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Abstract: Consider the standard linear model y = Xβ + σǫ, where the
components of ǫ are iid standard normal errors. Park and Casella [14] con-
sider a Bayesian treatment of this model with a Laplace/Inverse-Gamma
prior on (β, σ). They introduce a Data Augmentation approach that can
be used to explore the resulting intractable posterior density, and call it
the Bayesian lasso algorithm. In this paper, the Markov chain underlying
the Bayesian lasso algorithm is shown to be geometrically ergodic, for ar-

bitrary values of the sample size n and the number of variables p. This is
important, as geometric ergodicity provides theoretical justification for the
use of Markov chain CLT, which can then be used to obtain asymptotic
standard errors for Markov chain based estimates of posterior quantities.
Kyung et al. [12] provide a proof of geometric ergodicity for the restricted
case n ≥ p, but as we explain in this paper, their proof is incorrect. Our
approach is different and more direct, and enables us to establish geometric
ergodicity for arbitrary n and p.
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1. Introduction

Consider the standard linear model y = Xβ + σǫ, where y = (yi)
n
i=1 ∈ R

n

is the vector of observations, X is the (known) design matrix, β ∈ R
p is the

(unknown) vector of regression coefficients, the components of ǫ are iid standard
normal errors, and σ2 is the (unknown) variance parameter. The objective is
to estimate (β, σ2). In a variety of modern datasets from genetics, finance, and
environmental sciences, the dimension p of β is much larger than the sample
size n. An extremely popular approach to handle these kinds of datasets is the
lasso, which was introduced in Tibshirani [19]. In this approach, the estimate
of β is obtained as

β̂lasso = argminβ∈Rp(y −Xβ)T (y −Xβ) + λ

p
∑

j=1

|βj |, (1.1)
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where λ is a user-specified tuning parameter. Note that the estimate in (1.1)
can be regarded as the posterior mode of β (conditional on σ2) if one puts
independent Laplace priors on the entries of β. Based on this observation, several
authors proposed a Bayesian analysis using a Laplace-like prior for β (see for
example [3, 7, 20]). Park and Casella [14] construct the following hierarchical
Bayesian model as a Bayesian parallel/alternative to the lasso.

y | β, σ2, τ 2 ∼ Nn(Xβ, σ2In) (1.2)

β | σ2, τ 2 ∼ Np(0p, σ
2Dτ ), where Dτ = diag(τ21 , τ

2
2 , . . . , τ

2
p ) (1.3)

σ2 ∼ Inverse-Gamma(α, ξ) (allow for impropriety via α = 0 or ξ = 0) (1.4)

τ2j
i.i.d∼ Exponential

(

λ2

2

)

for j = 1, 2 . . . , p (1.5)

To see the connection with lasso, note that the prior density of β given σ2 is
given by

f(β | σ2) =

p
∏

i=1

λ

2σ
e−

λ|βj |

σ .

Indeed, it is shown in [14] that the full conditional distributions of β, τ 2, σ2 are
given by

β | σ2, τ 2,y ∼ Np

(

(XTX +D−1
τ )−1XTy, σ2(XTX +D−1

τ )−1
)

(1.6)

1

τ2j
| β, σ2,y ∼ Inverse-Gaussian

(√

λ2σ2

β2
j

, λ2

)

, independently for 1 ≤ j ≤ p

(1.7)

σ2 | β, τ 2,y ∼ Inverse-Gamma

(

α′,
(y −Xβ)T (y −Xβ) + βTD−1

τ β + 2ξ

2

)

,

(1.8)

where α′ = n+p+2α
2

. Note that the Inverse-Gaussian(µ′, λ′) density is given by

f(x) =

√

λ′

2π
x−

3
2 e

−
λ′(x−µ′)2

2(µ′)2x .

