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We study a double-ended queue where buyers and sellers arrive to
conduct trades. When there is a pair of buyer and seller in the system,
they immediately transact a trade and leave. Thus there cannot be a
non-zero number of buyers and sellers simultaneously in the system.
We assume that sellers and buyers arrive at the system according
to independent renewal processes, and they would leave the system
after independent exponential patience times. We establish fluid and
diffusion approximations for the queue length process under a suit-
able asymptotic regime. The fluid limit is the solution of an ordinary
differential equation, and the diffusion limit is a time-inhomogeneous
asymmetric Ornstein-Uhlenbeck process (O-U process). A heavy traf-
fic analysis is also developed, and the diffusion limit in the stronger
heavy traffic regime is a time-homogeneous asymmetric O-U process.
The limiting distributions of both diffusion limits are obtained. We
also show the interchange of the heavy traffic and steady state limits.

1. Introduction. Consider a simple trading market where sellers and
buyers arrive according to independent renewal processes. When a seller is
matched with a buyer, a trade occurs and they both leave the system. The
trading follows first-come-first-served principle. If an arriving seller (buyer)
cannot be matched with a buyer (seller), he/she will stay in a queue and
wait for the upcoming buyers (sellers), and so there cannot be non-zero
number of buyers and sellers simultaneously in the system. We further as-
sume that traders (sellers and buyers) are impatient, that is, if they do
not see a matching trader within a trader-specific random time (called the
trader’s patience time) they leave without completing the trade. Such sys-
tem forms a double-ended queueing system, which is schematically shown in
Figure 1. It is assumed that the arrival processes for sellers and buyers are
independent renewal processes, and the patience times are independently
exponentially distributed. A direct study of such system becomes challeng-
ing. In this work, we establish fluid and diffusion approximations for such
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double-ended queue in an appropriate asymptotic regime. The fluid limit
is the solution of an ordinary differential equation, and the diffusion limit
is a time-inhomogeneous asymmetric O-U process. A heavy traffic diffusion
approximation is also studied, and the diffusion limit is a time-homogeneous
asymmetric O-U process. We also show the validity of heavy traffic steady
state approximation, i.e., the interchange of the heavy traffic and steady
state limits.

Double-ended queues arise in many applications, such as taxi-service sys-
tem, buyers and sellers in a common market, assembly systems, organ trans-
plant systems, to name a few. The first work on double-ended queue is by
Kashyap [23] for a taxi service example. Kashyap considers the taxi queue-
ing system as a double-ended queue with limited waiting space. Under the
assumptions that arrival processes of taxies and passengers are Poisson pro-
cesses, he derives the analytical results about the steady state distribution of
the system state. Conolly et al. [11] study the effect of impatience behavior
primarily in the context of double-ended queues under the assumption of
Poisson arrivals and exponential patience times. Researchers also find many
other practical applications of the double-ended queues, such as networks
with synchronization nodes (Prabhakar et al. [32]), and perishable inventory
system (Perry et al. [30]). When renewal arrivals are considered, the explicit
form of the limiting distribution becomes intractable. Degirmenci [17] stud-
ies the asymptotic behavior of the limiting distribution of the double-ended
queue using algebraic approximation methods. Several researchers study the
double-ended queue using simulation methods, see Zenios [45] and Kim
et al. [24]. In this work, we develop rigorous diffusion approximations for
double-ended queues under appropriate asymptotic regime.

There is a rich literature on diffusion approximations for (one-sided)
queueing systems with abandonment in heavy traffic. Two heavy traffic
regimes – conventional heavy traffic regime and Halfin-Whitt regime – have
been extensively studied. Loosely speaking, in both regimes, the queue-
ing system is roughly balanced. In conventional heavy traffic regime, one
considers queueing systems with fixed number of servers, while in Halfin-
Whitt regime, the number of servers approaches to infinity. Ward and Glynn
[41] study the M/M/1 +M model (+M denotes independent exponential
patience times), and the result is extended to the G/GI/1 + GI model
(+GI denotes generally distributed independent patience times) in Ward
and Glynn [42]. Later on, Reed and Ward [36] develop a more stable haz-
ard rate scaling for patience time distribution for the G/GI/1 +GI model.
Such scaling is extended more generally for single server queue in Lee and
Weerasinghe [26]. In the Halfin-Whitt regime, the M/M/n +M model is
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considered in Garnett et al. [20], the G/M/n + M model is included in
Whitt [43], Zeltyn and Mandelbaum [44] study the M/M/n+G model, and
Dai et al. [15] work on the G/PH/n + GI model. Recently, Mandelbaum
and Momcilovic [28] and Dai and He [14] both develop diffusion approxima-
tions for G/GI/n+GI model. The hazard rate scaling has been applied to
study the G/M/n + GI model by Reed and Tezcan [34]. In this work, we
will focus on exponential patience times. In a forthcoming paper Liu [27],
we study generally distributed independent patience times with hazard rate
scaling, and the (conventional) heavy traffic diffusion limit is expected to be
an asymmetric O-U process with drift given by an appropriate hazard rate
scaling limit of the patience time distributions.

Asymmetric O-U processes developed in our work have piecewise-linear
state dependent drift and possibly time dependent diffusion coefficient. The
drift function has linear pieces on [0,∞) and (−∞, 0), which are correspond-
ing to different reneging rates for sellers and buyers (see (4.8) and (4.12)).
Because of such drift structure, the asymmetric O-U processes admit unique
limiting distributions (see Theorem 4.4). Such process is a special case of
the so-called piecewise O-U processes, which have arisen as diffusion ap-
proximations for queueing systems (see e.g. Garnett et al. [20], Whitt [43],
and Dai et al. [15]). Recently, Dieker and Gao [18] has studied the posi-
tive recurrence property of multidimensional time-homogeneous piecewise
O-U processes, which arises as diffusion approximation in Dai et al. [15]. In
Browne and Whitt [7], a one-dimensional piecewise-linear diffusion process
(with piecewise linear drift function and piecewise-constant diffusion coeffi-
cient) is studied and a closed form of the stationary distribution is obtained.
Such one-dimensional piecewise-linear diffusion processes are also called con-
tinuous time threshold autoregressive (CTAR) processes (see [6] and [39]) in
time series literature. In particular, [6] studies the stationary distributions
of the one-dimensional CTAR. The one-dimensional state-dependent CTAR
are considered in [37] and the multidimensional state-dependent CTAR can
be found in [38].

Furthermore, we study the validity of the heavy traffic steady state ap-
proximation (see Theorem 4.5). More precisely, we show that the pre-limit
queue length process admits a limiting distribution, and in heavy traffic
such limiting distribution converges to that of the limit diffusion process.
A pioneer work on the study of such interchange of limit operations for
generalized Jackson networks is by Gamarnik and Zeevi [19], the essiential
idea of which is to construct an appropriate Lyapunov function. Budhiraja
and Lee [9], on the other hand, study the interchange of limits by establish-
ing a uniform bound for the growth of the moments of the diffusion scaled
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pre-limit processes. Recently, Dai et al. [16] study the interchange of heavy
traffic and steady state limits for the G/PH/n +M model, following the
approach in Gamarnik and Zeevi [19], and establish an interchange limit
theorem under some sufficient conditions. In this work, we will follow the
approach in Chapter 4 of Bramson [5] and Budhiraja and Lee [9] to estab-
lish the positive recurrence of the pre-limit processes and the interchange
of heavy traffic and steady state limits under very mild assumptions (4.1)
and (4.2).

The main contributions of this work are (1) we study a two-sided queue,
which is different in structure from the one-sided queue; (2) we not only
study the (conventional) heavy traffic diffusion approximation, but also
study a diffusion approximation for the centered and scaled queue length
process without assuming heavy traffic condition; (3) the limiting behaviors
of diffusion models are developed; (4) we establish the interchange of the
heavy traffic and steady state limits for the queue length process; (5) we
conduct numerical experiments to study the goodness of the fluid and dif-
fusion models.

The rest of the paper is organized as follows. In the next section we
present the model of the double-ended queue with renewal arrivals and ex-
ponential patience times, and introduce the relevant notation. In Section 3,
we collect the results about the special case when the arrival processes are
Poisson processes. Some of these results are known, while some are new.
We use these results to construct a Poisson approximation model in Sec-
tion 5. In Section 4 we study the fluid and diffusion approximations for
the queue length process, and the main results are presented in Theorems
4.1–4.5. More precisely, under suitable conditions (Assumptions 4.1), the
fluid limit is provided in Theorem 4.1, the first diffusion approximation re-
sult appears in Theorem 4.2, and the heavy traffic diffusion limit is obtained
in Theorem 4.3. We further provide the exact solution of the fluid equation
in Lemma 4.1, and study the moments and limiting distributions of the
diffusion limits in Theorem 4.4. Finally, we establish the interchange limit
theorem in Theorem 4.5. In Section 5, we study several numerical examples,
and compare goodness of three approximations: the Poisson approximation,
and the two diffusion approximations. We make comments on extensions of
this model in Section 6. All the proofs are provided in Appendix A, and the
numerical results can be found in Appendix B.

We use the following notation. Denote by R, R+, Z, and N the sets of real
numbers, nonnegative real numbers, integers, and positive integers, respec-
tively. For a real number a, define a+ = max{a, 0} and a− = max{0,−a}.
Similarly, for a real function f defined on [0,∞), define f+(t) = max{0, f(t)}



DIFFUSION MODELS FOR DOUBLE-ENDED QUEUES 5

Fig 1. A double-ended queue.

and f−(t) = max{0,−f(t)}, t ≥ 0. Denote by D([0,∞) : R) the space of
right continuous functions with left limits defined from [0,∞) to R with the
usual Skorohod topology. For x ∈ D([0,∞) : R), let ‖x‖t = sups∈[0,t] |x(s)|,
t ≥ 0. A mapping F : D([0,∞) : R) → D([0,∞) : R) is called Lipschitz
continuous if for any t ∈ [0,∞), there exists κ ∈ (0,∞) (may depending
on t) such that for x1, x2 ∈ D([0 : ∞),R),

‖F (x1)− F (x2)‖t ≤ κ‖x1 − x2‖t.

The normal distribution with mean µ and variance σ2 is denoted byN(µ, σ2),
and its density and distribution functions are denoted by φ(·;µ, σ2) and
Φ(·;µ, σ2), respectively. For a Markov process {X(t) : t ≥ 0} with station-
ary distribution π, denote by X(∞) a random variable with distribution π.
Finally, we will denote generic positive constants by c1, c2, . . .. Their values
may change from one proof to another.

2. Model formulation. Consider a double-ended queue as in Figure 1,
where the sellers and buyers arrive according to independent renewal pro-
cesses. A trade occurs when there is a pair of seller and buyer in the system,
and the pair leaves the system instantaneously. The trading follows first-
come-first-served principle. So there cannot be nonzero sellers and buyers in
the system simultaneously. We assume the customers are impatient and the
patience times are independently exponentially distributed. Let X(t) be the
length of the double-ended queue at time t. Then X(t) takes values in Z. If
X(t) > 0, there are X(t) sellers waiting in the system, and if X(t) < 0, there
are −X(t) buyers waiting in the system. Let (Ω,F ,P, {Ft}t≥0) be a filtered
probability space satisfying the usual conditions. All the random variables
and stochastic processes in Sections 2 and 3 are assumed to be defined on
this space. We assume the inter-arrival times of sellers and buyers are inde-
pendent sequences of i.i.d. random variables {Uk : k ∈ N} and {Vk : k ∈ N},
respectively. The random variable U1 has mean 1/α and standard devia-
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tion σ, and V1 has mean 1/β and standard deviation ς. Define

Ns(t) = max

{

k :

k
∑

i=1

Ui ≤ t

}

,

Nb(t) = max

{

k :
k
∑

i=1

Vi ≤ t

}

.

The renewal processes Ns and Nb can be interpreted as the arrival processes
for sellers and buyers, respectively. The patience times of sellers and buyers
are independent sequences of i.i.d. exponential random variables with rate θ
and γ, respectively. Let Nsr and Nbr be two independent unit-rate Poisson
processes, which are independent of Ns and Nb. Then we have the following
evolution equation for {X(t) : t ≥ 0}. For t ≥ 0,
(2.1)

X(t) = X(0)+Ns(t)−Nb(t)−Nsr

(

θ

∫ t

0
X+(s)ds

)

+Nbr

(

γ

∫ t

0
X−(s)ds

)

,

where X(0) denotes the initial number of sellers or buyers in the system,
which is assumed to be independent of Ns, Nb, Nsr and Nbr.

3. A special case: Poisson arrivals. When the arrival processes are
Poisson processes, it is easy to see that {X(t) : t ≥ 0} is a birth and death
process on Z with birth parameters λi = α + i−γ and death parameters
µi = β + i+θ for i ∈ Z. Using the standard theory (see Kulkarni [25]), we
see that this birth and death process is:

• positive recurrent, if θ > 0 and γ > 0;
• null recurrent, if θ = γ = 0 and α = β;
• transient, if θ = γ = 0 and α 6= β.

In the analysis, we assume θ > 0 and γ > 0. Therefore, this continuous time
Markov chain (CTMC) X has a unique limiting distribution (which is also
the unique stationary distribution). Let {πi : i ∈ Z} denote this limiting
distribution. Using the standard theory of balance equations, the limiting
distribution is given by the following:

πi =
αi

i
∏

j=1
(β + jθ)

π0, i ∈ N,(3.1)

π−i =
βi

i
∏

j=1
(α+ jγ)

π0, i ∈ N,(3.2)
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π0 =











1 +
∞
∑

i=1

αi

i
∏

j=1
(β + jθ)

+
∞
∑

i=1

βi

i
∏

j=1
(α+ jγ)











−1

.(3.3)

The next lemma studies some ergodicity properties of X. Denote by Ex

the expectation conditioning on the process X starting from x ∈ Z.

Lemma 3.1. For x ∈ Z and s ≥ 0,

(3.4) lim
t→∞

Ex

[

es|X(t)|
]

=
∞
∑

i=−∞
es|i|πi.

In particular, for measurable function f : Z → R such that for some s ≥ 0,
|f(x)| ≤ es|x|, x ∈ Z, we have

(3.5) lim
t→∞

Ex [f(X(t))] =

∞
∑

i=−∞
f(i)πi.

Using Lemma 3.1, various limiting performance of X can be studied by
using the limiting distribution π. In the following, we simply focus on the
first two moments of X(t). From Lemma 3.1, the first two limiting (or steady
state) moments can be expressed in terms of π. We next simplify these
moments using Gamma functions and incomplete Gamma functions. Define
for t ≥ 0,

m(t) = E(X(t)), m+(t) = E(X+(t)), m−(t) = E(X−(t)),

s(t) = E(X(t))2, s+(t) = E(X+(t))2, s−(t) = E(X−(t))2.

Clearly, m(t) = m+(t)−m−(t) and s(t) = s+(t) + s−(t). We also note that
in general m+(t) 6= m+(t), m−(t) 6= m−(t), and so |m(t)| 6= m+(t)+m−(t).
For t > 0, the Gamma function Γ(t) =

∫∞
0 xt−1e−xdx, and for t > 0, y > 0,

the incomplete Gamma function Γ(t, y) =
∫ y
0 x

t−1e−xdx.

