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Abstract. We study the geometry of a random unicellular map which is uniformly distributed on the set of all unicellular maps
whose genus size is proportional to the number of edges. We prove that the distance between two uniformly selected vertices of
such a map is of order logn and the diameter is also of order logn with high probability. We further prove a quantitative version of
the result that the map is locally planar with high probability. The main ingredient of the proofs is an exploration procedure which
uses a bijection due to Chapuy, Feray and Fusy (J. Combin. Theory Ser. A 120 (2013) 2064–2092).

Résumé. Nous étudions la géometrie d’une carte aléatoire unicellulaire qui est distribuée uniformement sur l’ensemble de toutes
les cartes unicellulaires dont le genre est proportionnel au nombre des arrêtes. Nous prouvons que la distance entre deux sommets
choisis uniformement d’une telle carte est de l’ordre logn et le diamètre est aussi de l’ordre logn avec une forte probabilité. Nous
prouvons aussi une version quantitative du résultat que la carte est localement planaire avec une forte probabilité. L’ingrédient
principal de la preuve est une procédure d’exploration qui utilise une bijection due au Chapuy, Féray et Fusy (J. Combin. Theory
Ser. A 120 (2013) 2064–2092).
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1. Introduction

A map is an embedding of a finite connected graph on a compact orientable surface viewed up to orientation preserving
homeomorphisms such that the complement of the embedding is an union of disjoint topological discs. Loops and
multiple edges are allowed and our maps are also rooted, that is, an oriented edge is specified as the root. The connected
components of the complement are called faces. The genus of a map is the genus of the surface on which it is
embedded. If a map has a single face it is called a unicellular map (see Figure 1). On a genus 0 surface, that is, on
the sphere, unicellular maps are classically known as plane (embedded) trees. Thus unicellular maps can be viewed as
generalization of a plane tree on a higher genus surface.

Suppose v is the number of vertices in a unicellular map of genus g with n edges. Then Euler’s formula yields

v − n = 1 − 2g. (1.1)

Observe from Equation (1.1) that the genus of a unicellular map with n edges can be at most n/2. We are concerned
in this paper with unicellular maps whose genus grows like θn for some constant 0 < θ < 1/2. Specifically, we are
interested the geometry of a typical element among such maps as n becomes large.

Recall that Ug,n denotes the set of unicellular maps of genus g with n edges and let Ug,n denote a uniformly picked
element from Ug,n for integers g ≥ 0 and n ≥ 1. For a graph G, let dG(·, ·) denote its graph distance metric. Our
first main result shows that the distance between two uniformly and independently picked vertices from Ug,n is of
logarithmic order if g grows like θn for some constant 0 < θ < 1/2.
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Fig. 1. On the left: a unicellular map of genus 2. On the right: its underlying graph.

Theorem 1.1. Let {gl, nl}l be a sequence in N
2 such that {gl, nl} → {∞,∞} and gl/nl → θ for some constant

0 < θ < 1/2. Suppose V1 and V2 are two uniformly and independently picked vertices from Ugl,nl
. Then there exists

constants 0 < ε < C (depending only on θ ) such that

(i) P(dUgl ,nl (V1,V2) > ε lognl) → 1 as l → ∞,
(ii) P(dUgl ,nl (V1,V2) > C lognl) < c(nl)

−3 for some c > 0.

We remark here that in the course of the proof of part (i) of Theorem 1.1, a polynomial lower bound on the rate of
convergence will be obtained. But since it is far from being sharp and is not much more enlightening, we exclude it
from the statement of the theorem. For part (ii) however, we do provide an upper bound on the rate. Notice that part
(ii) enables us to immediately conclude that the diameter of Ugl,nl

is also of order logn with high probability. For any
finite map G, let diam(G) denote the diameter of its underlying graph.

Corollary 1.2. Let {gl, nl}l be a sequence in N
2 such that {gl, nl} → {∞,∞} and gl/nl → θ for some constant

0 < θ < 1/2. Then there exists constants ε > 0,C > 0 such that

P
(
ε logn < diam(Ugl,nl

) < C logn
) → 1

as n → ∞.

Proof. The existence of ε > 0 such that P(diam(Ugl,nl
) > ε logn) → 1 follows directly from Theorem 1.1 part (i).

For the other direction, pick the same constant C as in Theorem 1.1. Let N be the number of pairs of vertices (v,w) in
Ugl,nl

where the distance between them is least C logn. From part (ii) of Theorem 1.1, E(N) < cn−1
l for some c > 0.

Hence EN converges to 0 as l → ∞. Consequently, P(N > 0) also converges to 0 which completes the proof. �

If the genus is fixed to be 0, that is in the case of plane trees, the geometry is well understood (see [26] for
a nice exposition on this topic). In particular, it can be shown that the typical distance between two uniformly and
independently picked vertices of a uniform random plane tree with n edges is of order

√
n. The diameter of such plane

trees is also of order
√

n. These variables when properly rescaled, converge in distribution to appropriate functionals
of the Brownian excursion. This characterization stems from the fact that a plane tree can be viewed as a metric space
and the metric if rescaled by

√
n (up to constants) converges in the Gromov–Hausdorff topology (see [20] for precise

definitions) to the Brownian continuum random tree (see [2] for more on this). The Benjamini–Schramm limit in
the local topology (see [6,9] for definitions), of the plane tree as the number of edges grow to infinity is also well
understood: the limit is a tree with an infinite spine with critical Galton–Watson trees of geometric(1/2) offspring
distribution attached on both sides (see [23] for details).

Thus Theorem 1.1 depicts that the picture is starkly different if the genus of unicellular maps grow linearly in the
number of vertices. The main idea behind the proof of Theorem 1.1 is that locally, Ug,n behaves like a supercritical
Galton–Watson tree, hence the logarithmic order. We believe that the quantity dUgl ,nl (V1,V2) of Theorem 1.1 when
rescaled by logn should converge to a deterministic constant. Further, we also believe that the diameter of Ugl,nl

when
rescaled by logn should also converge to another deterministic constant. This constant obtained from the rescaled
limit of the diameter should be different from the constant obtained as a rescaled limit of typical distances. The
heuristic behind this extra length of the diameter is the existence of large “bushes” of order logn on the scheme of
the unicellular map (scheme of a unicellular map is obtained by iteratively deleting all the leaves and then erasing the
degree 2 vertices of the map,) a behaviour reminiscent of Erdos–Renyi random graphs (see [13] for more on schemes).
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It is worth mentioning here that unicellular maps have appeared frequently in the field of combinatorics in the
past few decades. It is related to representation theory of symmetric group, permutation factorization, matrix integrals
computation and also the general theory of enumeration of maps. See the introduction section of [10,13] for a nice
overview and see [25] for connections to other areas of mathematics and references therein.

Recall that a quadrangulation (resp. triangulation) is a map where each face has degree 4 (resp. 3). It has been
known for some time that distributional limits in the local topology of rooted maps (see [9] for definitions) of uniform
triangulations/quadrangulations of the sphere exists and the limiting measure is popularly known as uniform infinite
planar triangulation/quadrangulation or UIPT/Q in short (see [3,6,24]). Our interest and main motivation for this work
is creating hyperbolic analogues of UIPT/Q. It is believed that uniform triangulations/quadrangulations of a surface
whose genus is proportional to the number of faces of the map converges in distribution to a hyperbolic analogue of the
UIPT/Q if the distributional limit is planar, that is, there are no handles in the limit. A plausible construction of such
a limiting hyperbolic random quadrangulation, known as stochastic hyperbolic infinite quadrangulation or SHIQ, can
be found in [8]. A half planar version of such hyperbolic maps also arise in [5]. It is worth mentioning here that such
limits are expected to hold for any reasonable class of maps and there is nothing special about quadrangulations or
triangulations. As is the general strategy in this area, we attempt to attack the problem for quadrangulations using the
bijections between labelled unicellular maps and quadrangulations of the same genus (see [15]). Understanding high
genus random unicellular maps can be the first step in this direction. Firstly, understanding whether Ug,n is locally
planar with high probability is a question of interest here.

Tools developed for proving Theorem 1.1 also helps us conclude that locally Ug,n is in fact planar with high
probability which is our next main result. In fact, we are also able to quantify up to what distance from the root does
Ug,n remain planar. This will be made precise in the next theorem. A natural question at this point is what is the planar
distributional limit of Ug,n in the local topology. This is investigated in [4].

We now introduce the notion of local injectivity radius of a map. Since random permutations will play a crucial
role in this paper, there will be two notions of cycles floating around: one for cycle decomposition of permutations
and the other for maps and graphs. To avoid confusion, we shall refer to a cycle in the context of graphs as a circuit.
A circuit in a planar map is a subset of its vertices and edges whose image under the embedding is topologically a
loop. A circuit is called contractible if its image under the embedding on the surface can be contracted to a point.
A circuit is called non-contractible if it is not contractible.

Definition 1. The local injectivity radius of a planar map with root vertex v∗ is the largest r such that the sub-map
formed by all the vertices within graph distance r from v∗ does not contain any non-contractible circuit.

In the world of Riemannian geometry, injectivity radius around a point p on a Riemannian manifold refers to the
largest r such that the ball of radius r around p is diffeomorphic to an Euclidean ball via the exponential map. This
notion is similar in spirit to what we are seeking in our situation. Notice however that a circuit in a unicellular map
is always non-contractible because it has a single face. Hence looking for circuits and looking for non-contractible
circuits are equivalent in our situation.

Theorem 1.3. Let {gl, nl} → {∞,∞} and gl/nl → θ for some constant 0 < θ < 1/2 as l → ∞. Let Igl,nl
denote the

local injectivity radius of Ugl,nl
. Then there exists a constant ε > 0 such that

P(Igl ,nl
> ε lognl) → 1

as l → ∞.

Girth or the circuit of the smallest size of Ug,n also deserves some comment. It is possible to conclude via second
moment methods that the girth of Ugl,nl

form a tight sequence. This shows that there are small circuits somewhere in
the unicellular map, but they are far away from the root with high probability.

