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Abstract: Birnbaum’s theorem, that the sufficiency and conditionality
principles entail the likelihood principle, has engendered a great deal of
controversy and discussion since the publication of the result in 1962. In
particular, many have raised doubts as to the validity of this result. Typi-
cally these doubts are concerned with the validity of the principles of suffi-
ciency and conditionality as expressed by Birnbaum. Technically it would
seem, however, that the proof itself is sound. In this paper we use set the-
ory to formalize the context in which the result is proved and show that
in fact Birnbaum’s theorem is incorrectly stated as a key hypothesis is left
out of the statement. When this hypothesis is added, we see that suffi-
ciency is irrelevant, and that the result is dependent on a well-known flaw
in conditionality that renders the result almost vacuous.
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1. Introduction

A result presented in [2], and referred to as Birnbaum’s theorem, is very well-
known in statistics. This result says that a statistician who accepts both the
sufficiency S and conditionality C principles must also accept the likelihood
principle L and conversely. The result has always been controversial primarily
because it implies that a frequentist is forced to ignore the repeated sampling
properties of any inferential procedures they use. Given that both S and C seem
quite natural to many frequentist statisticians while L does not, the result is
highly paradoxical.

Various concerns have been raised about the proof of the result. For exam-
ple, in [4] Durbin argued that the theorem fails to hold whenever C is restricted
by requiring that any ancillaries used must be functions of a minimal sufficient
statistic. In [11] it is argued that C should only be applicable when the value
of the ancillary statistic used to condition is actually a part of the experimental
make-up. This is called the weak conditionality principle. In [5] it is argued that
Birnbaum’s theorem, and a similar result that accepting C alone is equivalent
to accepting L, are invalid because the specific uses of S and C in proving these
results can be seen to be based on flaws in their formulations. For example,
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Birnbaum’s theorem requires a use of S and C where the information discarded
by S as irrelevant, which is the primary motivation for S, is exactly the infor-
mation used by C to condition on and so identifies the discarded information
as highly relevant. As such S and C contradict each other. We note that this is
precisely what Durbin’s restriction on the ancillaries avoids. Furthermore, the
result established in [5] that C alone is equivalent to L, depends on the lack of
a unique maximal ancillary which can be seen as an essential flaw in C. Also,
see [9, 1] and [8] for various concerns about the formulation of the theorem. The
validity of the theorem and the principles are discussed in [13]. It is argued in
[12] that, in the context of a repeated sampling formulation for statistics, we
cannot simultaneously have S and C true, as when S is true then C is false and
when C is true then S is false. A proof that avoids some of the objections raised
by others is provided in [6].

Many of these reservations are essentially with the hypotheses to the theorem
and suggest that Birnbaum’s theorem should be rejected because the hypothe-
ses are either not acceptable or have been misapplied. It is the purpose of this
paper to provide a careful set-theoretic formulation of the context of the the-
orem. When this is done we see that there is a hypothesis that needs to be
formally acknowledged as part of the statement of Birnbaum’s theorem. With
this addition, the force of the result is lost and the paradox disappears. The
same conclusions apply to the result that C is equivalent to L and, in fact,
this is really the only result as S is redundant in the statement of Birnbaum’s
theorem when the additional hypothesis is formally acknowledged.

For our discussion it is important that we stick as closely as possible to
Birnbaum’s formulation. To discuss the proof, however, we have to make cer-
tain aspects of Birnbaum’s argument mathematically precise that are somewhat
vague in his paper. It is always possible then that someone will argue that we
have done this in a way that is not true to Birnbaum’s intention. We note,
however, that this is accomplished in a very simple and direct way. If there is
another precise formulation that makes the theorem true, then it is necessary
for a critic of how we do this to provide that alternative.

