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Zero Variance Differential Geometric Markov
Chain Monte Carlo Algorithms

Theodore Papamarkou ∗, Antonietta Mira † and Mark Girolami ‡

Abstract. Differential geometric Markov Chain Monte Carlo (MCMC) strategies
exploit the geometry of the target to achieve convergence in fewer MCMC iterations
at the cost of increased computing time for each of the iterations. Such computa-
tional complexity is regarded as a potential shortcoming of geometric MCMC in
practice. This paper suggests that part of the additional computing required by
Hamiltonian Monte Carlo and Metropolis adjusted Langevin algorithms produces
elements that allow concurrent implementation of the zero variance reduction tech-
nique for MCMC estimation. Therefore, zero variance geometric MCMC emerges
as an inherently unified sampling scheme, in the sense that variance reduction and
geometric exploitation of the parameter space can be performed simultaneously
without exceeding the computational requirements posed by the geometric MCMC
scheme alone. A MATLAB package is provided, which implements a generic code
framework of the combined methodology for a range of models.

Keywords: Metropolis-Hastings, Hamiltonian Monte Carlo, Metropolis adjusted
Langevin algorithms, Control variates.

1 Introduction

This paper focuses on evaluating the potential of the combination of two powerful strate-
gies recently published in the Markov Chain Monte Carlo (MCMC) literature, both
exploiting information contained in the derivative of the log-target, which we assume
to be available in closed form, to increased efficiency: differential geometric MCMC
algorithms aimed at exploiting the fact that the derivative of the log-target captures
the Hamiltonian dynamics on the Riemannian manifold of the parameter space, thus
allowing automated and more efficient proposal transitions to be achieved; zero variance
(ZV) techniques aimed at reducing the variance of the resulting MCMC estimators by
post-processing an existing Markov path and by constructing control variates that ex-
ploit the well-known fact that the expected value of the derivative of the log-likelihood,
here substituted with the log-target, is zero under mild regularity conditions related to
the possibility of interchanging the order of differentiation and integration.

There is abundant statistical literature aiming at reducing the asymptotic variance
of MCMC estimators. Some of the suggested variance reduction methods introduce
antithetic variables in an attempt to induce negative correlation along the chain (e.g.
Barone and Frigessi (1990), Craiu and Lemieux (2007)). Other variance reduction tools
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for MCMC include Rao-Blackwellization (Gelfand and Smith (1990), Robert and Casella
(2004)), hybrid Monte Carlo (Duane et al. (1987), Fort et al. (2003)), use of Riemann
sums (Philippe and Robert (2001)) or of auxiliary variables (Swendsen andWang (1987),
Mira and Tierney (2002)), exploitation of non reversible Markov chains (Diaconis et al.
(2000), Geyer and Mira (2000)) and data augmentation (Dyk and Meng (2001), Solgi
and Mira (2013)). Also, alternative ways of reducing the variance of MCMC estimators
try to delay rejection in Metropolis-Hastings based algorithms (Tierney and Mira (1999),
Green and Mira (2001)) or to avoid random walk via successive over-relaxation (Adler
(1981), Barone et al. (2001)).

Another prominent variance reduction method for Monte Carlo simulation is based on
control variates, introduced by Ripley (1987). The main challenge to the use of control
variates has been their construction. Atchadé and Perron (2005) build control variates
for independent Metropolis-Hastings samplers, while Hammer and Tjemeland (2008)
introduce control variates for general Metropolis-Hastings samplers.

Andradóttir et al. (1993) observe that the optimum variance reduction of discrete-time
finite-state Markov chains can be attained via the solution of the Poisson equation.
Furthermore, Henderson (1997) notices that, for any real-valued function G defined on
the state space of a Markov chain {Xn}, the mean of the function U(x) := G(x) −
E[G(Xn+1|Xn = x)] with respect to the stationary distribution of the chain is zero,
therefore U(x) can be utilized as a control variate. Henderson (1997) also notes that
the optimal choice of G is the solution of the associated Poisson equation. The most
recent development of Henderson’s control variates can be found in Dellaportas and
Kontoyiannis (2012), in the context of reversible MCMC samplers. A shortcoming of
optimal control variates relying on the Poisson equation is that their analytic derivation
or their numerical approximation is attainable in very few cases.

In a different context, Assaraf and Caffarel (1999) deploy concepts from statistical
mechanics to establish the so called zero variance control variates, which drastically
reduce the variance of MCMC estimators. Mira et al. (2012) suggest using a polynomial
trial function for the definition of the ZV-MCMC estimators and derive the conditions
for its unbiasedness and for the existence of a central limit theorem.

The trial function proposed by Mira et al. (2012) requires the calculation of the gra-
dient of the log-target density. At the same time, this gradient is computed as part
of the Hamiltonian Monte Carlo (HMC), Riemann manifold Hamiltonian Monte Carlo
(RMHMC), Metropolis adjusted Langevin algorithm (MALA) and of the manifold
Metropolis adjusted Langevin algorithm (MMALA) (see Girolami and Calderhead (2011),
for details). Therefore, saving the gradient of the log-target density alongside the
MCMC parameter estimates allows the derivation of the ZV-HMC, ZV-RMHMC, ZV-
MALA and ZV-MMALA estimates.

This paper implements these samplers and assesses the achieved variance reduction
by performing Bayesian inference on logistic regression models, probit models and
on dynamical systems described by non-linear differential equations. The accompa-
nying MATLAB package provides the geometric ZV-MCMC algorithms and it can be
downloaded from http://www.ucl.ac.uk/statistics/research/csi/software. The

http://www.ucl.ac.uk/statistics/research/csi/software
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package is designed to be used and possibly extended to any Bayesian model for which
the log-target density, the metric tensor of the geometric MCMC and their gradients
with respect to the model parameters are known in analytic form. Furthermore, rou-
tines are made available for the application of geometric ZV-MCMC to any system of
differential equations in principle, which are used for modeling dynamical systems in
physics, biology, engineering, economics and various other disciplines.

2 Overview of the ZV Method

Interest is in evaluating the expected value of a function g(θ) of the parameters θ ∈ Rnθ

with respect to a possibly unnormalized density π(θ):

µ[g(θ)] := Eπ(θ)[g(θ)] =

∫
g(θ)π(θ)dθ∫
π(θ)dθ

.

Using MCMC integration, µ[g(θ)] is estimated by µ̂[g(θ)] = 1
n

∑n
i=1 g(θi), where the

samples θi ∈ Rnθ , i = 1, 2, . . . , n, are collected along the path of an ergodic Markov
chain and are asymptotically distributed according to the target π(θ)/

∫
π(θ)dθ.

The ZV method dictates that the original function g(θ) is substituted by an auxiliary
function g̃(θ) with the same mean but smaller variance. g̃(θ) is constructed by adding
to g(θ) a linear combination aTw(θ), a ∈ Rna , of control variates w : Rnθ → Rna :

g̃(θ) = g(θ) + aTw(θ). (1)

It is required that E[w(θ)] = 0, in order to acquire the mean equality µ[g(θ)] = µ[g̃(θ)].