The main tool for the proofs is a bijection due to Chapuy, Feray and Fusy [14] which gives us a connection between
unicellular maps and certain objects called C-decorated trees which preserve the underlying graph properties (details
in Section 2.1). This bijection provides us a clear roadway for analyzing the underlying graph of such maps.

From now on fo simplicity, we shall drop the suffix l in {gl, nl}, and assume g as a function of n such that g → ∞
as n → ∞ and g/n → θ where 0 < θ < 1/2. The proofs that follow will not be affected by such simplification as
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one might check. For any sequence {an} and {bn} of positive integers, an ∼ bn means an/bn → 1. Further an = o(bn)

means that an/bn → 0 as n → ∞ and an = O(bn) means that there exists a universal constant C > 0 such that
|an| < C|bn|. Finally an � bn means there exists positive universal constants c1, c2 such that c1bn < an < c2bn. In
what follows, the constants might vary from step to step but for simplicity, we shall denote the constants which we do
not need anywhere else by c. For a finite set X, |X| denotes the cardinality of X.

Overview of the paper

In Section 2 we gather some useful preliminary results we need. Proofs and references of some of the results in
Section 2 are provided in Appendices A and B. An overview of the strategy of the proofs of Theorems 1.1 and 1.3 is
given in Section 3. Part (ii) of Theorem 1.1 along with Theorem 1.3 is proved in Section 4. Part (i) of Theorem 1.1 is
proved in Section 5.

2. Preliminaries

In this section, we gather some useful results which we shall need.

2.1. The bijection

Chapuy, Féray and Fusy in [14] describe a bijection between unicellular maps and certain objects called C-decorated
trees. The bijection describes a way to obtain the underlying graph of Ug,n by simply gluing together vertices of a
plane tree in an appropriate way. This description gives us a simple model to analyze because plane trees are well
understood. In this section we describe the bijection in [14] and define an even simpler model called marked trees.
The model of marked trees will contain all the information about the underlying graph of Ug,n.

For a graph G, let V (G) denote the collection of vertices and E(G) denote the collection of edges of G. The
subgraph induced by a subset V ′ ⊆ V (G) of vertices is a graph (V ′,E′) where E′ ⊆ E(G) and for every edge e ∈ E′,
both the vertices incident to e is in V ′.

A permutation of order n is a bijective map σ : {1,2, . . . , n} → {1,2, . . . , n}. As is classically known, σ can be
written as a composition of disjoint cycles. Length of a cycle is the number of elements in the cycle. The cycle type of
a permutation is an unordered list of the lengths of the cycles in the cycle decomposition of the permutation. A cycle-
signed permutation of order n is a permutation of order n where each cycle in its cycle decomposition carries a sign,
either + or −.

Definition 2 [14]. A C-permutation of order n is a cycle-signed permutation σ of order n such that each cycle of σ

in its cycle decomposition has odd length. The genus of σ is defined to be (n − N)/2 where N is the number of cycles
in the cycle decomposition of σ .

Definition 3 [14]. A C-decorated tree on n edges is the pair (t, σ ) where t is a rooted plane tree with n edges and σ

is a C-permutation of order n + 1. The genus of (t, σ ) is the genus of σ .

The set of all C-decorated trees of genus g is denoted by Cg,n. One can canonically order and number the vertices
of t from 1 to n+1. Hence in a C-decorated tree (t, σ ), the permutation σ can be seen as a permutation on the vertices
of the tree t . To obtain the underlying graph of a C-decorated tree (t, σ ), any pair of vertices x, y whose numbers
are in the same cycle of σ are glued together (note that this might create loops and multiple edges). The underlying
graph of (t, σ ) is the vertex rooted graph obtained from (t, σ ) after this gluing procedure. So there are N vertices of
the underlying graph of (t, σ ), each correspond to a cycle of σ (see Figure 2). By Euler’s formula, if the underlying
graph of (t, σ ) is embedded in a surface such that there is only one face, then the underlying surface must have genus
g given by N = n + 1 − 2g.

For a set A, let kA denote k distinct copies of A. Recall that underlying graph of a unicellular map is the vertex
rooted graph whose embedding is the map.
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Fig. 2. An illustration of a C-decorated tree. (a) A C-permutation σ . (b) A plane tree t with the vertices in the same cycle of σ joined by an arrow.
Note that vertices numbered 8 and 9 are fixed points in the C-permutation. (c) The underlying graph of the C-decorated tree (t, σ ). The root vertex
is circled.

Theorem 2.1 (Chapuy, Féray, Fusy [14]). There exists a bijection

2n+1Ug,n ←→ Cg,n.

Moreover, the bijection preserves the underlying graph.

As promised, we shall now introduce a further simplified model which we call marked tree to analyze the under-
lying graph of C-decorated trees. Let P denote the set of ordered N -tuple of odd positive integers which add up to
n + 1.

Definition 4. A marked tree with n edges corresponding to an N -tuple λ = (λ1, . . . , λN) ∈ P is a pair (t,m) such
that t ∈ U0,n and m :V (t) → N is a function which takes the value i for exactly λi vertices of t for all i = 1, . . . ,N .
The underlying graph of (t,m) is the rooted graph obtained when we merge together all the vertices of t with the same
mark.

Given a λ, let Tλ be the set of marked trees corresponding to λ and let Tλ be a uniformly picked element from it.
Now pick λ from P according to the following distribution

P
(
λ = (λ1, λ2, . . . , λN)

) =
∏N

i=1 λ−1
i

Z
, (2.1)

where Z = ∑
λ∈P (

∏N
i=1 λ−1

i ).

Proposition 2.2. Choose λ according to the distribution given by (2.1). Then the underlying graph of Ug,n and Tλ

has the same distribution.

Proof. First observe that it is enough to show the following sequence of bijections

2N
⋃

λ=(λ1,...,λN )∈P

N∏
i=1

(λi − 1)!Tλ(n)
Ψ←→ N !Cg,n

Φ←→ 2n+1N !Ug,n,

where Φ and Ψ are bijections which preserve the underlying graph. This is because for each λ ∈ P , it is easy to
see that the number of elements in

∏
i (λi − 1)!Tλ(n) is (n + 1)!∏N

i=1 λ−1
i and given a λ, the underlying graph of an

uniform element of
∏

i (λi − 1)!Tλ(n) and Tλ(n) has the same distribution.
Now the existence of bijection Φ which also preserves the underlying graph is guaranteed from Theorem 2.1. For

Ψ , observe that the factor
∏N

i=1(λi − 1)! comes from the ordering of the elements within the cycle of C-permutations
and the factor 2N comes from the signs associated with each cycle of the C-permutations. The factor N ! comes from
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all possible ordering each cycle type of a C-permutation which is taken into account in the marked trees but not
C-permutations. The details are safely left to the reader. �

Because of Proposition 2.2 it is enough to look at the underlying graph of Tλ(n) to prove the theorems stated
in Section 1 where λ is chosen according to the distribution given by (2.1). Our strategy is to show that a typical
λ satisfies some “nice” conditions (which we will call condition (A) later), condition on such a λ satisfying those
conditions and then work with Tλ(n).

Recall N = n + 1 − 2g. Since g/n → θ where 0 < θ < 1/2, n/N → (1 − 2θ)−1. Denote α = (1 − 2θ)−1. Clearly
α > 1. The reader should bear in mind that α will remain in the background throughout the rest of the paper.

2.2. Typical λ

Recall the definition of P from Section 2.1. Suppose C0,C1,C2, d1, d2 are some positive constants which we will fix
later. We say that an element in λ = (λ1, λ2, . . . , λN) ∈P satisfies condition (A) if it satisfies

(i) λmax < C0 logn where λmax is the maximum in the set {λ1, λ2, . . . , λN },
(ii) C1n <

∑N
i=1 λ2

i <
∑N

i=1 λ3
i < C2n,

(iii) d1n < |i: λi = 1| < d2n.

The following lemma ensures that λ satisfies condition (A) with high probability for appropriate choice of the con-
stants. The proof is provided in Appendix A.

Lemma 2.3. Suppose λ is chosen according to the distribution given by (2.1). Then there exists constants
C0,C1,C2, d1, d2 depending only upon α such that condition (A) holds with probability at least 1 − cn−3 for some
constant c > 0.

Now we state a lemma which will be useful later. Given a λ, we shall denote by Pλ the conditional measure induced
by Tλ.

Lemma 2.4. Fix a tree t ∈ U0,n and a λ ∈ P satisfying condition (A). Fix I ⊂ {1,2, . . . ,N} such that |I| < n3/4.
Condition on the event E that the plane tree of Tλ(n) is t and S is the set of all the vertices in t whose mark belong to
I where S is some fixed subset of V (t) (S is chosen so that E has non-zero probability). Let {v,w, z} ⊂ V (t) \ S be
any set of three distinct vertices in t and i /∈ I . Then

Pλ

(
m(v) = i|E) ∼ λi/n, (2.2)

Pλ

(
m(v) = m(w)|E) � n−1, (2.3)

Pλ

(
m(v) = m(w) = m(z)|E) � n−2. (2.4)

Proof. Notice that |S| < C0n
3/4 logn because of part (i) of condition (A). The proof of (2.2) follows from the fact

that

Pλ

(
m(v) = i|E) = (n − |S| − 1)!λi !

(n − |S|)!(λi − 1)! = λi

n − |S| ∼ λi/n

since |S| < C0n
3/4 logn.

Now we move on to prove (2.3). Conditioned on S, t the probability that v and w have the same mark j /∈ I with
λj ≥ 3 is

(n − |S| − 2)!λj !
(n − |S|)!(λj − 2)! ∼ λj (λj − 1)

n2
.