Lemma 3.2. Let

p1 =
β

θ
eα/θ

(α

θ

)−β/θ
Γ(β/θ, α/θ)− 1,

p2 =
α

γ
eβ/γ

(

β

γ

)−α/γ

Γ(α/γ, β/γ) − 1.
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Then
π0 = (1 + p1 + p2)

−1,

and

lim
t→∞

m+(t) =

[

α− β

θ
p1 +

α

θ

]

π0,

lim
t→∞

m−(t) =

[

β − α

γ
p2 +

β

γ

]

π0,

lim
t→∞

s+(t) =
α− β

θ
lim
t→∞

m+(t) +
α

θ
(p1 + 1)π0,

lim
t→∞

s−(t) =
β − α

γ
lim
t→∞

m−(t) +
β

γ
(p2 + 1)π0.

Lemma 3.2 will be used in Section 5 for Poisson approximation. We next
introduce m(t) and s(t) as the solutions of two ordinary differential equa-
tions.

Lemma 3.3. Assume that X(0) has finite first two moments. Then the
moment functions m(t) and s(t) satisfy the following differential equations.
For t ≥ 0,

(3.6)
dm(t)

dt
= (α− β)− θm+(t) + γm−(t),

and

(3.7)

ds(t)

dt
= −2θs+(t)− 2γs−(t) + (2α − 2β + θ)m+(t)

+ (−2α+ 2β + γ)m−(t) + α+ β,

with initial conditions m(0) = E(X(0)) and s(0) = E(X(0))2.

From Lemma 3.3, when θ = γ, (3.6) and (3.7) are simplified to be

(3.8)
dm(t)

dt
= (α− β)− θm(t),

and

(3.9)
ds(t)

dt
= −2θs(t) + (2α− 2β)m(t) + θ(m+(t) +m−(t)) + α+ β.

Solving (3.8), we have

(3.10)
m(t) =

(

m(0)− α− β

θ

)

e−θt +
α− β

θ
, t ≥ 0,

lim
t→∞

m(t) =
α− β

θ
.
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However, observing that m+(t) + m−(t) 6= |m(t)|, (3.9) cannot be solved
directly. Consider the following ODE by replacingm+(t)+m−(t) with |m(t)|,

(3.11)
ds̃(t)

dt
= −2θs̃(t)+(2α−2β)m(t)+θ|m(t)|+α+β, and s̃(0) = s(0).

Noting that m+(t) +m−(t) ≥ |m(t)| and s(0) = s̃(0), we have that

(3.12) s(t) ≥ s̃(t), t ≥ 0.

Using (3.10) to solve the ODE in (3.11), we have that

(3.13) lim
t→∞

s(t) ≥ lim
t→∞

s̃(t) =

(

α− β

θ

)2

+
max{α, β}

θ
,

which provides a lower bound for limt→∞ s(t). Nevertheless, we can always
use Lemma 3.2 to study limt→∞ s(t) as follows:

(3.14)

lim
t→∞

s(t) = lim
t→∞

s+(t) + lim
t→∞

s−(t)

=
α− β

θ
lim
t→∞

m(t) +
α

θ
(p1 + 1)π0 +

β

γ
(p2 + 1)π0

=
α+ β

2θ
+

(α− β)2

θ2
+

limt→∞m+(t) + limt→∞m−(t)
2

.

In Remark 4.5, we construct proper estimates for m(t) and s(t) using the
fluid and diffusion approximations established in Section 4. It is shown that,
under Assumption 4.1 (additional heavy traffic condition needed for heavy
traffic diffusion model), the fluid and diffusion models provide simple and
good approximations for limt→∞m(t) and limt→∞ s(t).

4. Fluid and diffusion approximations. In this section we study
double-ended queues with renewal arrivals and exponential patience times.
In this setting, {X(t) : t ≥ 0} is no longer a Markov process. We will fo-
cus on establishing fluid and diffusion approximations for {X(t) : t ≥ 0}
under appropriate conditions (see Assumption 4.1). To describe the asymp-
totic region where such approximations are valid, we consider a sequence
of double-ended queues indexed by n ∈ N. For the n-th system, all the no-
tation introduced in Section 2 is carried forward except that we append a
superscript n to all quantities to indicate the dependence of parameters,
random variables, and stochastic processes on n. In particular, on the space
(Ωn,Fn, Pn, {Fn

t }t≥0), {Un
k : k ∈ N} and {V n

k : k ∈ N} are the sequences of
interarrival times, Nn

s and Nn
b are the arrival processes, θn and γn are the
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reneging rates, and Nn
sr and Nn

br are the unit-rate Poisson processes used
to formulate the abandonment processes. Also 1/αn, σn and 1/βn, ςn are
the means and standard deviations of the inter-arrival times of sellers and
buyers, respectively. The expectation operator with respect to P

n will be
denoted by E

n, but frequently we will suppress n from the notation. We
further assume the following strict positivity and uniform integrability on
{Un

1 : n ∈ N} and {V n
1 : n ∈ N}.

(4.1) P
n(Un

1 > 0) = P
n(V n

1 > 0) = 1 for all n ∈ N.

(4.2) {(Un
1 )

2 : n ∈ N} and {(V n
1 )2 : n ∈ N} are uniformly integrable.

Finally, the queue length process Xn can be described as follows: For t ≥ 0,

(4.3)

Xn(t) = Xn(0) +Nn
s (t)−Nn

b (t)−Nn
sr

(

θn
∫ t

0
Xn,+(s)ds

)

+Nn
br

(

γn
∫ t

0
Xn,−(s)ds

)

.

The following assumption describes the asymptotic regime of the parame-
ters. We will assume Assumption 4.1 holds for the entire section.

Assumption 4.1.

(i) There exist α, β, σ, ς ∈ (0,∞) such that

αn → α, βn → β, σn → σ, ςn → ς.

(ii) For θ, γ ∈ (0,∞), we have that

nθn → θ, nγn → γ.

Remark 4.1.

(i) Assumption 4.1 says the means and variances of the inter-arrival times
are O(1), and the reneging rates are O(n−1). So comparing with the
arrival rates, the reneging rates are significantly small. However, such
reneging is nonnegligible in both fluid and diffusion approximations.
If the reneging rates are o(n−1), then the reneging effect is too small
to be significant. The fluid and diffusion approximations would be the
same as those for double-ended queues without reneging. On the other
hand, if the reneging rates are too big such that nγn → ∞, nθn → ∞,
one can show that both the fluid and diffusion limits become zero.

(ii) Similar scalings are widely considered in diffusion approximations for
queueing systems with reneging, e.g. [41, 20]. One may note that for
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many server queueing system, e.g. [20], the reneging rate is assumed
to be O(1). However, in such setting, the arrival rate is assumed to be
O(n), and the total service rate is also O(n). Thus the reneging rate
is smaller than the arrival and total service rates with the same order.
In this sense, our scaling regime is the same as that in many server
queueing systems.

(iii) The diffusion analysis of queueing systems often assumes heavy traffic
conditions (under which the queueing system is roughly balanced) and
establish an approximation for the diffusion scaled queue length pro-
cess (or other interesting processes). In this work, we first study the
diffusion scaled queue length process centered at the fluid limit, and
develop a suitable scaling theorem (see Theorem 4.2) only under As-
sumption 4.1. We then establish the heavy traffic analysis in Theorem
4.3 with an additional heavy traffic condition (4.11).

4.1. Fluid approximation. We begin by defining the fluid scaled pro-
cesses. Loosely speaking, we scale up the time by the factor n and scale
down the space by the same factor n. More precisely, for t ≥ 0, define

X̄n(t) =
Xn(nt)

n
, N̄n

s (t) =
Nn

s (nt)

n
, N̄n

b (t) =
Nn

b (nt)

n
,

N̄n
sr(t) =

Nn
sr(nt)

n
, N̄n

br(t) =
Nn

br(nt)

n
.

Recall that for a stochastic process {Y (t), t ≥ 0}, ‖Y ‖t = sup0≤u≤t |Y (u)| ,
t ∈ [0,∞). We first obtain the limit of X̄n as n → ∞ in Theorem 4.1. The
solution of the fluid limit equation is then given in Lemma 4.1.

Theorem 4.1. Assume that for some x0 ∈ R, E(|X̄n(0) − x0|) → 0 as
n→ ∞. Then we have that for t ∈ [0,∞),

(4.4) E
(

‖X̄n − x‖t
)

→ 0, as n→ ∞,

where x is the solution of the following integral equation

(4.5) x(t) = x0 + (α− β)t− θ

∫ t

0
x+(s)ds+ γ

∫ t

0
x−(s)ds, t ≥ 0.

Lemma 4.1. Consider the integral equation in (4.5).

(i) If α ≥ β and x0 ≥ 0, then

x(t) =

(

x0 −
α− β

θ

)

e−θt +
α− β

θ
, t ∈ [0,∞).
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(ii) If α ≥ β and x0 < 0, then

x(t) =

{

(

x0 − α−β
γ

)

e−γt + α−β
γ , t ∈ [0, t1],

α−β
θ

(

1− e−θ(t−t1)
)

, t ∈ [t1,∞),

where

t1 = γ−1 log

(

α− β − γx0
α− β

)

is the first time for x to reach 0.
(iii) If α < β and x0 ≤ 0, then

x(t) =

(

x0 −
α− β

γ

)

e−γt +
α− β

γ
, t ∈ [0,∞).

(iv) If α < β and x0 > 0, then

x(t) =

{

(

x0 − α−β
θ

)

e−θt + α−β
θ , t ∈ [0, t2],

α−β
γ

(

1− e−γ(t−t2)
)

, t ∈ [t2,∞),

where

t2 = θ−1 log

(

α− β − θx0
α− β

)

is the first time for x to reach 0.

Remark 4.2. From Lemma 4.1, after finite time (t1 and t2 in Lemma 4.1),
the fluid limit x attains zero. The larger the reneging rate and the deviation
between the two arrival rates, the faster x attains zero. After reaching zero,
x(t) has the same sign as α − β, and eventually approaches a stable point.
The existence of the positive reneging rates θ and γ guarantees such stability
of x(t) as t→ ∞. Indeed, we have

(4.6) lim
t→∞

x(t) =

{

α−β
θ , α ≥ β,

α−β
γ , α < β.

4.2. Diffusion approximations. In this subsection, we study diffusion ap-
proximations and define the diffusion scaled processes. This time we scale
up the time by the same factor n and scale down the space by factor

√
n.

To be precise, for t ≥ 0, define
(4.7)

X̂n(t) =
Xn(nt)√

n
, N̂n

s (t) =
Nn

s (nt)− nαnt√
n

, N̂n
b (t) =

Nn
b (nt)− nβnt√

n
,

N̂n
sr(t) =

Nn
sr(nt)− nt√

n
, N̂n

br(t) =
Nn

br(nt)− nt√
n

.
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We now state our main results. Define a diffusion process Z as follows.
Recall the fluid limit x in Section 4.1. For a given random variable Z(0) with
law ν, and a standard Brownian motion W , let Z be the unique solution to
the following stochastic integral equation

(4.8)

Z(t) = Z(0) +

∫ t

0

√

α3σ2 + β3ς2 + θx+(u) + γx−(u)dW (u)

− θ

∫ t

0
Z+(u)du + γ

∫ t

0
Z−(u)du.

The existence and uniqueness of Z is guaranteed by the following lemma.

Lemma 4.2 (Reed and Ward [35]). Let φ : D([0,∞),R) → D([0,∞),R)
be Lipschitz continuous. Then for any given w ∈ D([0,∞),R), there exists
a unique y ∈ D([0,∞),R) that satisfies the integral

y(t) = w(t) +

∫ t

0
φ(y)(u)du,

and y(0) = w(0). Moreover, define the mapping Mφ : D([0,∞),R) →
D([0,∞),R) by Mφ(w) = y, and then Mφ is Lipschitz continuous.

Recall the fluid limit x in Theorem 4.1, and define

(4.9) xn(t) = x(0) + (αn − βn)t− nθn
∫ t

0
xn,+(s)ds+ nγn

∫ t

0
xn,−(s)ds.

It is clear that xn(t) → x(t) for all t ≥ 0. Let

(4.10) Zn(t) =
√
n(X̄n(t)− xn(t)) = X̂n(t)−

√
nxn(t), t ≥ 0.

The following are the main results for the diffusion approximations.

Theorem 4.2. Assume that Zn(0) converges weakly to a probability
measure ν. Then Zn ⇒ Z, where Z is defined by (4.8).

Theorem 4.3. Assume that E|X̄n(0)| → 0, and there exists c ∈ R such
that

(4.11)
√
n(αn − βn) → c, as n→ ∞.

Then we have x ≡ 0, and, if X̂n(0) converges weakly to a probability measure
µ, then X̂n ⇒ X̂, where

(4.12)

X̂(t) = X̂(0) +
√

α3σ2 + β3ς2W (t) + ct− θ

∫ t

0
X̂+(u)du

+ γ

∫ t

0
X̂−(u)du, t ≥ 0,
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and here W is a standard Brownian motion and X̂(0) has law µ.

Condition (4.11) is well known as the heavy traffic condition in queueing
theory, and Theorem 4.3 provides a heavy traffic diffusion analysis of double-
ended queues. Also note that (4.12) has the same form as the diffusion
processes arising for the M/M/N +M and G/M/N +M queues in Halfin-
Whitt regime (see [20] and [43]).

Remark 4.3. Under Assumption 4.1 and the heavy traffic condition
(4.11), the fluid limit x ≡ 0, and the diffusion limit in Theorem 4.2 is
reduced to be

(4.13)

Z(t) = Z(0) +
√

α3σ2 + β3ς2W (t)− θ

∫ t

0
Z+(u)du

+ γ

∫ t

0
Z−(u)du, t ≥ 0.

We next observe that (4.9) becomes

xn(t) = (αn − βn)t− nθn
∫ t

0
xn,+(s)ds+ nγn

∫ t

0
xn,−(s)ds, t ≥ 0.

Noting that
√
n(αn − βn) → c, we have

√
nxn(t) =

√
n(αn−βn)t−nθn

∫ t

0

√
nxn,+(s)ds+nγn

∫ t

0

√
nxn,−(s)ds, t ≥ 0,

and
√
nxn(t) → x̂(t) for all t ≥ 0, where

(4.14) x̂(t) = ct− θ

∫ t

0
x̂+(s)ds+ γ

∫ t

0
x̂−(s)ds, t ≥ 0.

Recalling that Zn(t) = X̂n(t)−√
nxn(t), t ≥ 0, we note that under Assump-

tion 4.1 and the heavy traffic condition (4.11),

(4.15) X̂(t) = Z(t) + x̂(t), t ≥ 0,

where X̂ is the heavy traffic diffusion limit, and Z and x̂ are defined in (4.13)
and (4.14), respectively.

When θ = γ, the diffusion process Z is a time-inhomogeneous O-U pro-
cess, and the process X̂ is a time-homogeneous O-U process. The following
lemma collects some well known results for O-U processes (see e.g. [21]).
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Lemma 4.3. Assume θ = γ. Then

(i)

Z(t) = e−θtZ(0)+

∫ t

0
e−θ(t−u)

√

α3σ2 + β3ς2 + θx+(u) + γx−(u)dW (u).

(ii) The unique limiting distribution of Z is a normal distribution with
mean 0 and variance (α3σ2 + β3ς2 + |α− β|)/2θ.

(iii)

X̂(t) = e−θtX̂(0) +
c

θ
(1− e−θt) +

∫ t

0
e−θ(t−u)

√

α3σ2 + β3ς2dW (u).

(iv) The unique limiting distribution (also stationary distribution) of X̂ is
a normal distribution with mean c/θ and variance (α3σ2 + β3ς2)/2θ.