Assaraf and Caffarel (1999) suggest defining the auxiliary function g̃(θ) as

g̃(θ) = g(θ) +
H[ψ(θ)]√
π(θ)

, (2)

where H[ψ(θ)] denotes the Schrödinger Hamiltonian given by

H[ψ(θ)] = −1

2
∆θ[ψ(θ)] +

ψ(θ)

2
√
π(θ)

∆θ[
√
π(θ)], (3)

∆θ :=
∑nθ

i=1 ∂
2/∂θ2i is the Laplace operator and ψ(θ) is the so-called trial function,

which is an arbitrary integrable function. As it is explained in Assaraf and Caffarel
(1999), the condition E[H[ψ(θ)]/

√
π(θ)] = 0 is satisfied for the Hamiltonian defined in

(3) for any integrable function ψ(θ) thus ensuring that E [w(θ)] = 0 by construction so
that µ̂ [g̃(θ)] is an asymptotically unbiased estimator of µ [g(θ)].

2.1 Choice of ψ(θ) Based on Polynomials
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Mira et al. (2012) propose selecting a polynomial for the trial function ψ(θ). Increasing
the degree of the polynomial induces more control variates, yet more importantly at-
tenuates the variance of the parameter estimators. In practice, first and second degree
polynomials suffice to attain considerable variance reduction, an argument quantified
later in Sections 4, 5 and 6.

Along the lines of Mira et al. (2012), define the trial function to be

ψ(θ) = P (θ)
√
π(θ), (4)

where P (θ) is assumed to be a polynomial. It then follows from (2) and (4) that the
auxiliary function g̃(θ) and the control variates z(θ) are given by

g̃(θ) = g(θ)− 1

2
∆θ[P (θ)] +∇θ[P (θ)] · z(θ), (5)

z(θ) := −1

2
∇θ[ln(π(θ))], (6)

where ∇θ :=
(

∂
∂θ1

, ∂
∂θ2

, . . . , ∂
∂θnθ

)
denotes the gradient.

First Degree Polynomial P (θ)

Let P (θ) be a linear polynomial

P (θ) = aTθ, (7)

where a ∈ Rna , na = nθ. The gradient and Laplace operators for linear P (θ) equal

∇θ[P (θ)] = aT , ∆θ[P (θ)] = 0. (8)

It follows from (5) and (8) that the auxiliary function, for a first degree polynomial
P (θ), takes the form

g̃(θ) = g(θ) + aT z(θ). (9)

The optimal polynomial coefficients a, which minimize the variance of the auxiliary
function g̃(θ), are given by

a = −V ar−1[z(θ)]Cov[g(θ), z(θ)], (10)

where V ar[z(θ)] and Cov[g(θ), z(θ)] denote the respective variance and cross-covariance
matrices

V ar[z(θ)] := Eπ(θ)[(z(θ)− E[z(θ)])(z(θ)− E[z(θ)T ], (11)

Cov[g(θ), z(θ)] := Eπ(θ)[(g(θ)− E[g(θ)])(z(θ)− E[z(θ)])]. (12)

So, the MCMC coefficient estimators â are given by

â = −V̂ ar
−1

[z(θ)]Ĉov[g(θ), z(θ)], (13)
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where V̂ ar[z(θ)] and Ĉov[g(θ), z(θ)] are, respectively, the sample variance and sample
cross-covariance matrices

V̂ ar[z(θ)] :=
1

n− 1

n∑
i=1

(z(θi)− µ̂[z(θ)])(z(θi)− µ̂[z(θ)])T , (14)

Ĉov[g(θ), z(θ)] :=
1

n− 1

n∑
i=1

(g(θi)− µ̂[g(θ)])(z(θi)− µ̂[z(θ)]), (15)

where n is the number of post burn-in MCMC samples and the sample means are defined
as µ̂[z(θ)] = 1

n

∑n
i=1 z(θi), µ̂[g(θ)] =

1
n

∑n
i=1 g(θi).

Note that the theoretical mean E[z(θ)] of z(θ) in (11) and (12) is zero and the cor-
responding mean estimator µ̂[g(θ)] calculated from the MCMC output is nearly zero.
Although mean-adjusting or not does not affect the ZV values nor the reduction factors,
the sample variances and cross-covariances in Equations (14) and (15) are mean-adjusted
to agree with the conventional statistical definition of covariance matrix.

Second Degree Polynomial P (θ)

Assume now that P (θ) is a second order polynomial

P (θ) = cTθ +
1

2
θTBθ, (16)

where c is a real nθ · 1 vector and B is a real symmetric nθ · nθ matrix. The gradient
and Laplace operators for quadratic P (θ) evaluate to

∇θ[P (θ)] = (c+Bθ)T , ∆θ[P (θ)] = tr(B), (17)

where tr(B) denotes the trace of B. According to (5) and (17), the auxiliary function
g̃(θ), for a second order polynomial P (θ), reduces to

g̃(θ) = g(θ)− 1

2
tr(B) + (c+Bθ)T z(θ), (18)

where z(θ) is given by (6). In order to conform with (1), where the auxiliary function
g̃(θ) expresses as a linear combination of the original function g(θ) and of the control
variates, (18) can be written as

g̃(θ) = g(θ) + aTw(θ), (19)

where the column vectors a, w(θ) have nθ(nθ + 3)/2 elements each, and are defined as

� a := [cT dT bT ]T , where d := diag(B) is the diagonal of B and b is a column
vector with nθ(nθ−1)/2 elements, whose element in the (2nθ−j)(j−1)/2+(i−j)
position is the lower diagonal (i, j)-th element of B.

� w := [zT uT vT ]T , where u := θ ◦ z − 1
21, with ◦, 1 denoting the Hadamard

product and the unit vector respectively, while v is a column vector comprising
nθ(nθ − 1)/2 elements, whose element in the (2nθ − j)(j − 1)/2 + (i− j) position
equals θizj + θjzi, j ∈ {1, 2, . . . , nθ}, i ∈ {2, 3, . . . , nθ}, j < i.
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Note that the number of polynomial coefficients for quadratic P (θ) is na = nθ(nθ+3)/2,
in contrast to linear P (θ) where na = nθ. As for the estimation of the coefficients a for
quadratic P (θ), formulae (10)-(15) apply by using w := [zT uT vT ]T .