All we need to prove is
∑

j /∈I λj (λj −1) � n which is clear from part (ii) of condition (A) and the fact that |I| < n3/4.
Proof of Equation (2.4) is very similar to that of Equation (2.3) and is left to the reader. �
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2.3. Large deviation estimates on random trees

2.3.1. Galton–Watson trees
A Galton–Watson tree, roughly speaking, is the family tree of a Galton–Watson process which is also sometimes
referred to as a branching process in the literature. These are well studied in the past and goes far back to the work of
Harris [21]. A fine comprehensive coverage about branching processes can be found in [7]. Given a Galton–Watson
tree, we denote by ξ the offspring distribution. Let P(ξ = k) = pk for k ≥ 1. Let Zr be the number of vertices at
generation r of the tree. We shall also assume

• p0 + p1 < 1
• E(eλξ ) < ∞ for small enough λ > 0.

We need the following lower deviation estimate. The proof essentially follows from a result in [7] and is provided
in Appendix B.

Lemma 2.5. Suppose Eξ = μ > 1 and the distribution of ξ satisfies the assumptions as above. For any constant γ

such that 1 < γ < μ, for all r ≥ 1

P
(
Zr ≤ γ r

)
< c exp(−c′r) + P(Zr = 0)

for some positive constants c, c′.

2.3.2. Random plane trees
A random plane tree with n edges is a uniformly picked ordered tree with n edges (see [26] for a formal treatment).
In other words a random plane tree with n edges is nothing but U0,n as per our notation. We shall need the following
large deviation result for the lower bounds and upper bounds on the diameter of U0,n. This follows from Theorem 1.2
of [1] and the discussion in Section 1.1 of [1].

Lemma 2.6. For any x > 0,

(i) P(diam(U0,n) ≤ x) < c exp(−c1(n − 2)/x2),
(ii) P(diam(U0,n) > x) < c exp(−c1x

2/n),

where c > 0 and c1 > 0 are constants.

We shall also need some estimate of local volume growth in random plane trees. For this purpose, let us define for
an integer r ≥ 1,

Mr = max
v∈V (U0,n)

∣∣Br(v)
∣∣,

where Br(v) denotes the ball of radius r around v in the graph distance metric of U0,n. In other words, Mr is the
maximum over v of the volume of the ball of radius r around a vertex v in U0,n. It is well known that typically,
the ball of radius r in U0,n grows like r2. The following lemma states that Mr is not much larger than r2 with high
probability. Proof is provided in Appendix B.

Lemma 2.7. Fix j ≥ 1 and r = r(n) is a sequence of integers such that 1 ≤ r(n) ≤ n. Then there exists a constant
c > 0 such that

P
(
Mr > r2 log2 n

)
< exp

(−c log2 n
)
.

3. Proof outline

In this section we describe the heuristics of the proofs of Theorems 1.1 and 1.3.
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Let us describe an exploration process on a given marked tree starting from any vertex v in the plane tree. This
process will describe an increasing sequence of subsets of vertices which we will call the set of revealed vertices. In
the first step, we reveal all the vertices with the same mark as v. Then we explore the set of revealed vertices one
by one. At each step when we explore a vertex, we reveal all its neighbours and also reveal all the vertices which
share a mark with one of the neighbours. If a neighbour has already been revealed, we ignore it. We then explore the
unexplored vertices and continue.

We can associate a branching process with this exploration process where the number of vertices revealed while
exploring a vertex can be thought of as the offsprings of the vertex. It is well known that the degree of any uniformly
picked vertex in U0,n is roughly distributed as a geometric(1/2) variable and we can expect such behaviour of the
degree as long as the number of vertices revealed by the exploration is small compared to the size of the tree. Now
the expected number of vertices with the same mark as a vertex is roughly a constant strictly larger than 1 because of
part (ii) of condition (A). Hence the associated branching process will have expected number of offsprings a constant
which is strictly larger than 1. Thus we can stochastically dominate this branching process both from above and below
by supercritical Galton–Watson processes which will account for the logarithmic order of typical distances.

Once we have such a domination, observe that the vertices at distance at most r from the root in the underlying
graph of the marked tree is approximately the vertices in the ball of radius r around the root in a supercritical Galton–
Watson tree. Hence by virtue of the fact that supercritical Galton–Watson trees have roughly exponential growth,
we can conclude that the number of vertices at a distance at most ε logn from the root in the underlying graph of
the marked tree is �√

n if ε > 0 is small enough. Hence note that to have a circuit within distance ε logn in the
underlying graph of the marked tree, two of the vertices which are revealed within �√

n many steps must be close
in the plane tree. But observe that the distribution of the revealed vertices is roughly a uniform sample from the set
of vertices in the tree up to the step when at most roughly

√
n many vertices are revealed. Hence the probability of

revealing two vertices which are close in the plane tree up to roughly
√

n many steps is small because of the birthday
paradox argument. This argument shows that the local injectivity radius is at least ε logn for some small enough ε > 0.

The rest of the paper is the exercise of making these heuristics precise.

4. Lower bound and injectivity radius

Recall condition (A) as described in the begininning of Section 2.2. Pick a λ satisfying condition (A). Recall that
Tλ(n) denotes a uniformly picked element from Tλ(n). Throughout this section we shall fix a λ satisfying condition
(A) and work with Tλ(n). Also recall that Tλ(n) = (U0,n,M) where U0,n is a uniformly picked plane tree with n edges
and M is a uniformly picked marking function corresponding to λ which is independent of U0,n. Let dλ(·, ·) denote
the graph distance metric in the underlying graph of Tλ(n). In this section we prove the following theorem.

Theorem 4.1. Fix a λ satisfying condition (A). Suppose x and y are two uniformly and independently picked numbers
from {1,2, . . . ,N} and Vx and Vy are the vertices in the underlying graph of Tλ(n) corresponding to the marks x and
y respectively. Then there exists a constant ε > 0 such that

Pλ

(
dλ(Vx,Vy) < ε logn

) → 0

as n → ∞.

Proof of Theorem 1.1 part (i). Follows from Theorem 4.1 along with Proposition 2.2 and Lemma 2.3. �

As a by-product of the proof of Theorem 4.1, we also obtain the proof of Theorem 1.3 in this section.
Note that for any finite graph, if the volume growth around a typical vertex is small, then the distance between

two typical vertices is large. Thus to prove Theorem 4.1, we aim to prove an upper bound on volume growth around a
typical vertex. Note that with high probability the maximum degree in U0,n is logarithmic and λmax is also logarithmic
(via condition (A) part (i) and Lemma 2.6). Hence it is easy to see using the idea described in Section 3 that the typical
distance is at least ε logn/ log logn with high probability if ε > 0 is small enough. This is enough, as is heuristically
explained in Section 3, to ensure that the injectivity radius of Ug(n) is at least ε logn/ log logn with high probability
for small enough constant ε > 0. The rest of this section is devoted to the task of getting rid of the log logn factor.
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This is done by ensuring that while performing the exploration process for reasonably small number of steps, we do
not reveal vertices of high degree with high probability.

Given a marked tree (t,m), we shall define a nested sequence R0 ⊆ R1 ⊆ R2 ⊆ · · · of subgraphs of (t,m) where
Rk will be the called the subgraph revealed and the vertices in Rk will be called the vertices revealed at the kth step
of the exploration process. We will also think of the number of steps as the amount of time the exploration process has
evolved. There will be two states of the vertices of Rk : active and neutral. Along with {Rk}, we will define another
nested sequence E0 ⊆ E1 ⊆ E2 ⊆ · · · . In the first step, R0 = E0 will be a set of vertices with the same mark and
hence E0 will correspond to a single vertex in the underlying graph of (t,m). The subgraph of the underlying graph
of (t,m) formed by gluing together vertices with the same mark in Er will be the ball of radius r around the vertex
corresponding to E0 in the underlying graph of (t,m). The process will have rounds and during round i, we shall
reveal the vertices which correspond to vertices at distance exactly i from the vertex corresponding to E0 in the
underlying graph of (t,m). Define τ0 = 0 and we now define τr which will denote the time of completion of the r th
round for r ≥ 1. Let Nr = Er \ Er−1. Inductively, having defined Nr , we continue to explore every vertex in Nr in
some predetermined order and τr+1 is the step when we finish exploring Nr . For a vertex v, mark(v) denotes the set
of marked vertices with the same mark as that of v. For a vertex set S, mark(S) = ⋃

v∈S mark(v). We now give a
rigorous algorithm for the exploration process.

Exploration process I

(i) Starting rule: Pick a number x uniformly at random from the set of marks {1,2, . . . ,N} and let E0 = R0 =
mark(x). Declare all the vertices in mark(x) to be active. Also set τ0 = 0.

(ii) Growth rule:
1. For some r ≥ 1, suppose we have defined the nested subset of vertices of E0 ⊆ · · · ⊆ Er such that Nr :=

Er \ Er−1 is the set of active vertices in Er . Suppose we have defined the increasing sequence of times
τ0 ≤ · · · ≤ τr and the nested sequence of subgraphs R0 ⊆ R1 ⊆ · · · ⊆ Rτr such that Rτr = Er . The number r

denotes the number of rounds completed in the exploration process at time τr .
2. Order the vertices of Nr in some arbitrary order. Now we explore the first vertex v in the ordering of Nr . Let

Sv denote all the neighbours of v in t which do not belong to Rτr . Suppose Sv has l vertices {v1, v2, . . . , vl}
which are ordered in an arbitrary way. For 1 ≤ j ≤ l, at step τr + j , define Rτr+j to be the subgraph induced
by V (Rτr+j−1) ∪ mark(vj ). At step τr + l we finish exploring v. Define all the vertices in Rτr+l \ Rτr to be
active and declare v to be neutral. Then we move on to the next vertex in Nr and continue.

3. Suppose we have finished exploring a vertex of Nr in step k and obtained Rk . If there are no more vertices
left in Nr , define k = τr+1 and Er+1 = Rτr+1 . Declare round r + 1 is completed and go to step 1.