Using Lemma 4.3 and Ito’s formula, we can study the moment of the kth

order of Z(t) and X̂(t) provided that E(|Z(0)|k) <∞ and E[(X̂(0))k] <∞.
For example, assuming that E(|Z(0)|2) <∞ and E[(X̂(0))2] <∞,

(4.16)

E(Z(t)) = E(Z(0))e−θt,

E(Z(t))2 = E[(Z(0))2]e−2θt +

∫ t

0
e−2θ(t−u)[α3σ2 + β3ς2

+ θx+(u) + γx−(u)]du,

E(X̂(t)) =
(

E(X̂(0)) − c

θ

)

e−θt +
c

θ
,

E(X̂(t))2 =

(

E[(X̂(0))2]− 2c

θ

(

E(X̂(0)) − c

θ

)

−
( c

θ

)2

−α
3σ2 + β3ς2

2θ

)

e−2θt +
2c

θ

(

E(X̂(0))− c

θ

)

e−θt

+
( c

θ

)2
+
α3σ2 + β3ς2

2θ
.

When θ 6= γ, simply analytical expressions for Z or X̂ become intractable.
In particular, van Leeuwaarden and Knessl [40] study the transient proba-
bility distribution of the diffusion processes which have the same form as X̂ ,
and derive an expression for the Laplace transform of the transient distribu-
tion in terms of parabolic cylinder functions. In the following, we consider
the limiting distributions of Z and X̂ , and compute the limiting moments.
Let a =

√

α3σ2 + β3ς2 and b =
√

a2 + |α− β|, and denote by φ(·; ξ, η) and
Φ(·; ξ, η) the density and distribution functions of N(ξ, η).
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Theorem 4.4. Define

(4.17) ψ(x;κ, µ, σ) =







C√
θ
exp

{

κ
θ

}

φ
(

x; µθ ,
σ2

2θ

)

, x ≥ 0,

C√
γ exp

{

κ
γ

}

φ
(

x; µγ ,
σ2

2γ

)

, x < 0,

where C is given by

(4.18)

C = C(κ, µ, σ)

=
1

1√
θ
exp

{

κ
θ

}

(

1− Φ
(

0; µθ ,
σ2

2θ

))

+ 1√
γ exp

{

κ
γ

}

Φ
(

0; µγ ,
σ2

2γ

) .

Then

(i) the density of the unique limiting distribution of the diffusion process
Z is given by

(4.19) ψZ(x) = ψ(x; 0, 0, b),

(ii) the density of the unique limiting distribution (also stationary distri-
bution) of the diffusion process X̂ is given by

(4.20) ψX̂(x) = ψ(x; c2/a2, c, a).

In the following, we calculate the first two moments of the distribution
ψ(x;µ2/σ2, µ, σ), x ∈ R. First, note that if X ∼ N(ξ, η), the density of a

truncated normal random variable on (x1, x2) is given by φ(x;ξ,η)
Φ(x2;ξ,η)−Φ(x1;ξ,η)

.

Let X1 be a truncated N(µθ ,
σ2

2θ ) random variable on (0,+∞), and X2 be

a truncated N(µγ ,
σ2

2γ ) random variable on (−∞, 0). Let V be a mixture of
these two truncated normal random variables as follows:

V =

{

X1 w.p. d1,
X2 w.p. d2,

where

d1 =
C√
θ
exp

{

µ2

θσ2

}(

1− Φ

(

0;
µ

θ
,
σ2

2θ

))

,(4.21)

d2 =
C√
γ
exp

{

µ2

γσ2

}

Φ

(

0;
µ

γ
,
σ2

2γ

)

,(4.22)

and C = C(µ/σ2, µ, σ) is defined as in (4.18). Then V has density function
ψ(x;µ2/σ2, µ, σ), x ∈ R. Now, the first and second moments of the truncated
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normals are given by

E(X1) =
µ

θ
+

σ√
2θ

φ
(

−µ
σ

√

2
θ ; 0, 1

)

1− Φ
(

−µ
σ

√

2
θ ; 0, 1

) ,

E(X2) =
µ

γ
− σ√

2γ

φ
(

−µ
σ

√

2
γ ; 0, 1

)

Φ
(

−µ
σ

√

2
γ ; 0, 1

) ,

E(X2
1 ) =

(µ

θ

)2
+
σ2

2θ
+

√
2

2

µσ

θ
√
θ

φ
(

−µ
σ

√

2
θ ; 0, 1

)

1− Φ
(

−µ
σ

√

2
θ ; 0, 1

) ,

E(X2
2 ) =

(

µ

γ

)2

+
σ2

2γ
−

√
2

2

µσ

γ
√
γ

φ
(

−µ
σ

√

2
γ ; 0, 1

)

Φ
(

−µ
σ

√

2
γ ; 0, 1

) .

Hence the first and second moments of V are given by

(4.23) E(V ) = d1E(X1) + d2E(X2),

and

(4.24) E(V 2) = d1E(X
2
1 ) + d2E(X

2
2 ),

where d1 and d2 is given by equation (4.21) and (4.22). Note that when
θ = γ,

(4.25) ψ(x;µ2/σ2, µ, σ) = φ

(

x;
µ

θ
,
σ2

2θ

)

,

and

(4.26) E(V ) =
µ

θ
, E(V 2) =

µ2

θ2
+
σ2

2θ
.

Finally, the first two limiting moments of Z and X̂ can be given by (4.23) and
(4.24) by replacing (µ, σ) with (0, b) and (c, a), respectively. When θ = γ,
(4.25) and (4.26) give the same results as in Lemma 4.3.

4.3. Interchange of the heavy traffic and steady state limits. Let An
s (t)

denote the residual time of the interarrival time of sellers at time t, i.e.,
the time between t and the first arrival after time t, and An

b (t) is defined
as the residual time of the interarrival time of buyers at time t. Denote
by X

n the triplet (Xn, An
s , A

n
b ). Recall from Section 3 and the beginning

of Section 4 that {Un
k : k ∈ N} and {V n

k : k ∈ N} are the sequences of
interarrival times of sellers and buyers, respectively. For simplicity, we let
An

s (0) = Un
1 and An

b (0) = V n
1 . Note that all the results in this section hold
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even if the distributions of An
s (0) and A

n
b (0) are different from those of Un

k

and V n
k , k ≥ 2. One can check that Xn is a Markov process with state space

Z× R+ × R+. Define the diffusion scaled process

X̂
n(t) =

X
n(nt)√
n

, t ≥ 0.

Theorem 4.5. For n ∈ N, X̂n is ergodic and admits a unique stationary
distribution Πn. Let πn be the marginal distribution of the first coordinate,
i.e. πn(B) = Πn(B × R+ × R+) for B ⊂ { x√

n
: x ∈ Z}. Then under the

heavy traffic condition (4.11), we have πn ⇒ ψX̂ , where ψX̂ is the limiting

distribution (also the stationary distribution) of X̂ as in Theorem 4.4.

Remark 4.4.

(i) Theorem 4.5 essentially establishes the following interchange of limits

lim
t→∞

lim
n→∞

X̂n(t) = lim
n→∞

lim
t→∞

X̂n(t),

which shows the validity of the heavy traffic steady state approxima-
tion for double-ended queues (see the numerical examples in the next
section).

(ii) We only establish the interchange-of-limit theorem for the heavy traf-
fic diffusion approximation. However, following from (4.15) in Re-
mark 4.3, under Assumption 4.1 and the heavy traffic condition (4.11),
the interchange limit result also holds for Zn. Without the heavy
traffic condition and only under Assumption 4.1, we conjecture that
the interchange limit theorem still holds for Zn. Using Multiplica-
tive Foster’s Criterion in Proposition A.1, it can be seen that for
each n ∈ N, (Zn, Ân

s , Â
n
b ) is a time-inhomogeneous Markov process

and its limiting distribution is the same as the stationary distribu-
tion of (Q̂n − √

nxn(∞), Ân
s , Â

n
b ). However, to show Zn(∞) ⇒ Z(∞)

as n → ∞, one needs to account for the time-inhomogeneity, and the
techniques used in the proof of Theorem 4.5 cannot be applied directly.
So we leave this part for future study.

Remark 4.5. Recall that in Section 3, m(t), s(t) are the first two mo-
ments of the queue length processX(t) of the double-ended queue with Pois-
son arrivals. At the end of this section, we compare m(t), s(t) with proper
estimators constructed from the fluid and diffusion limits. It will be seen
that, under Assumption 4.1 (additional heavy traffic condition needed for
heavy traffic diffusion model), the fluid and diffusion models provide simple
and good approximations for limt→∞m(t) and limt→∞ s(t).
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(i) We first compare m(t) with the fluid limit x(t) obtained in Theorem
4.1 and Lemma 4.1. When θ = γ, the fluid equation is the same as the
ODE for m(t). However, when θ 6= γ, noting that in general m+(t) 6=
m+(t) and m−(t) 6= m−(t), the fluid equation doesn’t match with the
ODE for m(t). However, we note that when α, β are much larger than
γ, θ, and α and β have the same order (see Assumption 4.1), using (8)
in [1] and Stirling approximation,

(4.27) p1 ≈
√

β

θ
eα/θ

(

β

αe

)β/θ

, and p2 ≈
√

α

γ
eβ/γ

(

α

βe

)α/γ

.

Then the limiting mean in Lemma 3.2 has the following approxima-
tions. When α > β,

(4.28)
lim
t→∞

m(t) =
α− β

θ

p1 +
θ
γp2 +

α
α−β − θ

γ
β

α−β

1 + p1 + p2

≈ α− β

θ
= lim

t→∞
x(t),

and when α < β,

(4.29)
lim
t→∞

m(t) =
β − α

γ

p2 +
γ
θ p1 +

β
β−α − γ

θ
α

β−α

1 + p1 + p2

≈ β − α

γ
= lim

t→∞
x(t).

(ii) We compare Var(X(t)) = s(t) − (m(t))2 with the second moment of
the diffusion limit Z(t) in Theorem 4.2. For simplicity, assume θ = γ.
From (3.14) and Lemma 3.2,

lim
t→∞

s(t) =
α+ β

2θ
+

(α− β)2

θ2
+

limt→∞m+(t) + limt→∞m−(t)
2

,

and

lim
t→∞

m+(t) + lim
t→∞

m−(t) =

[

α− β

θ
p1 +

α

θ
+
β − α

γ
p2 +

β

γ

]

π0.

Under the asymptotic regime in Assumption 4.1, from (4.28) and
(4.29), we have

lim
t→∞

m+(t) + lim
t→∞

m−(t) ≈
|α− β|
θ

.
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Thus for the queueing system with Poisson arrivals with parameters
in the asymptotic regime in Assumption 4.1,

(4.30)
lim
t→∞

s(t) ≈ α+ β

2θ
+

(α− β)2

θ2
+

|α− β|
2θ

=
(α− β)2

θ2
+

max{α, β}
θ

,

and so combining (4.30) with (4.28) and (4.29), we have

(4.31) lim
t→∞

Var(X(t)) ≈ max{α, β}
θ

.

We now consider the diffusion limit Z. From (4.16), we have

lim
t→∞

E(Z(t))2 =
α3σ2 + β3ς2 + |α− β|

2θ
.

When the arrivals are Poisson processes, the variances of interarrival
times become α and β, and so

(4.32) lim
t→∞

E(Z(t)2) =
α+ β + |α− β|

2θ
=

max{α, β}
θ

,

which is the same as (4.31).
(iii) We finally consider the heavy traffic diffusion approximation X̂ in

Theorem 4.3. Again we assume θ = γ. We consider a sequence of
double-ended queues with Poisson arrivals, indexed by n ∈ N. So the
parameters of the n-th system are αn, βn, θn. Under Assumption 4.1
and heavy traffic condition (4.11), we have

(4.33) αn → α, βn → β,
√
n(αn − βn) → c, nθn → θ, nγn → γ.

From Theorem 4.5, we have

X̂(∞) = lim
t→∞

X̂(t) = lim
t→∞

lim
n→∞

Xn(nt)√
n

= lim
n→∞

lim
t→∞

Xn(nt)√
n

= lim
n→∞

Xn(∞)√
n

.

Thus for large enough n ∈ N, we have

Xn(∞) ≈
√
nX̂(∞),

and so using Lemmas 3.1 and 4.3 (iv),

(4.34) lim
t→∞

E(Xn(t)) = E(Xn(∞)) ≈
√
nE(X̂(∞)) =

√
nc

θ
,
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and

(4.35)

lim
t→∞

E[(Xn(t))2] = E(Xn(∞))2

≈ nE(X̂(∞))2 =
nc2

θ2
+
n(α+ β)

2θ
.

From the convergence in (4.33), we have for large n ∈ N,

(4.36)

√
nc

θ
≈ αn − βn

θn
,
nc2

θ2
≈
(

αn − βn

θn

)2

,

and
n(α+ β)

2θ
≈ αn + βn

2θn
.

Combining (4.34), (4.35), and (4.36), we have for large n ∈ N,

(4.37) lim
t→∞

E(Xn(t)) ≈ αn − βn

θn
,

and

(4.38)

lim
t→∞

E(Xn(t)2) ≈
(

αn − βn

θn

)2

+
αn + βn

2θn

≈
(

αn − βn

θn

)2

+
max{αn, βn}

θn
,

where the last approximation follows from the heavy traffic condition,
i.e. αn and βn are roughly equal when n is large.
Consider now a double-ended queueing system with parameters α, β, θ.
Suppose the parameters satisfy Assumption 4.1 and heavy traffic con-
dition (4.11), i.e. the arrival rates α and β are very close to each other
and the reneging rates θ and γ are very small comparing with α, β
and |α − β|. The above approximations in (4.37) and (4.38) say that
the first two stationary moments of the queue length process can be
approximated by

α− β

θ
, and

(

α− β

θ

)2

+
max{α, β}

2θ
,

which are the same as the approximations in (4.28), (4.29), and (4.30).

5. Numerical examples. In this section, we use simulations to evalu-
ate the performance of the Poisson and the diffusion approximations under
different arrival processes. We now consider a double-ended queue length
process {X(t) : t ≥ 0} with seller inter-arrival time distribution Fs(·) and
buyer inter-arrival time distribution Fb(·). Let ms, mb, sds and sdb be the
means and standard deviations of the inter-arrival time for sellers and buy-
ers. We consider the following inter-arrival time distributions:
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• Exponential: Fs(x) = 1 − e−αx, Fb(x) = 1 − e−βx, ms = 1
α , mb = 1

β ,

sds =
1√
α
, sdb =

1√
β

• Uniform: Fs(x) = αx
2 (x ∈ [0, 2

α ]), Fb(x) = βx
2 (x ∈ [0, 2β ]), ms = 1

α ,

mb =
1
β , sds =

1√
3α

, sdb =
1√
3β

• Erlang(2): Fs(x) = 1−e−2αx−2αxe−2αx, Fb(x) = 1−e−2βx−2βxe−2βx,
ms =

1
α , mb =

1
β , sds =

1√
2α
, sdb =

1√
2β

• Hyper-exponential: Fs(x) = 1
3(1 − e−

1
2
αx) + 2

3(1 − e−2αx), Fb(x) =
1
3(1− e−

1
2
βx) + 2

3(1− e−2βx), ms =
1
α , mb =

1
β , sds =

√
2

α , sdb =
√
2
β

We consider the following arrival rates (α, β) = (1, 1), (1, 1.5) and (1, 2),
and choose the following reneging rates (θ, γ) = (α, β), 0.1(α, β) and
0.01(α, β). For example, when (θ, γ) = 0.1(α, β), the sellers’ (buyers’) ex-
pected patience time is 10 times the sellers’ (buyers’) expected inter-arrival
time. Thus we consider a total of 4×3×3 = 36 different parameter settings.
Also note that the means of inter-arrival time of the above distributions are
the same, while their standard deviations are different, with the following
ordering: Hyper-exponential > Exponential > Erlang > Uniform.

