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Abstract. We analyze the optimal transport problem between two equivariant random measures and derive sufficient conditions
for the existence of a unique Monge solution. Moreover, we show that equivariance naturally appears in this context by proving
that classical optimal couplings on bounded sets converge to the optimal coupling on the whole space. Finally, we derive sufficient
conditions for the Lp cost to be finite by introducing a suitable metric.

Résumé. Nous analysons le problème du transport optimal entre deux mesures aléatoires et équivariantes et démontrons des
conditions qui garantissent l’existence d’une solution de type Monge. En outre, nous démontrons que l’équivariance apparaît
naturellement dans ce contexte en prouvant que les couplages optimaux classiques dans des ensembles bornés convergent vers le
couplage optimal dans tout l’espace. Finalement nous démontrons des conditions suffisantes pour que le coût au sens Lp soit fini
en introduisant une métrique appropriée.
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1. Introduction and statement of main results

In this article, we investigate the optimal transportation problem between two equivariant random measures λ• and μ•
(the • is to remind us on the randomness of the two measures). In particular, we are interested in conditions ensuring
the existence of a (unique) Monge solution, i.e. a map T :Ω ×M → M such that the optimal coupling is concentrated
on the graph of T . It turns out that we can derive similar existence and uniqueness results as in the classical theory.

More than two hundred years ago, Monge [41] posed his famous transportation problem: Given two probability
measures λ and μ on some Polish metric measure space (M,d,m) and a cost function c :M × M →R consider

min
T :T∗λ=μ

∫
c
(
x,T (x)

)
λ(dx), (1.1)

where T∗λ denotes the push forward of the measure λ under the map T . This problem is very hard to solve. For
example it is not clear in general if the set over which is minimized is nonempty. One hundred fifty years later
Kantorovich [29] proposed a relaxation of this problem. He considered

min
q∈Π(λ,μ)

∫
c(x, y)q(dx,dy), (1.2)

where Π(λ,μ) denotes the set of all couplings between λ and μ. The set Π(λ,μ) is always nonempty and compact.
If the cost function c is lower semicontinuous this directly yields the existence of minimizers (see Section 4 in [51]).
In general these two minimization problems lead to different solutions. It is a question of ongoing research to find
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sufficient conditions for the two minimization problems to coincide (e.g. see [8,11,20,21,40]). The first satisfactory
result was achieved by Brenier and Rachev and Rüschendorf [10,46]. It was this discovery together with the seminal
Ph.D. thesis of McCann [39] which prompted the fascinating development the optimal transport theory has undergone
in the last twenty years with applications ranging from mathematical physics and PDEs to geometry and economics,
e.g. [45,50,51] and references therein.

So far optimal transport problems have mainly been studied between finite measures. In [26], Sturm and the author,
are the first who analyze an optimal transportation problem between two infinite measures, the Lebesgue measure and
an equivariant simple point process. In this article we obtain sufficient conditions for the existence of a Monge solution
for the optimal transport problem between two random measures. Furthermore, we show that the optimal coupling is
the limit of classical optimal couplings on bounded sets. Let us start by describing our results in more detail.

Let (M,d,m) be a geodesic Polish metric measure space. We assume that there is a (countable, discrete) group
G of isometries of M acting properly discontinuously, cocompactly and freely on M (see Definition 3.1) leaving the
measure m invariant. A random measure λ• on M is a measure valued random variable modeled on some probability

space (Ω,A,P). It is called invariant if λ•(B)
d= λ•(gB) for any g ∈ G and Borel set B ⊂ M . It turns out that for the

sequel a more subtle concept is required. We assume that the probability space admits a measurable flow θ = (θg)g∈G

which we interpret as the action of G on the support of a realization λω. A random measure λ• is called equivariant if

λθgω(g·) = λω(·) for all ω ∈ Ω,g ∈ G.

We will assume that P is stationary, that is P is invariant under the flow θ . In particular, this implies that equivari-
ant random measures are invariant. All random measures will be defined on the same probability space (see also
Section 3.3).

Take two equivariant random measures λ• and μ• of equal intensity, i.e. E[λ•(B0)] = E[μ•(B0)] for a fundamental
region B0 (cf. Definitions 3.11 and 3.2), and a cost function c. We are interested in couplings q• of λ• and μ•, i.e.
measure valued random variables ω �→ qω such that for any ω ∈ Ω the measure qω on M × M is a coupling of λω

and μω. Due to the almost sure infinite mass of λω and μω the usual notion of optimality, being a minimizer of the
total transport cost (1.2), is not meaningful. However, the cost per volume is a reasonable quantity to consider. Hence,
we look for minimizers of the mean transportation cost

C
(
q•) := sup

B∈Adm(M)

1

m(B)
E

[∫
M×B

c(x, y)q•(dx,dy)

]
, (1.3)

where Adm(M) is the set of all bounded Borel sets that can be written as the finite union of “G-translates” of fun-
damental regions (see Section 3.7). For example for M = Rd,G = Zd acting by translation, a typical set would be a
finite union of unit cubes (see also Section 1.1). We always consider cost functions of the form c(x, y) = ϑ(d(x, y))

for some continuous strictly increasing function ϑ : R+ → R+ with ϑ(0) = 0 and limr→∞ ϑ(r) = ∞ (see also Re-
mark 3.12). As we are interested in Monge solutions and the restriction of optimal couplings q• to bounded sets
should be optimal in the classical sense, we additionally assume that the classical Monge problem (1.1) between two
compactly supported probability measures λ and μ with λ � m has a unique solution.

The supremum in (1.3) is a supremum over big sets (see Lemma 3.13). Hence, the existence of one minimizer
of (1.3) implies the existence of many minimizers due to the normalizing factor 1/m(B). Therefore, opposed to the
classical setting, we require the minimizer to have an additional property, namely equivariance. Thus, a coupling q• of
λ• and μ• is called optimal if it is equivariant and minimizes the mean transportation cost (1.3) among all equivariant
couplings. The set of all equivariant couplings between λ• and μ• will be denoted by Πe(λ

•,μ•). Last and Thorisson
resp. Last derive in [34] resp. [32] necessary and sufficient conditions for Πe(λ

•,μ•) to be nonempty for M being an
Abelian resp. locally compact second countable group. We will show that there always is at least one optimal coupling
as soon as the optimal/minimal mean transportation cost is finite, i.e. we show the existence of a Kantorovich solution.
In many cases this solution happens to be a Monge solution:

Theorem 1.1. Let (λ•,μ•) be two equivariant random measures of unit intensity on M . Let the cost function be given
by c(x, y) = ϑ(d(x, y)) for some strictly increasing continuous function ϑ with limr→∞ ϑ(r) = ∞ such that the
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classical Monge problem (1.1) between two probability measures ν0 � m and ν1 has a unique solution. If the optimal
mean transportation cost is finite

ce,∞ = inf
q•∈Πe(λ•,μ•)

C
(
q•) < ∞

and if λω is absolutely continuous to m for almost all ω, then there is a unique optimal coupling q• between λ• and μ•.
It can be represented as qω = (id, T ω)∗λω for some measurable map T ω : supp(λω) → supp(μω), measurably only
dependent on the σ -algebra generated by (λ•,μ•).

At first sight the requirement that the optimal coupling needs to be equivariant might look unsatisfactory. However,
this condition naturally appears. As mentioned above, any coupling q• which claims to be optimal should have the
property that 1A×Bq• is optimal between its marginals in the classical sense for any two bounded Borel sets A and B .
Reversing this argument one should expect that the optimal coupling q•, if it is unique, can be obtained as the limit
of classical optimal couplings between λ• and μ• restricted to bounded sets. This is indeed the case. In particular,
the limit will be equivariant. However, to be able to prove this, we need to additionally assume that the group G is
amenable (see Definition 3.5).

The assumptions on the group action imply that G is finitely generated. Let (Fr)r∈N be an exhausting Følner
sequence (see Proposition 3.6) of G. Let B0 be a fundamental region (see Definition 3.2) and Br = FrB0. Let QBr

be the unique optimal semicoupling between λ• and 1Br μ
•, that is the unique optimal coupling between ρ · λ• and

1Br μ
• for some optimal choice of density ρ (see also Sections 3.2 and 3.4). Put

Q̃r
g := 1

|Fr |
∑

h∈gF−1
r

QhBr . (1.4)

Theorem 1.2. Let (λ•,μ•) be two equivariant random measures on M , such that the optimal mean transportation
cost is finite, ce,∞ < ∞. Assume, that G is amenable and λω is absolutely continuous to m for almost all ω. Then, for
every g ∈ G

Q̃r
g → Q∞ vaguely

in M(M × M × Ω), where Q∞ denotes the unique optimal coupling.

For the proof of this theorem the assumption of absolute continuity is only needed to ensure uniqueness of QgBr

and Q∞. If we do not have absolute continuity but uniqueness of QgBr and Q∞ the same theorem with the same
proof holds.

In the case of absolute continuity we can even say a bit more and get rid of the symmetrization procedure in (1.4).
By Theorem 1.1 the unique optimal coupling Q∞ is given by a Monge solution, that is

Q∞ = (id, T )∗λ•.

Moreover, the optimal semicoupling QgBr will be shown to be given by (see Theorem 4.7)

QgBr = (id, Tg,r )∗
(
ρg,rλ

•),
for some measurable map Tg,r and some density ρg,r . Then, we have

Theorem 1.3. For every g ∈ G

Tg,r → T locally in λ• ⊗ P measure.

Analogous results will be obtained in the more general case of optimal semicouplings between λ• and μ• where
λ• has intensity one and μ• has intensity β ∈ (0,∞) (see Theorem 5.9, Theorem 6.3, Proposition 6.7 and Section 7).
In the case β ≤ 1, λ• is allowed to not transport all of its mass. There will be some areas from which nothing is
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transported and the μ• mass can choose its favorite λ• mass. In the case β ≥ 1 the situation is the opposite. There is
too much μ• mass. Hence, λ• can choose its favorite μ• mass and some part of the μ• mass will not be satisfied, that
is they will not get enough or even any of the λ• mass.

The necessity of the amenability assumption in the last two theorems is closely related to the question whether

ce,∞ = c∞ := inf
q•∈Π(λ•,μ•)

C
(
q•),

where Π(λ•,μ•) denotes the set of all (semi)couplings between λ• and μ•. In the case that G is amenable this is true
(see Corollary 6.5). For the nonamenable case we do not know the answer. In particular, if c∞ < ce,∞ there will be no
approximation results in the spirit of Theorems 1.2 and 1.3 due to Lemma 3.13.

A very important condition in all the results is the finiteness of the minimal mean transportation cost ce,∞. In gen-
eral, this is very difficult to check but in the case of the cost functions c(x, y) = d(x, y)p we can derive a sufficient
condition. We write the optimal mean transportation cost between λ• and μ• as Wp

p(λ•,μ•), i.e.

W
p
p

(
λ•,μ•) = inf

q•∈Πe(λ•,μ•)
C
(
q•).

Denote the set of all equivariant random measures μ• on M with unit intensity s.t. Wp(m,μ•) < ∞ by Pp . Then
Wp defines a metric on Pp which implies the vague convergence of the Campbell measures (see Propositions 8.1
and 8.3). In particular, if λ•,μ• ∈ Pp they have finite Wp distance. Sturm and the author derive in [26] a rather
general technique giving sufficient conditions for a random measure η• to lie in Pp . As a byproduct of these results
we can show stability of optimal couplings under vague convergence of the Campbell measures of their marginals
(see Proposition 8.5).

1.1. Examples

To illustrate the abstract concepts and theorems we give some examples. We start with examples of spaces satisfying
our assumptions.

(i) M = Rd with group action translation by Zd , the Euclidean distance | · | and a Zd -invariant Borel measure m.
A fundamental region is the unit cube [0,1)d . If ϑ is strictly convex and C2 and m does not charge sets of
dimension less or equal to d − 1, then there is always a unique Monge solution (see Example 10.35 in [51]). In
particular this is the case, if m is the Lebesgue measure, but also other choices are possible. Zd is amenable so
that all the results are applicable.

(ii) Hyperbolic space, e.g. M = H2 the two dimensional hyperbolic space with a Fuchsian group G acting cocom-
pactly and freely, the hyperbolic distance d and a G invariant Borel measure, e.g. the volume measure (other
constructions are possible, see Remark 3.4). A fundamental region is a suitable subset of a hyperbolic polygon
(see [30]). If ϑ is strictly convex, there is a unique Monge solution (see Theorem 10.28 [51]). Note that G is
not amenable. In particular, this means that only Theorem 1.1 and Proposition 3.18 apply, the existence and
uniqueness of the Monge solutions. It is not clear whether Theorems 1.2 and 1.3 hold.

(iii) Heisenberg groups, e.g. M = H 3(R) the three dimensional Heisenberg group with Carnot–Caratheodory met-
ric d and Lebesgue measure m and G the standard lattice acting on H 3(R). A fundamental region is [0,1)3

(see [17]). For the existence of Monge solutions it is again sufficient to require ϑ to be a strictly convex function
(see [11]). As for Rd all our results apply.

Our results open the door for the construction of optimal couplings between various random measures. Let us
mention a few to fix ideas some of which have been studied in the literature (see next section).

(i) Allocations to a point process: λ• being the volume measure on Euclidean or hyperbolic space and μ• a point
process, e.g. the Poisson point process or the zeros of the Gaussian entire function. This is probably the most
studied example in the literature.

(ii) Power diagrams in particular Laguerre tessellations (see [35]): These are generalizations of Voronoi tessellations
which naturally appear in this setting, see Sections 5.1 and 7. However, with the tools developed in this article
we cannot only prescribe the volume of the different cells we can also allow a nonhomogeneous background
by considering couplings between a random λ• and a point process with respect to the cost functions d(x, y)p .
Especially concerning applications as modeling cellular structures this might be interesting.
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(iii) Couplings of a diffuse random measure not charging sets of dimension ≤ d − 1 with another random measure.
A special case of this problem are couplings of mixtures of local times of one dimensional Brownian motion
(see [33]).

Finally, there is at least one other class of very natural candidates from which one could expect the existence
of Monge solutions but where our results do not apply: optimal couplings between two independent simple point
processes. An infinite dimensional variant of Birkhoff’s Theorem together with the existence of Kantorovich solutions
(see Proposition 3.18) yield the existence of at least one Monge solution. However, even in the case of two independent
Poisson processes we do not know if there is a unique optimal (Monge) coupling. Note that in the case of two
independent Poisson processes on Rd the semicouplings on bounded sets, QBr , are unique. In particular, along the
lines of the proof of Theorem 1.2 we get convergence along a subsequence to an optimizer.