4. Otherwise, we move on to the next vertex v′ in Nr according to the predescribed order. Let Sv′ =
{v1, v2, . . . , vl′ } be the neighbours of v′ which do not belong to Rk . For 1 ≤ j ≤ l′, at step k + j , define
Rk+j to be the subgraph induced by V (Rk+j−1) ∪ mark(vj ). Define all the vertices in Rk+l′ \ Rk to be active
and declare v′ to be neutral. Now go back to step 3.

(iii) Threshold rule: We stop if the number of steps exceeds n1/10 or the number of rounds exceeds logn. Let δ be the
step number when we stop the exploration process.

Recall that Vx denotes the vertex in the underlying graph of Tλ(n) corresponding to the mark x. The following
proposition is clear from the description of the exploration process and is left to the reader to verify.

Proposition 4.2. For every j ≥ 1, all the vertices with the same mark in Ej \ Ej−1 when glued together form all the
vertices at a distance exactly j from Vx in the underlying graph of (t,m).

In step 0, define mark(x) to be the seeds revealed in step 0. At any step, if we reveal mark(z) for some vertex z,
then mark(z) \ z is called the seeds revealed at that step. The nomenclature seed comes from the fact that a seed gives
rise to a new connected component in the revealed subgraph unless it is a neighbour of one of the revealed subgraph
components. However we shall see that the probability of the latter event is small and typically every connected
component has one unique seed from which it “starts to grow”.

Now suppose we perform the exploration process on Tλ(n) = (U0,n,M) where recall that M is a uniformly random
marking function which is compatible with λ on the set of vertices of U0,n and is independent of the tree U0,n. Let Fk

be the sigma field generated by R0,R1,R2, . . . ,Rk .
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Fig. 3. On the left: a general web structure. A priori the web structure might be very complicated. Many paths in the web might pass through the
same vertex as is depicted here. On the right: a typical web structure.

Fig. 4. v∗ denotes the root vertex. (v, v′) is a bad pair if either of the paths joining them to the centre vertex has at most log2 n many vertices.

The aim is to control the growth of Rk and to that end, we need to control the size of mark(Sv) while exploring the
vertex v conditioned up to what we have revealed up to the previous step. It turns out that it will be more convenient
to condition on a subtree which is closely related to the connected tree spanned by the vertices revealed.

Definition 5. The web corresponding to Rk is defined to be the union of the unique paths joining the root vertex v∗
and the vertices closest to v∗ in each of the connected components of Rk including the vertices at which the paths
intersect Rk . The web corresponding to Rk is denoted by PRk

.

As mentioned before, the idea is to condition on the web. Observe that after removing the web from U0,n at any
step, we are left with a uniformly distributed forest with appropriate number of edges and trees. What stands in our
way is that in general the web corresponding to a subtree might be very complicated (see Figure 3). The paths joining
the root and several components might “go through” the same component. Hence conditioned on the web, a vertex
might apriori have arbitrarily many of its neighbours belonging to the web. To show that this does not happen with
high probability we need the following definitions.

For any vertex u in t , the ancestors of u are the vertices in t along the unique path joining u and the root vertex v∗.
For any two vertices u,v in t let u ∧ v denote the common ancestor of u and v which is farthest from the root vertex
v∗ in t . Let

C(u, v) = dt
(
u ∧ v,

{
u,v, v∗}).

A pair of vertices (u, v) is called a bad pair if C(u, v) < log2 n (see Figure 4).
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Recall that we reveal some set of seeds (possibly empty) at each step of the exploration process. Suppose we
uniformly order the seeds revealed at each step and then concatenate them in the order in which they are revealed.
More formally, let (si0, si1 , . . . , siki

) be the set of seeds revealed in step i ordered in uniform random order. Let
S = (s10 , s11 , . . . , s1k1

, . . . , sδ1 , . . . , sδkδ
). To simplify notation, let us denote S = (S0, S1, . . . , Sδ′) where δ′ + 1 counts

the number of seeds revealed up to step δ. The reason for such ordering is technical and will be clearer later in the
proof of Lemma 4.7.

Lemma 4.3. If S does not contain a bad pair then each connected component of Rδ contains an unique seed and the
web PRδ intersects each connected component of Rδ at most at one vertex.

Remark 4.4. In Lemma 4.9, we shall prove that the probability of S containing a bad pair goes to 0 as n → ∞. This
and Lemma 4.3 shows that for large n, the typical structure of the web is like the right hand figure of Figure 3.

Proof of Lemma 4.3. Clearly, every connected component of Rδ must contain at least one seed. Also note that every
connected component of Rδ has diameter at most 2 logn because of the threshold rule. Since the distance between any
pair of seeds in Rδ is at least log2 n if S do not contain a bad pair, each component must contain a unique seed.

Suppose at any arbitrary step there is a connected component C which intersects the web in more than two vertices.
Then there must exist a component C′ such that the path of the web joining the root and C′ intersects C in more than
one vertex. This implies that the (unique) seeds of C and C′ form a bad pair since the diameter of both C and C′ are
at most 2 logn. �

Now we want to prove that with high probability, S do not contain a bad pair. Observe that the distribution of the
set of seeds revealed is very close to a uniformly sampled set of vertices without replacement from the set of vertices
of the tree as long as Rδ � √

n, because of the same effect as the birthday paradox. We quantify this statement and
further show that an i.i.d. sample of size δ′ from the set of vertices do not contain a bad pair with high probability.

We first show that the cardinality of the set Rδ cannot be too large with high probability.

Lemma 4.5. Rδ = O(n1/10 logn).

Proof. At each step at most λmax many vertices are revealed and λmax = O(logn) via condition (A). �

Given S, let S̃ = {S̃0, S̃1, . . . , S̃δ′ } be an i.i.d. sample of uniformly picked vertices from U0,n. First we need the
following technical lemma.

Lemma 4.6. Suppose a = a(n) and b = b(n) are sequences of positive integers such that (a + b)2 = o(n). Then for
large enough n,

nb

∣∣∣∣ 1

b!
(

n − a

b

)−1

− 1

nb

∣∣∣∣ < 4

(
(a + b)b

n

)
.

Proof. Observe that

1

b!
(

n − a

b

)−1

= 1

(n − a − b + 1) · · · (n − a)

= 1

nb

b∏
j=1

(
1 + a + b − j

n − (a + b − j)

)
(4.1)

<
1

nb

b∏
j=1

(
1 + 2(a + b)/n

)
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<
1

nb
exp

(
2(a + b)b

n

)
= 1

nb

(
1 + 2(a + b)b

n
+ o

(
(a + b)b

n

))
<

1

nb

(
1 + 4

(
(a + b)b

n

))
,

where the third inequality follows because n − (a + b) > n/2 for large enough n and a + b − j < a + b. The second
last equality follows since b(a + b) = o(n) via the hypothesis. The other direction follows from the fact that the
expression in the right hand side of Equation (4.1) is larger than 1/nb . �

For random vectors X,Y let dTV(X,Y ) denote the total variation distance between the measures induced by X

and Y .

Lemma 4.7.

dTV(S, S̃) < 4n−2/3.

Proof. First note that |S| < |Rδ| < n1/9 from Lemma 4.5. Let (S1, S2, . . . , Sd) be the ordered set of seeds revealed in
the first step after uniform ordering. Then

dTV
(
(S1, . . . , Sd), (S̃1, . . . , S̃d )

)
< nd

∣∣∣∣ 1

d!
(

n

d

)−1

− 1

nd

∣∣∣∣ < 4n−7/9, (4.2)

where the factor nd in the first inequality of (4.2) comes from the definition of total variation distance and the fact
that there are nd many d-tuple of vertices and the second inequality of (4.2) follows from Lemma 4.6 and the fact that
d < |S| < n1/9. We will now proceed by induction on the number of steps. Suppose up to step t , (S1, . . . , Sm) is the
ordered set of seeds revealed. Assume

dTV
(
(S1, . . . , Sm), (S̃1, . . . , S̃m)

)
< 4mn−7/9. (4.3)

Recall Ft = σ(R0, . . . ,Rt ). Now suppose we reveal Sm+1, . . . , Sm+L in the (t + 1)th step where L is random de-
pending upon the number of seeds revealed in the (t + 1)th step. Observe that to finish the proof of the lemma, it is
enough to prove that the total variation distance between the measure induced by (Sm+1, . . . , Sm+L) conditioned on
Ft and (S̃m+1, . . . , S̃m+L) (call this distance 
) is at most 4n−7/9. This is because using induction hypothesis and

 < 4n−7/9, we have the following inequality

dTV
(
(S1, . . . , Sm+L), (S̃1, . . . , S̃m+L)

)
< dTV

(
(S1, . . . , Sm), (S̃1, . . . , S̃m)

) + 4n−7/9 < 4(m + 1)n−7/9. (4.4)

Thus (4.4) along with induction implies dTV(S, S̃) < 4n1/9n−7/9 < 4n−2/3 since δ′ < n1/9.
Let F ′

t be the sigma field induced by Ft and the mark revealed in step t + 1. To prove 
 < 4n−7/9, note that it
is enough to prove that the total variation distance between the measure induced by Sm+1, . . . , Sm+L conditioned on
F ′

t and (S̃m+1, . . . , S̃m+L) (call it 
′) is at most 4n−7/9. But if l many seeds are revealed in step t + 1 (note l only
depends on the mark revealed) then a calculation similar to (4.2) shows that


′ < nl

∣∣∣∣ 1

l!
(

n − |Rt | − 1
l

)−1

− 1

nl

∣∣∣∣ < 4n−7/9,

where the last inequality above again follows from Lemma 4.6. The proof is now complete. �

We next show, that the probability of obtaining a bad pair of vertices in the collection of vertices S̃ is small.
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Lemma 4.8.

Pλ(S̃ contains a bad pair) = O
(
n−1/10).