In each parameter setting, we use simulation, Poisson approximation, and
two diffusion approximations (which will be made precise below) to estimate
the following performance measures:

(5.1) L1 = lim
t→∞

E(X(t)), L2 = lim
t→∞

E[(X(t))2].

Simulation. We compute the performance measure by using N replications
of the simulation by Matlab. Each replication consists of simulating the
system for 0 ≤ t ≤ T and the estimates are computed by using the sample
paths over t ∈ [τ, T ], where τ < T is a given warmup period. Let Xk(t) be
the state of the system at time t in the k-th replication, k = 1, 2, . . . , N ,
0 ≤ t ≤ T . Using these sample paths, we compute

πsi =
1

N

N
∑

k=1

1

T − τ

T
∫

τ

1{Xk(t)=i}dt, −1000 ≤ i ≤ 1000.

Using these we compute the following simulation estimates of the first and
second moments of the queue length:

(5.2) Ls
1 =

1000
∑

i=−1000

iπs
i
, Ls

2 =

1000
∑

i=−1000

i2πs
i
.

Poisson approximation. In this approximation we replace the renewal
arrival processes by Poisson arrival processes with the same arrival rates.



DIFFUSION MODELS FOR DOUBLE-ENDED QUEUES 23

Clearly, this approximation is exact in the exponential case. Let Lp
1 and Lp

2

be the Poisson approximation of L1 and L2 respectively. From equations
(3.1)–(3.3), and Lemma 3.2, we have:

(5.3)

Lp
1 =

[

α− β

θ
p1 +

α

θ
− β − α

γ
p2 −

β

γ

]

π0,

Lp
2 =

[

α− β

θ

(

α− β

θ
p1 +

α

θ

)

+
α

θ
(p1 + 1)

+
β − α

γ

(

β − α

γ
p2 +

β

γ

)

+
β

γ
(p2 + 1)

]

π0,

where

p1 =
β

θ
eα/θ

(α

θ

)−β/θ
Γ(β/θ, α/θ)− 1,

p2 =
α

γ
eβ/γ

(

β

γ

)−α/γ

Γ(α/γ, β/γ) − 1,

π0 = (1 + p1 + p2)
−1.

We compute the relative error of the above moments to the ones from
simulation method. To be precise, the relative error of Lp

1, L
p
2 to Ls

1, L
p
2 are

given by (|Lp
1 − Ls

1|/Ls
1)× 100% and (|Lp

2 − Ls
2|/Ls

2)× 100%, respectively.

Two diffusion approximations (see Appendix B.1 for details).We
consider two diffusion models arising from Theorems 4.2 and 4.3. The first
diffusion model is constructed from Theorem 4.3. We note that the arrival
rates should be roughly equal in the heavy traffic regime. However, the first
diffusion model can be applied for any parameter regimes. More precisely, we
approximate L1 and L2 (defined in (5.1)) by using the stationary moments
of X1, where X1 is defined in (B.1), i.e.,

X1(t) = X(0) +
√

α3σ2 + β3ς2W (t) + (α− β) t− θ

∫ t

0
X+

1 (u)du

+ γ

∫ t

0
X−

1 (u)du, t ≥ 0.

We compute the first two limiting moments of X1 using (4.23) and (4.24)

with (µ, σ) replaced by (α−β,
√

α3σ2 + β3ς2), and denote them by Ld,1
1 and

Ld,1
2 . Namely,

(5.4) Ld,1
1 = E

(

lim
t→∞

X1(t)
)

, Ld,1
2 = E

(

lim
t→∞

(X1(t))
2
)

.

The second diffusion model is constructed from Theorems 4.1 and 4.2. We
directly use the limiting point of x2 defined in (B.3) (which is the same as
the fluid limit in (4.6)) to approximate the limiting mean L1, and use the
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second limiting moment of Z2 defined in (B.4) to approximate the limiting
variance of X, namely, L2 − L2

1. More precisely, we have

x2(t) = (α− β)t− θ

∫ t

0
x+2 (s)ds+ γ

∫ t

0
x−2 (s)ds, t ≥ 0,

Z2(t) = X(0) +

∫ t

0

√

α3σ2 + β3ς2 + θx+2 (u) + γx−2 (u)dW (u)

− θ

∫ t

0
Z+
2 (u)du + γ

∫ t

0
Z−
2 (u)du, t ≥ 0,

and the approximations are as follows:

(5.5) Ld,2
1 = lim

t→∞
x2(t), L

d,2
2 =

(

lim
t→∞

x2(t)
)2

+ E

(

lim
t→∞

Z2(t)
2
)

.

We compute the second limiting moment of Z2 using (4.24) with (µ, σ)
replaced by (0, b). We also compute the relative error of the above moments
to the ones from simulation method.

The comparisons of the approximations of L1 and L2 are shown in Tables
1–8. The results about the first moment are shown in the Tables 1–4 and
those about the second moment are shown in Tables 5–8. In the columns
of Lp

1 and Lp
2 (see (5.3)), we evaluate the performance measures by Poisson

approximation method, and obtain the relative error of each performance
measure to the one from simulation method. In the columns of Ld,1

1 , Ld,2
1

and Ld,1
2 , Ld,2

2 (see (5.4) and (5.5)), we obtain the performance measures by
diffusion approximation methods, and also obtain the relative error of each
performance measure to the one from simulation method. The comparisons
of limiting density are shown in Figure 2–5. In the figures, we compare the
density graphs derived from the simulation method, the stationary distri-
bution of the Poisson model, and the stationary distribution of the heavy
traffic diffusion model. When using simulation method, we evaluate the per-
formance measures using the parameter (N, τ, T ) = (400, 1000, 4000) and
obtain the 90% confidence interval.

From the numerical examples, we have the following conclusions.

• From Tables 1–4, consider the limiting mean L1 and its approximations
Lp
1, L

d,1
1 , and Ld,2

1 .

– Both diffusion approximations Ld,1
1 and Ld,2

1 improve when the
reneging rates become smaller.

– The heavy traffic diffusion approximation Ld,1
1 behaves better

than the Poisson approximation in all non-exponential cases.

– The fluid approximation Ld,2
1 becomes very close to the heavy

traffic diffusion approximation Ld,1
1 , when the reneging rates are
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small, which in particular suggests that the fluid limit is a good
approximation of the transient mean of the heavy traffic diffusion
limit.

• From Tables 5–8, consider the second limiting moment L2 and its
approximations Lp

2, L
d,1
2 , and Ld,2

2 .

– Both diffusion approximations Ld,1
2 and Ld,2

2 improve when the
reneging rates become smaller.

– The heavy traffic diffusion approximation Ld,1
2 behaves better

than the Poisson approximation in all non-exponential cases.

– The diffusion approximation Ld,2
2 is not as good as the heavy traf-

fic diffusion approximation Ld,1
2 . However, as the reneging rates

get smaller, Ld,2
2 gets closer to Ld,1

2 . It seems that the convergence

rate of Ld,2
2 is smaller than that of Ld,1

2 . Roughly speaking, the
diffusion process Z is centered at the fluid limit x (see (4.10)).
From Tables 1–4, we observe that the fluid first moment approxi-
mation Ld,2

1 behaves well only when the reneging rates are small,

which make the second moment approximation Ld,2
2 works well

only with small reneging rates.

In summary, when the interarrival times are not exponential distributed, the
heavy traffic diffusion model performs well for general parameters. In par-
ticular, Theorem 4.5 guarantees the validity of such approximation. When
the reneging rates are small comparing with the arrival rates, the fluid limit
approximation Ld,2

1 is a good simple approximation of the limiting mean L1.

6. Extensions. We end this paper with suggestions for three extension.

1. In this paper we have assumed that the patience times of buyers and
sellers are exponentially distributed. It would be interesting to study
the situation when the distributions are general, and to establish dif-
fusion approximations for {X(t) : t ≥ 0} under similar parameter
regime.

2. In this work we assume that the arrival processes of buyers and sellers
are independent of the state of the system. It would be interesting to
consider an extension where the arrival processes are counting pro-
cesses whose intensity parameters depend on the state of the double-
ended queue. For example, the parameters could simply depend upon
the sign of X(t). Thus we could capture the situation where the ar-
rival rate of the buyers exceeds that of the sellers when there are sellers
waiting (it’s a buyers’ market), and the arrival rate of the sellers ex-
ceeds that of the buyers when there are buyers waiting (it’s a sellers’
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market). We think this extension is doable, and the methods developed
in this paper will be useful in the study.

3. In Cont et al. [13], the dynamics of a limit order book (i.e. the number
of limit ask and bid orders) with n different prices is modeled as a n-
dimensional double-ended queueing system with Markovian primitives.
The authors then use simple matrix computations and Laplace trans-
form methods to study interesting behaviors. Later on, Cont and de
Larrard [12] propose a diffusion model for the limit order book by con-
sidering the joint dynamics of the (one-sided) bid and ask queues. We
think it would be interesting to consider a (multidimensional) double-
ended queue to model the bid and ask queues, and study the diffusion
approximations. However, this extension appears to be hard, since the
state-space of the multidimensional double-ended queue is typically
not convex.

APPENDIX A: PROOFS

Proof of Lemma 3.1. From (3.1)–(3.3), there exists a random variable
X(∞) with distribution {πi : i ∈ Z} such that X(t) ⇒ X(∞) as t → ∞.
Using the continuous mapping theorem, we have

(A.1) es|X(t)| ⇒ es|X(∞)|, as t→ ∞.

In the following, we show es|X(t)| is uniformly integrable. Define for t ≥ 0,

Y1(t) = X+(0) +Ns(t)−Nsr

(

θ

∫ t

0
Y1(s)ds

)

,

Y2(t) = X−(0) +Nb(t)−Nbr

(

θ

∫ t

0
Y2(s)ds

)

.

Noting that

X+(t) ≤ X+(0) +Ns(t)−Nsr

(

θ

∫ t

0
X+(s)ds

)

,

X−(t) ≤ X−(0) +Nb(t)−Nbr

(

θ

∫ t

0
X−(s)ds

)

,

we have for t ≥ 0,

X+(t) ≤ Y1(t), and X
−(t) ≤ Y2(t).

We next observe that both Y1 and Y2 are birth and death processes on

N∪{0}, with stationary distributions π1(j) =
(α/θ)j

j! , j ∈ N∪{0} and π2(j) =
(β/γ)j

j! , j ∈ N∪{0}, respectively. From Section 8.4 (page 286) in [3], and not-
ing that Y1(t) and Y2(t) are independent given that X(0) = x ∈ Z, we have
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Ex

[

e2s|X(t)|
]

≤ Ex

[

e2s[Y1(t)+Y2(t)]
]

= Ex

[

e2sY1(t)
]

Ex

[

e2sY2(t)
]

=
(

1− e−θt + e2s−θt
)x
e(1−e−θt)(e2s−1)α/θ

·
(

1− e−γt + e2s−γt
)x
e(1−e−γt)(e2s−1)β/γ

≤ (1 + e2s)2xe(α/θ+β/γ)(e2s−1) <∞.

This shows the uniform integrability of es|X(t)|. Using (A.1) and Theorem 5.4
in Chapter I.5 of [4], (3.4) follows. The convergence in (3.5) can be shown
similarly. In particular, the uniform integrability of f(X(t)) follows from
that of es|X(t)|.

Proof of Lemma 3.2. From [2], we can simplify the sums in π0 as fol-
lows.

p1 =

∞
∑

i=1

αi

∏i
j=1(β + jθ)

=

∞
∑

i=1

(α/θ)i
∏i

j=1(β/θ + j)

= Γ(β/θ + 1)

∞
∑

i=1

(α/θ)i

Γ(β/θ + i+ 1)

=
β

θ
eα/θ

(α

θ

)−β/θ
Γ(β/θ, α/θ)− 1,

and by symmetry,

p2 =
∞
∑

i=1

βi
∏i

j=1(α+ jγ)
=
α

γ
eβ/γ

(

β

γ

)−α/γ

Γ(α/γ, β/γ) − 1.

Similarly, we have

m1 =
∞
∑

i=1

iαi

∏i
j=1(β + jθ)

=
∞
∑

i=1

i(α/θ)i
∏i

j=1(β/θ + j)

=

∞
∑

i=1

(α/θ)i
∏i−1

j=1(β/θ + j)
− β/θ

∞
∑

i=1

(α/θ)i
∏i

j=1(β/θ + j)

=
α− β

θ
p1 +

α

θ
,

and

s1 =

∞
∑

i=1

i2αi

∏i
j=1(β + jθ)

=

∞
∑

i=1

i2(α/θ)i
∏i

j=1(β/θ + j)

=
∞
∑

i=1

i(α/θ)i
∏i−1

j=1(β/θ + j)
− β/θ

∞
∑

i=1

i(α/θ)i
∏i

j=1(β/θ + j)



28 X. LIU, Q. GONG AND V. G. KULKARNI

=
α− β

θ
m1 +

α

θ
(p1 + 1).

Then by symmetry,

m2 =

∞
∑

i=1

iβi
∏i

j=1(α+ jγ)
=
β − α

γ
p2 +

β

γ
,

and

s2 =

∞
∑

i=1

i2βi
∏i

j=1(α+ jγ)
=
β − α

γ
m2 +

β

γ
(p2 + 1).

The lemma follows, on noting that π0 = (1 + p1 + p2)
−1, limt→∞m+(t) =

m1π0, limt→∞m−(t) = m2π0, limt→∞ s+(t) = s1π0, and limt→∞ s−(t) =
s2π0.

Proof of Lemma 3.3. We first consider m(t) = E(X(t)). Taking ex-
pectation of equation (2.1), we get

m(t) = m(0) + αt− βt− θ

∫ t

0
m+(s)ds+ γ

∫ t

0
m−(s)ds.

Taking derivative on both sides of above equation we get equation (3.6).
Next we consider the second moment of X(t). Using the infinitesimal

analysis, for a small h > 0, we get,

(X(t+ h))2

=







(X(t) + 1)2 , w.p. (α+ γX−(t)) h+ o(h),
X(t)2, w.p. 1− (α+ γX−(t) + β + θX+(t)) h+ o(h),

(X(t)− 1)2 , w.p. (β + θX+(t)) h+ o(h).

Therefore,

E((X(t+ h))2 |X(t))

= (X(t))2 + 2X(t)
(

α− β − θX+(t) + γX−(t)
)

h

+
(

α+ β + θX+(t) + γX−(t)
)

h+ o(h).

Since X(t) = X+(t)−X−(t), we have

E((X(t + h))2|X(t))

= (X(t))2 − 2θ(X+(t))2h− 2γ(X−(t))2h+ (2α− 2β + θ)X+(t)h

+(−2α+ 2β + γ)X−(t)h+ αh+ βh+ o(h).



DIFFUSION MODELS FOR DOUBLE-ENDED QUEUES 29

Taking expectation on both sides of above equation, we get

s(t+ h)− s(t)

h
= −2θs+(t)− 2γs−(t) + (2α − 2β + θ)m+(t)

+(−2α+ 2β + γ)m−(t) + α+ β +
o(h)

h
.