Using the full conditional distributions specified above, one can construct a
systematic scan Gibbs sampling algorithm to sample from the joint posterior
density of (β, τ 2, σ2) (and hence to obtain the desired sample from the poste-
rior density of (β, σ2)). Let {(βm, τ 2

m, σ2
m)}∞m=0 be a Markov chain (with state

space R
p × R

p
+ × R+) whose dynamics are defined (implicitly) through the fol-

lowing three-step procedure for moving from the current state, (βn, τ
2
n, σ

2
n), to

(βn+1, τ
2
n+1, σ

2
n+1).

Iteration n+ 1 of Park and Casella’s Bayesian lasso Gibbs sampler

1. Draw σ2
n+1 from the conditional distribution in (1.8) given (βn, τ

2
n,y).
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2. Draw τ 2
n+1 from the conditional distribution in (1.7) given (βn, σ

2
n+1,y).

3. Draw βn+1 from the conditional distribution in (1.6) given (τ 2
n+1, σ

2
n+1,y).

In Section 2, the Markov transition density (Mtd) of the resulting Gibbs
Markov chain, {(βm, τ 2

m, σ2
m)}∞m=0, is defined and then used to establish that

the chain is well behaved (i.e., Harris ergodic) and converges to the target pos-
terior distribution. Thus, we can use this chain to construct strongly consistent
estimators of intractable posterior expectations. To be specific, for q > 0, let
Lq(π) denote the set of functions g : Rp × R

p
+ × R+ → R such that

Eπ|g|q :=
∫

Rp

∫

R
n
+

∫

R+

|g(β, τ 2, σ2)|q π(β, τ 2σ2|y) dσ2 dτ 2 dβ < ∞,

where π(β, τ 2, σ2 | y) represents the joint posterior density evaluated at (β, τ 2,

σ2). Harris ergodicity implies that, if g ∈ L1(π), then the estimator

gm :=
1

m

m−1
∑

i=0

g(βm, τ 2
m, σ2

m)

is strongly consistent for Eπg, no matter how the chain is started. Of course, in
practice, an estimator is only useful if it is possible to compute an associated
standard error. All available methods of computing a valid asymptotic standard
error for gm are based on the existence of a central limit theorem (CLT) for gm;
that is, we require that

√
m
(

gm − Eπg
) d→ N(0, φ2),

for some positive, finite φ2. Unfortunately, even if g ∈ Lq(π) for all q > 0,
Harris ergodicity is not enough to guarantee the existence of such a CLT (see
for example [16, 17]). The standard method of establishing the existence of CLTs
is to prove that the underlying Markov chain converges at a geometric rate.

Let B(X) denote the Borel sets in X := R
p×R

p
+×R+, and letKm : X×B(X) →

[0, 1] denote the m-step Markov transition function of the Gibbs Markov chain.
That is, Km

(

(β0, τ
2
0, σ

2
0), A

)

is the probability that (βm, τ 2
m, σ2

m) ∈ A, given
that the chain is started at (β0, τ

2
0, σ

2
0). Also, let Π(·) denote the joint posterior

distribution. The chain is called geometrically ergodic if there exist a function
M : X → [0,∞) and a constant γ ∈ [0, 1) such that, for all (β, τ 2, σ2) ∈ X and
all m = 0, 1, . . . , we have

∥

∥Km
(

(β, τ 2, σ2), ·)−Π(·)
∥

∥

TV
≤ M(β, τ 2, σ2)γm,

where ‖ · ‖TV denotes the total variation norm. The relationship between geo-
metric convergence and CLTs is simple: If the chain is geometrically ergodic and
Eπ|g|2+δ < ∞ for some δ > 0, then gm satisfies a CLT. Moreover, because the
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Mtd is strictly positive on X (see Section 2), the same 2 + δ moment condition
implies that the usual estimators of the asymptotic variance, φ2, are consistent
[2, 8, 9, 11]. Our main result, which is proven in Section 3 using a geometric
drift condition and an associated minorization condition, is the following.