Question 1.4. Suppose we are given two independent Poisson point processes on Rd such that the optimal mean
transportation cost is finite. Is the optimal coupling unique?

1.2. Connection with the literature

Couplings between random measures which can be interpreted as transportation problems between random measures
have been considered by several authors. In [34] and [32] Last and Thorisson resp. Last analyze equivariant transports
between random measures in a rather general setting. They establish deep connections to Palm theory and mass
stationarity. In the recent article [33], Last, Mörters and Thorisson construct an equivariant transport between two
diffuse random measures to build an unbiased shift of Brownian motion. They also derive some moment estimates on
the typical transport distance.

Monge couplings between the Lebesgue measure and a point process appear in the context of fair allocations which
also have a connection to Palm theory, see [25]. They have been investigated and constructed e.g. in [12,22,25,38,42]
and references therein.

Matchings of two independent Poisson processes, which correspond to Monge solutions, have been intensely ex-
plored in [23,24]. There are still a couple of challenging open questions. Solving the conjecture on optimal couplings
between two Poisson processes might help solve some of them.

Tessellations and power diagrams have been studied e.g. in [3,35] and references therein.
To our knowledge, [26] is so far the only article analyzing couplings of two random measures with the additional

constraint of optimality. [26] investigates the particular situation of semicouplings between the Lebesgue measure
and an equivariant simple point process. Even though that setup is very special some of the ideas (the use of local
optimality in the uniqueness proof and the insight to use a symmetrization to prove Theorem 1.2) can be used in this
article as well. However, due to the different focus and more complicated structure they have to be combined with
new techniques.

1.3. Outline

In the next section we give a sketch of the main ideas used to prove the different results. In Section 3 we introduce the
setting and objects we work with. Moreover, we show that there always exists a Kantorovich solution to the optimal
transport problem. In Section 4 we examine the problem of optimal semicouplings on bounded sets which is necessary
to understand before we proceed to the unbounded case. In Section 5 we prove Theorem 1.1 the uniqueness of Monge
solutions. Theorem 1.2 and Theorem 1.3 are proved in Section 6. In particular we will see how equivariance naturally
appears in the case that G is amenable. In all these sections we always assume that the second marginal has intensity
β ≤ 1. In Section 7 we treat the case of intensity β ≥ 1. In Section 8 we show that Wp defines a metric on Pp implying
sufficient conditions for two random measures to have finite Wp transport distance.

2. Sketch of main proofs

2.1. Theorem 1.1

We take the standard approach in optimal transport, namely we show that every optimizer is concentrated on the graph
of a function. As the set of all optimizers is convex this implies uniqueness. To this end, we consider the restrictions
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of optimizers to bounded sets. By equivariance, we can deduce that this restriction has to be the optimal coupling
between its marginals which are finite measures. Then, classical optimal transport implies the existence of a transport
map proving the theorem.

2.2. Theorems 1.2 and 1.3

The main problem to overcome is to control in the limit the contribution to the cost of the transport into a fixed set A.
Due to the potentially huge normalizing factor in (1.3) it might happen that without noticing a relevant change of
transport cost the mass transported into A escapes to infinity in the limit.

The key idea to solve this problem is to consider different approximating sequences at the same time and take a
suitable convex combination, cf. (1.4). The big advantage of this approach is that the convex combination symmetrizes
the problem so that the transport cost of these semicouplings can be uniformly bounded by c∞. Doing the same for
two or more disjoint sets (giB0)

n
i=1 we need to take care that the mass transported into these sets does also come from

disjoint sets, i.e. if we sum up the different semicouplings, in the limit, we still want to end up with a semicoupling of
λ• and μ•. This is exactly what amenability is doing for us.

Having proved Theorem 1.2 and knowing that the limit is unique by Theorem 1.3 we can deduce that each of the
sequences of semicouplings used in the symmetrization (1.4) already has to converge to the optimal coupling. Finally,
as all these couplings are concentrated on the graph of a function we can infer Theorem 1.3.

3. Set-up

In this section we will explain the general set-up, some basic concepts and derive the first result, the existence of
Kantorovich solutions.

3.1. The setting

(M,d,m) denotes a geodesic Polish metric measure space (i.e. (M,d) is a complete, separable metric space with
Radon measure m), with geodesic metric d and Borel measure m. The Borel sets on M will be denoted by B(M).
Given a map S and a measure ρ we denote the push forward of ρ under S by S∗ρ, i.e. S∗ρ(A) = ρ(S−1(A)) for any
Borel set A. Given any product X = ∏n

i=1 Xi of measurable spaces, the projection onto the ith space will be denoted
by πi . Given a set A ⊂ M its complement will be denoted by �A and the indicator function of A by 1A.

We will assume that there is a group G of isometries acting on M under which the measure m is invariant. For a
set A ⊂ M we write τgA := gA = {ga: a ∈ A}. For a point x ∈ M its orbit under the group action of G is defined as
Gx = {gx: g ∈ G}. Its stabilizer is defined as Gx = {g ∈ G: gx = x} the elements of G that fix x.

Definition 3.1 (Group action). Let G act on M . We say that the action is

• properly discontinuous if for any x ∈ M and any compact K ⊂ M , gx ∈ K for only finitely many g ∈ G,
• cocompact if M/G is compact in the quotient topology,
• free if gx = x for one x ∈ M implies g = id, that is the stabilizer for every point is trivial.

We will assume that the group action is properly discontinuous, cocompact and free. By Theorem 3.5 in [9] this
already implies that G is finitely generated and therefore countable.

Definition 3.2 (Fundamental region). A measurable subset B0 ⊂ M is defined to be a fundamental region for G if

(i)
⋃

g∈G gB0 = M ,
(ii) B0 ∩ gB0 =∅ for all id 
= g ∈ G.

The family {gB0: g ∈ G} is also called tessellation of M .

There are many different choices of fundamental regions. We fix a point p and choose a suitable subset of its
Dirichlet region which is the cell containing p in the Voronoi tessellation defined by Gp (e.g. see [30]). We call this
set B0. The specific choice is not important, because by invariance of m each fundamental region has the same volume
and therefore defines a tiling of M in pieces of equal volume. Indeed, we have the following lemma.
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Lemma 3.3. Let F1 and F2 be two fundamental regions for G. Assume m(F1) < ∞. Then m(F1) = m(F2).

Proof. As F1 ∩ gF2 and F1 ∩ hF2 are disjoint for g 
= h by the defining property of fundamental regions we have

m(F1) =
∑
g∈G

m(F1 ∩ gF2) =
∑
g∈G

m
(
g−1F1 ∩ F2

) = m(F2).
�

For examples of fundamental regions we refer to Section 1.1.

Remark 3.4. There are many possible different choices for m. Indeed, take any measure m0 ∈ M(B0) and define
mg(A) := m0(g

−1A). Then the measure m := ∑
g∈G mg is invariant under the action of G.

By scaling of the measure m we can and will assume that m(B0) = 1. This assumption is just made to simplify
some notations.

Definition 3.5. A countable discrete group G is called amenable if for any finite subset W of G and every ε > 0, there
is another finite subset W ∗ of G such that for any g ∈ W it holds that

|gW ∗ �W ∗|
|W ∗| ≤ ε.

Denote by � the symmetric difference and for A ⊂ G we denote the cardinality of A by |A|.

Proposition 3.6. Let G be a countable discrete group. The following are equivalent:

(i) G is amenable.
(ii) There exists a sequence of nonempty finite sets Fn such that for all g ∈ G

|gFn �Fn|
|Fn| → 0 as n → ∞.

The sequence (Fn)n∈N is called Følner sequence (sometimes also summing sequence).

Lemma 3.7. There exists a Følner sequence (Fn)n∈N such that its inverse (F−1
n )n∈N is also a Følner sequence (ac-

tually a right Følner sequence). Moreover, (Fn)n∈N can be taken to be exhausting. In particular, for any h ∈ G and
r ∈N there is n ∈ N such that hFr ⊂ Fn.

For a proof of these statements and an introduction to amenability we refer to [44], especially Section 4 and
Theorem 4.16.

Several times we will use a rather simple but very powerful tool, the mass transport principle. It already appeared
in the proof of Lemma 3.3. It is a kind of conservation of mass formula for invariant transports.

Lemma 3.8 (Mass transport principle). Let f :G × G → R+ be a function which is invariant under the diagonal
action of G, that is f (u, v) = f (gu,gv) for all g,u, v ∈ G. Then we have∑

v∈G

f (u, v) =
∑
v∈G

f (v,u).

Proof.∑
v∈G

f (u, v) =
∑
g∈G

f (u,gu) =
∑
g∈G

f
(
g−1u,u

) =
∑
v∈G

f (v,u).
�

For a more general version we refer to [7] and [34].
Recall the disintegration theorem for finite measures (e.g. see Theorem 5.1.3 in [2] or III-70 in [14]).
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Theorem 3.9 (Disintegration of measures). Let X, Y be Polish spaces, and let γ be a finite Borel measure on X ×Y .
Denote by μ and ν the marginals of γ on the first and second factor respectively. Then, there exist two measurable
families of probability measures (γx)x∈X and (γy)y∈Y such that

γ (dx,dy) = γx(dy)μ(dx) = γy(dx)ν(dy).

3.2. Couplings and semicouplings

For each Polish space X the set of Radon measures on X – equipped with its Borel σ -field – will be denoted
by M(X). Given any ordered pair of Polish spaces X,Y and measures λ ∈ M(X),μ ∈ M(Y ) we say that a measure
q ∈M(X × Y) is a semicoupling of λ and μ, briefly q ∈ Πs(λ,μ), iff the (first and second, resp.) marginals satisfy

(π1)∗q ≤ λ, (π2)∗q = μ,

that is, iff q(A × Y) ≤ λ(A) and q(X × B) = μ(B) for all Borel sets A ⊂ X,B ⊂ Y . The semicoupling q is called
coupling, briefly q ∈ Π(λ,μ), iff in addition

(π1)∗q = λ.

In particular, q(· × Y) � λ. Hence, there is a density ρ :X → [0,1] such that (π1)∗q = ρ · λ. If q happens to be
concentrated on the graph of a function T defined on a subset A of full λ-measure, i.e. q = (id, T )∗λ, we extend T to
the whole of X by adding a cemetery point ð to Y and setting T (x) = ð for all x /∈ A. We often think of Y ∪ {ð} as
the one-point compactification of Y .

See also [18] for the related concept of partial coupling.

3.3. Random measures on M

We endow M(M) with the vague topology, i.e. we test against continuous functions with compact support. For more
details on vague convergence we refer to [28] or [5].

The action of G on M induces an action of G on M(M × · · · × M) by push forward with the map τg :

(τg)∗λ(A1, . . . ,Ak) = λ
(
g−1(A1), . . . , g

−1(Ak)
) ∀A1, . . . ,Ak ∈ B(M), k ∈N.

A random measure on M is a random variable λ• (the notation with the “•” is intended to make it easier to
distinguish random and nonrandom measures, nonrandom measures will usually be denoted by λ,μ, . . .) modeled on
some probability space (Ω,A,P) taking values in M(M). It can also be regarded as a kernel from Ω to M . Therefore,
we write either λω(A) or λ(ω,A) depending on which property we want to stress. For convenience, we will assume
that Ω is a compact metric space and A its completed Borel field. These technical assumptions are only made to
simplify the presentation.

We call a random measure λ• absolutely continuous iff it is absolutely continuous to m on M for a.e. ω ∈ Ω . It is
called diffusive iff it has no atoms almost surely. It is called a point process if it takes values in the subset of all locally
finite counting measures on M . The point process is simple iff μω({x}) ∈ {0,1} for every x ∈ M and a.e. ω ∈ Ω . The
intensity measure of a random measure λ• is the measure on M defined by A �→ E[λ•(A)].

A random measure λ• :Ω → M(M) is called G-invariant or just invariant if the distribution of λ• is invariant
under the action of G, that is, iff

(τg)∗λ• (d)= λ•

for all g ∈ G. A random measure q• :Ω → M(M × M) is called invariant if its distribution is invariant under the
diagonal action of G.

Let G be the discrete σ -algebra of G. If (Ω,A) admits a measurable flow θg :Ω → Ω,g ∈ G, that is a A⊗G−A-
measurable mapping (ω,g) �→ θgω with θ0 the identity on Ω and

θg ◦ θh = θgh, g,h ∈ G,
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then a random measure λ• :Ω →M(M) is called G-equivariant or just equivariant iff

λ(θgω,gA) = λ(ω,A),

for all g ∈ G,ω ∈ Ω,A ∈ B(M). We can think of λ(θgω, ·) as λ(ω, ·) shifted by g. Indeed, let M be the cylindrical
σ -algebra generated by the evaluation functionals A �→ μ(A),A ∈ B(M),μ ∈ M. As in Example 2.1 of [34], con-
sider the measurable space (Ω,A) = (M,M) and define for μ ∈ M, g ∈ G the measure θgμ(A) = μ(g−1A). Then,
{θg, g ∈ G} is a measurable flow and the identity is an equivariant measure. A random measure q• :Ω → M(M ×M)

is called equivariant iff

qθgω(gA,gB) = qω(A,B),

for all g ∈ G,ω ∈ Ω,A,B ∈ B(M).

Example 3.10. Let q• be an equivariant random measure on M ×M given by qω = (id, T ω)∗λω for some measurable
map T • and some equivariant random measure λ•. The equivariance condition∫

A

1B(y)δT θgω(gx)

(
d(gy)

)
λθgω(dx) = qθgω(gA,gB)

= qω(A,B) =
∫

A

1B(y)δT ω(x)(dy)λω(dx),

translates into an equivariance condition for the transport maps:

T θgω(gx) = gT ω(x).

A probability measure P is called stationary iff

P ◦ θg = P

for all g ∈ G. Given a measure space (Ω,A) with a measurable flow (θg)g∈G and a stationary probability measure
P any equivariant measure is automatically invariant. The advantage of this definition is that the sum of equivariant
measures is again equivariant, and therefore also invariant. The sum of two invariant random measures does not have
to be invariant (see Remark 3.17).

Definition 3.11 (Intensity). Let μ• be an equivariant random measure and B0 a fundamental region. We define the
intensity β of μ• to be β := E[μ•(B0)]. We say μ• has unit (resp. subunit) intensity if β = 1 (resp. β ≤ 1).

Note that by another application of the mass transport principle the intensity does not depend on the specific
fundamental region.

Given a random measure, the measure (λ•P)(dy,dω) := λω(dy)P(dω) on M × Ω is called Campbell measure of
the random measure λ•.