A basic step missing in [2] was to formulate the principles as relations on
the set I of all model and data combinations. So I is the set of all inference
bases I = (E, x) where E = (XE , {fE,θ : θ ∈ ΘE}),XE is a sample space,
{fE,θ : θ ∈ ΘE} is a collection of probability density functions on XE , with
respect to some support measure µE on XE , indexed by θ ∈ ΘE , and x ∈ XE is
the observed data. We will ignore all measure-theoretic considerations as they
are not essential for any of the arguments. If the reader is concerned by this,
then we note that the collection of models where XE and ΘE are finite and µE

is counting measure is rich enough to produce the paradoxical result. So we can
restrict our discussion here to the case where XE and ΘE are finite. In spite of
our restrictions, most of our development applies in more general circumstances
although it is fair to acknowledge that the discussion in Birnbaum, and here, is
restricted to parametric statistical inference.

We note that expressing the principles as relations was part of [5] but this
is taken further here. In Section 2 we discuss the meaning and use of relations
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generally and relate this to the statistical application. In Section 3 we apply
our discussion of relations to Birnbaum’s theorem. In Section 4 we draw some
conclusions.

2. Relations

In [2] Birnbaum considered the principles S,C and L as equivalence relations on
the set I of all inference bases I = (E, x) as described in Section 1. Birnbaum’s
theorem can be interpreted mathematically as a statement about relationships
existing among these equivalence relations but the paper is not careful about the
usage of this terminology relying instead on intuition. So in this section we give
a precise definition of what is meant by relations and equivalence relations, give
some basic examples and discuss a key concept necessary for a precise statement
of Birnbaum’s theorem, namely, the smallest equivalence relation containing a
relation. We use [7] as the source of our basic definitions.

Suppose D is a set. A relation R with domain D is a subset R ⊂ D × D.
Saying (x, y) ∈ R means that the objects x and y have a property in common.

Example 1. Suppose D is the set of students enrolled at a specific university
at a specific point in time. Let R1 be defined by (x, y) ∈ R1 when x and y are
enrolled in the same program. Let R2 be defined by (x, y) ∈ R2 whenever x and
y are enrolled in, or have been enrolled, in the same program.

A relation R is reflexive if (x, x) ∈ R for all x ∈ D, symmetric if (x, y) ∈ R
implies (y, x) ∈ R, and transitive if (x, y) ∈ R, (y, z) ∈ R implies that (x, z) ∈ R.
If a relation R is reflexive, symmetric and transitive, then R is called an equiv-

alence relation. Note that an equivalence relation R is not empty, unless D is
empty, since {(x, x) : x ∈ D} ⊂ R. In Example 1, clearly R1 is an equivalence
relation and, while R2 is reflexive and symmetric, it is not typically transitive,
as students change programs, and so may not be an equivalence relation. While
(x, y) ∈ R implies that x and y are related, perhaps by the possession of some
property, when R is an equivalence relation this implies that x and y possess
the property to the same degree. We say that relation R on D implies relation
R′ on D whenever R ⊂ R′. In Example 1, we have that R1 ⊂ R2.

In the context of Birnbaum’s theorem we take D = I and consider a statis-

tical relation as a relation R ⊂ I × I and call such an R a statistical principle

when R is an equivalence relation. Of course, not all such R are meaningful
statistical relations or principles as they may simply satisfy the mathematical
properties without possessing any statistical content. For example, select any
two inference bases I1 and I2 with the same parameter space, then formally
R = {(I1, I1), (I2, I2), (I1, I2), (I2, I1)} is a statistical principle but clearly not
for any particular statistical reason. In general, it would seem that statisti-
cal relations need to be defined, as in [2], based on some concept associated
with statistical evidence. So, if (I1, I2) ∈ R, then I1 and I2 are supposed to
contain equivalent amounts of statistical information about the unknown distri-
bution or, equivalently, the unknown true value of the model parameter. As with
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Birnbaum, we make no attempt to give a precise definition of what statistical
information means.

If R is a relation on D, then the equivalence relation R̄ generated by R is
the smallest equivalence relation containing R. We see that R̄ is the intersec-
tion of all equivalence relations on D containing R. We will use the following
characterization of R̄.

Lemma 1. If R is a reflexive relation on D, then

R̄ = {(x, y) : ∃n, x1, . . . , xn ∈ D with x = x1, y = xn and

(xi, xi+1) ∈ R or (xi+1, xi) ∈ R}.