Proposition 1. The Bayesian lasso Gibbs Markov chain is geometrically er-
godic for n ≥ 3 and arbitrary p,X, λ.

Hence, the Markov chain CLT holds and can be used to obtain asymptotic
standard errors of posterior estimates.

In the restricted case when n ≥ p, Kyung et al. [12] contains, among other
results, a proof of geometric ergodicity of the Bayesian lasso Gibbs Markov chain.
However, there are serious errors in this proof, which essentially arise from their
assertion that the Bayesian lasso model in (1.2)–(1.5) can be obtained as a
marginal model of a hierarchical random effects model. A detailed explanation
of the problems with the proof are provided in the appendix.

2. The Bayesian lasso Markov chain

We first provide the expressions for the full posterior conditional densities of β,
τ 2 and σ2 respectively. Let f(· | τ 2, σ2,y) denote the full posterior conditional
density of β (on R

p) given τ 2, σ2,y. By (1.6),

f(β | τ 2, σ2,y)

=

∣

∣XTX +D−1
τ

∣

∣

1
2

√
2πσ2

p e−
(β−(XT X+D

−1
τ )−1XT

y)T (XT X+D
−1
τ )(β−(XT X+D

−1
τ )−1XT

y)

2σ2 .

Let f(· | β, σ2,y) denote the full posterior conditional density of τ 2 (on R
p
+)

given β, σ2,y. By (1.7),

f(τ 2 | β, σ2,y) =

p
∏

j=1

√

λ2

2π
(τ2j )

−
1
2 e

−

β2
j



1−τ2
j

√

λ2σ2

β2
j





2

2σ2τ2
j .

Note that the reciprocal of the entries of τ 2 (and not the entries themselves) have
an Inverse-Gaussian distribution. Let f(· | β, τ 2,y) denote the full posterior
conditional density of σ2 (on R+) given β, τ 2,y. By (1.8),

f(σ2 | β, τ 2,y)

=

(

(y −Xβ)T (y −Xβ) + βTD−1
τ β + 2ξ

)
n+p+2α

2

2
n+p+2α

2 Γ
(

n+p+2α
2

)
(σ2)−

n+p+2α
2 −1

× e−
(y−Xβ)T (y−Xβ)+βT D

−1
τ β+2ξ

2σ2 .
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Let η denote the Lebesgue measure on R
p×R

p
+×R+. The Bayesian lasso Gibbs

Markov chain has a Mtd (with respect to η) given by

k
(

(β, τ 2, σ2) | (β̃, τ̃ 2, σ̃2)
)

= f(σ2 | β̃, τ̃ 2,y) f(τ 2 | β̃, σ2,y) f(β | τ 2, σ2,y).

(2.1)
It is well known, and can be verified by a straightforward calculation, that the
joint posterior density of (β, τ 2, σ2) is invariant for the Gibbs transition density
k defined above. The Mtd is strictly positive, which implies that the chain is
aperiodic and η-irreducible [13, Page 87]. Moreover, the existence of an invari-
ant probability density together with η-irreducibility imply that the chain is
positive Harris recurrent (see for example [1]). Note also that η is equivalent to
the maximal irreducibility measure. We now prove geometric ergodicity by es-
tablishing a geometric drift condition and an associated minorization condition
for the Gibbs transition density k.

3. Proof of geometric ergodicity

3.1. Drift condition

Consider the function

V (β, τ 2, σ2) = (y −Xβ)T (y −Xβ) + βTD−1
τ β +

p
∑

j=1

τ2j .

Let Ek[· | β0, τ
2
0, σ

2
0 ] represent the expectation with respect to one step of the

Markov chain with transition density k, starting at (β0, τ
2
0, σ

2
0). The following

proposition establishes a geometric drift condition for the transition density k.

Proposition 2. If n ≥ 3, there exist constants 0 ≤ γ < 1 and b > 0 such that

Ek

[

V (β, τ 2, σ2) | β0, τ
2
0, σ

2
0

]

≤ γV (β0, τ
2
0, σ

2
0) + b, (3.1)

for every (β0, τ
2
0, σ

2
0) ∈ R

p × R
p
+ × R+.