From now on we will always assume that we are given two equivariant random measures λ• and μ• modeled on
some probability space (Ω,A,P) admitting a measurable flow (θg)g∈G such that P is stationary. We will assume that
Ω is a compact metric space. Moreover, we will assume that λ• and μ• are almost surely not the zero measure. Note
that the invariance implies that μω(M) = λω(M) = ∞ for almost every ω (e.g. see Proposition 12.1.VI in [13]).

3.4. Semicouplings of λ• and μ•

A semicoupling of the random measures λ• and μ• is a measurable map q• :Ω → M(M × M) s.t. for P-a.e. ω ∈ Ω

qω is a semicoupling of λω and μω.
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Its Campbell measure is given by Q = q•P ∈ M(M ×M ×Ω). Q is a semicoupling between the Campbell measures
λ•P and μ•P in the sense that

Q(M × · × ·) = μ•
P and Q(· × M × ·) ≤ λ•

P.

Q could also be regarded as semicoupling between λ•P and μ•P on M × Ω × M × Ω which is concentrated on the
diagonal of Ω × Ω . We will always identify these semicouplings with measures on M × M × Ω .

Given such a semicoupling Q ∈ M(M × M × Ω) we can disintegrate (see Theorem 3.9) Q to get a measurable
map q• :Ω →M(M × M) which is a semicoupling of λ• and μ•.

According to this one-to-one correspondence between q• – semicoupling of λ• and μ• – and Q = q•P – semicou-
pling of λ•P and μ•P – we will freely switch between them. And quite often, we will simply speak of semicouplings
of λ• and μ•.

We denote the set of all semicouplings between λ• and μ• by Πs(λ
•,μ•). The set of all equivariant semicouplings

between λ• and μ• will be denoted by Πes(λ
•,μ•).

A factor of some random variable X is a random variable Y which is measurable with respect to σ(X). This is
equivalent to the existence of a deterministic function f with Y = f (X). In other words, a factor is a rule such that
given X we can construct Y . A factor semicoupling is a semicoupling of λ• and μ• which is a factor of λ• and μ•.

3.5. The Monge–Kantorovich problem

Let λ,μ be two probability measures on M . Moreover, let a cost function c :M × M → R be given. The Monge–
Kantorovich problem is to find a minimizer of∫

M×M

c(x, y)q(dx,dy)

among all couplings q of λ and μ. A minimizing coupling is called optimal coupling. If the optimal coupling q is
induced by a transportation map, i.e. q = (id, T )∗λ, we say that q is a solution to the Monge problem. We always
assume that the cost function c(x, y) = ϑ(d(x, y)) is such that there is a unique solution to the Monge problem
between λ and μ whenever λ � m. There are very general results on the existence and uniqueness of the solution to
the Monge problem for which we refer to Chapters 9 and 10 of [51]. To be more concrete we refer to a uniqueness
result for compact Riemannian manifolds due to McCann [40] and an uniqueness result by Cavalletti and Huesmann
[11] on metric measure spaces satisfying the measure contraction property (for a definition we refer to [43,47]; an
example for such a space is any Riemannian manifold with lower Ricci curvature bound but also some sub Riemannian
manifolds, e.g. the Heisenberg group [27]).

It can be shown that any optimal coupling is concentrated on a c-cyclically monotone set. A set A ⊂ X × X is
called (c-)cyclically monotone if for all n ∈N and (xi, yi)

n
i=1 ∈ An it holds that

n∑
i=1

c(xi, yi) ≤
n∑

i=1

c(xi, yi+1),

where y1 = yn+1. If the cost function is reasonably well behaved (continuous is more than sufficient, see [6]), also the
reverse direction holds. Any coupling which is concentrated on a c-cyclically monotone plan is optimal. For further
details and applications of mass transport theory we refer to [45,50,51].

3.6. Cost functionals

Throughout this article, ϑ will be a strictly increasing, continuous function from R+ to R+ with ϑ(0) = 0 and
limr→∞ ϑ(r) = ∞. Given a scale function ϑ as above we define the cost function

c(x, y) = ϑ
(
d(x, y)

)
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on M × M , the cost functional

Cost(q) =
∫

M×M

c(x, y)q(dx,dy)

on M(M × M) and the mean cost functional

Cost(Q) =
∫

M×M×Ω

c(x, y)Q(dx,dy,dω)

on M(M × M × Ω).

Remark 3.12. We need the cost function c to be invariant under the action of G in order to stay in a G-invariant
setting. Otherwise a result like Corollary 4.8 will not be true. Therefore, we consider cost functions of this special
form.

In Section 4, we will show existence and uniqueness of optimal semicouplings on bounded sets, cf. Theorem 4.7,
relating the minimizers of Cost and Cost in a natural way.

For a bounded Borel set A ⊂ M , the transportation cost on A is given by the random variable CA :Ω → [0,∞] as

CA(ω) := Cost
(
qω
A

) = inf
{
Cost

(
qω

)
: qω semicoupling of λω and 1Aμω

}
.

Lemma 3.13.

(i) If A1, . . . ,An are disjoint then ∀ω ∈ Ω

C⋃n
i=1 Ai

(ω) ≥
n∑

i=1

CAi
(ω).

(ii) If A1 = gA2 for some g ∈ G, then CA1 and CA2 are identically distributed.

Proof. Property (ii) follows directly from the joint invariance of λ• and μ•. The intuitive argument for (i) is, that
minimizing the cost on

⋃
i Ai is more restrictive than doing it separately on each of the Ai . The more detailed argument

is the following. Given any semicoupling qω of λω and 1⋃
i Ai

μω then for each i the measure qω
i := 1M×Ai

qω is a
semicoupling of λω and 1Ai

μω. Choosing qω as the minimizer of C⋃n
i=1 Ai

(ω) yields

C⋃
i Ai

(ω) = Cost
(
qω

) =
∑

i

Cost
(
qω
i

) ≥
∑

i

CAi
(ω).

�

3.7. Optimality

The standard notion of optimality – minimizers of Cost or Cost – is not well adapted to our setting. Due to the almost
sure infinite mass of λω and μω the total transportation cost will typically be infinite. Hence, we need to introduce a
different notion which we explain in this section.

The collection of admissible sets is defined as

Adm(M) =
{
B ∈ B(M): ∃I ⊂ G,1 ≤ |I | < ∞,E fundamental region: B =

⋃
g∈I

gE

}
.

Definition 3.14. For a semicoupling q• between λ• and μ• the mean transportation cost of q• is defined by

C
(
q•) := sup

B∈Adm(M)

1

m(B)
E

[∫
M×B

c(x, y)q•(dx,dy)

]
.



Optimal transport between random measures 207

This definition is slightly different from the definition given in [26]. However, specializing to the case M =Rd and
G = Zd using Lemma 3.13 we can recover the definition given in [26], see also Corollary 6.5.

Definition 3.15. A semicoupling q• between λ• and μ• is called

(i) asymptotically optimal iff

C
(
q•) = inf

q̃•∈Πes(λ•,μ•)
C
(
q̃•) =: ce,∞,

(ii) optimal iff q• is equivariant and asymptotically optimal.

We will also use several times the quantity

inf
q̃•∈Πs(λ•,μ•)

C
(
q̃•) =: c∞.

Obviously c∞ ≤ ce,∞.

Note that the set of optimal semicouplings is convex. This will be useful for the proof of uniqueness. Moreover,
we would like to stress that the existence of one asymptotically optimal semicoupling implies the existence of many
of them. Hence, the additional constraint of equivariance is necessary and will be shown to be natural.

Remark 3.16. Equivariant semicouplings q• are invariant. Hence, they are asymptotically optimal iff

C
(
q•) = E

[∫
M×B0

c(x, y)q•(dx,dy)

]
= ce,∞.

Because of the invariance, the supremum does not play any role. Moreover, for two different fundamental regions B0
and B̃0 define

f (g,h) = E
[
Cost

(
1
M×(gB0∩hB̃0)

q•)].
Then, for k ∈ G and equivariant q• we have f (g,h) = f (kg, kh). Hence, we can apply the mass transport principle,
Lemma 3.8, to get

E

[∫
M×B0

c(x, y)q•(dx,dy)

]
=

∑
h∈G

f (id, h)

=
∑
g∈G

f (g, id) = E

[∫
M×B̃0

c(x, y)q•(dx,dy)

]
.

Thus, the specific choice of fundamental region is not important for the cost functional C(·) if we restrict to equiv-
ariant semicouplings.

Remark 3.17. The notion of optimality explains why we restrict to stationary probability measures and equivariant
random measures. If λ• and μ• are just invariant, there does not have to be any invariant semicoupling between
them. Indeed, take λ• a Poisson point process of unit intensity in Rd . It can be written as μω = ∑

ξ∈Ξ(ω) δξ . Define
λω := ∑

ξ∈Ξ(ω) δ−ξ to be the Poisson process that we get if we reflect the first one at the origin. Then λ• and μ• are

invariant but not jointly invariant, e.g. consider the set [0,1)d × [−1,0)d , and not both of them can be equivariant.

3.8. Kantorovich solutions

Given that the mean transportation cost is finite the existence of a Kantorovich solution can be shown by an abstract
compactness result. A similar reasoning is used to prove Corollary 11 in [23].
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Proposition 3.18. Let λ• and μ• be two equivariant random measures on M with intensities 1 and β ≤ 1 respectively.
Assume that the optimal mean transportation cost is finite, infq•∈Πes(λ•,μ•) C(q•) = ce,∞ < ∞, then there exists some
equivariant semicoupling q• between λ• and μ• with C(q•) = ce,∞.

It is not important that λ• has intensity one. By symmetry one intensity has to dominate the other. By scaling, we
can then always assume that λ• has intensity one and μ• has intensity less or equal than one.

Proof of Proposition 3.18. As ce,∞ < ∞ there is a sequence q•
n ∈ Πes(λ

•,μ•) such that C(q•
n) = cn ↘ ce,∞. More-

over, we can assume that the transportation cost is uniformly bounded by cn ≤ 2ce,∞ =: c for all n. We claim that
there is a subsequence (q•

nk
)k∈N of (q•

n)n∈N converging to some q• ∈ Πes(λ
•,μ•) with C(q•) = ce,∞. We prove this

in four steps:
(i) The functional C(·) is lower semicontinuous: It is sufficient to prove that the functional Cost(·) is lower semi-

continuous. Let (ρn)n∈N be any sequence of couplings between finite measures converging to some measure ρ in
the vague topology. If Cost(ρn) = ∞ for all n we are done. Hence, we can assume, that the transportation cost are
bounded. Let (B0)r denote the r-neighbourhood of B0. For k ∈ N let φk :M × M → [0,1] be nice cut off functions
with φk(x, y) = 1 on (B0)k × (B0)k and φk(x, y) = 0 if x ∈ �((B0)k+1) or y ∈ �((B0)k+1). Then, we have using
continuity of the cost function c(x, y) and by the definition of vague convergence

lim inf
n→∞ Cost(ρn) = lim inf

n→∞

∫
M×M

c(x, y)ρn(dx,dy)

= lim inf
n→∞ sup

k∈N

∫
M×M

φk(x, y) c(x, y)ρn(dx,dy)

≥ sup
k

lim inf
n→∞

∫
M×M

φk(x, y)c(x, y)ρn(dx,dy)

= sup
k

∫
M×M

φk(x, y)c(x, y)ρ(dx,dy) = Cost(ρ).

Applying this to 1M×B0q
•
n shows the lower semicontinuity of C(·).

(ii) The sequence (q•
nP)n∈N is vaguely relatively compact in M(M ×M ×Ω): Put f ∈ Cc(M ×M ×Ω). According

to Theorem A2.3 of [28] we have to show supn∈N q•
nP(f ) ≤ Lf < ∞ for some constant Lf . To this end let A ⊂ M

compact be such that supp(f ) ⊂ A × M × Ω and A ∈ Adm(M). We estimate∫
M×M×Ω

f (x, y,ω)qω
n (dx,dy)P(dω) ≤ ‖f ‖∞λ•

P(A × Ω)

≤ ‖f ‖∞m(A) =: Lf .

Hence, there is some measure q• and a subsequence q•
nk

with q•
nk
P → q•P in the vague topology on M(M ×M ×Ω).

By lower semicontinuity, we have C(q•) ≤ lim infC(q•
nk

) = ce,∞. Now we have a candidate.
(iii) q• is equivariant: Take any continuous compactly supported f ∈ Cc(M × M × Ω). By definition of vague

convergence∫
f (x, y,ω)qω

nk
(dx,dy)P(dω) →

∫
f (x, y,ω)qω(dx,dy)P(dω).

As all the q•
nk

are equivariant, we have for any g ∈ G

∫
f (x, y,ω)qω

nk
(dx,dy)P(dω)

=
∫

f
(
g−1x,g−1y,ω

)
q

θgω
nk

(dx,dy)P(dω)
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=
∫

f
(
g−1x,g−1y, (θg)

−1ω
)
qω
nk

(dx,dy)P(dω)

→
∫

f
(
g−1x,g−1y, (θg)

−1ω
)
qω(dx,dy)P(dω),

where we used stationarity of P in the second equality. Putting this together, we have for any g ∈ G∫
f (x, y,ω)qω(dx,dy)P(dω) =

∫
f

(
g−1x,g−1y,ω

)
qθgω(dx,dy)P(dω).

Hence, q• is equivariant.
(iv) q• is a semicoupling of λ• and μ•: Fix h ∈ Cc(M × Ω). Put A ⊂ M compact such that supp(h) ⊂ A × Ω and

A ∈ Adm(M). Denote the R-neighbourhood of A by AR . By the uniform bound on transportation cost we have

q•
nP

(
�(AR),A,Ω

) ≤ m(A)
c

ϑ(R)
, (3.1)

uniformly in n. Let fR :M → [0,1] be a continuous compactly supported function such that fR(x) = 1 for x ∈ AR

and fR(x) = 0 for x ∈ �AR+1. As q•
nP is a semicoupling of λ• and μ• we have due to monotone convergence∫

M×Ω

h(y,ω)μω(dy)P(dω) =
∫

M×M×Ω

h(y,ω)qω
n (dx,dy)P(dω)

= lim
R→∞

∫
M×M×Ω

fR(x)h(y,ω)qω
n (dx,dy)P(dω).

Because of the uniform bound (3.1) we have∣∣∣∣
∫

M×Ω

h(x,ω)μω(dx)P(dω) −
∫

M×M×Ω

fR(x)h(y,ω)qω
nk

(dx,dy)P(dω)

∣∣∣∣
≤ m(A)

c · ‖h‖∞
ϑ(R)

.