Proof. Since R ⊂ R̄ we have that R̄ is reflexive. If (x, y) ∈ R̄, then there exists
n, x1, . . . , xn ∈ D with x = x1, y = xn and (xi, xi+1) ∈ R or (xi+1, xi) ∈ R
and so (y, x) ∈ R̄ using x′

i = xn−i+1 instead of the xi. If (x, y), (y, z) ∈ R̄, then
we have (x, z) ∈ R̄ simply by concatenating the chains that put (x, y) ∈ R̄ and
(y, z) ∈ R̄.

Note that for statistical relations R, as characterizations of statistical infor-
mation, it makes sense to assume that R is reflexive since inference base I must
contain the same amount of information as itself. Lemma 1 is used to prove that
certain statistical relations are not equivalence relations.

It may be that R̄ does not have a meaningful interpretation, at least as it
relates to the property being expressed by R. In Example 1, R̄2 is difficult to
interpret and surely goes beyond the idea that R2 is perhaps trying to express,
namely, that two students have some common interests. In fact, it is entirely
possible that R̄2 = D × D and so says nothing. As another example, suppose
that D = {2, 3, 4, . . .} and (x, y) ∈ R when x and y have a common factor bigger
than 1. Then R is reflexive and symmetric but not transitive. If x, y ∈ D then
(x, xy) ∈ R, (xy, y) ∈ R so R̄ = D ×D and R̄ is saying nothing. It seems that
each situation, where we extend a relation R to an equivalence relation, must be
examined to see whether or not this extension has any meaningful content for
the application. As we discuss in Section 3, this process of extending a relation
to be an equivalence relation is implicit in Birnbaum’s result and in the result
of [5], and as such, suggests that these results have no substantive inferential
content.

In Section 3 we need to consider the union R1 ∪ R2 of relations R1 and R2

onD. In general, the union of equivalence relations is not an equivalence relation.
We have the following result.

Lemma 2. R̄1 ∪ R̄2 = R1 ∪R2.

Proof. We have that R1 ∪ R2 ⊂ R̄1 ∪ R̄2 so R1 ∪R2 ⊂ R̄1 ∪ R̄2 while R̄1 ⊂

R1 ∪R2, R̄2 ⊂ R1 ∪R2 implies R̄1 ∪ R̄2 ⊂ R1 ∪R2.

This says that the equivalence relation generated by the union of relations is
equal to the equivalence relation generated by the union of the corresponding
generated equivalence relations.
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3. Statistical relations and principles

We now consider several statistical relations and the statistical principles gen-
erated by them. Birnbaum’s theorem is a statement about the relations among
them.

The likelihood relation L on I is defined by (I1, I2) ∈ L whenever ΘE1
= ΘE2

and there exists c > 0 such that fE1,θ(x1) = cfE2,θ(x2) for every θ ∈ ΘE1
. We

have the following obvious result.

Lemma 3. L is a statistical principle.

The likelihood principle as stated can be generalized in an obvious way. For
we may have I1 = (E1, x1) and I2 = (E2, x2), a bijection h : ΘE1

→ ΘE2
and a

constant c > 0, such that fE1,θ(x1) = cfE2,h(θ)(x2) for every θ ∈ ΘE1
. It then

seems reasonable to consider (I1, I2) ∈ L. We will ignore this generalization here
as it is not relevant to our arguments. Effectively we will require that I1 and I2
have the same parameter space anytime we consider them to be related via a
statistical relation.

We consider the definition of the sufficiency relation S. First we show that a
minimal sufficient statistic always exists for the models discussed here, namely,
XE and ΘE are finite. Furthermore, we suppose that for each x ∈ XE there
exists θ ∈ ΘE such that fE,θ(x) > 0, so we don’t allow any points in XE that
can’t be observed. We say that two points x1, x2 ∈ XE are equivalent whenever
there exists constant k > 0 such that fE,θ(x1) = kfE,θ(x2) for every θ ∈ Θ and
denote the equivalence class containing x by [x]. We have the following result.

Lemma 4. T (x) = [x] is a minimal sufficient statistic for E.