Proof. It follows by the definition of the Markov transition density k that

Ek

[

V (β, τ 2, σ2) | β0, τ
2
0, σ

2
0

]

= E
[

E
[

E
[

V (β, τ 2, σ2) | τ 2, σ2
]

| β0, σ
2
]

| β0, τ
2
0

]

. (3.2)

We evaluate the three conditional expectations one step at a time. We start
with the innermost conditional expectation in (3.2).

E
[

V (β, τ 2, σ2) | τ 2, σ2
]

= E
[

(y −Xβ)T (y −Xβ) + βTD−1
τ β | τ 2, σ2

]

+

p
∑

j=1

τ2j
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= yTy + E
[

βT (XTX +D−1
τ )β | τ 2, σ2

]

− 2yTXE
[

β | τ 2, σ2
]

+

p
∑

j=1

τ2j

= yTy +
∥

∥

∥(XTX +D−1
τ )

1
2 (XTX +D−1

τ )−1XTy

∥

∥

∥

2

2

+ tr
(

(XTX +D−1
τ )

1
2 (XTX +D−1

τ )−1(XTX +D−1
τ )

1
2

)

σ2

− 2yTX(XTX +D−1
τ )−1XTy +

p
∑

j=1

τ2j

= yTy − yTX(XTX +D−1
τ )−1XTy + pσ2 +

p
∑

j=1

τ2j

≤ yTy +

p
∑

j=1

τ2j + pσ2. (3.3)

For the next step, we analyze terms related to the middle conditional expectation
in (3.2). Note that if Z ∼ Inverse-Gaussian(µ′, λ′), then

E

[

1

Z

]

=
1

µ′
+

1

λ′
.

Hence, it follows from (1.7) that

E
[

τ2j | β0, σ
2
]

=

√

β2
0j

λ2σ2
+

1

λ2

=

√

n+ p+ 2α

λ2

β2
0j

(n+ p+ 2α)σ2
+

1

λ2

≤ n+ p+ 2α

2λ2
+

β2
0j

2(n+ p+ 2α)σ2
+

1

λ2
. (3.4)

Finally, we analyze terms related to the outermost conditional expectation in
(3.2). Note that

E
[

σ2 | β0, τ
2
0

]

=
(y −Xβ0)

T (y −Xβ0) + β
T
0 D

−1
τ0

β0 + 2ξ

n+ p+ 2α− 2
, (3.5)

and

E

[

1

σ2
| β0, τ

2
0

]

=
n+ p+ 2α

(y −Xβ0)
T (y −Xβ0) + βT

0 D
−1
τ0 β0 + 2ξ

. (3.6)

Combining (3.2)–(3.6), we get that

Ek

[

V (β, τ 2, σ2) | β0, τ
2
0, σ

2
0

]

≤ yTy +
p(n+ p+ 2α)

2λ2
+

p

λ2
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+
p
(

(y −Xβ0)
T (y −Xβ0) + βT

0 D
−1
τ0

β0 + 2ξ
)

n+ p+ 2α− 2

+
(n+ p+ 2α)

∑p
j=1

β2
0j

2(n+ p+ 2α)
(

(y −Xβ0)
T (y −Xβ0) + βT

0 D
−1
τ0 β0 + 2ξ

)

≤ yTy +
p(n+ 2p+ 2α)

2λ2
+

p

λ2
+

2pξ

n+ p+ 2α− 2

+
p

n+ p+ 2α− 2

(

(y −Xβ0)
T (y −Xβ0) + βT

0 D
−1
τ0

β0

)

+

∑p
j=1

β2
0j

2
(

(y −Xβ0)
T (y −Xβ0) + β

T
0 D

−1
τ0 β0 + 2ξ

)