Taking first the limit of nk → ∞ and then the limit of R → ∞ we conclude using vague convergence and monotone
convergence that

0 = lim
R→∞ lim

k→∞

∣∣∣∣
∫

M×Ω

h(y,ω)μω(dy)P(dω)

−
∫

M×M×Ω

fR(x)h(y,ω)qω
nk

(dx,dy)P(dω)

∣∣∣∣
= lim

R→∞

∣∣∣∣
∫

M×Ω

h(y,ω)μω(dy)P(dω) −
∫

M×M×Ω

fR(x)h(y,ω)qω(dx,dy)P(dω)

∣∣∣∣
=

∣∣∣∣
∫

M×Ω

h(y,ω)μω(dy)P(dω) −
∫

M×M×Ω

h(y,ω)qω(dx,dy)P(dω)

∣∣∣∣.
This shows that the second marginal equals μ•. For the first marginal we have for any nonnegative k ∈ Cc(M × Ω)∫

M×Ω

k(x,ω)qω
nk

(dx,dy)P(dω) ≤
∫

M×Ω

k(x,ω)λω(dx)P(dω).

In particular, using the function fR from above we have,∫
M×Ω

fR(y)k(x,ω)qω
nk

(dx,dy)P(dω) ≤
∫

M×Ω

k(x,ω)λω(dx)P(dω).



210 M. Huesmann

Taking the limit nk → ∞ yields by vague convergence∫
M×Ω

fR(y)k(x,ω)qω(dx,dy)P(dω) ≤
∫

M×Ω

k(x,ω)λω(dx)P(dω).

Finally taking the supremum over R shows that q• is indeed a semicoupling of λ• and μ•. �

Remark 3.19.

(i) The optimal semicoupling constructed in the last proposition need not be a factor if the optimal semicoupling is
not unique.

(ii) The same proof shows the existence of optimal semicouplings between λ• and μ• with intensities 1 and β ≥ 1
respectively. In this case the “semi” is on the side of μ• (see also Section 7).

Lemma 3.20. Let q• be an invariant semicoupling of two random measures λ• and μ• with intensities 1 and β ≤ 1
respectively. Then, q• is a coupling iff β = 1.

Proof. This is another application of the mass transport principle, Lemma 3.8. Let B0 be a fundamental region and
define f (g,h) = E[q•(gB0, hB0)]. By invariance of q•, we have f (g,h) = f (kg, kh) for any k ∈ G. Hence, we get

1 = E
[
λ•(B0)

] ≥ E
[
q•(B0,M)

] =
∑
g∈G

f (id, g) =
∑
h∈G

f (h, id) = E
[
q•(M,B0)

] = β.

We have equality iff β = 1. If β = 1 replacing B0 by gB0 we get that E[λ•(gB0)] = E[q•(gB0,M)] for all g ∈ G.
As B0 induces a tessellation (cf. Definition 3.2) and qω(·,M) ≤ λω(·) by the definition of semicouplings this implies
that for all bounded sets A ⊂ M we have qω(A,M) = λω(A) for P-almost all ω. Indeed, if there was a true inequality,
there has to be a g ∈ G such that qω(gB0,M) < λω(gB0) on a set of positive P-measure; a contradiction to the
assumption β = 1. �

Remark 3.21. The remark above applies again. Considering the case of intensity β ≥ 1 gives that q• is a coupling iff
β = 1.

4. Optimal semicouplings on bounded sets

Before we can tackle the Monge problem between infinite measures we need to understand optimal semicouplings
between finite measures on bounded sets.

The goal of this section is to prove Theorem 4.7, the existence and uniqueness result for optimal semicouplings
between λ• and μ• restricted to a bounded set. The strategy will be to first prove existence and uniqueness of optimal
semicouplings q = qω for deterministic measures λ = λω and μ = μω. Secondly, we will show that the map ω �→ qω

is measurable, which will allow us to deduce Theorem 4.7.
Optimal semicouplings are solutions of a twofold optimization problem: the optimal choice of a density ρ ≤ 1 of

the first marginal λ and subsequently the optimal choice of a coupling between ρλ and μ. This twofold optimization
problem can also be interpreted as a transport problem with free boundary values.

Throughout this section, we fix the cost function c(x, y) = ϑ(d(x, y)) with ϑ – as before – being a strictly in-
creasing, continuous function from R+ to R+ with ϑ(0) = 0 and limr→∞ ϑ(r) = ∞. As already mentioned, we
additionally assume that the optimal transportation problem between two compactly supported probability measures
λ and μ such that λ � m has a unique solution given by a transportation map, i.e. the optimal coupling is given by
q = (id, T )∗λ. For sufficient conditions for this to hold we refer to Section 3.5.

Fix two deterministic measures λ = f · m for some compactly supported density f (in particular λ � m) and an
arbitrary finite measure μ with supp(μ) ⊂ A for some compact set A such that μ(M) ≤ λ(M) < ∞. We are looking
for minimizers of

Cost(q) =
∫

c(x, y)q(dx,dy)
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under all semicouplings q of λ and μ. The key step is a nice observation by Figalli, namely Proposition 2.4 in [18].
The version we state here is adapted to our setting.

Proposition 4.1 (Figalli). Let q be a Cost minimizing semicoupling between λ and μ with λ � m. Write fq · m =
(π1)∗q . Consider the Monge–Kantorovich problem:

minimize C(γ ) =
∫

M×M

c(x, y)γ (dx,dy)

among all γ which have λ and μ+ (f −fq) ·m as first and second marginals, respectively. Then, the unique minimizer
is given by

q + (id × id)∗(f − fq) · m.

This allows us to show that all minimizers of Cost are concentrated on the same graph which also gives us unique-
ness. Recall the cemetery point introduced in Section 3.2.

Proposition 4.2. There is a unique Cost minimizing semicoupling between λ and μ. It is given by q = (id, T )∗(ρ · λ)

for some measurable map T :M → M ∪ {ð} and density ρ.

Proof. (i) Similar to the proof of Proposition 3.18 it can be seen that the functional Cost(·) is lower semicontinuous
on M(M × M) wrt weak convergence of measures.

(ii) Let O denote the set of all semicouplings of λ and μ and O1 denote the set of all semicouplings q satisfying
Cost(q) ≤ 2 infq∈O Cost(q) =: 2c. Then O1 is relatively compact wrt weak topology (cf. proof of Proposition 3.18).

(iii) The set O is closed wrt weak topology. Indeed, if qn → q then (π1)∗qn → (π1)∗q and (π2)∗qn → (π2)∗q .
Hence O1 is compact and Cost attains its minimum on O. Let q denote one such minimizer. Note that q is an optimal
coupling between its marginals. Its first marginal is absolutely continuous to m. By assumption (the results cited
in Section 3.5), there is a measurable map T :M → M ∪ {ð} and densities f̃q , fq such that q = (id, T )∗(f̃q · λ) =
(id, T )∗(fq · m).

(iv) Given a minimizer of Cost, say q . By Proposition 4.1, q̃ := q + (id, id)∗(f − fq) · m solves

minC(γ ) =
∫

c(x, y)γ (dx,dy)

under all γ which have λ and μ + (f − fq)m as first respectively second marginals, where fq · m = (π1)∗q as
above. Again by assumption, there is a measurable map S such that q̃ = (id, S)∗λ. That is, q̃ and in particular q are
concentrated on the graph of S. By definition q̃ = q + (id, id)∗(f − fq) · m and, therefore, we must have S(x) = x on
{f > fq}.

(v) This finally allows us to deduce uniqueness. By the previous step, we know that any convex combination of
optimal semicouplings is concentrated on a graph. This implies that all optimal semicouplings are concentrated on
the same graph. Moreover, Proposition 4.1 implies that if we do not transport all the λ mass in one point we leave it
where it is. Hence, all optimal semicouplings choose the same density ρ of λ and therefore coincide. Let us make this
precise.

Assume there are two optimal semicouplings q1 and q2. Then q3 := 1
2 (q1 + q2) is optimal as well. By the previous

step for any i ∈ {1,2,3}, we get maps Si such that qi is concentrated on the graph of Si . Moreover, we have S3(x) = x

on the set {f > fq3} = {f > fq1} ∪ {f > fq2}, where again fqi
· m = (π1)∗qi . As q3 is concentrated on the graph of

S3 and q3 is a convex combination of q1 and q2, both q1 and q2 must also be concentrated on the graph of S3 (the
support of q3 is the union of the supports of q1 and q2). Hence, we have S3 = Si on {fqi

> 0} for i = 1,2. This gives,
that S3 = S1 = S2 on {fq1 > 0} ∩ {fq2 > 0}.

We still need to show that {fq1 > 0} = {fq2 > 0}. Put A1 := {fq1 > fq2} and A2 := {fq2 > fq1} and assume
m(A1) > 0. As A1 ⊂ {f > fq2} we know that S3(x) = x on A1 and similarly S3(x) = x on A2. Now consider

A := S−1
3 (A1) = (

A ∩ {fq1 = fq2}
) ∪ (A ∩ A1) ∪ (A ∩ A2).
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As S3(A2) ⊂ A2 and A1 ∩ A2 =∅ we have A ∩ A2 =∅. Therefore, we can conclude

μ(A1) = (S3)∗fq1m(A1) = fq1m(A1) + fq1m
(
A ∩ {fq1 = fq2}

)
> fq2m(A1) + fq2m

(
A ∩ {fq1 = fq2}

)
= (S3)∗fq2m(A1) = μ(A1),

which is a contradiction, proving q1 = q2. �

Remark 4.3. Let q = (id, T )∗(ρλ) be the optimal semicoupling of λ and μ. If μ happens to be discrete, we have
ρ(x) ∈ {0,1} m-almost everywhere.

We showed the existence and uniqueness of optimal semicouplings between deterministic measures. The next step
in the proof of Theorem 4.7 is to show the measurability of the mapping ω �→ Φ(λω,1Aμω) = qω

A the unique optimal
semicoupling between λω and 1Aμω. The mapping ω �→ (λω,1Aμω) is measurable by definition of random measures.
Hence, we have to show that (λω,1Aμω) �→ Φ(λω,1Aμω) is measurable. We will show a bit more, namely that this
mapping is actually continuous. We start with a simple but important observation about optimal semicouplings.

Denote the one-point compactification of M by M ∪{ð} and let ϑ̃(r) be such that it is equal to ϑ(r) on a very large
interval, say [0,K], and then tends continuously to zero such that c̃(x,ð) = ϑ̃(d(x,ð)) = limr→∞ ϑ̃(r) = 0 for any
x ∈ M . By a slight abuse of notation, we also write ð :M → {ð} for the map x �→ ð.

Lemma 4.4. Let two measures λ and μ on M be given such that ∞ > λ(M) = N ≥ μ(M) = α and assume there is
a ball B(x,K/2) such that supp(λ), supp(μ) ⊂ B(x,K/2). Then, q is an optimal semicoupling between λ and μ wrt
to the cost function c(·, ·) iff q̃ = q + (id,ð)∗(1 − fq) · λ is an optimal coupling between λ and μ̃ = μ + (N − α)δð
wrt the cost function c̃(·, ·), where (π1)∗q = fqλ.

Proof. Let q be any semicoupling between λ and μ. Then q̃ = q + (id,ð)∗(1 − fq) · λ defines a coupling between λ

and μ̃. Moreover, the transportation cost of the semicoupling and the one of the coupling are exactly the same, that is
Cost(q) = Cost(q̃). Hence, q is optimal iff q̃ is optimal. �

This allows to deduce the continuity of Φ from the classical theory of optimal transportation.

Lemma 4.5. Given a sequence of measures (λn)n∈N converging vaguely to some λ, all absolutely continuous to
m with λn(M) = λ(M) = ∞. Moreover, let (μn)n∈N be a sequence of finite measures converging weakly to some
finite measure μ, all concentrated on some bounded set A ⊂ M . Let qn be the optimal semicoupling between λn and
μn and q be the optimal semicoupling between λ and μ. Then, qn converges weakly to q . In particular, the map
(λ,μ) �→ Φ(λ,μ) = q is continuous.

Proof. (i) As the sequence (μn)n∈N converges to μ and μ is finite, we can assume that supn μn(M),μ(M) ≤ α < ∞.
Moreover, there is a bounded set B with λ(∂B) = 0 such that qn(·,A), q(·,A) are concentrated on B . Indeed, as λ

has infinite mass there is a r ≥ 5 diam(A) such that the r-neighborhood Ar of A satisfies λ(Ar) ≥ 5α. Then clearly
q(·,A) is concentrated on A2r . Assume the contrary, then q transports a positive amount of mass at least distance 2r .
However, inside of Ar there is at least an amount of 4α of λ-measure which is not used by q , a contradiction to
optimality. By vague convergence of λn to λ we can assume that (at least for large n) also qn(·,A) is concentrated
on A2r . By enlarging A2r if necessary, we can assume that its boundary has λ-measure zero.

(ii) Note that λ(∂B) = 0 implies that λn(B) =: Nn → λ(B) = N as n → ∞. Hence, by rescaling λn and μn by N
Nn

we can assume that Nn = N . Put λ̃n := 1Bλn and λ̃ := λ.
(iii) Now we are in a setting where we can apply Lemma 4.4. Set K = 2r and define ϑ̃, μ̃n, μ̃ as above. Then q̃n and

q̃ are optimal couplings between λ̃n and μ̃n and λ̃ and μ̃ respectively wrt to the cost function c̃(·, ·). The cost function
c̃ is continuous and M and M ∪ {ð} are Polish spaces. Hence, we can apply the stability result of the classical optimal
transportation theory (e.g. Theorem 5.20 in [51]) to conclude that q̃n → q̃ weakly and therefore qn → q weakly. �
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Take a pair of equivariant random measure (λ•,μ•) with λω � m as usual. For a given ω ∈ Ω we want to apply
the results of the previous lemma to a fixed realization (λω,μω). Then, for any bounded Borel set A ⊂ M , there is a
unique optimal semicoupling qω

A between λω and 1Aμω, that is, a unique minimizer of the cost function Cost among
all semicouplings of λω and 1Aμω.

Lemma 4.6. For each bounded Borel set A ⊂ M the map ω �→ qω
A is measurable.

Proof. We saw that the map Φ : (λω,1Aμω) = qω
A is continuous. By definition of random measures the map ω �→

(λω,1Aμω) is measurable. Hence, the map

ω �→ Φ
(
λω,1Aμω

) = qω
A

is measurable. �

The uniqueness and measurability of qω
A allows us to finally deduce

Theorem 4.7.

