendix A: Proofs of technical results
A.1. Proof of Lemma 3

We apply the Talagrand concentration inequality given in Klein and Rio [31] to the functions s'(x) = 7,(x) —
E(z,(U;)) and we obtain

IP’(s | ()|>H+x)<2e ni?
up|v,a X — .
Sup[vnia@)} = =P\ T2 1 4HM) + 6MA

Then we modify this inequality following Birgé and Massart [7], Corollary 2, p. 354. It gives

n A2 min(Z, DA
(sup\vn(a)| >1+0H +A> < 2exp(—§ mln(zv, 7—M>> (A1)
To conclude, we set A = ¢ H.
A.2. Proof of Lemma 4
The lemma is a consequence of (3.3) used with A =p — 1, A =1— oL, a=p2—1orr=1-p2. Indeed, under

(3.3), with probability 1 — «x exp(—(logn)3/?), for all € V,,(x), |fx (t) - fX ()| < Alfx (1), which 1mphes
(1= n[ix®)| < |tx®] < A+ 1[ix )]

and then
A+07 @] < |fx 0] = A =07 ix@)].

Thus, with probability 1 — x exp(—(logn)3/2), (1 +A)"18 <8 < (1 —2)~'s and (1 + 1) fxlloe < Ifxlloc <
(1= fx oo
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A.3. Proof of Lemma 5

‘We have:

2
L% fall3 5 =/(f1 *f2>2<x,y)dy=/(// filx —u,y—wfz(u,v)dudv) dy

5/(//ff(x—u,y—u)|f2(u,v)\dudux/f|f2(u,v);dudv)dy

—Ifall //Hfl(x )] 2, v)] dudv < sup VAR A1

teVy(x

A.4. Proof of Lemma 6

Let [ the index such that x belongs to the interval /;. We denote
pa=dly Y=yl 1= (/f 00 GOk ()Tt )P () du dy)
0<d<rkekK,,

and

Kn (@06, ) =YD bakpa ()i (y).

k d

Lemma 1 shows that the matrix of coefficients B = (b4 k)o<d<r kek,, verifies the equation GB = I(t), with
G = E(é) = (<§0d1 s (pd2>x)0§d],d2§r'
Now, using (8.9),
2
w2, = Z(Z bd,m(x)) <D ei@) YD b
k Nd d k d
< 91D, IBII3 < 61D, |G 1| < 1D 8721 [

Now we denote Proj Hin,y the usual IL; orthogonal projection on H,,, and (-, -),s the standard I, dot product. Notice
that for any function s € Lo(R), Yk (5. ¥)3, = [ | Proj i, )?(y)dy < [s%(y)dy. Then

o= (/ a ()T (u, )fx () du, w)

d=0keK, us

. 2
=Y [([ewrwntswan) o= [( [ Fungoa)a
d=0 I

using that for any function s, >, (/[ 59q)? < fl/ s2. Next, using that J; is an interval with length 4A(r + 1) D!

mi>

2

2 _
11| < sup ||r||%,2/ 5 ) du <4A@ + 1D, Ifx |13, sup [IT]17 5.
tel) I

tel]

Finally

2 _ _ _
1Km (@)} 5 < ¢1Dm 8 24A@ + DD, ifx 2 supllTl7, < ¢ + D[Ifx 15,872 sup Izl
’ tel; teVy(x)

and the lemma is proved.
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Appendix B: Tables for simulation results
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In this appendix, for each example and each procedure, we give the approximated mean squared error based on
N = 100 samples for different values of n, different values of the parameter n and different values of x. We give in
bold the minimal value of the approximated mean squared error. For the kernel estimator and Examples 1 and 2, we
distinguish the case where fy is known or not.