2.2 Expression of z for posterior densities

Assume that a posterior density p(θ|x) is chosen in place of the unnormalized density
(denoted by π(θ) before):

p(θ|x) = 1

c
ℓ(x|θ)π(θ),

where θ, x denote the model parameters and the data respectively, while ℓ and π
represent the likelihood and the prior respectively. It is then straightforward to confirm
that z(θ) in (6) is half the negative sum of gradients of the log-likelihood, L, and of the
log-prior:

z(θ) = −1

2
∇θ[ln(p(θ|x))] = −1

2
(∇θ[L(x|θ)] +∇θ[ln(π(θ))]). (20)

2.3 Variance Reduction Factor

To quantify the variance reduction achieved by ZV, nc independent chains are realized,
each of length n. Since in the sequel we focus on estimating the posterior mean, the
auxiliary function g in (1) is taken to be the identity. Therefore, the subsequent for-
mulae for the definition of the variance reduction factor assume g to be the identity,
and should be modified for posterior estimators other than the posterior mean. Let
θijk, i = 1, 2, . . . , n, j = 1, 2, . . . , nθ, k = 1, 2, . . . , nc be the i-th MCMC iteration of

the j-th model parameter in the k-th chain and θ̃ijk its corresponding ZV value. The
asymptotic variance of the j-th parameter along the k-th chain is estimated using the
initial monotone sequence estimator

σ̂2
jk :=

1

n

(
−γ̂0 + 2

m∑
i=0

Γ̂ijk

)
,

Γ̂ijk := γ̂ijk + γ̂(2i+1)jk,

where m denotes the largest integer such that Γ̂ijk > 0, i = 0, 1, 2, . . . ,m, and γ̂ijk is
the empirical estimator of the lag(i) autocovariance γijk of the j-th parameter in the
k-th chain, given by

γ̂ijk :=
1

n

n−i∑
q=1

(θqjk − θ̄.jk)(θ(q+i)jk − θ̄.jk),

where the mean of the j-th parameter in the k-th chain calculates as θ̄.jk =
∑n
i=1 θijk/n.

The estimated sequence {Γ̂ijk : i = 0, 1, 2, . . . ,m} is made monotone by reducing Γ̂ijk
to the minimum of the preceding sequence members, see Geyer (1992) for details. The
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overall variance estimator σ̂2
j of the j-th parameter across the nc simulated chains

is obtained by taking the mean of the initial monotone sequence estimators, that is
σ̂2
j =

∑nc

k=1 σ̂
2
jk/nc.

Furthermore, each of the nθ · nc coefficients a,jk is calculated separately using the
corresponding chain {θijk} from which σ̂2

jk is also computed. This way, the ZV values

θ̃ijk are obtained, whence the initial monotone estimator ˆ̃σ2
jk for the j-th parameter

in the k-th chain {θ̃ijk} is deduced. Consequently, the variance estimator of the ZV
values for the j-th parameter is analogously estimated across the nc chains by the mean
ˆ̃σ2
j =

∑nc

k=1
ˆ̃σ2
jk/nc.

Thus, the variance reduction factor (VRF) is naturally defined as the ratio of the asymp-
totic variance estimators σ̂2

j and ˆ̃σ2
j :

rj :=
σ̂2
j

ˆ̃σ2
j

=

nc∑
k=1

σ̂2
jk

nc∑
k=1

ˆ̃σ2
jk

, j = 1, 2, . . . , nθ. (21)

3 ZV-(RM)HMC and ZV-(M)MALA

It becomes apparent from (9), (19) and (20) that the main required component for the
Bayesian application of ZV-MCMC is the gradient of the log-posterior density.

The current section outlines how the gradient of the log-target is readily available in
the case of ZV-RMHMC, ZV-HMC, ZV-MMALA and ZV-MALA. Some familiarity with
RMHMC and MMALA is presumed. The interested reader is referred to Girolami and
Calderhead (2011) for an elaborate study of these two geometric MCMC samplers.

3.1 ZV-RMHMC and ZV-HMC

Riemann manifold Hamiltonian Monte Carlo is a Gibbs sampling scheme which defines
a Hamiltonian on the Riemann manifold of probability densities as

H(θ,p) := − ln(p(θ|x)) + 1

2
ln[(2π)nθ |G(θ)|] + 1

2
pTG−1(θ)p, (22)

where θ ∈ Rnθ , x, G(θ) and p denote respectively the model parameters, the data, a
metric tensor and the auxiliary variables p ∼ N (0, G(θ)). The position-specific met-
ric tensor G(θ) allows for effective transitions in RMHMC and is chosen to be the
expected Fisher information. The auxiliary variables p and the terms − ln(p(θ|x)) +
1
2 ln[(2π)

nθ |G(θ)|] and 1
2p

TG(θ)−1p are interpreted as the momentum, the kinetic en-
ergy and the potential energy at a particular position θ, respectively.
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It follows from (22) that Hamilton’s equation for RMHMC takes the form

∂H(θ,p)

∂θi
= 2zi(θ) +

1

2
tr

[
G−1(θ)

∂G(θ)

∂θi

]
− 1

2
pTG−1(θ)

∂G(θ)

∂θi
G−1(θ)p, (23)

for i ∈ {1, 2, . . . , nθ}, where zi(θ) is the i-th element of z(θ) = −∇θ(ln(p(θ|x)))/2.
Thus, z(θ) is computed at each iteration of RMHMC as an intermediate result. So
ZV-RMHMC, for the linear and quadratic polynomials proposed by Mira et al. (2012),
requires only to save z(θ) at each iteration of the Gibbs sampler.

Hamiltonian Monte Carlo (HMC) can be viewed as a simplified version of RMHMC,
where the metric tensor G(θ) is substituted by the constant mass matrix M . This
means that the momentum has the simpler covariance matrix M , as per p ∼ N (0,M).
Then z(θ) is given directly by Hamilton’s equation according to 2z(θ) = ∂H(θ,p)/∂θ.

3.2 ZV-MMALA, ZV-SMMALA and ZV-MALA

MMALA defines a Langevin diffusion with invariant distribution p(θ|x), θ ∈ Rnθ , on
the Riemann manifold of probability densities with metric tensor G(θ). A first order
Euler integrator is used for solving the diffusion. This Euler approximation induces
some discretization error, so a Metropolis-Hastings step is employed to account for
the associated bias. The proposal density and the standard acceptance probability are
defined to be

q(θ∗|θk) = N (θ∗|µ(θk, ϵ), ϵ2G−1(θk)),

min{1, p(θ∗)q(θk|θ∗)/p(θk)q(θ∗|θk)},

where ϵ is the integration step size and the ℓ-th coordinate µℓ(θ
k, ϵ) of the mean is

µℓ(θ
k, ϵ) = θℓ − ϵ2(G−1(θ)z(θ))ℓ − ϵ2

nθ∑
i=1

nθ∑
j=1

G−1
ij (θ)Γℓij . (24)

Γℓij are the Christoffel symbols of the second kind in local coordinates and z(θ) is
minus half the gradient of the log-target, that is z(θ) = −∇θ(ln(p(θ|x)))/2. It thus
becomes apparent that ZV-MMALA requires only to store z(θ) at each iteration of the
Metropolis-Hastings sampler.

Simplified MMALA (SMMALA) assumes a manifold of constant curvature, which means
that the Christoffel symbols are zero, thereby the last term in (24) vanishes. A further
simplification would be to select a constant metric tensor G(θ) = M , in which case
MMALA coincides with the Metropolis adjusted Langevin algorithm (MALA) with pre-
conditioning matrix M (see Roberts and Stramer (2002), for details).