(i) For each bounded Borel set A ⊂ M there exists a unique semicoupling QA of λ•P and (1Aμ•)P which minimizes
the mean cost functional Cost(·).

(ii) The measure QA can be disintegrated as QA(dx,dy,dω) := qω
A(dx,dy)P(dω) where for P-a.e. ω the measure

qω
A is the unique minimizer of the cost functional Cost(·) among the semicouplings of λω and 1Aμω.

(iii) Cost(QA) = ∫
Ω

Cost(qω
A)P(dω).

The proof is a direct consequence of the results and arguments in this section. We omit the details.
The first part of the theorem, the existence and uniqueness of an optimal semicoupling, is very much in the spirit of

an analogous result by Figalli [18] on existence and (if enough mass is transported) uniqueness of an optimal partial
coupling. However, in our case the second marginal is arbitrary whereas in [18] it is absolutely continuous.

Corollary 4.8. The optimal semicouplings QA = q•
AP are equivariant in the sense that

QgA(gC,gD,θgω) = QA(C,D,ω),

for any g ∈ G and C,D ∈ B(M).

Proof. This is a consequence of the equivariance of λ• and μ• and the fact that qω
A is a deterministic function of λω

and 1Aμω. �

5. Monge solutions

The aim of this section is to prove Theorem 1.1, the uniqueness of optimal semicouplings. Moreover, the representation
of optimal semicouplings, that we get as a byproduct of the uniqueness statement, allows to draw several conclusions
about the geometry of the cells of the induced allocations.

Throughout this section we fix a pair of equivariant random measures λ• and μ• of unit resp. subunit intensity
on some metric measure space (M,d,m) together with a cost function c(x, y) = ϑ(d(x, y)) such that the Monge
problem has a unique solution (e.g. see Section 3.5). We assume that the optimal mean transportation cost (see Defini-
tion 3.15) ce,∞ are finite and that λ• is absolutely continuous. Then, by Proposition 3.18, there is at least one optimal
semicoupling. Recall the definition of cyclical monotonicity from Section 3.5.

Proposition 5.1. Given a semicoupling qω of λω and μω for fixed ω ∈ Ω , then the following properties are equiva-
lent.

(i) For each bounded Borel set A ⊂ M , the measure 1M×Aqω is the unique optimal coupling of the measures
qω(·,A) and 1Aμω (cf. Figure 1).
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Fig. 1. The left picture is a semicoupling of Lebesgue and 36 points with cost function c(x, y) = |x − y|4. In the right picture, the five points
within the small cube can choose new partners from the mass that was transported to them in the left picture (corresponding to the measure λω

A
). If

the semicoupling on the left hand side is locally optimal, then the points in the small cube on the right hand side will choose from the gray region
exactly the partners they have in the left picture.

(ii) The support of qω is c-cyclically monotone.
(iii) There exists a nonnegative density ρω and a c-cyclically monotone map T ω : {ρω > 0} → M such that on {ρω >

0} × M

qω = (
id, T ω

)
∗
(
ρωλω

)
. (5.1)

By definition, a map T is c-cyclically monotone iff the closure of its graph {(x, T (x)): x ∈ {ρω > 0}} is a c-
cyclically monotone set.

The proof is a direct consequence of the characterization of optimal couplings by cyclically monotone sets together
with the assumption that the Monge problem has a unique solution. For a proof (in a slightly different setting) we refer
to Section 3 of [26].

Remark 5.2. Put Aω = {ρω > 0}. As before (see Section 3.2), any transport map T ω :Aω → M as above will be
extended to a map T ω :M → M ∪ {ð}. Then (5.1) reads

qω = (
id, T ω

)
∗ρ

ωλω on M × M. (5.2)

Moreover, we put c(x,T ω(x)) = c(x,ð) := 0 for x ∈ M \ Aω. If we know a priori that ρω(x) ∈ {0,1} almost surely
(5.2) simplifies to

qω = (
id, T ω

)
∗λ

ω on M × M. (5.3)

Definition 5.3. A semicoupling Q = q•P of λ• and μ• is called locally optimal iff some (hence every) property of the
previous proposition is satisfied for P-a.e. ω ∈ Ω .

Remark 5.4.

(i) As in [26] asymptotic optimality is not sufficient for uniqueness and local optimality does not imply asymptotic
optimality. A simple example for the last statement is the coupling q(z, z′) = 1Z(z)δz+5(z

′) of μ = ∑
z∈Z δz with

itself. For the cost function c(x, y) = |x − y|2 this is locally optimal but certainly not asymptotically optimal.
(ii) The name local optimality might be misleading in the context of semicouplings. Consider a Poisson process

μ• of intensity 1/2 and let q• be an optimal coupling between 1/2m and μ•. Then, it is locally optimal (see
Theorem 5.5) according to this definition. However, as we leave half of the m-measure laying around we can
everywhere locally produce a coupling with less cost. In short, the optimality does not refer to the choice of
density. It only refers to the (local) optimality of the transport of the chosen density.

(iii) Note that local optimality – in contrast to asymptotic optimality and equivariance – is not preserved under convex
combinations. It is an open question if local optimality and asymptotic optimality together imply optimality.

However, we have
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Theorem 5.5. Every optimal semicoupling between λ• and μ• is locally optimal.

The proof of this theorem is similar to the respective result in [26]. Assume the contrary. Then there is some
bounded set A on which we can improve the semicoupling locally. By equivariance, this translates to a global im-
provement. Hence, the semicoupling could not have been asymptotically optimal, a contradiction. We omit the details.

Theorem 5.6. Assume that μ• has intensity one, then there is a unique optimal coupling between λ• and μ•.

Proof. Assume we are given two optimal couplings q•
1 and q•

2 . Then also q• := 1
2q•

1 + 1
2q•

2 is an optimal coupling
because asymptotic optimality and equivariance are stable under convex combination. Hence, by the previous theorem
all three couplings – q•

1 , q•
2 and q• – are locally optimal. Thus, for a.e. ω by the results of Proposition 5.1 there exist

maps T ω
1 , T ω

2 , T ω such that

δT ω(x)(dy)λω(dx) = qω(dx,dy)

=
(

1

2
δT ω

1 (x)(dy) + 1

2
δT ω

2 (x)(dy)

)
λω(dx).

This, however, implies T ω
1 (x) = T ω

2 (x) for a.e. x ∈ M . Thus qω
1 = qω

2 . (By Lemma 3.20 we know that every invariant
semicoupling between λ• and μ• has to be a coupling.) By Proposition 3.18 there exists an optimal coupling; hence
it is unique. �

Before we can prove the uniqueness of optimal semicouplings we have to translate Proposition 4.1 to this setting.

Proposition 5.7. Assume μ• has intensity β ≤ 1 and let q• be an optimal semicoupling between λ• and μ•. Let
(π1)∗q• = ρ · λ• for some density ρ :Ω × M → [0,1]. Then,

q̃• = q• + (id × id)∗
(
(1 − ρ) · λ•)

is the unique optimal coupling between λ• and μ̂• := μ• + (1 − ρ) · λ•.

Proof. Because q• is equivariant by assumption also ρλ•(·) = q•(·,M) is equivariant. But then μ̂• = μ• +(1−ρ) ·λ•
is equivariant. The intensity (cf. Definition 3.11) of μ̂ equals, by the mass transport principle Lemma 3.8,

μ̂(B0) = β + 1 −E
[
q•(B0,M)

] = β + 1 −E
[
q•(M,B0)

] = 1.

Moreover, by assumption we have C(q̃•) = C(q•) < ∞ which implies

inf
κ•∈Πe(λ•,μ̂•)

C
(
κ•) < ∞.

Hence, we can apply the previous theorem and get a unique optimal coupling κ• between λ• and μ̂• given by κ• =
(id, S)∗λ•. Moreover,

C
(
κ•) ≤ C

(
q̃•) = C

(
q•).

Because S∗λ• = μ̂• there is a density f such that S∗(f · λ•) = (1 − ρ) · λ•. Indeed, for any g ∈ G we can disintegrate

1M×gB0κ
ω(dx,dy) = κ

ω,g
y (dx)

(
μω(dy) + (

1 − ρω(y)
)
λω(dy)

)
.

The measure
∑

g∈G κ
ω,g
y (dx)((1 − ρω(y))λω(dy)) does the job. In particular this implies that

κ̃• = (id × S)∗
(
(1 − f ) · λ•)
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is a semicoupling between λ• and μ•. The mean transportation cost of κ̃• are bounded above by the mean transporta-
tion cost of κ• as we just transport less mass. Hence, we have

C
(
κ̃•) ≤ C

(
κ•) ≤ C

(
q̃•) = C

(
q•).

As q• was assumed to be optimal, hence asymptotically optimal, we must have equality everywhere. By uniqueness
of optimal couplings this implies that q̃• = κ• almost surely. �

Lemma 5.8. Assume μ• has intensity β ≤ 1 and let q• = (id, T )∗(ρ · λ•) be an optimal semicoupling between λ•
and μ•. Then, for P-almost all ω on the set {0 < ρω < 1} we have T ω(x) = x.

Proof. Just as in the previous proposition consider q̃• = (id, S)∗λ• the optimal coupling between λ• and μ̂•. q̃• is
concentrated on the graph of S and therefore also q• has to be concentrated on the graph of S. In particular, this shows
that S = T almost everywhere almost surely (we can safely extend T by S on {ρ = 0}). But on {ρ < 1} we have
S(x) = x. Hence, we also have T (x) = x on {0 < ρ < 1}. �

This finally enables us to prove uniqueness of Monge solutions.

Theorem 5.9. There exists a unique optimal semicoupling of λ• and μ•.

The proof goes along the same lines as the one for Proposition 4.2. We omit the details.

5.1. Geometry of tessellations induced by fair allocations

The fact that any optimal semicoupling is locally optimal allows us to say something about the geometries of the cells
of fair allocations to a point process μ•. The following result was already shown for probability measures in Section 4
of [49] and also in [4].

Corollary 5.10. In the case ϑ(r) = r2, given an optimal coupling q• of Lebesgue measure L and a point process μ•
of unit intensity in M = Rd (for a Poisson point process this implies d ≥ 3 as otherwise the mean transportation cost
will be infinite, see Theorem 1.3 in [26]) then for a.e. ω ∈ Ω there exists a convex function ϕω :Rd → R (unique up to
additive constants) such that

qω = (
id,∇ϕω

)
∗L.

In particular, a ‘fair allocation rule’ is given by the monotone map T ω = ∇ϕω.
Moreover, for a.e. ω and any center ξ ∈ Ξ(ω) := supp(μω), the associated cell

Sω(ξ) = (
T ω

)−1({ξ})
is a convex polytope of volume μω(ξ) ∈ N. If the point process is simple then all these cells have volume 1. In
particular, T induces a Laguerre-tessellation.

Proof. See Corollary 3.10 of [26]. �

A set A ⊂ M is called starlike with respect to a point x iff for all p ∈ A all the points on the minimizing geodesic
between x and p lie in A.

Corollary 5.11. Let (M,d,m) be a Riemannian manifold. In the case ϑ(r) = r , given an optimal coupling q• of m

and a point process μ• of unit intensity on M with dim(M) ≥ 2, there exists an allocation rule T such that the optimal
coupling is given by

qω = (
id, T ω

)
∗m.
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Moreover, for a.e. ω and any center ξ ∈ Ξ(ω) := supp(μω), the associated cell

Sω(ξ) = (
T ω

)−1({ξ})
is starlike with respect to ξ .

Remark 5.12. The existence and uniqueness of an optimal semicoupling between m and a sum of finitely many Dirac-
measures for ϑ(r) = r follows from Lemma 6.1 in [26]. It is stated for Rd but the proof is valid for Riemannian
manifolds as well.

Proof of Corollary 5.11. Let (Kn)n∈N be an increasing exhausting sequence of geodesically convex sets. By Propo-
sition 5.1 we know that T ω = limn→∞ T ω

n , where T ω
n is an optimal transportation map from some set Aω

n to Kn. From
the classical theory (see [10,19]) we know that,

T ω
n (x) = ξ0 ⇔ −d(x, ξ0) + bξ0 > −d(x, ξ) + bξ ∀ξ ∈ Ξ(ω) ∩ Kn, ξ 
= ξ0,

for some (unknown) constants bξi
. Hence, the cell can be written as the intersection of the sets H 0

j := {x: −d(x, ξ0)+
bξ0 > −d(x, ξj ) + bξj

}. Therefore, it is sufficient to show that for any z ∈ H 0
j the whole geodesic from z to ξ0 lies

inside H 0
j . For convenience we write Φ0(x) = −d(x, ξ0) + bξ0 and Φj(x) = −d(x, ξj ) + bξj

.

Assume ξ0 ∈ ∂H 0
j and w.l.o.g. bξ0 = 0. Then, we have

Φ0(ξ0) = 0 = Φj(ξ0) ⇒ bξj
= d(ξj , ξ0).

The set N = {z ∈ M: d(ξj , z) = d(ξj , ξ0) + d(ξ0, z)} is a m-null set. For all z /∈ N we have

Φj(z) = −d(ξj , z) + bξj
> −d(ξj , ξ0) + bξj

− d(ξ0, z) = Φ0(z).

This implies that m(T −1
n (ξi)) = 0 contradicting the assumption of T being an allocation. Thus, ξ0 /∈ ∂H 0

j and in
particular T (ξ0) ∈ Ξ = supp(μ).

Assume T (ξ0) 
= ξ0. Then, there is a ξj 
= ξ0 such that T (ξ0) = ξj , i.e. Φj(ξ0) = −d(ξ0, ξj ) + bξj
> bξ0 = Φ0(ξ0).

Then, we have for any p ∈ M,p 
= ξ0

−d(p, ξj ) + bξj
≥ −d(p, ξ0) − d(ξ0, ξj ) + bξj

> −d(p, ξ0) + bξ0 .

This implies, that m(T −1(ξ0)) = 0 contradicting the assumption of T being an allocation. Thus, T (ξ0) = Tn(ξ0) = ξ0.
Take any w ∈ T −1

n (ξ0) (hence, Φ0(w) > Φj (w) for all j 
= 0) and p ∈ M such that d(ξ0,w) = d(ξ0,p)+ d(p,w),
i.e. p lies on the minimizing geodesic from ξ0 to w. Then, we have for any j 
= 0 by using the triangle inequality once
more

−d(p, ξ0) + bξ0 = −d(ξ0,w) + d(p,w) + bξ0

≥ −d(ξ0,w) + bξ0 + d(w, ξj ) − d(p, ξj )

> −d(p, ξj ) + bξj
,

which means that Φ0(p) > Φj (p) for all j 
= 0. Hence, p ∈ H 0
j proving the claim. �

Remark 5.13.