Proof. If z ∈ [x], then there exists k(z) > 0 such that fE,θ(z) = k(z)fE,θ(x) for
every θ. Suppose that θ is true. If fE,θ(x) > 0, then fE,θ(z) > 0 for every z ∈ [x]
and the conditional probability of x given T (x) = [x] based on fE,θ equals

fE,θ(x)/
∑

z∈[x]

fE,θ(z) = fE,θ(x)/
∑

z∈[x]

k(z)fE,θ(x) = 1/
∑

z∈[x]

k(z). (1)

If fE,θ(x) = 0, then fE,θ(z) = 0 for every z ∈ [x] and so the probability of
[x] based on fE,θ is 0. Therefore, we can define the conditional probability of x
given T (x) = [x] based on fE,θ arbitrarily. There is a θ′ such that fE,θ′(x) > 0
and the conditional probability of x given T (x) = [x] based on fE,θ′ equals (1).
So if we define the conditional probability of x given T (x) based on fE,θ by (1),
this conditional probability is independent of θ and we have that T is sufficient.

Now suppose that U is a sufficient statistic for E. Then

fE,θ(x) = fE(x |U(x))fE,θ,U (U(x)) (2)

where fE(· |U(x)) is the conditional probability function given U(x) and fE,θ,U

is the marginal for U . Since fE,θ(x) > 0 for at least one θ, we must have that
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fE(x |U(x)) > 0. If U(x1) = U(x2), then fE,θ,U(U(x1)) = fE,θ,U(U(x2)) and
from (2)

fE,θ(x1) = fE(x1 |U(x1))fE,θ,U(U(x2)) =
fE(x1 |U(x1))

fE(x2 |U(x2))
fE,θ(x2),

which implies that T (x1) = T (x2). This proves that T is a minimal sufficient
statistic.

Any 1-1 function of a minimal sufficient statistic is also minimal sufficient. So
we can always take our minimal sufficient statistic to be real-valued here since
[x] takes only finitely many values. Also, if T and T ′ are both minimal sufficient
for model E, then T = h ◦T ′ for some function h, since T ′ is sufficient and T is
minimal sufficient. If T ′(x1) 6= T ′(x2) but h(T

′(x1)) = h(T ′(x2)), then T ′ would
not be minimal sufficient and so h must be 1-1.

Let Ti denote a minimal sufficient statistic for model Ei with marginal model
Ei,Ti

. Define the sufficiency relation by (I1, I2) ∈ S whenever there is a 1-1 map
h between the sample spaces of E1,T1

and E2,T2
such that E1,T1

= E2,h◦T2
and

T1(x1) = h(T2(x2)). We have the following result.

Lemma 5. S is a statistical principle and S ⊂ L.

Proof. Consider inference base I = (E, x) and suppose T, T ′ are minimal suffi-
cient statistics for E. Then, as we have discussed, there is a 1-1 function h such
that T = h ◦ T ′ which implies ET = Eh◦T ′ and T (x) = h(T ′(x)) so (I, I) ∈ S
and S is reflexive. If (I1, I2) ∈ S via h, then E1,T1

= E2,h◦T2
and so T1 and h◦T2

have the same distribution for each θ. This implies that h−1◦T1 and T2 have the
same distribution for each θ and so E1,h−1◦T1

= E2,T2
. Also, T1(x1) = h(T2(x2))

implies T2(x2) = h−1(T1(x1)) so (I2, I1) ∈ S which proves S is symmetric. If
(I1, I2) ∈ S via h1 and (I2, I3) ∈ S via h2, then (I1, I3) ∈ S via h = h1 ◦ h2, and
so S is transitive.

Now (2) implies that a likelihood function obtained from (E, x) is propor-
tional to a likelihood function obtained from (ET , T (x)) when T is a minimal
sufficient statistic for E. When (I1, I2) ∈ S, then E1,T1

= E2,h◦T2
and T1(x1) =

h(T2(x2)) which implies that a likelihood function obtained from (E1,T1
, T1(x1))

is proportional to a likelihood function obtained from (E2,T2
, T2(x2)). Therefore,

a likelihood function obtained from I1 is proportional to a likelihood function
obtained from I2 so (I1, I2) ∈ L. We conclude that S ⊂ L.