≤ yTy +
p(n+ 2p+ 2α)

2λ2
+

p

λ2
+

2pξ

n+ p+ 2α− 2

+
p

n+ p+ 2α− 2

(

(y −Xβ0)
T (y −Xβ0) + β

T
0 D

−1
τ0

β0

)

+
1

2

∑p
j=1

β2
0j

βT
0 D

−1
τ0 β0

≤ yTy +
p(n+ 2p+ 2α)

2λ2
+

p

λ2
+

2pξ

n+ p+ 2α− 2

+
p

n+ p+ 2α− 2

(

(y −Xβ0)
T (y −Xβ0) + βT

0 D
−1
τ0

β0

)

+
1

2

p
∑

j=1

τ20j . (3.7)

The last inequality follows from the fact that

p
∑

j=1

β2
0j ≤





p
∑

j=1

|β0j |





2

=





p
∑

j=1

√

β2
0j

τ2
0j

√

τ2
0j





2

≤





p
∑

j=1

β2
0j

τ2
0j









p
∑

j=1

τ20j



 .

It follows from (3.7) that

Ek

[

V (β, τ 2, σ2) | β0, τ
2
0, σ

2
0

]

≤ γV (β0, τ
2
0, σ

2
0) + b, (3.8)

where

γ = max

(

p

n+ p+ 2α− 2
,
1

2

)

, (3.9)

and

b = yTy +
p(n+ 2p+ 2α)

2λ2
+

p

λ2
+

2pξ

n+ p+ 2α− 2
. (3.10)

Hence, the required geometric drift condition is established.
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3.2. Minorization condition

Let us recall that V (β, τ 2, σ2) = (y − Xβ)T (y −Xβ) + βTD−1
τ β +

∑p
j=1

τ2j .

For every d > 0, let BV,d = {(β, τ 2, σ2) : V (β, τ 2, σ2) ≤ d}. The following
proposition establishes an associated minorization condition to the geometric
drift condition established in Proposition 2.

Proposition 3. There exists a constant 0 < ǫ = ǫ(V, d) ≤ 1 and a probability
density function f̃ on R

p × R
p
+ × R+ such that

k
(

(β, τ 2, σ2) | (β0, τ
2
0, σ

2
0)
)

≥ ǫf̃(β, τ 2, σ2), (3.11)

for every (β0, τ
2
0, σ

2
0) ∈ BV,d.

Proof. Note that

f(τ2j | β0, σ
2,y) =

√

λ′

2π
(τ2j )

−
1
2 e

−
λ′(1−τ2

j µ′
j)

2

2(µ′
j
)2τ2

j

=

√

λ′

2π
(τ2j )

−
1
2 e

−
λ′τ2

j
2 −

λ′

2(µ′
j
)2τ2

j

+ λ′

µ′
j

≥
√

λ′

2π
(τ2j )

−
1
2 e

−
λ′τ2

j
2 −

λ′

2(µ′
j
)2τ2

j ,

where λ′ = λ2 and µ′

j =
√

λ2σ2

β2
0j

. If (β0, τ
2
0, σ

2
0) ∈ BV,d, then

βT
0 D

−1
τ0

β0 +

p
∑

j=1

τ20j ≤ d

⇒
(

βT
0 D

−1
τ 0

β0

)





p
∑

j=1

τ20j



 ≤ d2

⇒
p
∑

j=1

β2
0j ≤ d2.

Hence, if (β0, τ
2
0, σ

2
0) ∈ BV,d, then

λ′

(µ′

j)
2
=

β2
0j

σ2
≤ d2

σ2
,

and,

f(τ2j | β0, σ
2,y)

≥
√

λ2

2π
(τ2j )

−
1
2 e

−
λ2τ2

j
2 −

d2

2σ2τ2
j
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≥
√

λ2

2π
(τ2j )

−
1
2 e

−
λ2τ2

j
2 −

d2

2σ2τ2
j

+

√

λ2d2

σ2

e
−

√

λ2d2

σ2

≥ g1(τ
2
j | σ2)e−

√

λ2d2

σ2 , (3.12)

where g1(τ
2
j | σ2) is the density of the reciprocal of an Inverse-Gaussian random

variable with parameters
√

λ2σ2

d2 and λ2.