(i) Questions on the geometry of the cells of fair allocations are strongly connected to the very difficult problem of
the regularity of optimal transportation maps (see [31,36,37]). The link is of course the cyclical monotonicity.
The geometry of the cells of the “optimal fair allocation” is dictated by the cyclical monotonicity and the optimal
choice of cyclically monotone map to get an asymptotic optimal coupling.

Consider the classical transport problem between two probability measures one being absolutely continuous
to m with full support on a convex set and the other one being a convex combination of N Dirac masses. Assume
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that the cell being transported to one of the N points is not connected. Then, it is not difficult to imagine that it is
possible to smear out the Dirac masses slightly to get two absolutely continuous probability measures (even with
very nice densities) but a discontinuous transportation map.

(ii) Considering Lp cost on Rd with p /∈ {1,2}, the cell structure is much more irregular than in the two cases
considered above. The cells do not even have to be connected. Indeed, just as in the proof of the two corollaries
above it holds also for general p that T ω(x) = ξ0 iff Φ0(x) > Φi(x) for all i 
= 0 where Φi(x) = −|x − ξi |p + bi

for some constants bi (see also Example 1.6 in [19]). By considering the sets Φi ≡ Φ0 it is not difficult to cook
up examples of probability measures such that the cells do not have to be connected.

In the case that p ∈ (0,1) similar to the case that p = 1 we always have that the center of each cell lies in the
cell, that is T (ξi) = ξi for all ξi ∈ supp(μ•) because the cost function defines a metric (see [19]).

(iii) As was shown by Loeper in Section 8.1 of [36] the cells induced by the optimal transportation problem in the
hyperbolic space between an absolutely continuous measure and a discrete measure with respect to the cost
function c(x, y) = d2(x, y) do not have to be connected. In the same article he shows that for the same problem
on the sphere the cells have to be connected. In [52] von Nessi studies more general cost functions on the sphere,
including the Lp cost function c(x, y) = dp(x, y). He shows that in general for p 
= 2 the cells do not have
to connected. This suggests that on a general metric measure space the cell structure will probably be rather
irregular.

6. Limits of optimal semicouplings on bounded sets and equivariance

We fix again a pair of equivariant random measures λ• and μ• of unit resp. subunit intensity on some Polish geodesic
metric measure space (M,d,m) together with a cost function c(x, y) = ϑ(d(x, y)) such that the Monge problem has
a unique solution. We assume that the optimal mean transportation cost (see Definition 3.15) ce,∞ is finite and that λ•
is absolutely continuous. Also recall c∞ from Definition 3.15 which is bounded by ce,∞ and therefore also finite.

In this section, we show how equivariance naturally appears in the limit of optimal semicouplings on bounded sets.
In particular, we will prove Theorem 1.2 and Theorem 1.3. To this end, we additionally assume that G is amenable
and fix an exhausting Følner sequence (Fn)n∈N with id = F0 (see Definition 3.5 and Lemma 3.7). B0 denotes a
fundamental region and Bn the range of the action of Fn on B0, i.e. Bn = ⋃

g∈Fn
gB0 = FnB0. Then, the amenability

assumption implies by Proposition 3.6

|CFr �Fr |
|Fr | → 0 as r → ∞, (6.1)

for any finite set C ⊂ G. This of course implies for any g ∈ G

m(Br �gBr)

m(Br)
→ 0 as r → ∞.

6.1. Symmetrization and annealed limits

We want to construct the optimal semicoupling by approximation of optimal semicouplings on bounded sets. The
difficulty in this approximation lies in the estimation of the contribution of the fundamental regions gB0 to the trans-
portation cost of QgBr , i.e. what is the contribution of the transport into gB0 to Cost(QgBr )? How can the cost be
bounded in order to be able to conclude that the limiting measure still transports the right amount of mass into gB0?
The solution is to mix several optimal semicouplings and thereby get a symmetry which will be very useful (see proof
of Lemma 6.1(i)). One can also think of the mixing as an expectation of the random choice of increasing sequences
of sets hBr exhausting M . Moreover, the amenability will allow us to ensure that we do not add up too much mass in
the mixing procedure.

For each g ∈ G and r ∈ N, recall that QgBr denotes the minimizer of Cost among the semicouplings of λ• and
1gBr μ

• as constructed in Theorem 4.7. It inherits the equivariance from λ• and μ•, namely QgA(g·, g·, θgω) =
QA(·, ·,ω) (see Corollary 4.8). In particular, the stationarity of P implies (τh)∗QgBr

d= QhgBr . Put (cf. Figure 2)

Qr
g(dx,dy,dω) := 1

|Fr |
∑
h∈G

1gB0(y)QhBr (dx,dy,dω).
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Fig. 2. Schematic picture of the mixing procedure.

Note that the sum on the right hand side is effectively a finite sum because it only contributes nonzero terms if
gB0 ⊂ hBr , i.e. iff h ∈ gF−1

r .
The measure Qr

g defines a semicoupling between λ• and 1gB0μ
•. It is in general not optimal but does not depend

on any external randomness. Moreover, Qr
g shares the equivariance properties of the measures QhBr .

Lemma 6.1.

(i) For each r ∈ N and g ∈ G∫
M×gB0×Ω

c(x, y)Qr
g(dx,dy,dω) ≤ c∞.

(ii) The family (Qr
g)r∈N of probability measures on M × M × Ω is relatively compact in the weak topology.

(iii) There exist probability measures Q∞
g and a subsequence (rl)l∈N such that for all g ∈ G:

Qrl
g −→ Q∞

g weakly as l → ∞.

Proof. (i) Let us fix g ∈ G. Note that g ∈ hFr ⇔ h−1g ∈ Fr ⇔ gh−1g ∈ gFr . Hence, using the equivariance of QhBr ,
Corollary 4.8, and the invariance of c under isometries, in particular under the action of G, we obtain∫

M×gB0×Ω

c(x, y)Qr
g(dx,dy,dω)

= 1

|Fr |
∑

h:gh−1g∈gFr

∫
M×gB0×Ω

c(x, y)QhBr (dx,dy,dω)

= 1

|Fr |
∑

h:gh−1g∈gFr

∫
M×gh−1gB0×Ω

c(x, y)Qgh−1hBr
(dx,dy,dω)

= 1

|Fr |
∑

k∈gFr

∫
M×kB0×Ω

c(x, y)QgBr (dx,dy,dω)

= 1

|Fr |CgBr =: cr ≤ c∞,

by definition of c∞ (see Definition 3.15 and Lemma 3.13).
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(ii) In order to prove tightness of (Qr
g)r∈N, let (gB0)l denote the closed l-neighborhood of gB0 in M . Then,

Qr
g

(
�(gB0)l, gB0,Ω

) ≤ 1

ϑ(l)

∫
M×gB0×Ω

c(x, y)Qr
g(dx,dy,dω)

≤ 1

ϑ(l)
c∞.

Since ϑ(l) → ∞ as l → ∞ this proves tightness of the family (Qr
g)r∈N on M × M × Ω . (Recall that Ω was assumed

to be compact from the very beginning.)
(iii) Tightness yields the existence of Q∞

g and of a converging subsequence for each g ∈ G. A standard argument
(‘diagonal sequence’) then gives convergence for all g ∈ G along a common subsequence (G is countable as it is
finitely generated). �

Note that the measures Q∞
g inherit as weak limits the property Q∞

hg(h·, h·, θh·) = Q∞
g (·, ·, ·) from the measures

Qr
g (see also the proof of the equivariance property in Proposition 3.18). The next lemma allows us to control the

difference in the first marginals of Q∞
g and Q∞

h for g 
= h. This is the first point where we use amenability. Let S be a
(finite) generating set for G. We denote the Cayley graph with respect to S by Δ(G,S) and the associated graph/word
metric by dΔ(·, ·).

Lemma 6.2.

(i) For all l > 0 there exist numbers εr(l) with εr(l) → 0 as r → ∞ s.t. for all g,g′ ∈ G and all r ∈N

1

|Fr |
∑

h∈g′F−1
r

QhBr (A) ≤ 1

|Fr |
∑

h∈gF−1
r

QhBr (A) + εr

(
dΔ

(
g,g′)) · sup

h∈g′F−1
r

QhBr (A)

for any Borel set A ⊂ M × M × Ω .
(ii) For all g1, . . . , gn ∈ G, all r ∈ N and all Borel sets A ⊂ M,D ⊂ Ω

n∑
i=1

Qr
gi

(A,M,D) ≤
(

1 +
n∑

i=1

εr

(
dΔ(g1, gi)

)) · λ(D,A),

where λ(D,A) := ∫
D

∫
A

λω(dx)P(dω).

Proof. (i) Fix g,g′ ∈ G with dΔ(g,g′) = l. By Lemma 3.7 also (F−1
n )n∈N is a Følner sequence. Moreover,

{
h ∈ G: g,g′ ∈ hFr

} = {
gF−1

r

} ∩ {
g′F−1

r

}
.

Put

εr (l) = max
g:dΔ(id,g)=l

|gF−1
r �F−1

r |
|Fr | .

By the amenability assumption on G we have εr(l) → 0 as r → ∞ and therefore

|{h ∈ G: g,g′ ∈ hFr}|
|Fr | ≥ 1 − εr(l) → 1 as r → ∞.

This directly implies that for each Borel set A ⊂ M × M × Ω

1

|Fr |
∑

h∈g′F−1
r

QhBr (A) ≤ 1

|Fr |
∑

h∈gF−1
r

QhBr (A) + εr

(
dΔ

(
g,g′)) · sup

h∈g′F−1
r

QhBr (A).
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(ii) According to the previous part (i), for each Borel sets A ⊂ M,D ⊂ Ω

n∑
i=1

Qr
gi

(A,M,D) =
n∑

i=1

1

|Fr |
∑

h∈giF
−1
r

QhBr (A,giB0,D)

≤
n∑

i=1

(
1

|Fr |
∑

h∈g1F
−1
r

QhBr (A,giB0,D) + εr

(
dΔ(g1, gi)

) · sup
h∈giF

−1
r

QhBr (A,giB0,D)

)

≤
(

1 +
n∑

i=1

εr

(
dΔ(g1, gi)

))
λ(D,A).

�

Having these results at our hands we can argue as in [26] (Theorem 4.3 and Corollary 4.4) to get the following
results. We omit further details.

Theorem 6.3. The measure Q∞ := ∑
g∈G Q∞

g is an optimal semicoupling of λ• and μ•.

Corollary 6.4 (Theorem 1.2).

(i) For r → ∞, the sequence of measures Qr := ∑
g∈G Qr

g , r ∈ N, converges vaguely to the unique optimal semi-
coupling Q∞.

(ii) For each g ∈ G and r ∈ N put

Q̃r
g(dx,dy,dω) := 1

|Fr |
∑

h∈gF−1
r

QhBr (dx,dy,dω).

The sequence (Q̃r
g)r∈N converges vaguely to the unique optimal semicoupling Q∞.

In particular, Q∞ is equivariant. This shows that the requirement that optimal semicouplings need to be equivariant
is very natural and not random at all.

Corollary 6.5. Denote the set of all semicouplings of λ• and μ• by Πs . Then the following holds

inf
q•∈Πs

lim inf
r→∞

1

m(Br)
E

[∫
M×Br

c(x, y)q•(dx,dy)

]

= lim inf
r→∞ inf

q•∈Πs

1

m(Br)
E

[∫
M×Br

c(x, y)q•(dx,dy)

]
. (6.2)

In particular, we have

c∞ = inf
q•∈Πs

C
(
q•) = inf

q•∈Πes

C
(
q•) = ce,∞.

Proof. For any semicoupling q• we have due to the supremum in the definition of C(·) that

lim inf
r→∞

1

m(Br)
E

[∫
M×Br

c(x, y)q•(dx,dy)

]
≤ C

(
q•).

Hence, the left hand side in (6.2) is bounded from above by infq•∈Πs C(q•). However, we just constructed an equiv-
ariant semicoupling, the unique optimal semicoupling Q∞ which attains equality, i.e. with Q∞ = q•P

lim inf
r→∞

1

m(Br)
E

[∫
M×Br

c(x, y)q•(dx,dy)

]
= C

(
Q∞)

.

Hence, the left hand side in (6.2) equals infq•∈Πs C(q•).
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The right hand side equals lim infr→∞ cr which is bounded by c∞ = infq•∈Πs C(q•) by Lemma 3.13. By our
construction, the asymptotic transportation cost of Q∞ is bounded by the right hand side, i.e.

C
(
Q∞) ≤ lim inf

r→∞ cr

by Lemma 6.1. Hence, also the right hand side of (6.2) equals infq•∈Πs C(q•). Thus, we have equality. �

Remark 6.6.

(i) Because of the uniqueness of the optimal semicoupling the limit of the sequence Qr does not depend on the choice
of fundamental region. The approximating sequence (Qr)r∈N does of course depend on B0 and also the choice of
Følner sequence.

(ii) In the construction of the semicoupling Q∞ we only used finite transportation cost, invariance of QA in the sense

that (τh)∗QA
d= QhA and the amenability assumption on G. The only specific property of λ• and μ• that we used

is the uniqueness of the semicoupling on bounded sets which makes is easy to choose a good optimal semicoupling
QgBr . Hence, we can use the same algorithm to construct an optimal semicoupling between two arbitrary random
measures. In particular this shows, that c∞ = ce,∞ (see also Proposition 3.18).

Indeed, given two arbitrary equivariant measures ν• and μ• of unit respectively subunit intensity. For any r ∈N let
QBr = q•

Br
P be an optimal semicoupling between ν• and 1Br μ

•. In particular, we made some measurable choice of
optimal semicoupling for each ω (they do not have to be unique), e.g. like in Corollary 5.22 of [51]. Define QgBr via

q
θgω

gBr
(d(gx), d(gy)) := qω

Br
(dx,dy). Due to equivariance, this is again a measurable choice of optimal semicouplings.

Stationarity of P implies (τh)∗QBr

d= QhBr . Hence, by the same construction there is some optimal semicoupling Q∞
of ν• and μ• with cost bounded by c∞.

6.2. Quenched limits

According to Section 5, the unique optimal semicoupling between λ• and μ• can be represented on M × M × Ω as

Q∞(dx,dy,dω) = δT (x,ω)(dy)ρω(x)λω(dx)P(dω)

by means of a measurable map

T :M × Ω → M ∪ {ð},
and a density ρω defined uniquely almost everywhere (also recall Section 3.2 for the notion of cemetery point ð).
Similarly, for each g ∈ G and r ∈N, by Theorem 4.7, there exists a measurable map

Tg,r :M × Ω → M ∪ {ð}
and a density ρω

g,r such that the measure

QgBr (dx,dy,dω) = δTg,r (x,ω)(dy)ρω
g,rλ

ω(dx)P(dω)

on M × M × Ω is the unique optimal semicoupling of λ• and 1gBr μ
•.