A statistic a for model E is ancillary if the marginal model induced by a is
given by one probability distribution, namely, the distribution of a is indepen-
dent of θ ∈ ΘE. For x ∈ XE the conditional model given a(x) is {fE,θ(· | a(x)) :
θ ∈ ΘE} where fE,θ(· | a(x)) is the density for the data given a(x). The condi-

tionality relation C is defined by (I1, I2) ∈ C whenever ΘE1
= ΘE2

, x1 = x2 and
there exists ancillary statistic a for E1 such that the conditional model given
a(x1) is E2, or with roles of I1 and I2 reversed. Basically the conditionality
relation is saying that whether we use the conditional model given an ancil-
lary or the unconditional model we should have the same inferences. There are
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Table 1

Unconditional distributions

(x1, x2) (1, 1) (1, 2) (2, 1) (2, 2)
fE,1(x1, x2) 1/6 1/6 2/6 2/6
fE,2(x1, x2) 1/12 3/12 5/12 3/12

Table 2

Conditional distributions given U = 1

(x1, x2) (1, 1) (1, 2) (2, 1) (2, 2)
fE,1(x1, x2 |U = 1) 1/2 1/2 0 0
fE,2(x1, x2 |U = 1) 1/4 3/4 0 0

Table 3

Conditional distributions given V = 1

(x1, x2) (1, 1) (1, 2) (2, 1) (2, 2)
fE,1(x1, x2 | V = 1) 1/3 0 2/3 0
fE,2(x1, x2 | V = 1) 1/6 0 5/6 0

numerous examples where it is apparent that the conditional model is more ap-
propriate for assessing the uncertainties associated with inferences, see [3]. We
have the following result.

Lemma 6. C is reflexive and symmetric but is not transitive and C ⊂ L.

Proof. The reflexivity, symmetry and C ⊂ L are obvious. The lack of transitivity
follows via a simple example. Consider the model E with XE = {1, 2}2,ΘE =
{1, 2} and with fE,θ given by Table 1. Now note that U(x1, x2) = x1 and
V (x1, x2) = x2 are both ancillary and the conditional models, when we observe
(x1, x2) = (1, 1), are given by Tables 2 and 3. The only ancillary for both these
conditional models is the trivial ancillary (the constant map). Therefore, there
are no applications of C that lead to the inference base I2, given by Table 2
with data (1, 1), being related to the inference base I3, given by Table 3 with
data (1, 1). But both of I2 and I3 are related under C to the inference base I1
given by Table 1 with data (1, 1). This establishes the result.

Note that even under relabellings, the inferences bases I2 and I3 in Lemma 6
are not equivalent.

If we are going to say that (I1, I2) ∈ C means that I1 and I2 contain an
equivalent amount of information under C, then we are forced to expand C to
C̄ so that it is an equivalence relation. But this implies that the two inference
bases I2 and I3 presented in the proof of Lemma 6 contain an equivalent amount
of information and yet they are not directly related via C. Rather they are
related only because they are conditional models obtained from a supermodel
that has two essentially different maximal ancillaries. An ancillary a is maximal
if, whenever a = g ◦ a′ and a′ is ancillary, then g is a bijection.

Saying that such models contain an equivalent amount of statistical informa-
tion is clearly a substantial generalization of C. Note that, for the example in
the proof of Lemma 6, when (1, 1) is observed, the MLE is θ̂(1, 1) = 1. To mea-
sure the accuracy of this estimate we can compute the conditional probabilities
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Table 4

The model E∗

1

x1 x10 x100 · · ·
i = 1 pfE1,θ(x1) pfE1,θ(x10) pfE1,θ(x100) · · ·
i = 0 1− p − pfE1,θ(x1) pfE1,θ(x1) 0 · · ·

based on the two inference bases, namely,

P1(θ̂(x1, x2) = 1 |U = 1) = 1/2, P2(θ̂(x1, x2) = 2 |U = 1) = 3/4

P1(θ̂(x1, x2) = 1 |V = 1) = 1/3, P2(θ̂(x1, x2) = 2 |V = 1) = 5/6

and so the accuracy of θ̂ is quite different depending on whether we use I2 or I3.
It seems unlikely that we would interpret these inference bases as containing an
equivalent amount of information in a frequentist formulation of statistics. As
noted in Section 2, there is no reason why we have to accept the equivalences
given by a generated equivalence relation unless we are certain that this equiv-
alence relation expresses the essence of the basic relation. It seems clear that
there is a problem with the assertion that (I1, I2) ∈ C̄ means that I1 and I2
contain an equivalent amount of information without further justification.