Let us now consider the full conditional density of σ2 given β0, τ
2
0,y. Note

that for (β0, τ
2
0, σ

2
0) ∈ BV,d,

(y −Xβ0)
T (y −Xβ0) + βT

0 D
−1
τ0

β0 + 2ξ

2
≤ d+ 2ξ

2
, (3.13)

and

(y −Xβ0)
T (y −Xβ0) + βT

0 D
−1
τ0

β0 + 2ξ

= yTy − 2yTXβ0 + βT
0

(

XTX +D−1
τ0

)

β0 + 2ξ

= yTy − yTX
(

XTX +D−1
τ0

)−1
XTy + 2ξ

+
(

XTy −
(

XTX +D−1
τ0

)

β0

)T (

XTX +D−1
τ0

)−1(

XTy −
(

XTX +D−1
τ0

)

β0

)

≥ yTy − yTX
(

XTX +D−1
τ0

)−1
XTy + 2ξ

≥ yTy − yTX

(

XTX +
1

d
Ip

)−1

XTy + 2ξ. (3.14)

The last inequality follows since τ20j ≤ d for every 1 ≤ j ≤ p. Note that In −
X(XTX + 1

d
Ip)

−1XT is a positive definite matrix. Hence

yTy − yTX

(

XTX +
1

d
Ip

)−1

XTy > 0.

It follows from (3.13) and (3.14) that for (β0, τ
2
0, σ

2
0) ∈ BV,d,

e
−p

√

λ2d2

σ2 f(σ2 | β0, τ
2
0,y)

≥
(

yTy − yTX
(

XTX + 1

d
Ip
)−1

XTy + 2ξ

2

)

n+p+2α
2

× (σ2)−
n+p+2α+2

2 e−
d+2ξ

2σ2 e
−p

√

λ2d2

σ2

Γ
(

n+p+2α
2

)

≥
(

yTy − yTX
(

XTX + 1

d
Ip
)−1

XTy + 2ξ

2

)

n+p+2α
2

× (σ2)−
n+p+2α+2

2 e−
d+2ξ

2σ2 e−
1
2−

p2λ2d2

2σ2

Γ
(

n+p+2α
2

)
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= e−
1
2

(

yTy − yTX
(

XTX + 1

d
Ip
)−1

XTy + 2ξ

d+ 2ξ + p2λ2d2

)

n+p+2α
2

g2(σ
2), (3.15)

where g2(σ
2) is the density of the Inverse-Gamma distribution with parameters

n+p+2α
2

and d+2ξ+λ2d2

2
. It follows from (2.1), (3.12) and (3.15) that, for all

(β0, τ
2
0, σ

2
0) ∈ BV,d,

k
(

(β, τ 2, σ2) | (β0, τ
2
0, σ

2
0)
)

= f(β | τ 2, σ2,y)f(τ 2 | β0, σ
2,y)f(σ2 | β0, τ

2
0,y)

≥ ǫf̃(β, τ 2, σ2),

where

ǫ = e−
1
2

(

yTy − yTX
(

XTX + 1

d
Ip
)−1

XTy + 2ξ

d+ 2ξ + p2λ2d2

)

n+p+2α
2

, (3.16)

and f̃ is a probability density on R
p × R

p
+ × R+ given by

f̃(β, τ 2, σ2) = f(β | τ 2, σ2,y)





p
∏

j=1

g1(τ
2
j | σ2)



 g2(σ
2).

Hence, the required minorization condition for k has been established.

The drift and minorization conditions in Proposition 2 and Proposition 3 can
be combined with Theorem 12 of Rosenthal [18] to establish geometric ergodicity
of the Bayesian lasso Gibbs Markov chain.