Theorem 6.7 (Theorem 1.3). For every g ∈ G

Tg,r (x,ω) → T (x,ω) as r → ∞ locally in λ• ⊗ P-measure.

The claim relies on the following two lemmas. For the first one we use amenability of G once more. The second
one is a slight modification (and extension) of a result in [1].

Lemma 6.8.

(i) Fix ω ∈ Ω and take two disjoint bounded Borel sets A,B ⊂ M . Let qω
A = (id, T ω

A )∗(ρω
Aλω) be the optimal

semicoupling between λω and 1Aμω. Similarly, let qω
B and qω

A∪B be the unique optimal semicouplings between
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λω and 1Bμω respectively 1A∪Bμω with transport maps T ω
B and T ω

A∪B and densities ρω
B and ρω

A∪B . Then, it holds
that

ρω
A∪B(x) ≥ max

{
ρω

A(x), ρω
B(x)

}
λω a.s.

(ii) For any g ∈ G and r ∈ N we have ρω
g,r (x) ≤ ρω(x)(λ• ⊗ P) a.s.

(iii) For any g ∈ G we have limr→∞ ρω
g,r (x) ↗ ρω(x)P a.s. locally in λω.

Proof. (i) Firstly, note that if {ρω
A > 0} ∩ {ρω

B > 0} = ∅ we have ρω
A∪B = ρω

A +ρω
B . Because of the symmetry in A and

B it is sufficient to prove that ρω
A∪B ≥ ρω

B . The proof is rather technical and involves an iterative choice of possibly
different densities.

For simplicity of notation we will suppress ω and write f = ρB and h = ρA∪B and T = TB,S = TA∪B . We will
show the claim by contradiction. Assume there is a set D of positive λ measure such that f (x) > h(x) on D. Put
f+ := (f − h)+ and μ1 := T∗(f+λ). Let h1 ≤ h be such that S∗(h1λ) = μ1, that is h1 is a subdensity of h such that
T∗(f+λ) = S∗(h1λ) (for finding this density we can use disintegration as in the proof of Proposition 5.7).

If 1{h1>0}h > f on some set D1 of positive λ measure, we are done. Indeed, as f is the unique Cost minimizing
choice for the semicoupling between λ and 1Bμ the transport S∗(1D1h1λ) =: μ̃1 must be more expensive than the
respective transport T∗(1D̃1

f+λ) = μ̃1 for some suitable set D̃1 ⊂ {f > h}. Hence, qA∪B cannot be minimizing and
therefore not optimal, a contradiction.

If 1{h1>0}h ≤ f we can assume wlog that T∗(h1λ) = μ2 and μ1 are singular to each other. Indeed, if they are not
singular we can choose a different h1 because 1Bμ has to get its mass from somewhere. To be more precise, if h̃ ≤ h1
is such that T∗(h̃λ) ≤ μ1 we have T∗((f+ + h̃)λ) > μ1. Therefore, there must be some density h′ such that h′ +h1 ≤ h

and S∗((h′ + h1)λ) = T∗((f+ + h̃)λ). Because, f+ > 0 on some set of positive measure and T∗(f λ) ≤ S∗(hλ), there
must be such an h1 as claimed.

Take a density h2 ≤ h such that S∗(h2λ) = μ2. If 1{h2>0}h > f on some set D2 of positive λ measure, we are done.
Indeed, the optimality of qB implies that the choice of f+ and h1 is cheaper than the choice of h1 and h2 for the
transport into μ1 + μ2 (or maybe subdensities of these).

If 1{h2>0}h ≤ f and {h2 > 0} ∩ {f+ > 0} has positive λ measure, we get a contradiction of optimality of qA∪B by
cyclical monotonicity. Otherwise, we can again assume that T∗(h2λ) =: μ3 and μ2 are singular to each other. Hence,
we can take a density h3 ≤ h such that S∗(h3λ) = μ3.

Proceeding in this manner, because f+λ(M) = hiλ(M) > 0 for all i and by the finiteness of qB(M,M) one of the
following two alternatives must happen

• there is j such that 1{hj >0}h > f on some set of positive λ measure,
• there are j 
= i such that {hj > 0} ∩ {hi > 0} on some set of positive λ measure with f+ = h0.

Both cases lead to a contradiction by using the optimality of qB , either by producing a cheaper semicoupling (in the
first case) or by arguing via cyclical monotonicity (in the second case).

(ii) Fix ω,g and r . Denote the density of the first marginal of Q̃l
g (cf. Corollary 6.4) by ζω

g,l . It is a convex

combination of ρω
h,l with h ∈ gF−1

l . For h ∈ G with gFr ⊂ hFr+n we have by part (i) that ρω
g,r ≤ ρω

h,r+n. Therefore,
the contribution of ρω

g,r (x) to ζω
g,r+n(x) is at least 1/|Fr+n| times the cardinality of {h: gFr ⊂ hFr+n}. Then it holds

that

∣∣{h: gFr ⊂ hFr+n}
∣∣ = ∣∣{h: Fr ⊂ hFr+n}

∣∣ =
∣∣∣∣ ⋂
f ∈Fr

{
f F−1

r+n

}∣∣∣∣.
Because∣∣∣∣

( ⋂
f ∈Fr

{
f F−1

r+n

})�F−1
r+n

∣∣∣∣ ≤
∑
f ∈Fr

∣∣{f F−1
r+n

}�F−1
r+n

∣∣,
by amenability, we can deduce that∣∣{h: gFr ⊂ hFr+n}

∣∣/|Fr+n| → 1 as n → ∞.
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Fix ε > 0. If ρω
g,r > ε + ρω on some positive (λ• ⊗P)-set, we have that ζω

g,r+n(x) > ρω(x)+ ε/2 on some positive

(λ• ⊗ P)-set for all n such that |{h:gFr⊂hFr+n}|
|Fn+r | ≥ 1 − ε/2, because ρω

g,r ≤ 1 and thus ρω ≤ 1 − ε. Denote this set by

A, so A ⊂ M × Ω . Then, we have Q̃r+n
g (A × M) > Q∞(A × M) + ε/2 for all n big enough. However, this is a

contradiction to the vague convergence of Q̃r
g to Q∞ which was shown in Corollary 6.4.

(iii) The last part allows to interpret ρω
g,r as a density of (ρωλω) instead of as a density of λω. We will adopt this

point of view and show that ρω
g,r converges to 1 P a.s. locally in λω.

Assume that ρω
g,r (x) ≤ γ < 1 for all r ∈ N. Moreover, assume that there is k ∈ G and s ∈ N such that ρω

k,s(x) > γ .
By Lemma 3.7 there is a t ∈ N such that gFt ⊃ kFs . The first part of the lemma then implies that ρω

g,t (x) ≥ ρω
k,s(x) >

γ which contradicts the assumption of ρω
g,r (x) ≤ γ . Hence, if we have ρω

g,r (x) ≤ γ < 1 for all r ∈ N on a set of
positive (λ• ⊗ P) measure we must have ρω

k,s(x) ≤ γ for all k ∈ G and s ∈ N on this set. Denote this set again by A,
A ⊂ M × Ω . As ζω

g,r is a convex combination of the densities ρω
h,r it must also be bounded away from 1 by γ on the

set A. However, this is again a contradiction to the vague convergence of Q̃r
g to Q∞ shown in Corollary 6.4. �

Lemma 6.9. Let X,Y be locally compact separable spaces, θ a Radon measure on X and ρ a metric on Y compatible
with the topology.

(i) For all n ∈ N let Tn,T :X → Y be Borel measurable maps. Put Qn(dx,dy) := δTn(x)(dy)θ(dx) and Q(dx,dy) :=
δT (x)(dy)θ(dx). Then,

Tn → T locally in measure on X ⇐⇒ Qn → Q vaguely in M(X × Y).

(ii) More generally, let T and Q be as before whereas

Qn(dx,dy) :=
∫

X′
δTn(x,x′)(dy)θ ′(dx′)θ(dx)

for some probability space (X′,A′, θ ′) and suitable measurable maps Tn :X × X′ → Y . Then

Qn → Q vaguely in M(X × Y) �⇒ Tn

(
x, x′) → T (x) locally in measure on X × X′.

For a proof we refer to Section 4 of [26].

Proof Theorem 6.7. Firstly, we will show that the claim holds for ‘sufficiently many’ g ∈ G. We want to apply the
previous lemma. Recall from Corollary 6.4 that

Q̃r
g → Q∞ vaguely on M × M × Ω,

where

Q∞ = δT · ρλ•
P and Q̃r

g = 1

|Fr |
∑

h∈gF−1
r

δTh,r
· ρh,rλ

•
P,

with transport maps T ,Th,r :M ×Ω → M ∪{ð} and densities ρ,ρh,r :M ×Ω →R+. Lemma 6.8 allows us to interpret
ρh,r as density of the measure ρλ•. Fix k ∈ G and let θ ′

r be the uniform measure on kFr . Take θ = ρλ• ⊗ P,X =
M ×Ω and Y = M ∪{ð}. For any compact set K ⊂ M ×Ω and ε > 0, a slight variant of the second part of Lemma 6.9
implies

lim
r→∞

(
θ ⊗ θ ′

r

)({
(x,ω,h) ∈ K × G: ρω

h,r (x) · d(
Th,r (x,ω), T (x,ω)

) ≥ ε
}) = 0. (6.3)

Let H ⊂ G be those h for which

lim
r→∞ θ

({
(x,ω) ∈ K: ρω

h,r (x)d
(
Th,r (x,ω), T (x,ω)

) ≥ ε
})

> 0.
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Because we know that (6.3) holds, we must have limr→∞ θ ′
r (H) = 0. Hence, there are countably many g ∈ G such

that

lim
r→∞ θ

({
(x,ω) ∈ K: d

(
Tg,r (x,ω), T (x,ω)

) ≥ ε
}) = 0,

where we used that ρω
g,r ↗ 1 P a.s. locally in λω, according to Lemma 6.8. This shows that the theorem holds for

those g.
Pick one such g ∈ G. Then the first part of the previous lemma implies

QgBr → Q∞ vaguely on M × M × Ω.

This in turn implies that for any h ∈ G we have (τh)∗QgBr → (τh)∗Q∞ (d)= Q∞ by invariance of Q∞. Moreover, by

Corollary 4.8 we have (τh)∗QgBr

(d)= QhgBr . This means, that for any h ∈ G we have

QhgBr → Q∞ vaguely on M × M × Ω.

Applying once more the first part of the previous lemma proves the theorem. �

Corollary 6.10. There is a measurable map Ψ :M(M) ×M(M) → M(M × M) s.t. qω := Ψ (λω,μω) denotes the
unique optimal semicoupling between λω and μω. In particular the optimal semicoupling is a factor.

Proof. We showed that the optimal semicoupling Q∞ can be constructed as the unique limit point of a sequence
of deterministic functions of λ• and μ•. Hence, the map ω �→ qω is measurable with respect to the sigma algebra
generated by λ• and μ•. Thus, there is a measurable map Ψ such that q• = Ψ (λ•,μ•). �

6.2.1. Semicouplings of λ• and a point process
If μ• is known to be a point process the above convergence result can be significantly improved. Just as in Theorem 4.8
and Corollary 4.9 of [26] we get

Theorem 6.11. For any g ∈ G and every bounded Borel set A ⊂ M

lim
r→∞

(
λ• ⊗ P

)({
(x,ω) ∈ A × Ω: Tg,r (x,ω) 
= T (x,ω)

}) = 0.

Corollary 6.12. There exists a subsequence (rl)l such that

Tg,rl (x,ω) → T (x,ω) as l → ∞
for almost every x ∈ M , ω ∈ Ω and every g ∈ G. Indeed, the sequence (Tg,rl )l is finally stationary. That is, there exists
a random variable lg :M × Ω → N such that almost surely

Tg,rl (x,ω) = T (x,ω) for all l ≥ lg(x,ω).

7. The other semicouplings

In the previous sections we considered semicouplings between two equivariant random measures λ• and μ• with
intensities 1 and β ≤ 1 respectively. In this section we remark on the case that μ• has intensity 1 < β ≤ ∞. Then, q•
is a semicoupling between λ• and μ• iff for all ω ∈ Ω

(π1)∗qω = λω and (π2)∗qω ≤ μω.

This will complete the picture of semicouplings with one marginal being absolutely continuous. In the case β < ∞ we
will only prove the key technical lemma, existence and uniqueness of optimal semicouplings on bounded sets. From
that result one can deduce following the reasoning of the previous sections the respective results on existence and
uniqueness for optimal semicouplings. We will not give the proofs because they are completely the same or become
easier as we do not have to worry about densities.
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Lemma 7.1. Let ρ ∈ L1(M,m) be a nonnegative density. Let μ be an arbitrary (not necessarily Radon) measure
on M with μ(M) ≥ (ρ · m)(M). Then, there is a unique semicoupling q between (ρ · m) and μ minimizing Cost(·).
Moreover, q = (id, T )∗(ρ · m) for some measurable cyclically monotone map T .

Proof. The existence of one Cost minimizing semicoupling q goes along the same lines as for example in Proposi-
tion 4.2. Let q1 be one such minimizer. As q1 is minimizing it has to be an optimal coupling between its marginals.
Therefore, it is induced by a map, that is q1 = (id, T1)∗(ρ · m). Let q2 = (id, T2)∗(ρ · m) be another minimizer. Then,
q3 = 1

2 (q1 + q2) is minimizing as well. Hence, q3 = (id, T3)∗(ρ · m). However, just as in the proof of Theorem 5.9
this implies T1 = T2 (ρm) almost everywhere and therefore q1 = q2. �

In the case β = ∞, similar results can be shown if we take μ = ∞ · μ̃ for a simple point process μ̃ with finite
intensity. For instance, the optimal semicoupling between m and μ can be shown to be a Monge solution which
corresponds to the Voronoi tessellation with respect to μ̃.

8. Sufficient condition for ce,∞ < ∞ and stability

In this section, we show a sufficient condition ensuring the finiteness of the optimal mean transportation cost between
two equivariant random measures λ• and μ•. The idea is to reduce this question to the simpler transportation problem
between m and λ• (resp. μ•) by the introduction of a suitable metric.