Taking limit h→ 0, the equation (3.7) follows.

Proof of Theorem 4.1. We note from (4.3) that for t ≥ 0,

X̄n(t) = X̄n(0) + N̄n
s (t)− N̄n

b (t)− N̄n
sr

(

nθn
∫ t

0
X̄n,+(s)ds

)

+ N̄n
br

(

nγn
∫ t

0
X̄n,−(s)ds

)

.

For t ∈ [0,∞), let Nn(t) = Nn
sr(t) + Nn

br(t) and On(t) = |N̄n
s (t) − αnt −

N̄n
b (t) + βnt|. Then we have that

|X̄n(t)|
≤ |X̄n(t)− (N̄n

s (t)− αnt− N̄n
b (t) + βnt)|+On(t)

≤ |X̄n(0)| + |αn − βn|t+On(t) + n−1Nn

(

n2(γn + θn)

∫ t

0
|X̄n(u)|du

)

.

Define for t ∈ [0,∞),

Y n(t) = |X̄n(0)|+ |αn − βn|t+On(t) + n−1Nn

(

n2(γn + θn)

∫ t

0
Y n(s)ds

)

.

Then
|X̄n(t)| ≤ Y n(t), t ∈ [0,∞).

Noting that Nn, On and X̄n(0) are mutually independent, we see that

Mn(t) := Y n(t)− X̄n(0) − |αn − βn|t−On(t)− 2n(γn + θn)

∫ t

0
Y n(s)ds

is an {Fn
t } martingale. Using Ito’s formula, we have that

(Y n(t)−On(t)) exp{−2n(γn + θn)t}

= |X̄n(0)| +
∫ t

0
exp{−2n(γn + θn)s}dMn(s)

+

∫ t

0
2n(γn + θn) exp{−2n(γn + θn)s}On(s)ds

+ |αn − βn|
∫ t

0
exp{−2n(γn + θn)s}ds,
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and so
(

Y n(t) +
|αn − βn|

2n(γn + θn)

)

exp{−2n(γn + θn)t}

−
(

|X̄n(0)|+ |αn − βn|
2n(γn + θn)

)

(A.2)

=

∫ t

0
exp{−2n(γn + θn)s}dOn(s)

+

∫ t

0
exp{−2n(γn + θn)s}dMn(s).

We observe that from the functional law of large numbers for renewal pro-
cesses, On ⇒ 0 as n → ∞, and from the continuous mapping theorem,
‖On‖ ⇒ 0 as n→ ∞. From Lemma 3.5 in [8], we have for some c1 ∈ (0,∞)
(independent of n and t),

E

(

sup
0≤u≤t

(

|N̂n
s (u)|2 + |N̂n

b (u)|2
)

)

≤ c1(t+ 1).

We have for t ≥ 0,

sup
n∈N

E(‖On‖2t ) ≤ sup
n∈N

2√
n
E

(

sup
0≤u≤t

(

|N̂n
s (u)|2 + |N̂n

b (u)|2
)

)

≤ 2c1(t+ 1),

which implies the uniform integrability of {‖On‖t : n ∈ N}. Thus we con-
clude that for T ∈ [0,∞),

(A.3) E

(

sup
0≤t≤T

On(t)

)

→ 0, as n→ ∞.

We next note that from (A.2) and (A.3), for any t ∈ [0,∞),

(A.4) E(Y n(t)) →
(

x0 +
|α− β|
2(γ + θ)

)

exp{2(γ+θ)t}− |α− β|
2(γ + θ)

, as n→ ∞.

From Doob’s inequality and (A.4), for any T ∈ [0,∞),

E

(

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0
exp{−2n(γn + θn)s}dMn(s)

∣

∣

∣

∣

)2

≤ 4E

(∫ T

0
exp{−2n(γn + θn)s}dMn(s)

)2
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= 4E

(
∫ T

0
exp{−4n(γn + θn)s}d[Mn,Mn]s

)

≤ 4E([Mn,Mn]T )(A.5)

= 4n−2
E

(

Nn

(

n2(γn + θn)

∫ T

0
Y n(s)ds

))

= 4n−1(nγn + nθn)

∫ T

0
E(Y n(s))ds

→ 0, as n→ ∞.

Now from (A.2), (A.3), and (A.5), for any T ∈ [0,∞),

E

(

sup
0≤t≤T

∣

∣

∣

∣

Y n(t)−
[(

x0 +
|α− β|
2(γ + θ)

)

exp{2(γ + θ)t} − |α− β|
2(γ + θ)

]∣

∣

∣

∣

)

≤ E

(

sup
0≤t≤T

∣

∣

∣

∣

Y n(t)−
[(

X̄n(0) +
|αn − βn|

2n(γn + θn)

)

exp{2n(γn + θn)t}

− |αn − βn|
2n(γn + θn)

]∣

∣

∣

∣

)

+ o(1)

≤ exp{2n(γn + θn)T}E
(

sup
0≤t≤T

∫ t

0
exp{−2n(γn + θn)s}dOn(s)

)

+ exp{2n(γn + θn)T}E
(

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0
exp{−2n(γn + θn)u}dMn(u)

∣

∣

∣

∣

)

+ o(1)

→ 0, as n→ ∞.

We next observe that

|X̄n(t)− x(t)|
≤ |X̄n(0)− x0|+ |N̄n

s (t)− αnt− N̄n
b (s) + βnt|

+

∣

∣

∣

∣

N̄n
sr

(

nθn
∫ t

0
X̄n,+(s)ds

)

− nθn
∫ t

0
X̄n,+(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

N̄n
br

(

nγn
∫ t

0
X̄n,−(s)ds

)

− nγn
∫ t

0
X̄n,−(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

nθn
∫ t

0
X̄n,+(s)ds− θ

∫ t

0
X̄n,+(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

nγn
∫ t

0
X̄n,−(s)ds− γ

∫ t

0
X̄n,−(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

θ

∫ t

0
X̄n,+(s)ds − θ

∫ t

0
x+(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

γ

∫ t

0
X̄n,−(s)ds− γ

∫ t

0
x−(s)ds

∣

∣

∣

∣



32 X. LIU, Q. GONG AND V. G. KULKARNI

≤ |X̄n(0)− x0|+On(t)

+

∣

∣

∣

∣

N̄n
sr

(

nθn
∫ t

0
X̄n,+(s)ds

)

− nθn
∫ t

0
X̄n,+(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

N̄n
br

(

nγn
∫ t

0
X̄n,−(s)ds

)

− nγn
∫ t

0
X̄n,−(s)ds

∣

∣

∣

∣

+ (|nθn − θ|+ |nγn − γ|)
∫ t

0
Y n(s)ds

+ (θ + γ)

∫ t

0

∣

∣X̄n(s)− x(s)
∣

∣ ds.

Gronwall’s inequality yields that

(A.6)

E

(

sup
0≤t≤T

|X̄n(t)− x(t)|
)

≤ E

(

|X̄n(0)− x0|+ sup
0≤t≤T

On(t)

+ sup
0≤t≤T

∣

∣

∣

∣

N̄n
sr

(

nθn
∫ t

0
X̄n,+(s)ds

)

− nθn
∫ t

0
X̄n,+(s)ds

∣

∣

∣

∣

+ sup
0≤t≤T

∣

∣

∣

∣

N̄n
br

(

nγn
∫ t

0
X̄n,−(s)ds

)

− nγn
∫ t

0
X̄n,−(s)ds

∣

∣

∣

∣

+ (|nθn − θ|+ |nγn − γ|)
∫ T

0
Y n(s)ds

)

e(θ+γ)T .

Using the argument between (A.25) and (A.28), and from the results in
(A.27) and (A.28), we have for some c2, c3 ∈ (0,∞),

(A.7)

E

(

sup
0≤t≤T

∣

∣

∣

∣

N̄n
sr

(

nθn
∫ t

0
X̄n,+(s)ds

)

− nθn
∫ t

0
X̄n,+(s)ds

∣

∣

∣

∣

)

≤ c2(T + E(|X̄n(0)|))√
n

→ 0, as n→ ∞,

and

(A.8)

E

(

sup
0≤t≤T

∣

∣

∣

∣

N̄n
br

(

nθn
∫ t

0
X̄n,−(s)ds

)

− nγn
∫ t

0
X̄n,−(s)ds

∣

∣

∣

∣

)

≤ c3(T + E(|X̄n(0)|))√
n

→ 0, as n→ ∞.

Applying (A.3), (A.7), (A.8), and the convergence nγn → γ, nθn → θ to
(A.6), (4.4) follows immediately.
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Proof of Lemma 4.1. We first show (i) and (ii). Assume α ≥ β. We
consider the following three situations.

(a) Let x0 > 0. Define τ1 = inf{t ≥ 0 : x(t) ≤ 0}. Then for t ∈ [0, τ1), we
have x(t) ≥ 0, and so

(A.9) x(t) = x0 + (α− β)t− θ

∫ t

0
x(s)ds.

Solving the above equation, we have for t ∈ [0, τ1),

(A.10) x(t) =

(

x0 −
α− β

θ

)

e−θt +
α− β

θ
.

If τ1 < ∞, then x(τ1) = limt↑τ1 x(t) > 0, which contradicts the definition of
τ1. Thus τ1 = ∞, and so equation (A.10) holds for all t ∈ [0,∞).

(b) Let x0 = 0. We first assume α > β and note that

x′(0) = α− β − θx+0 + γx−0 = α− β > 0.

So there exists τ2 > 0 such that x(t) > 0 for t ∈ (0, τ2]. Define x̃(t) =
x(t+ τ2), t ∈ [0,∞). Then we have for t ∈ [0,∞),

x̃(t) = x̃(0) + (α− β)t+

∫ t

0
−θx̃+(s) + γx̃−(s)ds.

Noting that x̃(0) = x(τ2) > 0, and using the result in Part (a), we obtain
that x̃(t) > 0 for all t ∈ (0,∞). Thus x(t) ≥ 0 for all t ∈ [0,∞), and so
equations (A.9) and (A.10) hold for all t ∈ [0,∞). If α = β, then

(A.11) x(t) = 0 for all t ∈ [0,∞).

Otherwise, if (A.11) fails, then there exists 0 < t1 < t2 < ∞ such that
x(t1) = 0 and x(s) 6= 0 for all s ∈ (t1, t2]. Without loss of generality, we
assume x(s) > 0 for s ∈ (t1, t2]. Then for x ∈ (t1, t2],

x(s) = x(t1)− θ

∫ s

t1

x(u)du = −θ
∫ s

t1

x(u)du < 0,

which is a contradiction.

(c) Let x0 < 0. We note that

x′(0) = α− β − θx+0 + γx−0 = α− β − γx0 > 0.
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Let τ3 = inf{t ≥ 0 : x(t) ≥ 0}. Then for t ∈ [0, τ3],

x(t) = x0 + (α− β)t− γ

∫ t

0
x(s)ds,

and so

(A.12) x(t) =

(

x0 −
α− β

γ

)

e−γt +
α− β

γ
.

From the fact that x(τ3) = 0, we have

τ3 = γ−1 log

(

(α − β)− γx0
α− β

)

∈ (0,∞).

Define x̂(t) = x(t+ τ3), t ∈ [0,∞). We have for t ∈ [0,∞),

x̂(t) = x̂(0) + (α− β)t+

∫ t

0

(

−θx̂+(s) + γx̂−(s)
)

ds.

Noting that x̂(0) = x(τ3) = 0, and using the result in Part (b), we know that
x̂(t) ≥ 0 for all t ∈ [0,∞). Hence x(t) ≥ 0 for all x ∈ [τ3,∞), and equations
(A.9) and (A.10) hold for t ∈ [τ3,∞). Combining this with (A.12), we obtain
that

x(t) =

{

(

x0 − α−β
γ

)

e−γt + α−β
γ , t ∈ [0, τ3],

α−β
θ

(

1− e−γt
)

, t ∈ [τ3,∞).

At last, letting y(t) = −x(t) and using the results in (i) and (ii), the results
in (iii) and (iv) follow immediately.

Proof of Theorem 4.2. We first note that for t ≥ 0,

Zn(t) = X̂n(t)−
√
nxn(t)

= Zn(0) + N̂n
s (t)− N̂n

b (t)− N̂n
sr

(

nθn
∫ t

0
X̄n,+(u)du

)

+ N̂n
br

(

nγn
∫ t

0
X̄n,−(u)du

)

− nθn
∫ t

0

(

X̂n,+(u)−
√
nxn,+(u)

)

du

+ nγn
∫ t

0

(

X̂n,−(u)−
√
nxn,−(u)

)

du.

Define for t ≥ 0,

Ŵ n(t) = N̂n
s (t)− N̂n

b (t)− N̂n
sr

(

nθn
∫ t

0
X̄n,+(u)du

)

+ N̂n
br

(

nγn
∫ t

0
X̄n,−(u)du

)

.
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We observe that, by the functional central limit theorem for renewal pro-
cesses (see Theorem 14.6 in Billingsley [4]),

(A.13) N̂n
s ⇒Ws, N̂

n
b ⇒Wb,

where Ws and Wb are independent Brownian motions with zero drifts and
variances α3σ2 and β3ς2, respectively. We also note that N̂n

sr and N̂n
br con-

verge weakly to independent standard Brownian motions from the functional
central limit theorem for unit Poisson process. Further noting from Theo-
rem 4.1 and Lemma 4.1, and using the random change of time theorem (see
Section 3.14 in Billingsley [4]), we obtain that

(A.14)

N̂n
sr

(

nθn
∫ ·

0
X̄n,+(u)du

)

⇒
∫ ·

0

√

θx+(u)dWsr(u),

N̂n
br

(

nγn
∫ ·

0
X̄n,−(u)du

)

⇒
∫ ·

0

√

γx−(u)dWbr(u),

where Wsr and Wbr are independent standard Brownian motions, which are
independent of Ws and Wb. Combining (A.13) and (A.14), we have

Ŵ n ⇒
∫ ·

0

√

α3σ2 + β3ς2 + θx+(u) + γx−(u)dW (u),

where W is a standard Brownian motion. Let

M(t) =

∫ t

0

√

α3σ2 + β3ς2 + θx+(u) + γx−(u)dW (u), t ≥ 0.

There exists a random variable Z(0) with law ν such that (Zn(0), Ŵ n) ⇒
(Z(0),M) . By Skorohod representation theorem, without loss of generality,
we assume that (Zn(0), Ŵ n) and (Z(0),M) are defined on the same proba-
bility space and (X̂n(0), Ŵ n) → (Z(0),M) almost surely and uniformly on
compact sets of [0,∞). Define for t ≥ 0,

Z̃n(t) = Z(0) +M(t)− nθn
∫ t

0
Z̃n,+(s)ds + nγn

∫ t

0
Z̃n,−(s)ds,

and

Z(t) = Z(0) +M(t)− θ

∫ t

0
Z+(s)ds+ γ

∫ t

0
Z−(s)ds.

From Lemma 4.2, Z̃n and Z are well-defined, and for t ≥ 0,

‖Z̃n − Z‖t ≤ (nθn + nγn)

∫ t

0
‖Z̃n − Z‖sds+ |θ − nθn|

∫ t

0
Z+(s)ds

+ |γ − nγn|
∫ t

0
Z−(s)ds.
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Using Gronwall’s inequality,

‖Z̃n − Z‖t

≤
(

|θ − nθn|
∫ t

0
Z+(s)ds+ |γ − nγn|

∫ t

0
Z−(s)ds

)

e(nθ
n+nγn)t(A.15)

→ 0, almost surely.