Proposition 4. Let n ≥ 3, and γ, b and ǫ be as defined in (3.9), (3.10), and
(3.16) respectively. Let d > 2b

1−γ
. Let

A =
1 + d

1 + 2b+ γd
and U = 1 + 2(γd+ b).

Then for any (β0, τ
2
0, σ

2
0) ∈ R

p × R
p
+ × R+, m ∈ N, and 0 < r < 1

∥

∥Km
(

(β0, τ
2
0, σ

2
0), ·

)

−Π(·)
∥

∥

TV

≤ (1− ǫ)rm +

(

U r

A1−r

)m(

1 +
b

1− γ
+ V (β0, τ

2
0, σ

2
0)

)

.

Proposition 1 is an immediate corollary of the above result.

4. Discussion

The Bayesian lasso is a popular and widely used algorithm for sparse Bayesian
estimation in linear regression. In this paper, we have established geometric
ergodicity of the Markov chain corresponding to the Bayesian lasso algorithm.
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As discussed previously, this proves the existence of the Markov chain CLT
in this context, thereby allowing the user to obtain valid asymptotic standard
errors for Markov chain based estimates of posterior quantities.

The Laplace prior for β used in the Bayesian lasso algorithm is an example
of the so-called “continuous shrinkage priors” for sparse Bayesian estimation.
In recent years, many other continuous shrinkage priors have been introduced
and studied in the literature (see [4, 5, 6, 10, 15] and the references therein),
and sampling from the resulting posterior distribution is often achieved by using
MCMC. To the best of our knowledge, geometric ergodicity of the corresponding
Markov chains has not been investigated. Using the insights obtained from the
analysis in this paper, we are currently investigating geometric ergodicity for
Markov chains corresponding to some of the other continuous shrinkage priors
proposed in the literature.

5. Appendix

We point out the errors in the proof of geometric ergodicity of the Bayesian lasso
Gibbs Markov chain in Kyung et al. [12] (referred to henceforth as KGGC).
The authors in KGGC only consider the case n ≥ p. The authors assert that
the Bayesian lasso model can be obtained by appropriately marginalizing a
hierarchical random effects model. They then prove the geometric ergodicity
of the Markov chain corresponding to this hierarchical random effects model,
and argue that this implies geometric ergodicity of the Bayesian lasso model.
We start by reproducing (verbatim) the hierarchical random effects model from
KGGC (Page 406, appendix) below.

yp×1 ∼ N (θ, λ−1
e I) (5.1)

θ ∼ N (µ1,Σ(τ )) (5.2)

µ ∼ N (µ0, λ
−1

0 ) (5.3)

λe ∼ Gamma(a2, b2) (5.4)

1

τ2j

i.i.d.∼ Gamma(a1, b
∗

2), (5.5)

where Σ(τ ) is of the form

Σ(τ ) = diag(τ21 , τ
2
2 , . . . , τ

2
p ) ∼

p
∏

i=1

λ

2
e−

λτ2
j

2 dτ2j . (5.6)

We refer to this hierarchical random effects model as the ‘RE model’.

• There is a contradiction between (5.5) and (5.6) regarding the prior dis-
tribution of τ2j . In (5.5), τ2j is assumed to be Inverse-Gamma, whereas in

(5.6), τ2j is assumed to be Exponential. The authors proceed to prove geo-
metric ergodicity of the RE model under the Inverse-Gamma assumption
in (5.5). Since the Bayesian lasso model assumes the prior for τ2j to be
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Exponential, it clearly cannot be obtained by marginalizing the RE model
with the Inverse-Gamma assumption in (5.5). Hence, the proof of geomet-
ric ergodicity for the RE model with the Inverse-Gamma assumption has
no bearing on the geometric ergodicity for the Bayesian lasso model.