4 ZV-MCMC for Bayesian Logistic Regression

Consider a Bayesian logistic regression model (see for example Gelman et al. (2004)).
Let X be the nd · nθ design matrix of the model consisting of nd samples, each with
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nθ covariates, y ∈ {0, 1}nd the binary response variable and θ ∈ Rnθ the regression
coefficients. The log-likelihood of the model is given by

L(y|X,θ) = (Xθ)Ty −
nd∑
i=1

ln
[
1 + exp(θTxi,)

]
, (25)

where xi, denotes the i-th row of the design matrix X. A Normal prior is assumed for
the model parameters θ ∼ π(θ) = N (0, aI), where a is a positive real number. a = 100
is chosen in the example of Section 4.2, which implies a rather flat prior.

4.1 ZV Estimates and Metric Tensor

Differentiating (25) yields the gradient of the log-likelihood

∇θ(L(y, X|θ)) = XT

[
y − 1

1 + exp (−Xθ)

]
. (26)

The gradient of the log-prior evaluates to

∇θ(ln(π(θ))) = −1

a
θ. (27)

(20), (26) and (27) give the gradient of the log-posterior and consequently z(θ):

z(θ) = −1

2
∇θ(ln(p(θ|x))) = −1

2

{
XT

[
y − 1

1 + exp (−Xθ)

]
− 1

a
θ

}
. (28)

To frame the parameter estimation in a Monte Carlo context, consider n post burn-
in MCMC samples for each of the nθ regression coefficients. This implies introducing
n ·nθ original functions of interest gij(θ) := θij , i = 1, 2, . . . , n, j = 1, 2, . . . , nθ, and the

corresponding auxiliary functions g̃ij(θ) := θ̃ij , where θij is the i-th MCMC iteration

of the j-th coefficient and θ̃ij denotes the ZV counterpart of θij . Hence, for linear
polynomial P , the n · nθ realizations of (9) express as

θ̃ij = θij + aT,j · zi,, i = 1, 2, . . . , n, j = 1, 2, . . . , nθ, (29)

where the nθ-dimensional row vector zi, for the i-th MCMC iteration is given by (28)
and the nθ-dimensional column vector a,j holds the coefficients of the linear polynomial
of Equation (7) for the j-th regression coefficient. Using matrix notation, (29) can be
written more concisely as

Θ̃ = Θ + ZA, (30)

where Θ, Θ̃ are the respective n · nθ matrices of MCMC and ZV-MCMC estimates,
Z is the n · nθ matrix whose i-th row is the vector zi, appearing in (29) and A is the
nθ · nθ matrix of polynomial coefficients whose j-th column is the vector a,j of (29).
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The estimates â,j , j = 1, 2, . . . , nθ, of the coefficients of the linear polynomial for the
j-th regression coefficient are deduced from (13):

âT,j = −V̂ ar(z)−1Ĉov(θj , z), (31)

V̂ ar(z) :=
1

n− 1

n∑
i=1

(zi, − z̄.,)(zi, − z̄.,)
T , (32)

Ĉov(θj , z) :=
1

n− 1

n∑
i=1

(θij − θ̄.j)(zi, − z̄.,), (33)

where z̄., :=
∑n
i=1 zi,/n and θ̄.j :=

∑n
i=1 θij/n.

In a similar way, (16) takes the following matrix form for the derivation of the ZV
estimates for quadratic polynomials:

Θ̃ = Θ +WA, (34)

where Θ, Θ̃ denote the respective n · nθ matrices of MCMC and ZV-MCMC estimates,
W is the n · na matrix, na = nθ(nθ + 3)/2, whose i-th row is the na-dimensional vector
wi, defined in Section 2.1 and A is the na · nθ matrix of polynomial coefficients whose
j-th column is the na-dimensional vector a,j of Section 2.1 holding the coefficients of the
quadratic polynomial (16) for the j-th regression coefficient. The matrix of polynomial
coefficients A for quadratic polynomials is estimated analogously to (31)-(33), using
wi, − w̄., in place of zi, − z̄.,.

To implement RMHMC and MMALA, the metric tensor G(θ) and its derivatives
dG(θ)/dθj , j = 1, 2, . . . , nθ are also required. For Bayesian inference G(θ) is taken to be
the expected Fisher information minus the Hessian of the log-prior, so as to incorporate
any prior information when exploiting the local curvature of the manifold. It can be
shown that for the Bayesian logistic regression model with a Normal prior N (0, aI) the
metric tensor and its derivatives are given by

G(θ) = XTΛ(θ)X +
1

a
I,

∂G(θ)

∂θj
= XTM j(θ)X, (35)

where the (i, i)-th elements of the nd · nd diagonal matrices Λ(θ) and M j(θ) are

Λ(θ) := diag[pi(1− pi)], M
j(θ) :=

∂Λ(θ)

∂θj
= diag[pi(1− pi)(1− 2pi)xij ], (36)

where pi := P (yi = 1) = exp(θTxi,)/(1 + exp(θTxi,)), i = 1, 2, . . . , nd, and xij , xi,

denote the (i, j)-th element and the i-th row of the design matrix X, respectively.

4.2 Swiss Banknotes Example

The Bayesian logistic regression model, as outlined in the current section, is employed to
run ZV-MALA, ZV-SMMALA, ZV-MMALA, ZV-HMC and ZV-RMHMC on the bank
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dataset taken from Flury and Riedwyl (1988). ZV-Metropolis-Hastings (ZV-MH) is also
run as a standard benchmark. The dataset holds the measurements of four covariates
on 200 Swiss banknotes, of which 100 are genuine and 100 counterfeit, representing
the length of the bill, the width of the left and the right edge, and the bottom margin
width. Therefore, the design matrix X has dimensions nd · nθ = 200 · 4 and the nθ = 4
regression coefficients constitute the model parameters to be estimated. The binary
response variable is the type of banknote, 0 being genuine and 1 counterfeit.

55, 000 iterations are run for the realization of each chain, of which the first 5, 000 burn-in
are discarded, so n = 50, 000 MCMC samples are retained from each chain. Figure R.1
serves as a first visual demonstration of the effectiveness of ZV. The traces of ordinary
RMHMC, θ, are overlaid with the ZV-RMHMC traces, θ̃, for first and second order
polynomials P on the left and right columns of Figure R.1, respectively. As it can be
seen the ZV traces exhibit negligible variability, especially the ones based on quadratic
P .

Figure R.2 (see Appendix) displays a graphical comparison between the original and the
ZV estimates for linear and quadratic polynomials for each parameter and each MCMC
scheme. The mean of the boxplots of Figure R.2 remains unaltered between the MCMC
and the corresponding ZV-MCMC samples, agreeing with the theory of control variates.
At the same time, the variance diminishes substantially among the ZV estimators.