Proof. Let (V ,W) denote a pair of vertices uniformly and independently picked from the set of vertices of U0,n. Let
P be the path joining the root vertex and V . Let A be the event that the unique path joining W and P intersects P at a
vertex which is within distance log2 n from the root vertex or V . Since V and W have the same distribution and since
there are at most n2/9 pairs of vertices in S̃, it is enough to prove Pλ(A) = O(n−1/3 log2 n).

Recall the notation Mr of Lemma 2.7: Mr is the maximum over all vertices v in U0,n of the volume of the ball of
radius r around v. Let |P | denote the number of vertices in P . Consider the event E = {M�n1/3� < n2/3 log2 n}. On E,

the probability of {|P | < n1/3} is O(n−1/3 log2 n). Since the probability of the complement of E is O(exp(−c log2 n))

for some constant c > 0 because of Lemma 2.7, it is enough to prove the bound for the probability of A on |P | > n1/3.
Condition on P to have k edges where k > n1/3. Observe that the distribution of U0,n \ P is given by an uniformly

picked of rooted forests with σ = 2k + 1 trees and n − k edges. Hence if we pick another uniformly distributed vertex
W independent of everything else, the unique path joining W and P intersects P at each vertex with equal probability.
Hence the probability that the unique path joining W and P intersects P at a vertex which is at a distance within log2 n

from the root or V is O(n−1/3 log2 n) by union bound. This completes the proof. �

Lemma 4.9.

Pλ(S contains a bad pair) = O
(
n−1/10).

Proof. Using Lemmas 4.7 and 4.8, the proof follows. �

We will now exploit the special structure of the web on the event that S do not contain a bad pair to dominate the
degree of the explored vertex by a suitable random variable of finite expectation for all large n. To this end, we need
some enumeration results for forests. Note that the forests we consider here are rooted and ordered. Let Φσ,e denote
the number of forests with σ trees and e edges. It is well known (see for example, Lemma 3 in [11]) that

Φσ,e = σ

2e + σ

(
2e + σ

e

)
. (4.5)

We shall need the following estimate. The proof is postponed for later.

Lemma 4.10. Suppose e is a positive integer such that e < n. Suppose d0, d1 denote the degree of the roots of two
trees of a uniformly picked forest with n − e edges and σ trees. Let j ≤ n − e. Then

max
{
P(d0 + d1 = j),P(d0 = j)

}
<

4j (j + 1)

2j
.

We shall now show the degree of an explored vertex at any step of the exploration process can be dominated by a
suitable variable of finite expectation which do not depend upon n or the step number. Recall that while exploring v

we spend several steps of the exploration process which depends on the number of neighbours of v which have not
been revealed before.

In the following Lemmas 4.11 and 4.13, we assume vk+1 is the vertex we start exploring in the (k + 1)th step of
the exploration process.

Lemma 4.11. The distribution of the degree of vk+1 conditioned on Rk such that Rk do not contain a bad pair is
stochastically dominated by a variable X where EX < ∞ and the distribution of X do not depend on n or k.

Proof. Consider the conditional distribution of the degree of vk+1 conditioned on Rk as well as PRk
. Without loss of

generality assume PRk
do not contain n edges for then the lemma is trivial. Note that PRk

cannot intersect a connected
component of Rk at more than one vertex because of Lemma 4.3. Suppose e < n is the number of edges in the
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subgraph PRk
∪ Rk . It is easy to see that the distribution of U0,n \ (PRk

∪ Rk) is a uniformly picked element from the
set of forests with σ trees and n− e edges for some number σ . If vk+1 is not an isolated vertex in Rk (that is there is an
edge in Rk incident to vk+1), the degree of v is at most 2 plus the sum of the degrees of the root vertices of two trees
in a uniformly distributed forest of σ trees and n − e edges. If vk+1 is an isolated vertex, the degree of vk+1 is 1 plus
the degree of the root of a tree in a uniform forest of σ trees and n − e edges. Now we can use the bound obtained in
Lemma 4.10 and observe that the bound do not depend on the conditioning of the web PRk

. It is easy now to choose
a suitable variable X. The remaining details are left to the reader. �

Now we stochastically dominate the number of seeds revealed at a step conditioned on the subgraph revealed up to
the previous step by a variable Y with finite expectation which is independent of the step number or n.

Lemma 4.12. The number of vertices added to Rj−1 the j th step of the exploration process conditioned on Rj−1 is
stochastically dominated by a variable Y with EY < C where C is a constant which do not depend upon j or n.

Proof. Recall ri denotes the cardinality of the set {j : λj = i}. Now note that because of the condition (A), we can
choose ϑ > 1 such that

∑
i≥3 ϑiri < d3n for some number 0 < d3 < 1. Since |Rk| < n1/9, the probability that the

number of vertices added to Rj−1 in the j th step is i for i ≥ 3 is at most iri/(n − n1/9) < ϑiri/n for large enough n

using Equation (2.2). Now define Y as follows:

P(Y = i) =
{

ϑ
iri
n

if i ≥ 3,

1 − ∑
i≥3 ϑ

iri
n

:= p2 if i = 2.

Note further that

E(Y ) = 2p2 + ϑ
∑
i≥3

i2ri/n < 2p2 +
N∑

i=1

λ2
i /n < 2 + C2

from condition (A). Thus clearly Y satisfies the conditions of the lemma. �

Again, recall the definition of vk+1 from Lemma 4.11. The following lemma is clear now.

Lemma 4.13. Let X,Y be distributed as in Lemmas 4.11 and 4.12 and suppose they are mutually independent.
Conditioned on Rk such that Rk do not have any bad pair, the number of vertices added to Rk when we finish
exploring vk+1 is stochastically dominated by a variable Z where Z is the sum of X independent copies of the
variable Y . Consequently EZ < C where C is a constant which do not depend upon k or n.

Proof of Theorem 4.1. We perform exploration process I. Let rδ be the maximum integer r such that τr < δ. Let
Bλ

r (Vx) denote the ball of radius r around the vertex Vx in the underlying graph of Tλ(n). Recall that because
of Proposition 4.2, Bλ

r (Vx) is obtained by gluing together vertices with the same mark in Rτr = Er . Note that if
|Bλ�ε logn�(Vx)| ≤ n1/9 then the probability that Vy lies in Bλ�ε logn�(Vx) is O(n−8/9 logn) because of condition (A)

part (i). Hence it is enough to prove Pλ(rδ < ε logn) → 0. Further, because of Lemma 4.9, it is enough to prove
Pλ(rδ < ε logn ∩B) → 0 where B is the event that S do not contain a bad pair.

Consider a Galton–Watson tree with offspring distribution Z as specified in Lemma 4.13 and suppose Zr is the
number of offsprings in generation r for r ≥ 1. Then from Lemma 4.13, we get

Pλ(rδ < ε logn ∩B) < Pλ

(�ε logn�∑
k=1

Zk > n1/9

)
→ 0 (4.6)

if ε > 0 is small enough which follows from the fact that E(Zr) < Cr where C is the constant in Lemma 4.13 and
Markov’s inequality. �

Now we finish the proof of Theorem 1.3.
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Proof of Theorem 1.3. We shall use the notations used in the proof of Theorem 4.1. Observe that if the ball of
radius rδ in the underlying graph of Tλ(n) contains a circuit, then two connected components must coalesce to form
a single component at some step k < δ. However this means that there exists a bad pair. Thus on the event B, the
underlying graph of Rδ do not contain a circuit. Hence on the event B, the ball of radius ε logn contains a circuit
in the underlying graph of Tλ(n) implies rδ < ε logn. However from Equation (4.6), we see that the probability of
{rδ < ε logn ∩ B} → 0 for small enough ε > 0. The rest of the proof follows easily from Lemmas 2.3 and 4.9 and
Proposition 2.2. �

Now we finish off by providing the proof of Lemma 4.10.

Proof of Lemma 4.10. It is easy to see that

P(d0 = j) = Φσ+j−1,n−e−j

Φσ,n−e

,

where Φσ,n is given by Equation (4.5). A simple computation shows that

Φσ+j−1,n−e−j

Φσ,n−e

= σ + j − 1

σ

1

2j

×
(

(n − e + σ)
∏j−1

i=1 (1 − i/(n − e))

(2(n − e) + σ − 1)
∏j+1

i=2 (1 + (σ − i)/2(n − e))

)
. (4.7)

Now we can assume (n − e + σ)/(2(n − e) + σ − 1) ≤ 1 (since e �= n by assumption). Also notice

1 − i

n − e
< 1 + σ − i

2(n − e)

for i ≥ 1. Hence Equation (4.7) yields

Φσ+j−1,n−e−j

Φσ,n−e

≤ σ + j − 1

σ

1

2j

(
(1 − 1/(n − e))∏j+1

i=j (1 + (σ − i)/2(n − e))

)

≤ σ + j − 1

σ

4

2j
≤ 4j

2j
(4.8)

which follows because
∏j+1

i=j (1 + (σ − i)/2(n − e)) ≥ 1/4 since n − e ≥ j and for the second inequality of (4.8), we
use the trivial bound (σ + j − 1)/σ ≤ j .

Further note that P(d0 = k, d1 = j − k) for any 0 ≤ k ≤ j is given by Φσ+j−2,n−e−j /Φσ,n−e . Hence summing
over k,

P(d0 + d1 = j) = (j + 1)
Φσ+j−2,n−e−j

Φσ,n−e

.

Now keeping n fixed, Φσ,n is an increasing function of σ , hence using the bound obtained in (4.8), the proof is
complete. �

5. Upper bound

Throughout this section, we again fix a λ satisfying condition (A) as described in Section 2.2. Recall dλ(·, ·) denotes
the graph distance metric in the underlying graph of Tλ(n). In this section we prove the following Theorem.

Theorem 5.1. Fix a λ satisfying condition (A). Suppose V1 and V2 be vertices corresponding to the marks 1 and 2
in Tλ(n). Then there exists a constant C > 0 such that

Pλ

(
dλ(V1,V2) > C logn

) = O
(
n−3).
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Note that the distribution of Tλ(n) is invariant under permutation of the marks. Hence the choice of marks 1 and 2
in Theorem 5.1 plays the same role as an arbitrary pair of marks.