Recall that for t ≥ 0,

Zn(t) = Zn(0) + Ŵ n(t)− nθn
∫ t

0

(

X̂n,+(s)−
√
nxn,+(s)

)

ds

+ nγn
∫ t

0

(

X̂n,−(s)−
√
nxn,−(s)

)

ds.

We then have that for t ≥ 0,

‖Zn − Z̃n‖t ≤ |Zn(0) − Z(0)|+ ‖Ŵ n −M‖t

+ nθn
∫ t

0
|X̂n,+(s)−

√
nxn,+(s)− Z̃n,+(s)|ds

+ nγn
∫ t

0
|X̂n,−(s)−

√
nxn,−(s)− Z̃n,−(s)|ds

≤ |Zn(0) − Z(0)|+ ‖Ŵ n −M‖t

+ (nθn + nγn)

∫ t

0
‖Zn − Z̃n‖sds.

By Gronwall’s inequality,

(A.16)
‖Zn − Z̃n‖t ≤

(

|Zn(0)− Z(0)| + ‖Ŵ n −M‖t
)

e(nθ
n+nγn)t

→ 0, almost surely.

Combining (A.15) and (A.16), the result follows immediately.

Proof of Theorem 4.3. From (4.11), it is clear that α = β, where
α = limn→∞ αn and β = limn→∞ βn. Then from Theorem 4.1 and Lemma
4.1, x ≡ 0. The rest of the proof is very similar to that of Theorem 4.2. To
show the convergence of X̂n, we observe that for t ≥ 0,

X̂n(t) = X̂n(0)+Ŵ n(t)+
√
n(αn−βn)t−nθn

∫ t

0
X̂n,+(s)ds+nγn

∫ t

0
X̂n,−(s)ds,

where

Ŵ n(t) = N̂n
s (t)−N̂n

b (t)−N̂n
sr

(

nθn
∫ t

0
X̄n,+(u)du

)

+N̂n
br

(

nγn
∫ t

0
X̄n,−(u)du

)

.
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Same as the proof of Theorem 4.2, we have that

N̂n
s ⇒Ws, N̂

n
b ⇒Wb,

where Ws and Wb are independent Brownian motions with zero drifts and
variances α3σ2 and β3ς2, respectively. We also note that N̂n

sr and N̂n
br con-

verge weakly to independent standard Brownian motions from functional
central limit theorem for unit Poisson process. Further noting that X̄n ⇒ 0,
and using the random change of time theorem, we have that

N̂n
sr

(

nθn
∫ ·

0
X̄n,+(u)du

)

⇒ 0,

N̂n
br

(

nγn
∫ ·

0
X̄n,−(u)du

)

⇒ 0.

Combining the above convergences, we have Ŵ n ⇒
√

α3σ2 + β3ς2W , where
W is a standard Brownian motion. Furthermore, there exists a random vari-
able Z(0) with law ν such that (X̂n(0), Ŵ n) ⇒ (Z(0),

√

α3σ2 + β3ς2W ).
By Skorohod representation theorem, without loss of generality, we assume
that (X̂n(0), Ŵ n) and (Z(0),W ) are defined on the same probability space
and (X̂n(0), Ŵ n) → (Z(0),W ) almost surely and uniformly on compact sets
of [0,∞). Define

X̂(t) = X̂(0)+
√

α3σ2 + β3ς2W (t)+ct−θ
∫ t

0
X̂+(s)ds+γ

∫ t

0
X̂−(s)ds, t ≥ 0.

From Lemma 4.2, X̂ is well-defined. We then have that for t ≥ 0,

‖X̂n − X̂‖t
≤ |X̂n(0)− X̂(0)| + ‖Ŵ n −

√

α3σ2 + β3ς2W‖t + |
√
n(αn − βn)− c|t

+ (nθn + nγn + θ + γ)

∫ t

0
‖X̂n − X̂‖sds.

By Gronwall’s inequality,

‖X̂n − X̂‖t ≤ [|X̂n(0)− X̂(0)| + ‖Ŵ n −
√

α3σ2 + β3ς2W‖t
+ |

√
n(αn − βn)− c|t]e(nθn+nγn+θ+γ)t

→ 0, almost surely.

The result follows immediately.

Proof of Theorem 4.4. We first follow Section 5 of Chapter 15 in Kar-
lin and Taylor [22] to construct a stationary density for X̂. Denote by µ(x)
the infinitesimal drift parameter c−θx++γx−.We note that an antideriva-
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tive of 2µ(x)
a2

is 2c
a2
x− θ

a2
x21{x ≥ 0} − γ

a2
x21{x < 0}. Define for x ∈ R,

s(x) = exp

{

2c

a2
x− θ

a2
x21{x ≥ 0} − γ

a2
x21{x < 0}

}

.

We define a density function as follows:

ψ(x) = C̃s(x)

=

{

C̃ exp
{

2c
a2
x− θ

a2
x2
}

, x ≥ 0

C̃ exp
{

2c
a2
x− γ

a2
x2
}

, x < 0

=







C√
θ
exp

{

c2

θa2

}

φ
(

x; c
θ ,

a2

2θ

)

, x ≥ 0

C√
γ exp

{

c2

γa2

}

φ
(

x; c
γ ,

a2

2γ

)

, x < 0,

where

C̃ =
1

∫∞
−∞ s(x)ds

,

and

C = a
√
πC̃ =

1

1√
θ
exp

{

c2

θa2

}(

1− Φ
(

0; c
θ ,

a2

2θ

))

+ 1√
γ exp

{

c2

γa2

}

Φ
(

0; c
γ ,

a2

2γ

) .

The uniqueness of the stationary distribution follows from the irreducibility,
i.e. a > 0 (see Peszat and Zabczyk [31]).

We now study the limiting distribution for Z. Recall b =
√

a2 + |α− β|.
Define a time-homogeneous stochastic process Z∗ as follows.

Z∗(t) = Z(0) + bW (t)− θ

∫ t

0
Z∗,+(s)ds + γ

∫ t

0
Z∗,−(s)ds.

We are going to show that the limiting distribution of Z is the same as
the stationary distribution of Z∗. We first note the unique stationary dis-
tribution of Z∗ is given by ψ(x, 0, 0, b). We then consider Z − Z∗. Let
b(t) =

√

α3σ2 + β3ς2 + θx+(t) + γx−(t), t ≥ 0. We have that for t ≥ 0,

Z(t)− Z∗(t) =
∫ t

0
(b(s)− b)dW (s) +

∫ t

0

[

−θ(Z+(s)− Z∗,+(s))

+ γ(Z−(s)− Z∗,−(s))
]

ds.

For x, y ∈ R, let g(x, y) = −θ(x+ − y+) + γ(x− − y−), and we note that

g(x, y) =























−θ(x− y), if x > 0, y > 0,

−θx+ γy, if x > 0, y ≤ 0,

−γx+ θy, if x ≤ 0, y > 0,

−γ(x− y), if x ≤ 0, y ≤ 0.
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In the following, we assume θ ≤ γ. (The case when θ > γ can be treated
analogously.) Define

h1(z) =

{

−θz, if z ≥ 0,

−γz, if z < 0,

and

h2(z) =

{

−γz, if z ≥ 0,

−θz, if z < 0,

Then for all x, y ∈ R,

(A.17) h2(x− y) ≤ g(x, y) ≤ h1(x− y).

Now consider the following stochastic integral equations.

V1(t) =

∫ t

0
(b(s)− b)dW (s) +

∫ t

0
h1(V1(s))ds,

and

V2(t) =

∫ t

0
(b(s)− b)dW (s) +

∫ t

0
h2(V2(s))ds,

Then from [10], V1(t) → 0 and V2(t) → 0 a.s. as t→ ∞. Finally, from (A.17),

(A.18) V2(t) ≤ Z(t)− Z∗(t) ≤ V1(t), t ≥ 0.

In fact, if for some (t1, t2) such that Z(t1) − Z∗(t1) = V2(t1) and Z(t) −
Z∗(t) < V2(t) for t ∈ (t1, t2). Then

0 > Z(t)− Z∗(t)− V2(t) =

∫ t

0
g(Z(s), Z∗(s))ds −

∫ t

0
h2(V2(s))ds

≥
∫ t

0
[h2(Z(s)− Z∗(s))− h2(V2(s))] ds > 0,

which is a contradiction. This shows Z(t)−Z∗(t) ≥ V2(t) for t ≥ 0. Similarly,
we can show Z(t) − Z∗(t) ≤ V1(t) for t ≥ 0. From (A.18), we have Z(t) −
Z∗(t) → 0 as t→ ∞. The result in (i) follows.

A.1. Proof of Theorem 4.5. We will apply the following multiplica-
tive Foster’s criterion to show the positive recurrence of X̂n for each n ∈ N.
Such criterion is introduced in Chapter 4 of [5]. Let’s first introduce some
notation and concepts. Denote by Sn the state space of X̂

n, i.e., Sn =
(n−1/2

Z)×R+×R+, where n
−1/2

Z = {n−1/2x : x ∈ Z}. For z = (x, y1, y2) ∈
X̂
n, define |z| =

√

x2 + y21 + y22. Let B(Sn) denote the Borel σ-field on Sn

(the countable set n−1/2
Z is endowed with the discrete metric). A nonempty

set A ∈ B(Sn) is said to be petite if for some probability measure a on (0,∞)
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and some nontrivial measure ν,

ν(B) ≤
∫ ∞

0
Px

(

X̂
n(t) ∈ B

)

a(dt)

for all x ∈ A and B ∈ B(Sn). For a petite set A, if a is concentrated at
a single point, then A is said to be small. Furthermore, if A is small with
respect to the same measure ν at each s ∈ [s1, s2], for some 0 ≤ s1 < s2,
then A is said to be uniformly small on [s1, s2].

Proposition A.1 (Multiplicative Foster’s Criterion). Suppose that {Y (t) :
t ≥ 0} is a continuous time Markov process, such that for some positive c, ǫ,
and κ,

(A.19) Ey (|Y (c(|y| ∨ κ))|) ≤ (1− ǫ)(|y| ∨ κ), for all y.

If

(A.20) B = {y : |y| ≤ κ} is a closed petite set,

then Y is positive Harris recurrent. If B is closed and is uniformly small on
some interval [s1, s2], then Y is ergodic.

Conditions (A.19) and (A.20) are shown to be satisfied in Lemmas A.1
and A.2, respectively.

Lemma A.1. There exists c1 ∈ (0,∞) such that for all r ≥ 0 and z =
(x, y1, y2) ∈ Sn,

(A.21) sup
n≥1

Ez

(

∣

∣

∣X̂
n(r|z|)

∣

∣

∣

2
)

≤ c1(1 + (r + 1)|z|),

and moreover,

(A.22) lim
|z|→∞

supn≥1 Ez

(

∣

∣

∣
X̂
n(r|z|)

∣

∣

∣

2
)

|z|2 = 0.

Proof. We first consider X̂n with initial value X̂n(0) = x. Recall from
the proof of Theorem 4.3 that for t ≥ 0,

X̂n(t) = x+ Ŵ n(t)+
√
n(αn −βn)t−nθn

∫ t

0
X̂n,+(s)ds+nγn

∫ t

0
X̂n,−(s)ds,

(A.23)
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where

Ŵ n(t) = N̂n
s (t)− N̂n

b (t)− N̂n
sr

(

nθn
∫ t

0
X̄n,+(u)du

)

+ N̂n
br

(

nγn
∫ t

0
X̄n,−(u)du

)

.

From Lemma 3.5 in [8], we have for some c1 ∈ (0,∞) (independent of n
and t),

(A.24) E

(

sup
0≤u≤t

∣

∣

∣N̂n
s (u)

∣

∣

∣

2
+ sup

0≤u≤t

∣

∣

∣N̂n
b (u)

∣

∣

∣

2
)

≤ c1(t+ 1).

Define for l ≥ 0,

Gn
l = σ{Xn(0), Nn

s (nv), N
n
b (nv), N

n
sr(nv), N

n
br(nv) : v ∈ [0, l]}.

Then N̂n
sr is a {Gn

l }l≥0 square integrable martingale, and for any t ≥ 0,

T n
1 (t) ≡ nθn

∫ t
0 X̄

n,+(v)dv is a {Gn
l }l≥0 stopping time. Using Burkholder-

Davis-Gundy inequality (see Theorem 74 of Chapter IV in [33]), for some
c2 ∈ (0,∞) (independent of n and t),

(A.25)

E

(

sup
0≤u≤t

∣

∣

∣
N̂n

sr (T
n
1 (u))

∣

∣

∣

2
)

≤ c2E
(

[N̂n
sr, N̂

n
sr](T

n
1 (t))

)

= c2E(T
n
1 (t)) = c2nθ

n

∫ t

0
E(X̄n,+(v))dv.

We next observe that for t ≥ 0,

Xn,+(t) ≤ Xn,+(0) +Nn
s (t)−Nn

sr

(

θn
∫ t

0
Xn,+(v)dv

)

,

and so

E(X̄n,+(t)) ≤ E(X̄n,+(0)) + E(N̄n
s (t))− nθn

∫ t

0
E(X̄n,+(v))dv.

From (A.24), there exists c3 ∈ (0,∞) such that for t ≥ 0,

E(N̄n
s (t)) =

1√
n
E(|N̂n

s (t)|) + αnt ≤ c3(t+ 1).

Define for t ≥ 0,

yn1 (t) =
x√
n
+ c3(t+ 1)− nθn

∫ t

0
yn1 (v)dv.
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Using the property of ordinary differential inequalities, we have

Ez(X̄
n,+(t)) ≤ yn1 (t), t ≥ 0.

Solving the ODE for yn1 , we have for t ≥ 0,

(A.26) Ez(X̄
n,+(t)) ≤ yn1 (t) =

(

x√
n
+ c3 −

c3
nθn

)

e−nθnt +
c3
nθn

.

Applying (A.26) to (A.25), we have for some c4 ∈ (0,∞) (independent of n
and t),

(A.27) Ez

(

sup
0≤u≤t

∣

∣

∣

∣

N̂n
sr

(
∫ u

0
X̄n,+(v)dv

)∣

∣

∣

∣

2
)

≤ c4(t+ |z|), t ≥ 0.

Using the similar argument, for some c5 ∈ (0,∞) (independent of n and t),

(A.28) Ez

(

sup
0≤u≤t

∣

∣

∣

∣

N̂n
br

(∫ u

0
X̄n,−(v)dv

)∣

∣

∣

∣

2
)

≤ c5(t+ |z|), t ≥ 0.

From (A.24), (A.27), and (A.28), we have

Ez

[

(

sup
0≤u≤t

∣

∣

∣Ŵ n(u)
∣

∣

∣

)2
]

= Ez

(

sup
0≤u≤t

∣

∣

∣Ŵ n(u)
∣

∣

∣

2
)

≤ (c1 + c4 + c5)(t+ |z|+ 1), t ≥ 0.

Define for t ≥ 0,

(A.29) x̃n(t) = x+
√
n(αn − βn)t− nθn

∫ t

0
x̃n,+(s)ds+ nγn

∫ t

0
x̃n,−(s)ds.

Let φ(x) = −nθnx+ + nγnx−, x ∈ R in Lemma 4.2. Noting that φ is Lip-
schitz continuous with Lipschitz constant supn∈Nmax{nθn, nγn}, the Lips-
chitz constant for the mappingMφ in independent of t and n. More precisely,
there exists κ ∈ (0,∞) such that for t ≥ 0,

‖Mφ(x1)−Mφ(x2)‖t ≤ κ‖x1 − x2‖t.