For a more systematic assessment of ZV, Table R.1 (see Appendix) provides the variance
reduction factors (VRFs), defined by (21). All subsequent boxplots as well as tables
with the variance reduction factors are available in the Appendix. A total of nc = 100
chains are run for each of the six MCMC algorithms to obtain Monte Carlo estimates of
the asymptotic variances and consequently of the variance reduction factors according
to the procedure outlined in Section 2.3 (see Equation (21)).

Table R.1 shows that the VRF between the ZV estimates for linear polynomials and
the ordinary estimates range roughly in the region of 10− 50. As for the ZV estimates
for quadratic polynomials and the original estimates, they differ by three orders of mag-
nitude, that is they differ by a variance reduction factor of about 1000 − 8000. It is
also apparent in Table R.1 that the more effective the MCMC algorithm the smaller
the VRF. To quantify this argument, let the effectiveness of the MCMC algorithm be
measured by its effective sample size (ESS), with larger ESS obviously indicating a
more effective sampler. So, larger ESS results in smaller asymptotic variance and con-
sequently the ZV strategy induces smaller variance in the already effective sampler.
For example, RMHMC usually has the largest ESS among the six compared MCMC
schemes (see Girolami and Calderhead (2011)) and therefore the smallest asymptotic
variance, which is confirmed by Table R.1 for all four parameters of the logistic re-
gression model. Although the corresponding asymptotic variance of the ZV estimator
for linear and quadratic polynomials is the smallest in the case of RMHMC, the algo-
rithm is more effective than the remaining five, thus the attained reduction factor is
the smallest. Furthermore, Table R.1 shows that the least effective Metropolis-Hastings
(MH) algorithm has the highest asymptotic variance, followed by MALA, SMMALA,
MMALA, HMC and RMHMC. Along these lines, Table R.1 provides circumstantial
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Figure R.1: Traces of RMHMC (blue line) and ZV-RMHMC (red line) for different
parameters (rows) of the Bayesian logistic regression model and for different degree
polynomials (columns). The blue-coloured RMHMC trace plots in the left and right
columns are identical for each parameter (across each row) and represent the parameters
θi, i = 1, 2, 3, 4. On the other hand, the red-coloured trace plots in the left and right
columns represent the ZV-RMHMC values θ̃i for linear and quadratic polynomials,
calculated respectively by (9) and (18).

evidence that in most cases MH, being the least effective sampler, exhibits the highest
VRF, then MALA, SMMALA and MMALA cluster having similar VRFs and finally
HMC and RMHMC possess the smallest VRF as the two most effective samplers. In
fact, RMHMC has consistently the smallest VRF across all four parameters, agreeing
with the previously reported findings on its ESS superiority.

As a demonstration of the gain in variance reduction independently of the selected
model, Table R.2 shows the VRFs for the Bayesian logit and probit models implemented
on the Swiss banknotes data. The same covariates and consequently the same model
parameters are involved, while both the logit and probit link functions are used. As
it can be seen, reduction in variance is observed irrespectively of the choice of link
function. It appears that the probit model achieves greater reduction in variance than
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the logit but the reduction “pattern” is preserved.

5 ZV-MCMC for Bayesian Probit Regression

A Bayesian probit regression model is considered in its ordinary form, along the lines
of Albert and Chib (1993):

Φ−1 (pi) =

nθ∑
j=1

θjxij = θ
Txi,, i = 1, 2, . . . , nd,

pi := P (yi = 1|θ,xi,) = p(yi = 1|θ,xi,),

where xi, is the i-th row of the nd ·nθ design matrix X, y ∈ {0, 1}nd the binary response
variable, θ ∈ Rnθ the regression coefficients and Φ−1 the link function of the probit
model, which is the inverse cumulative distribution of N (0, 1). The nd latent variables
Xθ+ ϵ are assumed, where ϵ ∼ N (0, I) as suggested by Albert and Chib (1993). Note
that the assumption ϵ ∼ N (0, σ2I) is not preferred because it can cause problems
of identifiability, as explained in the commentary of Girolami and Calderhead (2011)
by Stathopoulos and Filippone. Under the notation ρi := θTxi, and the assumption
yi ∼ Bernoulli(1, pi), the probit model expresses as

p(yi = 1|θ,xi,) = Φ(ρi) = pyii (1− pi)
1−yi , i = 1, 2, . . . , nd, (37)

whence the log-likelihood of the model is derived:

L(y|θ, X) =

nd∑
i=1

ln [p(yi = 1|θ,xi,)] =
nd∑
i=1

[yi ln(Φ(ρi)) + (1− yi) ln(Φ(−ρi))] . (38)

A Normal prior is assumed for the parameters θ ∼ π(θ) = N (0, aI). A flat Normal
prior is chosen in the example of Section 5.2 by setting a = 100.

5.1 ZV Estimates and Metric Tensor

In the framework outlined above, (20), (27) and (38) give the gradient of the log-
posterior and the control variate is:

z(θ) = −1

2
∇θ(ln(p(θ|x))) = −1

2

(
XT s− 1

a
θ

)
, (39)

where the elements of the nd-dimensional column vector s are

si := yiξ(ρi)− (1− yi)ξ(−ρi), i = 1, 2, . . . , nd, (40)

and ξ(ρi) := N (ρi)/Φ(ρi), with N and Φ denoting the density and cumulative distri-
bution of a standard Gaussian random variable. Equations (30)-(34) give the ZV esti-
mators for linear and quadratic polynomials for the Bayesian probit regression model,
where the matrices Z and W are calculated using z(θ) as specified by (39).
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The metric tensor and its derivatives for the probit model, which are required for running
the RMHMC and MMALA samplers, are given by (35), where the (i, i)-th elements of
the nd · nd diagonal matrices Λ(θ) and M j(θ) calculate as

Λ(θ) := diag [ξ(ρi)ξ(−ρi)] = diag

[
N 2(ρi)

Φ(ρi)Φ(−ρi)

]
, (41)

M j(θ) :=
∂Λ(θ)

∂θj
= diag

{
ξ2(ρi)

Φ(−ρi)
{ξ(−ρi)− 2 [N (ρi) + ρiΦ(ρi)]}

}
xij . (42)

5.2 Vaso Constriction Example

To exemplify simulation of ZV-RMHMC and ZV-MMALA for the Bayesian probit re-
gression model, the vaso constriction data from Finney (1947) are used. The data come
from an experiment conducted on human physiology to study the effect of taking a sin-
gle deep breath on the occurrence of a reflex vaso constriction in the skin of the digits.
39 samples from three individuals are available, each of them contributing 9, 8 and 22
samples. Although the data represent repeated measurements, Pregibon (1981) claims
that the observations can be assumed to be independent, therefore the Bayesian probit
model can be applied. Two explanatory variables are included in the study, namely the
rate of inhalation and the inhaled volume of air per individual. An intercept is also
added, so nθ = 3 regression coefficients comprise the parameters of the model and the
design matrix X has dimensions nd · nθ = 39 · 3. The occurrence or non-occurrence
of vaso constriction in the skin of the digits of each subject, corresponding to 1 and 0,
plays the role of the binary response.