Proof of Theorem 1.1 part (ii). Proof follows from Theorem 5.1, Proposition 2.2, and Lemma 2.3. �

To prove Theorem 5.1, we plan to use an exploration process similar to that in Section 4 albeit with certain modi-
fication to overcome technical hurdles. We start the exploration process from a vertex v1 with mark 1 and continue to
explore for roughly n3/4 steps. Then we start from the vertex v2 with mark 2 and explore for another n3/4 steps. Since
the sets of vertices revealed are approximately uniformly and randomly selected from the set of vertices of the tree,
the distance between these sets of vertices should be small with high probability, because of the same reasoning as the
birthday paradox problem. Then we show that the distance in the underlying graph of Tλ(n) from the set of vertices
revealed and 1 or 2 is roughly logn to complete the proof. To this end, we shall find a supercritical Galton–Watson
tree whose offspring distribution will be dominated by the vertices revealed in every step of the process.

However, if we proceed as the exploration process described in Section 4, since an unexplored vertex has a reason-
able chance of being a leaf, the corresponding Galton–Watson tree will also have a reasonable chance of dying out.
However, we need the dominated tree to survive for a long time with high probability. To overcome this difficulty, we
shall invoke the following trick. Condition on the tree U0,n to have diameter � log2 n. Consider the vertex v∗ which
is farthest from {v1, v2}. For each vertex we explore, we reveal its unique neighbour which lie on the path joining
the vertex and v∗ instead of revealing all the neighbours which do not lie in the set of revealed vertices. Note that
the revealed vertices by the exploration process now will mostly be disjoint paths increasing towards v∗ and we shall
always have at least one child if the paths do not intersect. However the chance of paths intersecting is small. Since
expected size of mark(v) for any non-revealed vertex v is larger than 1 throughout the process, we have exponen-
tial growth accounting for the logarithmic distance. The rest of the section is devoted to rigorously prove the above
described heuristic.

We shall now give a brief description of the exploration process we shall use in this section which is a modified
version of exploration process described in Section 4. Hence, we shall not write down details of the process again to
avoid repetition, and concentrate on the differences with exploration process I as described in Section 4.

Conditioning on the tree

For the proof of Theorem 5.1, we only need randomness of the marking function M and not that of the tree U0,n.
Hence, throughout this section, we shall condition on a plane tree U0,n = t where t ∈ U0,n such that

(i) diam(t) >
√

n/ logn,
(ii) M�log3 n� ≤ log8 n,

where recall that Mr is as defined in Lemma 2.7: maximum over all vertices v in U0,n of the volume of the ball of
radius r around v. Let us call this condition, condition (B). Although apparently it should only help if the diameter of
t is small, the present proof fails to work if the diameter is too small and requires a different argument which we do not
need. Note that by Lemmas 2.6 and 2.7, the probability that U0,n satisfies condition (B) is at least 1 − exp(−c log2 n)

for some constant c > 0. Hence it is enough to prove Theorem 5.1 for the conditional measure which we shall also
call Pλ by an abuse of notation.

We start with a marked tree (t,m) where t satisfies condition (B). As planned, the exploration process will proceed
in two stages, in the first stage, we start exploring from a vertex with mark 1 and in the second stage from a vertex
with mark 2.

Exploration process II, stage 1
There will be three states of vertices active, neutral or dead. We shall again define a nested sequence of subgraphs

R0 ⊆ R1 ⊆ R2 ⊆ · · · which will denote the subgraph revealed. Alongside {Rk}k=0,1,..., we will define another nested
sequence Q0 ⊆ Q1 ⊆ Q2 ⊆ · · · which will denote dead vertices revealed.

We shall similarly define the sequences {Nr}, {Er} and {τr} as in exploration process I. We call v to be a v∗-ancestor
of another vertex v′ if v lies on the unique path joining v′ and v∗. The v∗-ancestor which is also the neighbour of v is
called the v∗-parent of v.
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Fig. 5. Illustration of the death rule in exploration process II. A snapshot of the revealed vertices when we are exploring the circled vertex v is
given. The black vertices and edges correspond to neutral and active vertices, while the crosses correspond to dead vertices. We are exploring v

and mark(v) is denoted by the gray vertices. On the left: a gray vertex comes within distance log3 n of one the revealed vertices, hence death rule
is satisfied. On the right: two of the revealed vertices are within distance log3 n. Hence death rule is satisfied.

(i) Starting Rule: We start from a vertex v1 with mark 1 and v2 with mark 2 (if there are more than one, select
arbitrarily). Let v∗ be a vertex farthest from {v1, v2} in t (break ties arbitrarily). Note that because of the lower
bound on the diameter via condition (B), dt (v1, v∗) and dt (v2, v∗) are at least

√
n(3 logn)−1. Declare v1 to be

active and let R0 = {v1}. Declare all the vertices in mark(v1) \ v1 to be dead and let Q0 = mark(v1) \ v1. Set
τ0 = 0 and E0 = R0.

(ii) Growth rule: Suppose we have defined E0 ⊆ · · · ⊆ Er , τ0 ≤ · · · ≤ τr and also R0 ⊆ · · · ⊆ Rτr such that Rτr = Er

and Nr := Er \ Er−1 is the set of active vertices in Er . Now we explore vertices in Nr in some predetermined
order and suppose we have determined Rk for some k ≥ τr . We now move on to the next vertex in Nr . If there is
no such vertex, declare k = τr+1 and Er+1 = Rτr+1 .

Otherwise suppose v is the vertex to be explored in the (k + 1)th step. Let v− denote the v∗-ancestor which is
not dead and is nearest to v in the tree t . If v− is already in Rk then we terminate the process.

(iii) Death rule: Otherwise, declare v− to be active, v to be neutral and let Λ = mark(v−) \ v−. If any vertex u ∈ Λ is
within distance log3 n from Rk ∪Qk ∪ v∗ or another u′ ∈ Λ, we say death rule is satisfied (see Figure 5). If death
rule is satisfied declare all the vertices in Λ to be dead and set Qk+1 = Qk ∪ Λ, Rk+1 = Rk ∪ v−. Otherwise
declare all the vertices in Λ to be active, set Rk+1 = Rk ∪ mark(v−) and Qk+1 = Qk .

(iv) Threshold rule: We stop if the number of steps exceed n3/4 or r exceeds log2 n. Let δ denote the step when we
stop stage 1 of the exploration procedure.

Exploration process II, stage 2
Similarly as in stage 1, we start with R′

0 = v2 being active and Q′
0 = mark(v2) \ v2 being dead. We proceed exactly

as in stage 1, except for the following change: if v2 is a neighbour of Rδ ∪ Qδ , or while exploring v, if any of the
vertices in mark(v−) is a neighbour of Rδ ∪ Qδ , we say a collision has occurred and terminate the procedure.

We shall see later (see Lemma 5.8 and Corollary 5.9) that with high probability, we perform the exploration for
n3/4 steps and the number of rounds is approximately logn in stage 1. Also in stage 2, collision occurs with high
probability and the number of rounds is at most logn with high probability.

In what follows, we shall denote by X′ in stage 2 the set or variable corresponding to that denoted by X in stage 1
(for example, R′

k,Q
′
k will denote the set of revealed subgraphs and dead vertices respectively up to stage k in stage 2

etc.).
Now we shall define a new tree TC which is defined on a subset of vertices of t . The tree TC will capture the growth

process associated with the exploration process. We start with the tree t and remove all its edges so we are left with
only its vertices. The root vertex of TC is v1. For every step of exploring v, we add an edge beween v and every vertex
of mark(v−) (where v− is defined as in growth rule) in TC if death rule is not satisfied. Otherwise we add an edge
between v and v− in TC . The vertices we connect by an edge to v while exploring v is called the offsprings of v in
TC similar in spirit to a Galton–Watson tree. It is clear that TC is a tree (since we terminate the procedure if v− ∈ Rk).
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Fig. 6. An illustration of a worm at a certain step in the exploration process. The black vertices denote the vertices of the worm, the crosses are the
dead vertices and the head of the worm is as shown. The circle is the v∗-ancestor of the head which is not dead. This worm has faced death 5 times
so far.

Let Zr denotes the number of vertices at distance r from v1 in TC . Clearly, if we glue together vertices with the same
mark which are at a distance at most r in TC , we obtain a subgraph of the ball of radius r in the underlying graph of
Tλ(n). We similarly define another tree corresponding to stage 2 of the process which we call T ′

C which starts from
the root vertex v2.

Lemma 5.2. The volume of Rδ ∪ Qδ is at most C0n
3/4 logn. Also the volume of Rδ′ ∪ Qδ′ is at most C0n

3/4 logn

where C0 is as in part (i) of condition (A).

Proof. In every step, at most C0 logn vertices are revealed by condition (A). �

Define v1 and v2 to be the seeds revealed in the first step. While exploring vertex v, we call the vertices in
mark(v−) \ v− to be the seeds revealed at that step if the death rule is not satisfied. Note that because of the pre-
scription of the death rule, seeds are necessarily isolated vertices (not a neighbour of any other revealed neutral or
dead vertex up to that step).

Definition 6. A worm corresponding to a seed s denotes a sequence of vertices {w0,w1,w2, . . . ,wd} such that w0 is
s and wi+1 is the vertex wi− for i ≥ 0.

Note that in the above definition, wi− depends on the vertices revealed up to the time we explore wi in exploration
process II. Note that in a worm, wi+1 is a neighbour of wi if the v∗-parent of wi is not a dead vertex. If it is a dead
vertex we move on to the next nearest ancestor of wi which is not dead. Note that the ancestors of wi which lie on the
path joining wi+1 and wi are necessarily dead. If there are p dead vertices on the path between w0 and the nearest
v∗-ancestor of wd which is not dead, we say that the worm has faced death p times so far (see Figure 6). Call wd the
head of the worm. The length of the worm is the distance in U0,n between wd and w0.