Thus we have for t ≥ 0,

(A.30)
Ez

(

sup
0≤u≤t

|X̂n(u)− x̃(u)|2
)

≤ κEz

(

sup
0≤u≤t

∣

∣

∣Ŵ n(u)
∣

∣

∣

2
)

≤ κ(c1 + c4 + c5)(t+ |z|+ 1).
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Solving (A.29) (similar to Lemma 4.1), we have

(A.31) sup
0≤u≤t

|x̃(u)| ≤ |z|e−min{nθn,nγn}t +

√
n|αn − βn|

min{nθn, nγn} .

Let L1 = infn∈Nmin{nθn, nγn} and L2 = supn∈N
√
n|αn−βn|

min{nθn,nγn} . Combining

(A.30) and (A.31), we have

Ez

(

sup
0≤u≤t

|X̂n(u)|2
)

≤ κ(c1 + c4 + c5)(t+ |z|+ 1) + 2|z|2e−2L1t + 2L2
2,

and so

(A.32)
Ez

(

|X̂n(r|z|)|2
)

≤ κ(c1 + c4 + c5)((r + 1)|z| + 1)

+ 2|z|2e−2L1r|z| + 2L2
2.

We next focus on Ân
s and Ân

b . For t ≥ 0,

Ez

[

(Ân
s (t))

2
]

≤ 1

n
Ez

[

(

Un
Nn

s (nt)+1)

)2
]

≤ 1

n
Ez





Nn
s (nt)+1
∑

k=1

(Un
k )

2



 ,

and from Wald’s identity, there exists c6 ∈ (0,∞) such that for r ≥ 0,

(A.33)
sup
n≥1

Ez

[

(Ân
s (r|z|))2

]

≤ sup
n≥1

(

1

n
Ez

[

(Un
1 )

2
]

[1 + Ez(N
n
s (nr|z|))]

)

≤ c6(r|z|+ 1).

Similarly, there exists c7 ∈ (0,∞) such that for r ≥ 0,

(A.34) sup
n≥1

Ez

[

(Ân
b (r|z|))2

]

≤ c7(r|z|+ 1).

It is clear that (A.21) and (A.22) follow, on combining (A.32), (A.33), and
(A.34).

Lemma A.2. Fix n ∈ N. Assume that αn ≤ βn, and that there exist
0 < tnb < tns <∞, such that for any κ > 0,

(A.35) P(Un
1 ∈ (tns − κ, tns + κ)) > 0, and P(V n

1 ∈ (tnb − κ, tnb + κ)) > 0.

Then for R ∈ (0,∞), the set Bn = {z ∈ Sn : |z| ≤ R} is uniform small on
some set [s1, s2] ⊂ [0,∞).
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Proof. The proof idea is similar to those of Propositions 3.7 and 3.8 in
Chapter 4 of [5] and Lemma 3.7 in [29]. For notation convenience, we drop
n from all quantities. Without loss of generality, assume X+(0) > 0. Choose
K ∈ N and δ ∈ (0,∞) such that

Ktb < ts ≤ (K + 1)tb,

and
tb > 3δ, K(tb + δ) < ts − δ.

Denote by Gs(t) and Gb(t) the number of sellers and buyers abandoning the
system by time t, and let Ps and Pb be exponential random variables with
means 1/θ and 1/γ, respectively. Define the following events

E1 =

{

Ktb −
δ

2
≤

K
∑

k=1

Vk ≤ K(tb + δ)

}

,

E2 =

{

tb −
δ

2
< VK+1 ≤ tb + δ

}

,

E3 = {ts − δ < U1 ≤ ts + δ} ,

E4 =

{

Gb

(

K(tb + δ) + (ts − δ)

2

)

= (K −X+(0))+
}

,

E5 =

{

Gs

(

K(tb + δ) + (ts − δ)

2

)

= (K −X+(0))−
}

.

Then for |z| ≤ R,

Pz(E1) ≥
[

Pz

(

tb −
δ

2K
≤ V1 ≤ tb + δ

)]K

> 0,

Pz(E2) = Pz

(

tb −
δ

2
< V1 ≤ tb + δ

)

> 0,

Pz(E3) = Pz (ts − δ < U1 ≤ ts + δ) > 0,

Pz(E4|E1 ∩ E2 ∩E3) ≥
(

Pz

(

Pb ≤
(ts − δ)−K(tb + δ)

2

))K

> 0,

Pz(E5|E1 ∩ E2 ∩E3) ≥
(

Pz

(

Ps ≤
(ts − δ) +K(tb + δ)

2

))R

> 0.

Noting that E1, E2 and E3 are independent, and E4 and E5 are independent,
there exists ǫ ∈ (0, 1) such that

P(E1 ∩E2 ∩E3 ∩E4 ∩E5) = P(E4 ∩E5|E1 ∩E2 ∩E3)P(E1 ∩E2 ∩E3) ≥ ǫ.
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We note that for t ∈ [ (ts−δ)+K(tb+δ)
2 , ts − δ],

P (X(t) = 0|E1 ∩ E2 ∩E3 ∩ E4 ∩E5) = 1.

For B1, B2 ∈ B(R+), we have for t ∈ [ (ts−δ)+K(tb+δ)
2 , ts − δ],

P(X(t) = 0, As(t) ∈ B1, Ab(t) ∈ B2)

≥ P(As(t) ∈ B1, Ab(t) ∈ B2, E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5)

= P

(

U1 − t ∈ B1,

K+1
∑

k=1

Vk − t ∈ B2, E1 ∩ E2 ∩E3 ∩ E4 ∩ E5

)

≥ ǫP (U1 ∈ (B1 + t) ∩ (ts − δ, ts + δ))

× P

(

K+1
∑

k=1

Vk ∈ B2 + t,
K
∑

k=1

Vk ∈
(

Ktb −
δ

2
,K(tb + δ)

)

,

VK+1 ∈
(

tb −
δ

2
, tb + δ

))

,

where B1 + t = {y + t : y ∈ B1} and B2 + t = {y + t : y ∈ B2}. Let a be a

probability measure concentrated on t ∈ [ (ts−δ)+K(tb+δ)
2 , ts− δ], and let ν be

a measure on B(Z× R+ × R+) such that for any B0 ⊂ Z, B1, B2 ∈ B(R+),

ν(B0 ×B1 ×B2) = ǫ1{0∈B0}P(U1 ∈ [∩t∈T (B1 + t)] ∩ (ts − δ, ts + δ))

× P

(

K+1
∑

k=1

Vk ∈ ∩t∈T (B2 + t),
K
∑

k=1

Vk ∈ (Ktb − δ,K(tb + δ)),

VK+1 ∈ (tb − δ, tb + δ)

)

,

where T = [ (ts−δ)+K(tb+δ)
2 , ts − δ]. Clearly, ν(Z×R+ ×R+) > 0, and so ν is

nontrivial. Finally, for B ∈ B(Z× R+ × R+), we have

∫ ∞

0
Pz(X

n(t) ∈ B)a(dt) ≥ ν(B).

This shows the lemma.

Recall that Πn is a stationary distribution of X̂
n, and πn is the first-

coordinate marginal distribution of Πn. The following two lemmas will be
used to show the tightness of πn. The proofs are the same as those of The-
orems 3.4 and 3.5 in [9], and so we omit them here. For ρ ∈ (0,∞) and a
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compact set C ⊂ R, let

(A.36) τnC(ρ) = inf{t ≥ ρ : X̂n(t) ∈ C}.

Lemma A.3. For some c2, ρ ∈ (0,∞) and a compact set C ⊂ Sn,

sup
n∈N

Ez

(

∫ τn
C
(ρ)

0
(1 + |X̂n(t)|)dt

)

≤ c2(1 + |z|2), z ∈ Sn.

Lemma A.4. Let f : Sn → R+ be a measurable map. Define for ρ ∈
(0,∞) and a compact set C ⊂ Sn,

Gn(z) = Ez

(

∫ τn
C
(ρ)

0
f(X̂n(t))dt

)

, z ∈ Sn.

Assume

(A.37) sup
n≥1

Gn(z) is finite for all z ∈ Sn, and uniformly bounded on C.

Then there exists a κ ∈ (0,∞) such that, for all n ∈ N, t ∈ [ρ,∞) and
z ∈ Sn,

1

t
Ez

[

Gn(X̂n(t))
]

+
1

t

∫ t

0
Ez

[

f(X̂n(s))
]

ds ≤ 1

t
Gn(z) + κ.

Proof of Theorem 4.5. We first show the ergodicity of X̂n for each
n ∈ N. We first note that condition (A.19) follows from Lemma A.1. Next
without loss of generality, assume αn ≤ βn. We consider the following three
cases.

(1) Assume that αn ≤ βn, and that one of Un
1 and V n

1 can take at least
two positive values. Denote by Fn

s and Fn
b the distribution functions

of Un
1 and V n

1 . For η1, η2 ∈ [0, 1], define

t̃ns = sup{t ≥ 0 : Fn
s (t) < 1− η1}, t̃nb = inf{t ≥ 0 : Fn

b (t) ≥ η2}.

Noting that E(Un
1 ) ≥ E(V n

1 ), we can choose η1, η2 ∈ [0, 1] such that
t̃ns > t̃nb > 0 and set

tns = t̃ns , tnb = t̃nb .

From Lemma A.2, for R ∈ (0,∞), the set Bn = {z ∈ Sn : |z| ≤ R} is
uniformly small. Then the ergodicity of X̂n follows immediately from
Proposition A.1.
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(2) Assume that αn < βn, and that P(Un
1 = 1/αn) = P(V n

1 = 1/βn) = 1.
We can set

tns = 1/αn, tnb = 1/βn.

Again from Lemma A.2, for R ∈ (0,∞), the set Bn = {z ∈ Sn : |z| ≤
R} is uniformly. Then the ergodicity of X̂n follows immediately from
Proposition A.1.

(3) Assume that αn = βn, and that P(Un
1 = 1/αn) = P(V n

1 = 1/βn) = 1.
Then Nn

s (t) = Nn
b (t), and X̂

n is a positive recurrent birth and death
process.

Finally, the convergence of πn can be shown in the same way as those of
Theorems 3.2 and 3.1 in [9], given the above Proposition A.1 and Lemmas
A.3 and A.4.

APPENDIX B: NUMERICAL EXAMPLES: DIFFUSION MODELS,
TABLES AND FIGURES

B.1. Two diffusion models. We apply Theorems 4.2 and 4.3 to de-
rive two diffusion models for a double-ended queue with general parameters
α, β, σ2, ς2, θ, γ.

Model I. Consider a sequence of double-ended queues, indexed by n ∈ N

under Assumption 4.1 and the heavy traffic condition (4.11). From Theorem
4.3, we have for large N ∈ N,

X̂N d≈ X̂,

where as in (4.12),

X̂(t) = X̂(0) +
√

α3σ2 + β3ς2W (t) + ct− θ

∫ t

0
X̂+(u)du

+ γ

∫ t

0
X̂−(u)du, t ≥ 0.

Fix such N ∈ N. Letting s = Nt, we have that

XN d≈ X̂N
1 ,

where

X̂N
1 (s) = XN (0) +

√

α3σ2 + β3ς2W (s) +
cs√
N

− θ

N

∫ s

0
X̂N,+

1 (u)du

+
γ

N

∫ s

0
X̂N,−

1 (u)du, s ≥ 0.
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From Assumptions 4.1 and the heavy traffic condition (4.11), we have that

√

α3σ2 + β3ς2 ≈
√

(αN )3(σN )2 + (βN )3(ςN )2,

c√
N

≈ αN − βN ,
θ

N
≈ θN ,

γ

N
≈ γN ,

and so

XN d≈ X̂N
1

d≈ X̂N
2 ,

where

X̂N
2 (s) = XN (0) +

√

(αN )
3
(σN )

2
+ (βN )

3
(ςN )

2
W (s) +

(

αN − βN
)

s

− θN
∫ s

0
X̂N,+

2 (v)dv + γN
∫ s

0
X̂N,−

2 (v)dv, s ≥ 0.

Thus for a double-ended queue with parameters satisfying Assumption 4.1
and the heavy traffic condition (4.11), i.e. the arrival rates α, β are close, and
the reneging rates θ, γ are very small comparing with α, β and |α − β|, the
dynamics of the queue length process {X(t) : t ≥ 0} can be approximated
by an asymmetric O-U process

(B.1)

X1(t) = X(0) +
√

α3σ2 + β3ς2W (t) + (α− β) t− θ

∫ t

0
X+

1 (u)du

+ γ

∫ t

0
X−

1 (u)du, t ≥ 0.

As our first diffusion model, we use X1 to approximate the queue length
process with general parameters.

Model II. The second diffusion model can be obtained in the similar way
from Theorems 4.1 and 4.2. To make it precise, consider a sequence of double-
ended queues, indexed by n ∈ N under Assumption 4.1. From Theorem 4.2,
for large enough N ∈ N, we have

ZN = X̂N −
√
NxN

d≈ Z,

where as in Theorem 4.2,

Z(t) = Z(0)+

∫ t

0

√

α3σ2+β3ς2 + θx+(u)+ γx−(u)dW (u)− θ

∫ t

0
Z+(u)du

+ γ

∫ t

0
Z−(u)du, t ≥ 0.
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Fix such N and let s = Nt. Then we have

XN (s)−
√
NxN (s/N)

d≈ ZN
1 (s), s ≥ 0,

where

ZN
1 (s) =

√
NZN (0) +

∫ s

0

√

α3σ2 + β3ς2 + θx+(u/N) + γx−(u/N)dW (u)

− θ

N

∫ s

0
ZN,+
1 (u)du+

γ

N

∫ s

0
ZN,−
1 (u)du.

Using Assumption 4.1, we have

XN (s)−
√
NxN (s/N)

d≈ ZN
1

d≈ ZN
2 ,

where

ZN
2 (s)

=
√
NZN (0)− θN

∫ s

0
ZN,+
2 (u)du+ γN

∫ s

0
ZN,−
2 (u)du

+

∫ s

0

√

(αN )3(σN )2 +(βN )3(ςN )2 + θNNxN,+(u/N)+ γNNxN,−(u/N)dW (u).

We next observe that for t ≥ 0,

NxN (t/N)

= NxN (0) + (αN − βN )t−N2θN
∫ t/N

0
xN,+(s)ds+N2γN

∫ t/N

0
xN,−(s)ds

= NxN (0) + (αN − βN )t− θN
∫ t

0
NxN,+(s/N)ds + γN

∫ t

0
NxN,−(s/N)ds.

Define

xN2 (t) = NxN (0) + (αN − βN )t− θN
∫ t

0
xN2 (s)ds + γN

∫ N

0
xN2 (s)ds, t ≥ 0,

Then NxN (t/N) = xN2 (t), t ≥ 0, and we have

XN − xN2
d≈ ZN

2 ,

and Z2 can be rewritten as follows:

ZN
2 (s) = XN (0) −

√
NxN (0)− θN

∫ s

0
ZN,+
2 (u)du+ γN

∫ s

0
ZN,−
2 (u)du

+

∫ s

0

√

(αN )3(σN )2 + (βN )3(ςN )2 + θNxN,+
2 (u) + γNxN,−

2 (u)dW (u).