50, 000 MCMC samples are obtained per chain after a burn-in stage of 5, 000 samples.
Figure R.3 shows, for a single chain, via boxplots, the considerable variance reduction
achieved by the ZV estimators, especially for quadratic polynomials when the variance
nearly vanishes.

Table R.3 reports the asymptotic variances and associated VRFs for nc = 100 simu-
lated chains for each of the six samplers. The tabulated results for the probit model
fully agree with the ones reported in Table R.1 for the logit model. More specifically,
Table R.3 demonstrates that MH has the highest asymptotic variance, thus the smallest
ESS, followed by MALA, SMMALA, MMALA, HMC and RMHMC. This order in the
levels of asymptotic variance holds both for the original chains and for their ZV counter-
parts. Moreover, this order translates into MH and RMHMC being the algorithms with
the highest and lowest VRFs respectively. In fact, the succession of the intermediate
samplers MALA, SMMALA, MMALA and HMC ranging from higher to lower VRFs
is violated in a minority of cases. Finally, HMC is the second most effective sampler,
having consistently the second smallest asymptotic variance and VRF.

By examining Tables R.1 and R.3 concurrently, it is deduced from the examples on
the logit and probit models that in terms of minimal asymptotic variance Hamilto-
nian Monte Carlo methods are always preferable, followed by the Metropolis adjusted
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Langevin family of algorithms and lastly by the Metropolis-Hastings sampler. Further-
more, ZV-(RM)HMC reduces the asymptotic variance by one to three magnitudes of
order even in the case of the most effective Hamiltonian Monte Carlo algorithms.

Furthermore, Table R.4 shows the VRFs for the Bayesian logit and probit models im-
plemented on the Vaso constriction data. Both Tables R.2 and R.4 show that the ZV
estimators reduce the variance irrespectively of the selected link function and that the
achieved reduction in variance is greater under the probit model for both datasets (Swiss
banknotes and vaso constriction data).

Table R.5 reports the runtime of MCMC in comparison to ZV-MCMC for the Bayesian
logit and probit models, each as applied on the Swiss banknotes and on the vaso con-
striction data. The difference in the runtime between MCMC and ZV-MCMC is due
to the calculation of the polynomial coefficients of the trial function, and it is less than
0.3% for both linear and quadratic polynomials for each of the four tabulated examples.

6 ZV-MCMC for Ordinary Differential Equations

Consider a dynamical system modeled by the nx ordinary differential equations (ODEs)
ẋ(t) = f(x,θ, t), where t denotes time, θ ∈ Rnθ the model parameters, x(t) ∈ Rnx the
state of the system at time t and ẋ(t) its time derivative. It is assumed that the state
x(t) is degraded by noise ϵ(t) so that y(t) = x(t) + ϵ(t) is observed. Observations
are made at nt distinct time points, so the observed state of the system is described
by Y = X + E, where the matrices Y, X and E have dimensions nt · nx. Given the
parameters θ and some initial conditions x0 ∈ Rnx , the initial value problem is solved
for X leading to the solution X(θ,x0) of the ODEs at the nt specified time points.

Gaussian noise ϵ,j ∼ N (0, σ2
j Int), j = 1, 2, . . . , nx, is assumed, where ϵ,j is the j-th

column of the error matrix E and Int is the nt · nt identity matrix. Then it follows
that y,j |(x,j(θ,x0), σ

2
j ) ∼ N (x,j , σ

2
j Int), hence the log-likelihood of the model takes the

form

L(Y |θ, X(θ,x0)) = −1

2

nx∑
j=1

[
1

σ2
j

∥y,j − x,j∥+nt ln (2πσ2
j )

]
, (43)

where ∥·∥ denotes the Euclidean norm, y,j is the j-th column of matrix Y and x,j is
the j-th column of the ODE solution X(θ,x0).

6.1 Sensitivities and Expected Fisher Information

The first order sensitivities, defined as the nx · nθ Jacobian matrix S := ∂x/∂θ of
partial derivatives of the states over the parameters, and the second order sensitivities
∂S/∂θi, i = 1, 2, . . . , nθ, are required for calculating the gradient of the log-target as
well as the metric tensor and its derivatives to run ZV-RMHMC and ZV-MMALA.
Successive differentiation of the system’s ODEs with respect to the parameters, using
the chain rule, generates a new set of ODEs which entail the first and second order



112 Zero Variance Geometric MCMC

sensitivities:

Ṡ = fx S + fθ, (44)

ṡijk, = fx sijk, +
∂fθ

∂θi
sjk, +

nx∑
ℓ=1

sikℓ
∂fx

∂xℓ
sjk, +

nx∑
ℓ=1

sikℓ
∂fθ,j
∂xℓ

+
∂fθ,j
∂θi

, (45)

where fx := ∂f/∂x is the nx · nx Jacobian matrix of f over the states, fθ := ∂f/∂θ the
nx · nθ Jacobian of f over the parameters, ∂fθ,j/∂xℓ the partial derivative of the j-th

column of fθ with respect to xℓ and ∂f
θ
,j/∂θi the partial derivative of the j-th column

of fθ with respect to θi. As for the sensitivities, sijk, denotes the nx-dimensional column

vector of second order sensitivities with elements sijkℓ := ∂ 2xkℓ/∂θi∂θj , ℓ = 1, 2, . . . , nx,

and ṡijk, its time derivatives, while sjk, and s
i
kℓ := ∂xkℓ/∂θi are the j-th column and the

(ℓ, i)-th element of the matrix S of first order sensitivities, respectively. The differential
equation (45) refers to a single time point k, therefore (45) describes nt ODEs for
k = 1, 2, . . . , nt. Note that due to the symmetry sijkℓ = sjikℓ of second order sensitivities,
(45) needs to be calculated only for i ≤ j.

The ODEs of the system are augmented by the sensitivity equations (44) and (45) to
compute numerically the solution X(θ,x0) of the system together with the first and
order sensitivities S, ∂S/∂θi. Then the sensitivities are used for deriving the gradient

of the log-likelihood, the expected Fisher information F := −Ey|θ,X

[
∂2

∂θ∂θT L(y|θ, X)
]

and its derivatives,

∂L(Y |θ, X(θ,x0))

∂θq
=

nx∑
ℓ=1

[
1

σ2
ℓ

(y,ℓ − x,ℓ) · sq,ℓ

]
, q = 1, 2, . . . , nθ, (46)

Fij =

nx∑
ℓ=1

1

σ2
ℓ

si,ℓ · s
j
,l, i, j ∈ {1, 2, . . . , nθ}, (47)

∂Fij
∂θq

=

nx∑
ℓ=1

1

σ2
ℓ

(sqi,ℓ · s
j
,l + si,ℓ · s

qj
,l ), q = 1, 2, . . . , nθ, (48)

where the dot between vectors denotes the inner product and Fij is the (i, j)-th element
of F . It thus becomes possible to evaluate the metric tensor and its derivatives once a
prior π(θ) is selected and the Hessian of the log-prior ∂2 ln (π(θ))/∂θ∂θT is calculated.