We want the worms to remain disjoint so that conditioned up to the previous step, the number of children of a
vertex in the tree TC or T ′

C remain independent of the conditioning. Now for any worm, if wi ∈ Nr (resp. wi ∈ N ′
r ),

then it is easy to see that wi+1 ∈ Nr+1 (resp. wi+1 ∈ N ′
r+1) because of the way the exploration process evolves. Hence

if none of the worms revealed during the exploration process face a dead vertex, then the length of each worm is at
most log2 n from threshold rule. Since every seed is at a distance at least log3 n from any other seed via the death rule,
the worms will remain disjoint from each other if death does not occur.

Unfortunately, many worms will face a dead vertex with reasonable chance. But fortunately, none of them will face
many dead vertices with high probability. We say that a disaster has occurred at step k if after performing step k, there
is a worm which has faced death at least 16 times. The following proposition is immediate from the threshold rule for
exploration process II and the discussion above.

Proposition 5.3. If disaster does not occur, then the length of each worm is at most log2 n + 16 and hence no two
worms intersect during the exploration process for large enough n.

We will now provide a series of lemmas using which we will prove Theorem 5.1. The proofs of Lemmas 5.4 and
5.6 are postponed to Section 5.1 for clarity.

We start with a lemma that shows that disaster does not happen with high probability and consequently the length
of each worm is at most log2 n + 16 with high probability.
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Lemma 5.4. With Pλ-probability at least 1 − cn−3 disaster does not occur where c > 0 is some constant.

Lemma 5.5. Suppose disaster does not occur and r ≥ 0. Then in the tree TC , for v ∈ Zr , dTC (v, v1) < 16r . Also in

T ′
C , for v ∈ Z′

r , dT ′
C (v, v2) < 16r .

Proof. We prove only for stage 1 as for stage 2 the proof is similar. The lemma is trivially true for r = 0. Suppose
now the lemma is true for r ′ = r . Now for any vertex in Zr and its offspring, the vertices corresponding to their marks
in the underlying graph of Tλ(n) must lie at a distance at most 16 because otherwise disaster would occur. Hence the
distance of every vertex in Zr+1 from v1 is at most 16r + 16 = 16(r + 1). We use induction to complete the proof. �

Let E (resp. E ′) be the event that disaster has not occurred up to step δ (resp. δ′). Let Fk denote the sigma field
generated by R0, . . . ,Rk,Q0, . . . ,Qk . Let F ′

k denote the sigma field σ(R′
0, . . . ,R

′
k,Q

′
0, . . . ,Q

′
k)∨Fδ . Let vk+1 (resp.

v′
k+1) be the vertex we explore in the (k + 1)th stage in the exploration process stage 1 (resp. stage 2).

Lemma 5.6. Conditioned on Fk (resp. F ′
k) such that k < δ (resp. δ′) and disaster has not occurred up to step k, the

Pλ-probability that vk+1 in TC (resp. T ′
C ) has

(i) no offsprings is 0,
(ii) at least 3 offsprings is at least k0 for some constant k0 > 0.

We will now construct a supercritical Galton–Watson tree which is stochastically dominated by both TC and T ′
C .

Consider a Galton–Watson tree GW with offspring distribution ξ where

• P(ξ = 1) = (1 − k0/2)

• P(ξ = 2) = k0/2

and k0 is the constant obtained in part (ii) of Lemma 5.6. Let ZGW
r be the number of offsprings in the r th generation

of GW . Lemma 5.6 and the definition of GW clearly shows that Zr stochastically dominates ZGW
r for all r ≥ 1 if

disaster does not occur up to step τr . Let rδ = max{r: τr < δ} and similarly define rδ′ = max{r: τr < δ′}. Thus, we
have

Lemma 5.7. For any integer j ≤ rδ (resp. j ≤ rδ′ ), Zj stochastically dominates ZGW
j on the event E (resp. E ′).

It is clear that the mean offspring distribution of GW is strictly greater than 1 and hence GW is a supercritical
Galton–Watson tree. Also GW is infinite with probability 1.

Now we are ready to show that the depth of TC (resp. T ′
C ) when we run the exploration upto time δ (resp. δ′) is of

logarithmic order with high probability.

Lemma 5.8. There exists a C > 0 such that

(i) Pλ((rδ > C logn) ∩ E) = O(n−3),
(ii) Pλ((rδ′ > C logn) ∩ E ′) = O(n−3).

Proof. We shall prove only (i) as proof of (ii) is similar. Because of Lemmas 5.2 and 5.7 we have for a large enough
choice of C > 0,

Pλ

(
(rδ > C logn) ∩ E

)
< Pλ

(�C logn�∑
i=1

ZGW
i ≤ C0n

3/4 logn

)

< Pλ

(
ZGW

�C logn� ≤ C0n
3/4 logn

)
< n−3, (5.1)

where (5.1) follows by applying Lemma 2.5, choosing C > 0 large enough and observing the fact that Pλ(Zr = 0) = 0
for any r from definition of GW . �
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Recall that in stage 2, we stop the process if we have revealed a vertex which is a neighbour of Rδ ∪ Qδ , and we
say a collision has occurred. Let us denote the event that collision does not occur up to step k by Ck . Since δ ≤ �n3/4�
implies either disaster has occurred in stage 1 or rδ > log2 n and δ′ ≤ �n3/4� implies either disaster has occurred in
stage 2 or r ′

δ > log2 n or a collision has occurred we have the immediate corollary.

Corollary 5.9. On the event E , the Pλ-probability that δ ≤ �n3/4� is O(n−3). On the event E ′ ∩Cδ′ , the Pλ-probability
that δ′ ≤ �n3/4� is O(n−3).

Now we are ready to prove our estimate on the typical distances. We show next, that a collision will occur with
high probability.

Lemma 5.10. Probability that a collision occurs before step δ′ is at least 1 − cn−3 for some constant c > 0.

Proof. Let H be the event that disaster does not occur up to step δ, δ = �n3/4� + 1. Let A(Rδ) be the set of v∗-
parents of the heads of the worms in Rδ . Since at each step at least one vertex is revealed, δ = �n3/4� + 1 implies the
number of vertices revealed is at least n3/4. If disaster does not occur, then from Lemma 5.4 and Proposition 5.3, the
worms are disjoint and each worm has length at most log2 n + 16. Hence the number of vertices in A(Rδ) is at least
n3/4/(log2 n + 16). Also, the number of vertices in A(Rδ) is at most C0n

3/4 logn from Lemma 5.2. For any k < δ′,
conditioned on the event Ck that no collision has occured up to step k, the probability that collision occurs in step
k + 1 when we are exploring a vertex v is at least (using Bonferroni’s inequality),∑

w∈A(Rδ)

Pλ

(
m(v) = m(w)|Ck,H

) −
∑

w,z∈A(Rδ)

Pλ

(
m(v) = m(w) = m(z)|Ck,H

)
>

c

n1/4 log2 n
− c log2 n√

n
(5.2)

>
c

n1/4 log2 n
(5.3)

for some constant c > 0. The first term of (5.2) follows from the lower bound of (2.3). The second term of (5.2)
follows from (2.4) and noting that the number of terms in the sum is O(n3/2 log2 n). Since the bound on the probability
displayed in (5.3) is independent of the conditioning,

Pλ

(
Cδ′ ∩ δ′ = �n3/4� + 1|H) + Pλ

(
Cδ′ ∩ δ′ ≤ �n3/4�|H)

<

(
1 − c

n1/4 log2 n

)n3/4

+ Pλ

(
Cδ′ ∩ E ′ ∩ δ′ ≤ �n3/4�|H) + Pλ

(
(E ′)c|H)

< exp
(−c

√
n/ log2 n

) + O
(
n−3) (5.4)

= O
(
n−3),

where the bound on the second term in Equation (5.4) follows from Corollary 5.9 and Lemma 5.4. The lemma now
follows because the probability of the complement of H is O(n−3) again from Corollary 5.9 and Lemma 5.4. �

Proof of Theorem 5.1. Suppose we have performed exploration process I stage 1 and 2. Let G be the event that
rδ ≤ C logn, rδ′ ≤ C logn, disaster does not occur before step δ or δ′ and a collision occurs. On the event G the distance
between V1 and V2 in the underlying graph of Tλ(n) is at most 32C logn + 1 by Lemma 5.5. But by Lemmas 5.4, 5.8
and 5.10, the complement of the event G has probability O(n−3). �

5.1. Remaining proofs

The proofs of both the lemmas in this subsection are for stage 1 of the exploration process as the proof for stage 2 is
the same.
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Proof of Lemma 5.4. Let s be a seed revealed in the kth step of exploration process II. Suppose P denotes the set of
vertices at a distance at most log2 n + 16 from s along the unique path joining s and v∗. Note that none of the vertices
in P are revealed yet because of the death rule. If the worm corresponding to s faces more than 16 dead vertices,
then more than 16 dead vertices must be revealed in P during the exploration from step k to δ. Conditioned up to the
previous step, the probability that one of the revealed vertices lie in P in a step is O(n−1(log2 n + 16)) from (2.3)
and union bound. Since this bound is independent of the conditioning, the probability that this event happens at least
16 times during the process is O(n−16 log32 n · n12) = O(n−4 log32 n) where the factor n12 has the justification that( �n3/4�

16

) = O(n12) is the number of combination of steps by which this event can happen 16 times. Observe that more
than one vertex may be revealed in P in a step, but the probability of that event is even smaller. Thus taking union
over all seeds, we see that the probability of disaster occurring is O(n−13/4 log33 n) = O(n−3) using Lemma 5.2 and
union bound. �

Proof of Lemma 5.6. It is clear that on the event of no disaster, every explored vertex has at least the offspring
corresponding to its closest non-dead v∗-ancestor in the tree TC . This is because on the event of no disaster, no two
worms intersect. For stage 2, the closest non-dead v∗-ancestor cannot belong to Rδ ∪ Qδ because otherwise, the
process would have stopped. Hence (i) is trivial.