Thus for a double-ended queue with parameters satisfying Assumption 4.1,
i.e. the reneging rates θ, γ are much small comparing with the arrival rates
α, β, the dynamics of the queue length process {X(t) : t ≥ 0} can be ap-
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proximated by

(B.2) X2(t) = x2(t) + Z2(t), t ≥ 0,

where

(B.3) x2(t) = (α− β)t− θ

∫ t

0
x+2 (s)ds+ γ

∫ t

0
x−2 (s)ds, t ≥ 0,

and

(B.4)

Z2(t) = X(0) +

∫ t

0

√

α3σ2 + β3ς2 + θx+2 (u) + γx−2 (u)dW (u)

− θ

∫ t

0
Z+
2 (u)du + γ

∫ t

0
Z−
2 (u)du, t ≥ 0.

As our second diffusion approximate model, (B.2) is used in Section 5 to
approximate the dynamics of the queue length process {X(t) : t ≥ 0} for a
double-ended queue with parameters α, β, σ2, ς2, θ, and γ.

B.2. Tables and figures.

Table 1

The first moment of the stationary distribution when the arrival process is a Poisson

process

Exponential distribution L1

(α, β) (θ, γ) Ls
1 Lp

1 Ld,1
1 Ld,2

1

(1, 1)

(1, 1) 0.0001 0 0 0
±0.0024 NA NA NA

(0.1, 0.1) -0.0178 0 0 0
±0.0243 NA NA NA

(0.01, 0.01) 0.1234 0 0 0
±0.2084 NA NA NA

(1, 1.5)

(1, 1.5) -0.2352 -0.2343 -0.2161 -0.3333
±0.0022 0.41% 0.98% 41.7%

(0.1, 0.15) -3.248 -3.2532 -3.2251 -3.3333
±0.0192 0.16% 0.44% 2.63%

(0.01, 0.015) -33.1485 -33.3332 -33.3327 -33.3333
±0.1754 0.56% 0.56% 0.56%

(1, 2)

(1, 2) -0.3876 -0.3858 -0.3178 -0.5000
±0.002 0.47% 0.04% 29%

(0.1, 0.2) -4.9779 -4.9719 -4.9776 -5.0000
±0.0157 0.12% 0.01% 0.45%

(0.01, 0.02) -49.9609 -50 -50 -50
±0.142 0.08% 0.08% 0.08%
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Table 2

The first moment of the stationary distribution when the inter-arrival times follow

Uniform distribution

Uniform distribution L1

(α, β) (θ, γ) Ls
1 Lp

1 Ld,1
1 Ld,2

1

(1, 1)

(1, 1) 0.0004 0 0 0
±0.0017 NA NA NA

(0.1, 0.1) -0.0009 0 0 0
±0.0141 NA NA NA

(0.01, 0.01) -0.1309 0 0 0
±0.1231 NA NA NA

(1, 1.5)

(1, 1.5) -0.2736 -0.2343 -0.2979 -0.3333
±0.0015 14.39% 8.87% 21.82%

(0.1, 0.15) -3.3315 -3.2532 -3.3280 -3.3333
±0.0114 2.35% 0.10% 0.054%

(0.01, 0.015) -33.4634 -33.3332 -33.3333 -33.3333
±0.1132 0.39% 0.39% 0.39%

(1, 2)

(1, 2) -0.4375 -0.3858 -0.4714 -0.5000
±0.0013 11.82% 7.76% 14.28%

(0.1, 0.2) -4.9946 -4.9719 -4.9998 -5.0000
±0.0109 0.45% 0.10% 0.11%

(0.01, 0.02) -50.0716 -50 -50 -50
±0.1036 0.14% 0.14% 0.14%

Table 3

The first moment of the stationary distribution when the inter-arrival times follow

Erlang distribution

Erlang distribution L1

(α, β) (θ, γ) Ls
1 Lp

1 Ld,1
1 Ld,2

1

(1, 1)

(1, 1) 0.0117 0 0 0
±0.0024 NA NA NA

(0.1, 0.1) 0.0505 0 0 0
±0.0186 NA NA NA

(0.01, 0.01) 0.0807 0 0 0
±0.1848 NA NA NA

(1, 1.5)

(1, 1.5) -0.2654 -0.2343 -0.2804 -0.3333
±0.002 10.74% 6.84% 25.58%

(0.1, 0.15) -3.2975 -3.2532 -3.3165 -3.3333
±0.0155 1.34% 0.57% 1.08%

(0.01, 0.015) -33.1629 -33.3332 -33.3333 -33.3333
±0.1613 0.51% 0.51% 0.51%

(1, 2)

(1, 2) -0.4285 -0.3858 -0.4493 -0.5000
±0.0018 9.96% 4.87% 16.69%

(0.1, 0.2) -4.9832 -4.9719 -4.9983 -5.0000
±0.015 0.23% 0.30% 0.34%

(0.01, 0.02) -50.089 -50 -50 -50
±0.1507 0.18% 0.18% 0.18%
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Table 4

The first moment of the stationary distribution when the inter-arrival times follow

hyper-exponential distribution

Hyper-exponential distribution L1

(α, β) (θ, γ) Ls
1 Lp

1 Ld,1
1 Ld,2

1

(1, 1)

(1, 1) 0.0022 0 0 0
±0.0032 NA NA NA

(0.1, 0.1) -0.0169 0 0 0
±0.0321 NA NA NA

(0.01, 0.01) 0.016 0 0 0
±0.3177 NA NA NA

(1, 1.5)

(1, 1.5) -0.2039 -0.2343 -0.1735 -0.3333
±0.0028 14.89% 14.92% 63.46%

(0.1, 0.15) -3.1406 -3.2532 -3.1368 -3.3333
±0.0271 3.59% 0.12% 6.13%

(0.01, 0.015) -33.2392 -33.3332 -33.3261 33.3333
±0.237 0.28% 0.26% 0.28%

(1, 2)

(1, 2) -0.3383 -0.3858 -0.2866 -0.5
±0.0026 14.04% 15.26% 47.80%

(0.1, 0.2) -4.8819 -4.9719 -4.8822 -5
±0.0214 1.84% 0.01% 2.42%

(0.01, 0.02) -50.1134 -50 -50 -50
±0.1959 0.23% 0.23% 0.23%

Table 5

The second moment of the stationary distribution when arrival process is a Poisson

process

Exponential distribution L2

(α, β) (θ, γ) Ls
2 Lp

2 Ld,1
2 Ld,2

2

(1, 1)

(1, 1) 1.409 1.4104 1 1
±0.0042 0.10% 29.03% 29.03%

(0.1, 0.1) 11.3894 11.3045 10 10
±0.0838 0.74% 12.20% 12.20%

(0.01, 0.01) 103.2893 104.0397 100 100
±2.2995 0.73% 3.18% 3.18%

(1, 1.5)

(1, 1.5) 1.4354 1.4372 1.3194 1.7052
±0.0038 0.12% 8.1% 18.8%

(0.1, 0.15) 21.2369 21.2498 21.9505 27.0518
±0.1458 0.06% 3.36% 27.38%

(0.01, 0.015) 1218.2624 1211.1069 1219.4 1290.5
±12.3607 -0.59% 0.09% 5.9%

(1, 2)

(1, 2) 1.4828 1.4841 1.7014 2.6287
±0.0036 0.09% 14.74% 77.28%

(0.1, 0.2) 34.8606 34.956 37.3703 48.7868
±0.1677 0.27% 7.2% 40%

(0.01, 0.02) 2601.2009 2600 2625 2737.9
±15.2948 0.05% 0.9% 5.25%
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Table 6

The second moment of the stationary distribution when the inter-arrival times follow

Uniform distribution

Uniform distribution L2

(α, β) (θ, γ) Ls
2 Lp

2 Ld,1
2 Ld,2

2

(1, 1)

(1, 1) 0.8254 1.4104 0.3333 0.3333
±0.002 70.87% 59.62% 59.62%

(0.1, 0.1) 4.3492 11.3045 3.3333 3.3333
±0.0336 159.92% 23.36% 23.36%

(0.01, 0.01) 34.6831 104.0397 33.3333 33.3333
±0.7472 199.97% 3.89% 3.89%

(1, 1.5)

(1, 1.5) 0.8961 1.4372 0.3993 0.6779
±0.002 60.38% 55.45% 24.35%

(0.1, 0.15) 15.775 21.2498 13.8778 16.7789
±0.0952 34.71% 12.03% 6.34%

(0.01, 0.015) 1148.5144 1211.1069 1138.8889 1167.8
±7.7166 5.45% 0.84% 1.68%

(1, 2)

(1, 2) 1.0102 1.4841 0.5019 1.0429
±0.0021 46.91% 50.32% 3.24%

(0.1, 0.2) 30.1933 34.956 27.4992 32.9289
±0.1226 15.77% 8.92% 9.06%

(0.01, 0.02) 2551.7944 2600 2525 2579.3
±10.7995 1.89% 1.05% 1.07%

Table 7

The second moment of the stationary distribution when the inter-arrival times follow

Erlang distribution

Erlang distribution L2

(α, β) (θ, γ) Ls
2 Lp

2 Ld,1
2 Ld,2

2

(1, 1)

(1, 1) 0.9304 1.4104 0.5000 0.5000
±0.0064 51.95% 46.26% 46.26%

(0.1, 0.1) 6.0528 11.3045 5.0000 5.0000
±0.1485 86.76% 17.39% 17.39%

(0.01, 0.01) 48.0992 104.0397 50.0000 50.0000
±4.4079 116.3% 3.95% 3.95%

(1, 1.5)

(1, 1.5) 0.9857 1.4372 0.5526 0.8550
±0.0056 45.80% 43.94% 13.26%

(0.1, 0.15) 16.5479 21.2498 15.2503 18.5501
±0.1894 28.41% 7.84% 12.1%

(0.01, 0.015) 1158.5 1211.1069 1152.8 1185.5
±16.5071 4.54% 0.05% 2.33%

(1, 2)

(1, 2) 1.0728 1.4841 0.6375 1.2411
±0.0052 38.34% 40.2% 15.69

(0.1, 0.2) 31.4929 34.956 28.7436 34.9112
±0.2351 11% 8.73% 10.85%

(0.01, 0.02) 2542.1 2600 2567.3 2599.1
±20.576 2.28% 1% 2.24%
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(a) (α, β, θ, γ)= (1, 1, 1, 1) (b) (α, β, θ, γ)= (1, 1, 0.1, 0.1) (c) (α, β, θ, γ)= (1, 1, 0.01, 0.01)

(a) (α, β, θ, γ)= (1, 1.5, 1, 1.5) (b) (α, β, θ, γ)= (1, 1.5, 0.1, 0.15) (c) (α, β, θ, γ)= (1, 1.5, 0.01, 0.015)

(a) (α, β, θ, γ)= (1, 2, 1, 2) (b) (α, β, θ, γ)= (1, 2, 0.1, 0.2) (c) (α, β, θ, γ)= (1, 2, 0.01, 0.02)

Fig 2. Density functions by simulation method, Poisson approximation, and heavy traffic

diffusion approximation, when inter-arrival times follow exponential distribution.
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(a) (α, β, θ, γ)= (1, 1, 1, 1) (b) (α, β, θ, γ)= (1, 1, 0.1, 0.1) (c) (α, β, θ, γ)= (1, 1, 0.01, 0.01)

(a) (α, β, θ, γ)= (1, 1.5, 1, 1.5) (b) (α, β, θ, γ)= (1, 1.5, 0.1, 0.15) (c) (α, β, θ, γ)= (1, 1.5, 0.01, 0.015)

(a) (α, β, θ, γ)= (1, 2, 1, 2) (b) (α, β, θ, γ)= (1, 2, 0.1, 0.2) (c) (α, β, θ, γ)= (1, 2, 0.01, 0.02)

Fig 3. Density functions by simulation method, Poisson approximation, and heavy traffic

diffusion approximation, when inter-arrival times follow uniform distribution.
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(a) (α, β, θ, γ)= (1, 1, 1, 1) (b) (α, β, θ, γ)= (1, 1, 0.1, 0.1) (c) (α, β, θ, γ)= (1, 1, 0.01, 0.01)

(a) (α, β, θ, γ)= (1, 1.5, 1, 1.5) (b) (α, β, θ, γ)= (1, 1.5, 0.1, 0.15) (c) (α, β, θ, γ)= (1, 1.5, 0.01, 0.015)

(a) (α, β, θ, γ)= (1, 2, 1, 2) (b) (α, β, θ, γ)= (1, 2, 0.1, 0.2) (c) (α, β, θ, γ)= (1, 2, 0.01, 0.02)

Fig 4. Density functions by simulation method, Poisson approximation, and heavy traffic

diffusion approximation, when inter-arrival times follow Erlang distribution.
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(a) (α, β, θ, γ)= (1, 1, 1, 1) (b) (α, β, θ, γ)= (1, 1, 0.1, 0.1) (c) (α, β, θ, γ)= (1, 1, 0.01, 0.01)

(a) (α, β, θ, γ)= (1, 1.5, 1, 1.5) (b) (α, β, θ, γ)= (1, 1.5, 0.1, 0.15) (c) (α, β, θ, γ)= (1, 1.5, 0.01, 0.015)

(a) (α, β, θ, γ)= (1, 2, 1, 2) (b) (α, β, θ, γ)= (1, 2, 0.1, 0.2) (c) (α, β, θ, γ)= (1, 2, 0.01, 0.02)

Fig 5. Density functions by simulation method, Poisson approximation, and heavy traffic

diffusion approximation, when inter-arrival times follow hyper-exponential distribution.
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Table 8

The second moment of the stationary distribution when the inter-arrival times follow

hyper-exponential distribution

Hyper-exponential distribution L2

(α, β) (θ, γ) Ls
2 Lp

2 Ld,1
2 Ld,2

2

(1, 1)

(1, 1) 1.9943 1.4104 2 2
±0.0063 29.28% 0.29% 0.29%

(0.1, 0.1) 20.8656 11.3045 20 20
±0.1625 45.82% 4.15% 4.15%

(0.01, 0.01) 205.774 104.0397 200 200
±4.7111 49.44% 2.81% 2.81%

(1, 1.5)

(1, 1.5) 1.9962 1.4372 2.0092 2.4491
±0.0057 28.01% 0.65% 22.69%

(0.1, 0.15) 29.4329 21.2498 28.0112 34.4908
±0.1921 27.80% 4.83% 17.18%

(0.01, 0.015) 1307.8225 1211.1069 1277.5943 1344.9
±16.5066 7.40% 2.31% 2.84%

(1, 2)

(1, 2) 2.0048 1.4841 2.0252 3.0251
±0.0048 25.97% 1.02% 50.89%

(0.1, 0.2) 41.5526 34.956 39.8704 52.7513
±0.2282 15.88% 4.05% 26.95%

(0.01, 0.02) 2660.7665 2600 2649.9986 2777.5
±20.4434 2.28% 0.40% 4.39%

Acknowledgement. We thank the anonymous referees and the asso-
ciate editor for valuable comments and suggestions.

REFERENCES

[1] Amore, P., Asymptotic and exact series representations for the incomplete Gamma
function. arXiv:math-ph/0501019, 2005. MR2170316

[2] Ancker, C. J. and Gafarian, A., Queueing with impatient customers who leave
at random. J. Industr. Engrg., 13:84–90, 1962.

[3] Anderson, W. J., Continuous-Time Markov Chains: An Applications-Oriented Ap-

proach. Springer-Verlag, 1991. MR1118840

[4] Billingsley, P., Convergence of Probability Measures. Wiley-Interscience, 1999.
MR1700749

[5] Bramson, M., Stability of queueing networks. In École d’Été de Probabilités de Saint-
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