6.2 Prior for Positive Model Parameters

In some areas of research the model parameters are constrained to the positive real line
θ ∈ Rnθ

+ . On the other hand, (ZV-)RMHMC and (ZV-)MMALA operate on an un-
bounded parameter space, therefore these samplers are run on some reparameterization
ϕ = h(θ) ∈ Rnθ and the obtained estimates ϕ̂ are transformed to obtain the estimates

of the original model parameters θ̂ = h−1(ϕ̂). In such cases, a log-Gamma or Normal
prior π(ϕ) is usually assumed to run the (ZV-)MCMC algorithm, implying a respective
Gamma or log-Normal prior π(θ) for the model parameters.
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Log-Gamma Prior

Assign a Gamma prior to the positive model parameters, θ ∼ G(κ,λ), which introduces
2nθ hyperparameters κ,λ. Perform the transformation ϕ = ln(θ/λ), where the involved
vector division is Hadamard element-wise. Then the transformed parameters follow a
log-Gamma prior ϕ ∼ logG(κ), see for example Chan (1993) for details.

So the log-prior of ϕ is

ln (π(ϕ)) =

nϕ∑
i=1

[kiϕi − exp (ϕi)− ln(Γ(ki))] , (49)

whence its gradient is found to be ∇ϕ(ln (π(ϕ))) = κ− exp (ϕ). Thus, the gradient of
the log-posterior and subsequently z(ϕ) for the ODE model are given by

zq(ϕ) = −1

2

∂ ln(p(ϕ|Y,X(ϕ,x0)))

∂ϕq
= −1

2

[
∂L

∂ϕq
− κq + exp (ϕq)

]
, (50)

where zq, q = 1, 2, . . . , nθ, denotes the q-th element of z(ϕ). The derivative of the
log-likelihood ∂L/∂ϕq is available in (46) by replacing θq and s

q
kℓ = ∂xkℓ/∂θq by ϕq and

sqkℓ = ∂xkℓ/∂ϕq, respectively.

It is further deduced from (49) that the Hessian of the log-prior is the nϕ · nϕ diago-

nal matrix Ξ(ϕ) := ∂2 ln (π(ϕ))/∂ϕ∂ϕT = −diag [exp(ϕ)], where diag [exp(ϕ)] is the
diagonal matrix whose (i, i)-th element is exp(ϕi), and the derivatives of the Hessian
are ∂ Ξ(ϕ)/∂ϕi = Ø [exp(ϕi)] , i = 1, 2, . . . , nϕ, where Ø [exp(ϕi)] denotes the nϕ · nϕ
matrix whose only non-zero element exp(ϕi) is the one in the (i, i)-th position.

RMHMC and MMALA are run on the log-Gamma distributed parameters ϕ. The
expected Fisher information, F , and its derivatives, ∂F/∂ϕi, are available in (47) and
(48) by using ϕ in place of θ and by using the first and second order sensitivities with
respect to ϕ. F combined with the Hessian of the log-prior Ξ and its derivatives gives
the metric tensor G(ϕ) = F (ϕ)− Ξ(ϕ) and its derivatives ∂G(ϕ)/∂ϕi.

Once RMHMC and MMALA are run, the obtained chains for ϕ are transformed to the
original parameters θ = λ ◦ exp(ϕ). Furthermore, the gradient of the log-target pϕ is
converted to the gradient of the log-posterior pθ using the inverse transform theorem:

∇θ(pθ(θ|Y,X(θ,x0))) = [∇ϕ(pϕ(ϕ|Y,X(ϕ,x0)))− 1] /θ, (51)

where the vector division is Hadamard element-wise. This consequently means that
zθ(θ) = (zϕ(ϕ) + 1/2)/θ. To compute the ZV estimates θ̃ for linear and quadratic
polynomials under the ODE model with the Gamma prior θ ∼ G(κ,λ), the estimates
θ and zθ(θ) are then embedded in Equations (30)-(34).

Normal Prior

Alternatively to the Gamma prior, a log-Normal prior θ ∼ logN (0, aI), can be assumed
for the original parameters of the ODEs. Then the transformation ϕ = ln (θ) allows
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to use the Normally distributed parameters ϕ ∼ π(ϕ) = N (0, aI) for running ZV-
RMHMC and ZV-MMALA. The only required component of the log-prior ln(π(ϕ)) is
its gradients ∇ϕ(ln(π(ϕ))) = −ϕ/a, since the Hessian of ln(π(ϕ)) vanishes.

After the MCMC run, the estimates θ = exp (ϕ) are uncovered from the simulated ϕ,
while zθ is derived from zϕ using (51), which holds under the current scheme of Normal

prior too. The ZV estimates θ̃ are then obtained with the help of Equations (30)-(34).

6.3 Example: Fitzhugh-Nagumo ODEs

As an example of ZV-RMHMC and ZV-MMALA under an ODE model, consider the
Fitzhugh-Nagumo ODEs (see for example Ramsay et al. (2007))

V̇ = c

(
V − V 3

3
+R

)
, Ṙ = −1

c
(V − a+ bR) . (52)

xT = (V,R) are the states and θT = (a, b, c) are the parameters of the model. Following
the example of Girolami and Calderhead (2011), data are generated from the Fitzhugh-
Nagumo differential equations at nt = 200 distinct time points between t = 0 and
t = 20 using the initial condition xT0 = (V (0), R(0)) = (−1, 1), the parameter values
(a, b, c) = (0.2, 0.2, 3) and Gaussian noise with variance equal to σ2

j = 0.25, j = 1, 2.

Attention must be paid to MCMC simulations of non-linear ODEs, as the chains may
converge to the wrong mode (see Calderhead and Girolami (2009), for details). A popu-
lation MCMC scheme can be employed to ensure convergence to the target distribution
as suggested for example in Calderhead et al. (2009). Nevertheless, it is enough to sam-
ple a single chain initialized on the true mode for the purpose of comparing the original
to the ZV estimates.

Figure R.4 displays the boxplots of such a single chain realization of length n = 10, 000
after a burn-in phase of 10, 000 points. A log-Gamma prior logG(κ), κT = (2, 2, 2),
is chosen for the simulation of ϕ via ZV-RMHMC, ZV-MMALA, ZV-SMMALA and
ZV-MH. The simulated chains are transformed to θ, corresponding to samples drawn
with the help of a Gamma prior G(κ,λ), λT = (2, 2, 2). The boxplots demonstrate
drastic reduction in variance in all six MCMC schemes.