We now follow a development similar to that found in [5] to prove the fol-
lowing result.

Theorem 7. C ⊂ C̄ = L where the first containment is proper.

Proof. ClearlyC ⊂ C̄ and this containment is proper by Lemma 6. If (I1, I2) ∈ C̄,
then Lemma 1 implies (I1, I2) ∈ L since C ⊂ L and so C̄ ⊂ L. Now suppose that
(I1, I2) ∈ L. We have that fE1,θ(x1) = cfE2,θ(x2) for every θ for some c > 0.
Assume first that c > 1. Now construct a new inference base I∗1 = (E∗

1 , (1, x1))
where XE∗

1
= {0, 1} × XE1

, and {fE∗

1
,θ : θ ∈ ΘE1

} is given by Table 4 where
x10, x100, . . . are the elements of XE1

not equal to x1 and p ∈ [0, 1) satisfies
p/(1− p) = 1/c.

Then we see that U(i, x) = i is ancillary as is V given by V (i, x) = 1 when
x = x1 and V (i, x) = 0 otherwise. Conditioning on U(i, x) = 1 gives that
(I∗1 , I1) ∈ C while conditioning on V (i, x) = 1 gives that (I∗1 , I) ∈ C where
I = (({0, 1}, {pθ : θ ∈ ΘE1

}), 1) and pθ is the Bernoulli(fE1,θ(x1)/c) probability
function. Now, using I2 we construct I∗2 by replacing p by 1/2 and fE1,θ(x1) by
fE2,θ(x2) in Table 4 and obtain that (I∗2 , I) ∈ C since fE1,θ(x1)/c = fE2,θ(x2).
Using Lemma 1 we have that (I1, I2) ∈ C̄. If c ≤ 1 we start the construction
process with I2 instead. This proves that C̄ = L.

The proof that L ⊂ C̄ relies on discreteness. This was weakened in [5] and
even further weakened in [10].

We now show that Birnbaum’s proof actually establishes the following result.

Theorem 8. S ∪ C ⊂ L ⊂ S ∪ C.

Proof. The first containment is obvious. For the second suppose that (I1, I2) ∈ L.
We construct a new inference base I = (E, y) from I1 and I2 as follows. Let E
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be given by XE = (1,XE1
) ∪ (2,XE2

),

fE,θ(1, x) =

{

(1/2)fE1,θ(x) when x ∈ XE1

0 otherwise,

fE,θ(2, x) =

{

(1/2)fE2,θ(x) when x ∈ XE2

0 otherwise.

Then

T (i, x) =

{

(i, x) when x /∈ {x1, x2}
{x1, x2} otherwise

is sufficient for E and so ((E, (1, x1)), (E, (2, x2))) ∈ S by Lemma 5. Also,
h(i, x) = i is ancillary for E and thus

((E, (1, x1)), (E1, x1)) ∈ C,

((E, (2, x2)), (E2, x2)) ∈ C.

Then by Lemma 1 we have that ((E1, x1), (E2, x2)) ∈ S ∪ C and we are done.

Note that Birnbaum’s proof only proves the containments with no equalities
but we have the following result.

Theorem 9. S ∪ C is properly contained in L while L = S ∪ C.

Proof. We show that S ∪ C ⊂ L is proper. Suppose that E1 has XE1
= {0, 1},

ΘE1
= {1/5, 1/3} with fE1,θ(x) = θx(1 − θ)1−x and E2 has XE1

= {0, 1, 2},
ΘE2

= {1/5, 1/3} with fE2,θ(0) = θ, fE2,θ(1) = θ(1−θ) and fE2,θ(2) = (1−θ)2.
Suppose further that we observe x1 = 1 and x2 = 0 so fE1,θ(1) = θ = fE2,θ(0).
Note that the full data is minimal sufficient for both E1 and E2 and that both
of these models have only trivial ancillaries. Therefore, if I1 = (E1, 1) and
I2 = (E2, 0), we have that (I1, I2) /∈ S, (I1, I2) /∈ C but (I1, I2) ∈ L which
proves that S ∪ C is properly contained in L.