Now for (ii), first recall that condition (A) ensures that the number of indices i such that λi ≥ 3 is at least (1−d2)n.
Now since the number of vertices revealed upto any step k < δ is O(n3/4 logn), the number of vertices left with mark
i such that λi ≥ 3 is at least (1 − d2)n − O(n3/4 logn) > (1 − d2)n/2 for large enough n. Note that the number of
offsprings of v in TC is at least 3 if the number of vertices with the same mark as v− is at least 3 and death does not
occur. Hence if we can show that the probability of death rule being satisfied in a step is o(1), we are done.

To satisfy the death rule in step k + 1, a vertex in mark(v−) \ v− must be within distance log3 n in the tree U0,n to
another vertex in mark(v−) \ v− or Rk ∪Qk ∪ v∗. Now using of part (ii) of condition (B) and Lemma 5.2, the number
of vertices within log3 n of Rδ ∪ Qδ ∪ v∗ is O(n3/4 log9 n). Hence the probability that the death rule is satisfied is
O(n−1/4 log9 n) = o(1) by union bound. This completes the proof. �

Appendix A: Proof of Lemma 2.3

We shall prove Lemma 2.3 in this section. We do the computation following the method of random allocation similar in
lines of [22]. For this, we need to introduce i.i.d. random variables {ξ1, ξ2, . . .} such that for some parameter β ∈ (0,1)

P (ξ1 = 2i + 1) =
{

β2i+1

B(β)(2i+1)
if i ∈ N∪ {0},

0 otherwise,
(A.1)

where B(β) = 1/2 log((1 + β)/(1 − β)). Recall that P is the set of all N -tuples of odd positive integers which sum
up to n + 1. Observe that for any z = (z1, . . . , zN) ∈P ,

P(λ = z) = P(ξ1 = z1, . . . , ξN = zN |ξ1 + ξ2 + · · · + ξN = n + 1)

throughout this section, we shall assume the following:

• {n,N} → {∞,∞} and n/N → α for some constant α > 1,
• for every n, the parameter β = β(n) is chosen such that E(ξ1) = m = (n + 1)/N .

It is easy to check using (A.1) that there is a unique choice of such β and β converges to some finite number βα

such that 0 < βα < 1 as (n + 1)/N converges to α. Let ζN,j = ξ
j

1 + · · · + ξ
j
N where j ≥ 1 is an integer. It is also easy

to see that for any integer j ≥ 1, Eξ
j

1 = mj(n) for some function mj which also converge to some number mjα as

n → ∞. Let σ 2
j = Var(ξ j

1 ). To simplify notation, we shall denote ζN,1 by ζN and σ1 by σ .
We will first prove a central limit theorem for ζN .
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Lemma A.1. We have,

ζN − Nm

σ
√

N
→ N(0,1) (A.2)

in distribution as n → ∞.

Proof. Easily follows by checking the Lyapunov condition for triangular arrays of random variables (see [18]). �

We now prove a local version of the CLT asserted by Lemma A.1.

Lemma A.2. We have

P(ζN = n + 1) ∼ 2√
2πNσ

.

Proof. Let ξi = (ξi − 1)/2. Apply Theorem 1.2 of [16] for the modified arrays {ξ1, . . . , ξN }n≥1 and use Lemma A.1.
The details are left for the readers to check. �

Lemma A.3. Fix j ≥ 1. There exists constants C1 > 1 and C2 > 1 (both depending only on α and j ) such that

P

(
C1n <

N∑
i=1

λ
j
i < C2n

)
> 1 − c

n7/2
(A.3)

for some c > 0 which again depends only on α and j for large enough n.

Proof. It is easy to see that mj → mjα as n → ∞. Notice that

P

(
N∑

i=1

λ
j
i > C2n,

N∑
i=1

λ
j
i < C1n

)
= P(ζN,j > C2n, ζN,j < C1n|ζN = n)

<
P(ζN,j > C2n, ζN,j < C1n)

P (ζN = n)
. (A.4)

Choose C2 > mjα and C1 < mjα . Then for some c > 0, for large enough n,

P(ζN,j > C2n, ζN,j < C1n) < P
(|ζN,j − mjN | > cn

)
< E(ζN,j − mjN)8(cn)−8. (A.5)

It is easy to see that E(ζN,j − mjN)8 = O(n4) since the terms involving E(ξ
j
i − mj) vanishes and all the finite

moments of ξ1 are bounded. Now plugging in this estimate into Equation (A.5), we get

P(ζN,j > C2n, ζN,j < C1n) = O
(
n−4). (A.6)

Now plugging in the estimate of Equation (A.6) into Equation (A.4) and observing that P(ζN = n) � N−1/2 via
Lemma A.2, the result follows. �

Lemma A.4. There exists a constant C0 > 0 such that

P(λmax > C0 logn) = O
(
n−3).

Proof. Let ξmax be the maximum among ξ1, . . . , ξN . Note that

P(ξmax > C0 logn) < NP(ξ1 > C0 logn) = O
(
NβC0 logn

) = O
(
n−7/2) (A.7)

if C0 > 0 is chosen large enough. Now the lemma follows from the estimate of Lemma A.2. The details are left to the
reader. �
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Lemma A.5. There exists constants 0 < d1 < 1 and 0 < d2 < 1 which depends only on α such that P(d1n < |i: λi =
1| < d2n) < e−cn for some constant c > 0 for large enough n.

Proof. The probability that |i: λi = 1| < d2n for large enough n for some 0 < d2 < 1 follows directly from the fact
that |i: λi = 1| ≤ N . For the upper bound,

P
(|i: λi = 1| > d1n

) = P

(
N∑

i=1

1λi=1 > d1n

)
<

P(
∑N

i=1 1ξi=1 > d1n)

P(ζN = n)
. (A.8)

Now P(ξi = 1) → βα/B(βα) as n → ∞. The lemma now follows by choosing d1 small enough, applying Lemma A.2
to the denominator in Equation (A.8) and a suitable large deviation bound on Bernoulli variables. Details are standard
and is left to the reader. �

Proof of Lemma 2.3. Follows from Lemmas A.3–A.5. �

Appendix B: Proofs of the lemmas in Section 2.3

In this section, we shall prove Lemmas 2.5 and 2.7.
Let pi denote P(ξ = i) for i ∈ N and denote the generating function by ϕ(s) = ∑

i pis
i . Let μ = Eξ . Let Zn denote

the number of offsprings in the nth generation of the Galton–Watson process.

B.1. Critical Galton–Watson trees

We assume ξ has geometric distribution with parameter 1/2. Here μ = 1 and we want to show that Zr cannot be much
more than r . The following large deviation result is a special case of the main theorem of [27].

Proposition B.1. For all r ≥ 1 and k ≥ 1,

P(Zr ≥ k) <
3

2

(
1 + 1

ϕ′′(3/2)r/2 + 2

)−k

.

B.2. Supercritical Galton–Watson trees

Here μ > 1. Recall the assumptions

• 0 < p0 + p1 < 1
• there exists a small enough λ > 0 such that E(eλξ ) < ∞.

It is well known (see [21]) that Zn/μ
n is a martingale which converges almost surely to some non-denegerate random

variable W . Let ρ := P(limn Zn = 0) be the extinction probability which is strictly less than 1 in the supercritical
regime.

The following results may be realized as special cases of the results in [7], [19] and further necessary references
can be found in these papers.

W if restricted to (0,∞) has a strictly positive continuous density which is denoted by w. In other words, we have
the following limit theorem:

lim
n

P
(
Zn ≥ xμn

) =
∫ ∞

x

w(t)dt, x > 0.

Also define γ := ϕ′(ρ) where 0 < γ < 1 in our case. Define β by the relation γ = μ−β . It is clear that in our case
β ∈ (0,∞). β is used to determine the behaviour of w as x ↓ 0. The following is proved in [7].
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Proposition B.2. Let η := μβ/(3+β) > 1. Then for all ε ∈ (0, η), there exists a positive constant Cε > 0 such that for
all k ≥ 1,

∣∣P(Zr = k)μr − w
(
k/μr

)∣∣ ≤ Cε

η−r

kμ−r
+ (η − ε)−r (B.1)

for all r ≥ 1.

It can be shown (see [12]) that there exists positive constants A1 > 0,A2 > 0 such that A1x
β−1 < w(x) < A2x

β−1

as x ↓ 0. Using this and Equation (B.1), we get

P(Zr = k) ≤ C
kβ−1

μrβ
+ η−r

k
+ (

(η − ε)μ
)−r

. (B.2)

Proof of Lemma 2.5. The proof is straightforward by summing k from 1 to γ r the expression given by the right hand
side of (B.2). �

B.3. Random plane trees

Proof of Lemma 2.7. Note that it is enough to prove the bound for r ≤ n because otherwise the probability is 0. It
is well known that if we pick an oriented edge uniformly from U0,n and re-root the tree there then the distribution of
this new re-rooted tree is the same as that of U0,n (see [17]). Let V denote the root vertex of the new re-rooted tree
and let Zj (V ) denote the number of vertices at distance exactly j from V . It is well known that the probability of a
critical geometric Galton–Watson tree to have n edges is � n−3/2. Using this fact and Proposition B.1 we get for any
k ≥ 1 and 1 ≤ j ≤ r

P
(
Zj (V ) > k

)
< n3/2c exp(−c′k/j) < n3/2c exp(−c′k/r) (B.3)

and some suitable positive constants c, c′. Note that if Mr > r2 log2 n then Zj (v) > r log2 n for some 1 ≤ j ≤ r and
some vertex v ∈ U0,n. Using this and union bound to the estimate obtained in (B.3), we get

P
(
Mr > r2 log2 n

)
< cn5/2r exp

(−c′ log2 n
) = O

(
exp

(−c′ log2 n
))

for some positive constants c and c′. This completes the proof. �
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