Table B.1

Mean squared error for the kernel estimator at x = 0.5 for Example 1

Example 1 fxy known fx unknown
n= —-0.2 0.5 1 2 3 —0.2 0.5 1 2 3
n =250 1.285 0.061 0.017 0.020 0.029 1.368 0.033 0.028 0.042 0.062
n =500 0.673 0.019 0.009 0.010 0.018 0.685 0.016 0.009 0.011 0.018
n =1000 0.336 0.013 0.006 0.006 0.009 0.329 0.013 0.006 0.007 0.010
Table B.2
Mean squared error for the projection estimator at x = 0.5 for Example 1
Example 1 fx unknown
n= —0.2 0.5 1 2 3
n =250 0.492 0.192 0.222 0.232 0.231
n =500 0.087 0.076 0.119 0.211 0.229
n =1000 0.051 0.047 0.055 0.070 0.138
Table B.3
Mean squared error for the kernel estimator at x = 0.5 for Example 2
Example 2 fx known fx unknown
n= —0.2 0.5 1 2 3 —0.2 0.5 1 2 3
n =250 0.038 0.008 0.006 0.007 0.009 0.042 0.008 0.006 0.008 0.009
n =500 0.021 0.006 0.004 0.005 0.006 0.025 0.006 0.004 0.005 0.007
n = 1000 0.01 0.004 0.003 0.004 0.005 0.012 0.004 0.003 0.004 0.005
Table B.4
Mean squared error for the projection estimator at x = 0.5 for Example 2
Example 2 fx unknown
n= —0.2 0.5 1 2 3
n =250 0.154 0.104 0.128 0.152 0.158
n =500 0.064 0.070 0.090 0.103 0.123
n = 1000 0.047 0.060 0.063 0.074 0.088
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Table B.5
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Mean squared error for the kernel estimator at x =0, x = 0.36 and x = 1 for Example 3

Example 3 fx unknown
X n= —0.2 0.5 1 2 3
n =250 0 0.514 0.016 0.013 0.012 0.019
0.36 0.092 0.062 0.080 0.112 0.134
1.709 0.015 0.009 0.009 0.016
n =500 0 0.269 0.013 0.013 0.009 0.010
0.36 0.109 0.040 0.039 0.063 0.094
1 0.601 0.010 0.009 0.006 0.008
n = 1000 0 0.126 0.011 0.011 0.008 0.006
0.36 0.104 0.029 0.024 0.037 0.056
1 0.265 0.006 0.007 0.004 0.004
Table B.6

Mean squared error for the projection

estimator at x =0, x =0.36 and x = 1 for Example 3

Example 3 fx unknown
X n= —0.2 0.5 1 2 3
n =250 0 0.029 0.035 0.041 0.051 0.060
0.36 0.186 0.188 0.183 0.172 0.170
1 0.033 0.038 0.044 0.064 0.099
n =500 0 0.020 0.028 0.033 0.036 0.038
0.36 0.169 0.184 0.177 0.172 0.170
1 0.027 0.029 0.030 0.032 0.035
n =1000 0 0.012 0.018 0.023 0.031 0.034
0.36 0.160 0.161 0.166 0.170 0.169
1 0.023 0.025 0.028 0.029 0.028
Table B.7
Mean squared error for the kernel estimator at x =0, x = 0.36 and x = 1 for Example 4
Example 4 fx unknown
x n= —0.2 0.5 1 2 3
n =250 0 0.016 0.007 0.007 0.009 0.013
0.36 0.082 0.03 0.037 0.048 0.055
1 0.026 0.006 0.006 0.009 0.0119
n =500 0 0.009 0.004 0.004 0.006 0.009
0.36 0.057 0.019 0.023 0.034 0.043
1 0.016 0.005 0.005 0.006 0.008
n =1000 0 0.004 0.003 0.003 0.004 0.005
0.36 0.037 0.013 0.014 0.021 0.03
1 0.008 0.003 0.003 0.004 0.005
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Table B.8
Mean squared error for the projection estimation in x =0, x = 0.36, x = 1 for Example 4

Example 4 fx unknown
X n= -0.2 0.5 1 2 3
n =250 0 0.028 0.030 0.032 0.036 0.040
0.36 0.103 0.102 0.099 0.096 0.095
1 0.030 0.036 0.038 0.049 0.066
n =500 0 0.022 0.024 0.024 0.029 0.032
0.36 0.098 0.099 0.097 0.094 0.094
0.026 0.027 0.028 0.033 0.036
n = 1000 0 0.020 0.020 0.021 0.021 0.023
0.36 0.082 0.083 0.093 0.095 0.094
1 0.023 0.023 0.022 0.026 0.028
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