To prove that the second containment is exact we have, using Lemma 1, that
(I1, I2) ∈ S ∪ C implies that I1 and I2 give rise to proportional likelihoods as
this is true for each element of S ∪ C and so S ∪ C ⊂ L.

So we do not have, as usually stated for Birnbaum’s Theorem, that S and
C are together equivalent to L, but we do have that S ∪ C is equivalent to L.
Acceptance of S ∪ C is not entailed, however, by acceptance of both S and C
as we have to examine the additional relationships added to S ∪ C to see if
they make sense. If one wishes to say that acceptance of S and C implies the
acceptance of S ∪ C, then a compelling argument is required for these additions
and this seems unlikely.

From Theorems 7 and 8 we have the following Corollary.

Corollary 10. S ∪C ⊂ C̄ = L where the first containment is proper. Further-

more, S ⊂ C̄ and this containment is proper.

A direct proof that S ⊂ C̄ has been derived in [10]. It is interesting to
note that Corollary 10 shows that the existence of S in the modified statement
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of Birnbaum’s theorem, where we require that we accept all the equivalences
generated by S and C, is irrelevant. This is a reassuring result as it is unlikely
that S is defective but it is almost certain that C is defective, at least as currently
stated.

As with the proof of Birnbaum’s Theorem, the proof that C = L provided in
[5] is really a proof that C̄ = L. This can be seen from the proof of Theorem 7. So
accepting the relation C is not really equivalent to accepting L unless we agree
that the additional elements of C̄ make sense. This is essentially equivalent
to saying that it doesn’t matter which maximal ancillary we condition on and
it is unlikely that this is acceptable to most frequentist statisticians. This is
illustrated by the discussion concerning the example in Lemma 6.

As noted in [4], requiring that any ancillaries used in an application of C be
functions of a minimal sufficient statistic voids Birnabum’s proof, as the ancillary
statistic used in the proof of Theorem 7 is not a function of the sufficient statistic
used in the proof. It is not clear, however, what this restriction does to the
result C̄ = L, but we note that there are situations where there exist nonunique
maximal ancillaries which are functions of the minimal sufficient statistic. In
these circumstances we would still be forced to conclude the equivalence of
inference bases derived by conditioning on the different maximal ancillaries if
we reasoned as in [5]. Of course, we are arguing here that the result requires the
statement of an additional hypothesis.

4. Conclusions

We have shown that the proof in [2] did not prove that S and C lead to L. Rather
the proof establishes that S ∪C = L and this is something quite different. The
statement of Birnbaum’s theorem in prose should have been: if we accept the
relation S and we accept the relation C and we accept all the equivalences
generated by S and C together, then this is equivalent to accepting L. The
essential flaw in Birnbaum’s theorem lies in excluding this last hypothesis from
the statement of the theorem. The same qualification applies to the result proved
in [5] where the statement of the theorem should have been: if we accept the
relation C and we accept all the equivalences generated by C, then this is
equivalent to accepting L.

The way out of the difficulties posed by Birnbaum’s theorem, and the result
relating C and L, is to acknowledge that additional hypotheses are required for
the results to hold. Certainly these results seem to lose their impact when they
are correctly stated and we realize that an equivalence relation generated by a
relation is not necessarily meaningful. It is necessary to provide an argument as
to why the generated equivalence relation captures the essence of the relation
that generates it and it is not at all clear how to do this in these cases.

As we have noted, the essential result in all of this is C̄ = L and this has
some content albeit somewhat minor. Furthermore, the proof of this result is
based on a defect in C, namely, it is not an equivalence relation due to the
general nonexistence of unique maximal ancillaries. As such it is hard to accept
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C as stated as any kind of characterization of statistical evidence. Given the
intuitive appeal of this relation in some simple examples, however, resolving
the difficulties with C still poses a major challenge for a frequentist theory of
statistics.
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