For two equivariant random measure λ•,μ• with intensity one and c(x, y) = dp(x, y) with p ∈ [1,∞) write

W
p
p

(
λ•,μ•) = inf

q•∈Πs(λ•,μ•)
C
(
q•) = inf

q•∈Πs(λ•,μ•)
E

[∫
M×B0

dp(x, y)q•(dx,dy)

]
.

We want to establish a triangle inequality for Wp and therefore restrict to Lp cost functions. We could also extend this
to more general cost functions by using Orlicz type norms as developed in [48]. However, to keep notations simple
we stick to this case.

In this section, we will assume that all pairs of random measures considered will be equivariant and modeled on the
same probability space (Ω,A,P). As usual P is assumed to be stationary. Moreover, we will always assume without
explicitly mentioning it that the mean transportation cost is finite.

Recall the disintegration Theorem 3.9. This will allow us to use the gluing lemma.

Proposition 8.1. Let μ•, λ•, ξ• be three equivariant random measures of unit intensity.

(i) Wp(λ•,μ•) = 0 ⇔ λω = μω P-a.s.
(ii) Wp(λ•,μ•) =Wp(μ•, λ•).

(iii) Wp(λ•,μ•) ≤ Wp(λ•, ξ•) +Wp(ξ•,μ•).

Proof. (i) Wp(λ•,μ•) = 0 iff there is a coupling of λ• and μ• which is entirely concentrated on the diagonal almost
surely, that is iff λω = μω P-almost surely.

(ii) Let q• be an optimal coupling between λ• and μ•. For g,h ∈ G put

f (g,h) = E

[∫
gB0×hB0

dp(x, y)q•(dx,dy)

]
.

By equivariance and stationarity, we have f (g,h) = f (kg, kh) for all k ∈ G. Hence, we can apply the mass transport
principle, Lemma 3.8.

∑
h∈G

f (g,h) = E

[∫
gB0×M

dp(x, y)q•(dx,dy)

]

=
∑
g∈G

f (g,h) = E

[∫
M×hB0

dp(x, y)q•(dx,dy)

]
.
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This proves the symmetry.
(iii) The random measures are random variables on some Polish space. Therefore, we can use the gluing lemma

(cf. [16] or [51], Chapter 1) to construct an equivariant random measure q• on M × M × M such that

(π1,2)∗q• ∈ Πopt
(
λ•,μ•) and (π2,3)∗q• ∈ Πopt

(
μ•, ξ•),

where Πopt(λ
•,μ•) denotes the set of all optimal couplings between λ• and μ•. q• is equivariant as the optimal

couplings are equivariant and q• is glued together along the common marginal of these two couplings.
To be more precise let q•

1 ∈ Πopt(λ
•,μ•) and q•

2 ∈ Πopt(μ
•, ξ•). Then, consider 1M×gB0×Ωq•

1 and 1gB0×M×Ωq•
2

to produce with the usual gluing lemma a measure q•
g on M ×M ×M ×Ω with the desired marginals on M × gB0 ×

M × Ω . As all these sets are disjoint we can add up the different q•
g yielding q• = ∑

g∈G q•
g a measure with the

desired properties.
For g,h ∈ G put

e(g,h) = E

[∫
M×gB0×hB0

dp(x, z)q•(dx,dy,dz)

]
.

By equivariance of q•, we have e(kg, kh) = e(g,h) for all k ∈ G. By the mass transport principle, Lemma 3.8, this
implies

E

[∫
M×B0×M

dp(x, z)q•(dx,dy,dz)

]
= E

[∫
M×M×B0

dp(x, z)q•(dx,dy,dz)

]
.

Then we can conclude, using the Minkowski inequality

Wp

(
λ•, ξ•) ≤ E

[∫
M×M×B0

dp(x, z)q•(dx,dy,dz)

]1/p

= E

[∫
M×B0×M

dp(x, z)q•(dx,dy,dz)

]1/p

≤ E

[∫
M×B0×M

dp(x, y)q•(dx,dy,dz)

]1/p

+E

[∫
M×B0×M

dp(y, z)q•(dx,dy,dz)

]1/p

= Wp

(
λ•,μ•) +Wp

(
μ•, ξ•).

In the last step we used the symmetry shown in part (ii). �

Remark 8.2. Note that the first two properties also hold for general cost functions and general semicouplings. The
assumption of equal intensity is not needed for these statements.

Denote the set of all equivariant random measures μ• with unit intensity such that Wp(m,μ•) < ∞ by Pp . To
check that Wp(λ•,μ•) < ∞ it is sufficient to show that both measures lie in Pp . Techniques implying λ• ∈Pp , based
on moment estimates of the random variables λ•(Bn), were developed in [26] for the case of the Poisson process. But
they can be used in a much wider setting.

Finally, it might be easier to derive estimates for Wp(μ•
n,m) for some approximating sequence (μ•

n)n∈N of μ•. To
this end, we need to understand the topology induced by Wp .

Proposition 8.3. Let (μ•
n)n∈N,μ• ∈ Pp be random measures of intensity one. Let q•

n denote the optimal coupling
between m and μ•

n and q• the optimal coupling between m and μ•. Consider the following statements.

(i) Wp(μ•
n,μ

•) → 0 as n → ∞.
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(ii) μ•
nP → μ•P vaguely and Wp(μ•

n,m) →Wp(μ•,m) as n → ∞.
(iii) q•

nP → q•P vaguely and Wp(μ•
n,m) → Wp(μ•,m) as n → ∞.

(iv) q•
nP → q•P vaguely and

lim
R→∞ lim sup

n→∞
E

[∫
(�(B0)R)×B0

dp(x, y)q•
n(dx,dy)

]
= 0,

where (B0)R denotes the R-neighbourhood of B0.

Then (i) implies (ii). (iii) and (iv) are equivalent and either of them implies (i).

Proof. (i) ⇒ (ii): For any f ∈ Cc(M × Ω) we have to show that limn→∞ E[μn(f ) − μ(f )] = 0. To this end, fix
f ∈ Cc(M × Ω) such that supp(f ) ⊂ K × Ω for some compact set K . f is uniformly continuous. Let η > 0 be
arbitrary and set ε = η/(2m(K)). Then, there is δ such that d(x, y) ≤ δ implies d(f (x,ω),f (y,ω)) ≤ ε. Put A =
{(x, y): d(x, y) ≥ δ} ∩ M × K and denote by κ•

n an optimal coupling between μ•
n and μ•. By assumption, there is

N ∈ N such that for all n > N we have W
p
p(μ•

n,μ
•) ≤ ηδp

4‖f ‖∞m(k)
. Then, we can estimate for n > N

∣∣E[
μω

n (f ) − μω(f )
]∣∣ ≤

∣∣∣∣E
[∫

M×M

(
f (x,ω) − f (y,ω)

)
κω
n (dx,dy)

]∣∣∣∣
≤ ε · m(K) +

∣∣∣∣E
[∫

A

(
f (x,ω) − f (y,ω)

)
κω
n (dx,dy)

]∣∣∣∣
≤ η

2
+ 2‖f ‖∞E

[
κ•
n(A)

]
≤ η

2
+ 2‖f ‖∞

1

δp
W

p
p

(
μ•

n,μ
•) · m(K)

≤ η

2
+ η

2
= η.

The second assertion in (ii) is a direct consequence of the triangle inequality:

Wp

(
μ•

n,m
) ≤Wp

(
μ•

n,μ
•) +Wp

(
μ•,m

)
and

Wp

(
μ•,m

) ≤Wp

(
μ•

n,μ
•) +Wp

(
μ•

n,m
)
.

Taking limits yields the claim.
(iii) ⇔ (iv): By the existence and uniqueness result we know that qω

n (dx,dy) = δT ω
n (x)(dy)m(dx) and qω(dx,dy) =

δT ω(x)(dy)m(dx). In particular, we have that μω
n (dx)P(dω) = (T ω

n )∗m(dx)P(dω). By Lemma 6.9 we know that the
vague convergence of q•

nP → q•P implies that Tn → T locally in m⊗P measure. This in turn implies the convergence
of f ◦ (id, Tn) → f ◦ (id, T ) in m⊗P measure for any continuous and compactly supported function f :M ×M →R.
Then, it follows that

E

∫
f

(
x,Tn(x)

)
m(dx) → E

∫
f

(
x,T (x)

)
m(dx).

Let ck(x, y) be a continuous compactly supported function such that for any (x, y) ∈ (B0)k−1 ×B0 we have dp(x, y) =
ck(x, y), for any x ∈ �(B0)k we have ck(x, y) = 0 and ck(x, y) ≤ dp(x, y) for all (x, y) ∈ M × M . Then, we have

lim sup
n→∞

E

[∫
�((B0)R)×B0

dp(x, y)q•
n(dx,dy)

]

≤ lim sup
n→∞

(
E

[∫
M×B0

dp(x, y)q•
n(dx,dy)

]
−E

[∫
M×B0

cR(x, y)q•
n(dx,dy)

])
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= E

[∫
M×B0

dp(x, y)q•(dx,dy)

]
−E

[∫
M×B0

cR(x, y)q•(dx,dy)

]

≤ E

[∫
�((B0)R−1×B0

dp(x, y)q•(dx,dy)

]
.

Taking the limit of R → ∞ proves the implication (iii) ⇒ (iv). The other direction is similar.
(iv) ⇒ (i): We will show that Wp(μ•

n,μ
•) → 0 by constructing a not optimal coupling between μ•

n and μ• whose
transportation cost converges to zero. Let Tn,T be the transportation maps from the previous steps. Put Qn(dx,dy) :=
(Tn, T )∗m. This is an equivariant coupling of μ•

n and μ• because the maps Tn,T are equivariant in the sense that (see
also Example 3.10)

T θgω(x) = gT ω
(
g−1x

)
.

The transportation cost are given by

C(Qn) = E

[∫
B0×M

dp(x, y)Qn(dx,dy)

]
= E

[∫
B0

dp
(
Tn(x), T (x)

)
m(dx)

]
.

We divide the integral into four parts. Put AR = {x: d(T (x), x) ≥ R} and similarly AR
n = {x: d(Tn(x), x) ≥ R}. The

four parts will be the integrals over B0 ∩ �aAR
n ∩ �bAR with a, b ∈ {0,1} and �0A = A. We estimate the different

integrals separately.

E

[∫
B0∩�AR

n ∩�AR

dp
(
Tn(x), T (x)

)
m(dx)

]
→ 0,

by a similar argument as in the previous step due to the convergence of Tn → T locally in m ⊗ P measure and the
boundedness of the integrand.

E

[∫
B0∩AR

n ∩AR

dp
(
Tn(x), T (x)

)
m(dx)

]

≤ 2p
E

[∫
B0∩AR

dp
(
x,T (x)

)
m(dx)

]
+ 2p

E

[∫
B0∩AR

n

dp
(
x,Tn(x)

)
m(dx)

]
.

If d(x, y) ≤ R,d(x, z) ≥ R and d(y, z) ≤ d(x, z) + R + a for some constant a (= diam(B0)), there is a constant C1,
e.g. C1 = 2 + diam(B0), such that d(y, z) ≤ C1d(x, z) (because d(x, z) + R + a ≤ (2 + a)d(x, z)). This allows to
estimate with (x = x,T (x) = z,Tn(x) = y)

E

[∫
B0∩�AR

n ∩AR

dp
(
Tn(x), T (x)

)
m(dx)

]
≤ C

p

1 E

[∫
B0∩AR

dp
(
x,T (x)

)
m(dx)

]
.

Similarly

E

[∫
B0∩AR

n ∩�AR

dp
(
Tn(x), T (x)

)
m(dx)

]
≤ C

p

1 E

[∫
B0∩AR

n

dp
(
x,Tn(x)

)
m(dx)

]
.

This finally gives

lim sup
n→∞

E

[∫
B0×M

dp(x, y)Qn(dx,dy)

]

≤ lim
R→∞ lim sup

n→∞

(
2p

E

[∫
B0∩AR

dp
(
x,T (x)

)
m(dx)

]
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+ 2p
E

[∫
B0∩AR

n

dp
(
x,Tn(x)

)
m(dx)

]
+ C

p

1 E

[∫
B0∩AR

dp
(
x,T (x)

)
m(dx)

]

+ C
p

1 E

[∫
B0∩AR

n

dp
(
x,Tn(x)

)
m(dx)

])

= 0,

by assumption. �

Remark 8.4. For an equivalence of all statements we would need that (ii) implies (iii). In the classical theory this
is precisely the stability result (Theorem 5.20 in [51]). This result is proven by using the characterization of opti-
mal transports by cyclically monotone supports. However, as mentioned in the discussion on local optimality (see
Remark 5.4) a cyclically monotone support is not sufficient for optimality in this case.

We do not have real stability in general but we get at least close to it.

Proposition 8.5. Let (λ•
n)n∈N and (μ•

n)n∈N be two sequences of equivariant random measures. Let q•
n be the

unique optimal coupling between λ•
n and μ•

n. Assume that λ•
nP → λ•P vaguely, μ•

nP → μ•P vaguely and
supn C(q•

n) ≤ c < ∞. Then, there is an equivariant coupling q• of λ• and μ• and a subsequence (q•
nk

)k∈N such
that q•

nk
P→ q•P vaguely, the support of q• is cyclically monotone and

C
(
q•) ≤ lim inf

n→∞ C
(
q•
n

)
.

In particular, if

lim
n→∞C

(
q•
n

) = inf
q̃•∈Πes(λ•,μ•)

C
(
q̃•)

then q• is the/an optimal coupling between λ• and μ• and q•
nP → q•P vaguely.

The proof is basically the same as for Proposition 3.18. Hence, we omit the details.

Remark 8.6. The last proposition also holds if we consider semicouplings instead of couplings (see Proposition 3.18).

Example 8.7 (Wiener mosaic). Let μ•
0 be a Poisson point process of intensity one on R3. Let each atom of μ0

evolve according to independent Brownian motions for some time t. The resulting discrete random measure is again a
Poisson point process, denoted by μ•

t (e.g. see page 404 of [15]). Consider the transport problem between the Lebesgue
measure L and μ•

t with cost function c(x, y) = |x − y|2. Let q•
t be the unique optimal coupling between L and μ•

t .
Then, C(q•

t ) = W2(L,μ•
t ) = W2(L,μ•

s ) for any s ∈ R as μ•
s and μ•

t are both Poisson point processes of intensity
one. Moreover, we clearly have μ•

sP → μ•
t P vaguely as s → t and therefore q•

s P → q•
t P vaguely. By Lemma 6.9, this

implies the convergence of the transport maps Ts → Tt locally in L⊗P measure. In particular, we get a continuously
moving mosaic.
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