• y is assumed to be p-dimensional in (5.1). In the Bayesian lasso model, the
data vector y is n-dimensional. Since the authors are considering the case
n > p, this clearly rules out the possibility of marginalizing the RE model
to get the Bayesian lasso model. If this is a typo, and y is n-dimensional,
then θ is n-dimensional. Hence, Σ(τ ) is an n× n matrix. However, Σ(τ )
is assumed to be a p× p matrix in (5.6).

• There is another error in the marginalizing argument provided in KGGC.
On Page 381 (Section 4) the authors consider the model

y | θ, σ2 ∼ Nn(θ, σ
2In)and θ | σ2 ∼ Nn(µ1n,Σθ), (5.7)

where

Σ−1

θ = λ0J +
λ

σ2
X(XTX)−1D−1

τ (XTX)−1XT + X̂X̂T ,

and θ = µ1n+Xβ+ X̂η (with 1n, X, X̂ mutually orthogonal). Here 1n is
the n-dimensional vector of all ones, and J is the n×n matrix of all ones.
They claim that marginalizing over η in (5.7) gives the marginal model

y | β ∼ Nn(µ1n +Xβ, σ2In)and β ∼ Np

(

0p,
σ2

λ
Dτ

)

. (5.8)

Firstly, there is a small issue in terms of µ. Note that, by the mutual
orthogonality of 1n, X, X̂,

1T
nθ

n
=

1T
n (µ1n +Xβ + X̂η)

n
= µ.

Since θ ∼ Nn(µ1n,Σθ), this implies

µ ∼ N
(

µ,
1T
nΣθ1n

n2

)

,

which is paradoxical, as it implies that µ is a random variable with non-
zero variance (Σθ is a full rank matrix), and also implies that µ is a
constant. Let us get rid of this discrepancy by assuming µ = 0, Σ−1

θ =
λ
σ2X(XTX)−1D−1

τ (XTX)−1XT +X̂X̂T , and choosing the transformation

θ → Xβ + X̂η,

where η is now (n−p)-dimensional, and XT X̂ = 0. Let us assume without
loss of generality that X̂T X̂ = In−p (the choice of X̂ is completely in our
hands anyway). Still, the marginal model after integrating out η is not the
same as (5.8). An immediate way to check this is that V (y) = σ2In +Σθ
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under (5.7), while V (y) = σ2In + σ2

λ
XDτX

T under (5.8). We now derive
the correct marginal model. Note that the joint density of (y, θ) is given
by

f(y, θ) =
1

(
√
2π)n

e−
(y−θ)T (y−θ)

2σ2
|Σθ|− 1

2

(
√
2π)n

e−
θT Σ

−1
θ

θ

2 .

By making the linear transformation (y, θ) → (y,β, η), we get that

f(y,β, η)

= const × |Σθ|−
1
2 e−

(y−Xβ−X̂η)T (y−Xβ−X̂η)
2

× e−
(Xβ+X̂η)T ( λ

σ2 X(XT X)−1D
−1
τ (XT X)−1XT +X̂X̂T )(Xβ+X̂η)

2

= const × e−
(1+σ2)ηT η

2σ2 +
ηT X̂T

y

σ2 e−
(y−Xβ)T (y−Xβ)+λβT D

−1
τ β

2σ2 .

After completing the square, and integrating out η, the marginal density
of (y,β) is obtained as

f(y,β)

= const × e
y
T X̂X̂T

y

2σ2(σ2+1) e−
(y−Xβ)T (y−Xβ)+λβT D

−1
τ β

2σ2 .

By completing the squares again, and using X̂TX = 0, it follows that the
marginal model is given by

y | β, σ2 ∼ Nn(Xβ, σ2In + X̂X̂T ) and β | σ2 ∼ Np

(

0p,
σ2

λ
Dτ

)

.

This is different from the Bayesian lasso model, as the conditional variance
of y given β, σ2 is σ2In + X̂X̂T (as opposed to σ2In in the Bayesian lasso
model).
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