Table R.6 quantifies the variance reduction by means of the VRFs after running nc = 100
chains for each of the six MCMC schemes. The patterns of asymptotic variance across
the six samplers, as previously noted in Tables R.1 and R.3, do not fully manifest
themselves in Table R.6. This is to be expected given the complexity of the ODE system
comparatively to the simpler logit and probit models. More specifically, the non-linear
dynamics of the ODE system pose challenges in terms of convergence and fine-tuning of
the MCMC scheme, which are not conducive to a full assessment of the ESS and of the
MCMC mean estimator of the ODE model. As previously stated, alternative MCMC
schemes such as population MCMC can potentially alleviate the lack of convergence.
Nevertheless, Table R.6 serves the purpose of demonstrating the reduction in variance
achieved by ZV-MCMC when the ZV method is implemented in a complex dynamical
system.
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7 Discussion

This paper provides a simulation-based assessment of the zero variance principle on
Hamiltonian Monte Carlo and Metropolis adjusted Langevin algorithms. The examples
of Bayesian logit and probit regression and of the non-linear Fitzhugh-Nagumo ODEs
are conclusive in that the variance is attenuated drastically by using the ZV strategy
with linear polynomials and vanishes nearly completely in ZV estimators with quadratic
polynomials. The examples of logit and probit models further assess the asymptotic
variances of the considered MCMC samplers, confirming that the Hamiltonian Monte
Carlo methods are more effective exhibiting smaller variance and that RMHMC entails
the smallest variance.

Given that the variance reduction is achieved at no extra computational cost, it becomes
instructive to embody the ZV method in any application of Metropolis-Hastings type
algorithms in particular those where, in order to run the sampler, one needs to compute
the gradient of the log-target. Such algorithms include MALA, MMALA, HMC and
RMHMC.

The accompanying MATLAB package facilitates the incentive of integrating the two
methods by providing a general and extensible computational framework for
ZV-(M)MALA and ZV-(RM)HMC. The user input required for running the ZV-MCMC
routines of the package is a single file, in the form of a MATLAB class, which defines
the log-target and its gradient as well as the metric tensor and its derivatives with
respect to the model parameters. Care has been taken in the implementation of the
ODE framework in the package, which uses the ODE solvers of the Systems Biology
Pharmacodynamic (SBPD) MATLAB package. This implies that the ODE model is
compiled to C code and that the efficient SUNDIALS C solvers are invoked. This way,
highly performing MMALA and RMHMC samplers with negligible variance are at the
user’s disposal for a broad set of user-defined ODE models.

Finally, a computational framework is currently being set-up, where the ideas presented
and discussed in this paper can be applied even if the derivative of the log-target is
not available in closed form. This is achievable by employing numerical or symbolic
computation techniques for automatic differentiation in place of the unknown func-
tional expressions of the log-target, metric tensor and their associated derivatives (see
for example Gay (2006), Smith (1995), Siskind and Pearlmutter (2008) and Naumann
(2008)).
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Appendix: Boxplots and Variance Reduction Factors
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Figure R.2: Boxplots of ordinary MCMC (magenta), ZV-MCMC with linear polynomi-
als (green) and quadratic polynomials (blue) for each parameter of the Bayesian logistic
regression model as applied on the Swiss banknotes.
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Figure R.3: Boxplots of ordinary MCMC (magenta), ZV-MCMC with linear polynomi-
als (green) and quadratic polynomials (blue) for each parameter of the Bayesian probit
regression model as applied on the vaso constriction data.



T. Papamarkou, A. Mira and M. Girolami 121

θ
1

MH MALA SMMALA MMALA HMC RMHMC

0.
1

0.
2

0.
3

θ
2

MH MALA SMMALA MMALA HMC RMHMC

0
0.

5
1

θ
3

MH MALA SMMALA MMALA HMC RMHMC

2.
8

3
3.

2

Figure R.4: Boxplots of MCMC (magenta), ZV-MCMC with linear polynomials (green)
and quadratic polynomials (blue) for each parameter of the Fitzhugh-Nagumo ODEs.
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MCMC L-ZV-MCMC Q-ZV-MCMC

Variance Variance VRF Variance VRF

θ1

MH 0.7085 0.0143 49.53 0.0002 3903.24

MALA 0.4206 0.0140 30.15 0.0002 2472.55

SMMALA 0.4817 0.0155 31.08 0.0003 1732.64

MMALA 0.3878 0.0102 37.87 0.0002 2353.82

HMC 0.2187 0.0127 17.23 0.0002 1202.89

RMHMC 0.0860 0.0079 10.90 0.0001 989.36

θ2

MH 2.5078 0.0306 81.86 0.0003 7316.08

MALA 2.5608 0.0467 54.84 0.0003 7447.15

SMMALA 1.0381 0.0306 33.90 0.0004 2814.97

MMALA 0.8259 0.0209 39.56 0.0002 3366.95

HMC 0.5160 0.0316 16.32 0.0003 1737.94

RMHMC 0.1809 0.0168 10.78 0.0001 1420.74

θ3

MH 2.1869 0.0413 52.92 0.0004 6164.20

MALA 2.4584 0.0467 52.66 0.0004 6671.19

SMMALA 1.0875 0.0348 31.27 0.0004 2941.56

MMALA 0.8697 0.0243 35.73 0.0003 3410.03

HMC 0.5532 0.0404 13.70 0.0003 1786.99

RMHMC 0.1887 0.0205 9.20 0.0001 1415.10

θ4

MH 1.3925 0.1215 11.46 0.0008 1736.54

MALA 3.2107 0.1471 21.83 0.0010 3369.44

SMMALA 1.6293 0.1013 16.08 0.0010 1678.99

MMALA 1.2678 0.0682 18.59 0.0006 1993.76

HMC 0.8620 0.1161 7.42 0.0007 1223.61

RMHMC 0.2563 0.0513 4.99 0.0003 941.38

Table R.1: Estimated asymptotic variances (rescaled by multiplying by the simulation
length n = 50, 000 of each chain) and variance reduction factors for each parameter of the
Bayesian logit model applied on the Swiss banknotes data after nc = 100 realized chains.
The estimated asymptotic variances of both MCMC and ZV-MCMC are smaller for more
effective samplers. As a consequence, the VRFs of more effective algorithms are smaller.
The variances and VRFs have been rounded to the fourth and second decimal places
respectively, while the cells in bold represent the smallest variances and reduction factors
across the six samplers demonstrating that RMHMC is the most effective sampler.



T. Papamarkou, A. Mira and M. Girolami 123

L-ZV-MCMC Q-ZV-MCMC

Logit Probit Logit Probit

θ1

MH 49.53 224.76 3903.24 36691.02

MALA 30.15 108.13 2472.55 16872.81

SMMALA 31.08 124.27 1732.64 23792.15

MMALA 37.87 150.12 2353.82 30983.78

HMC 17.23 71.09 1202.89 15302.85

RMHMC 10.90 35.01 989.36 10889.57

θ2

MH 81.86 211.32 7316.08 48569.46

MALA 54.84 139.47 7447.15 41132.25

SMMALA 33.90 76.58 2814.97 21681.99

MMALA 39.56 91.62 3366.95 26443.08

HMC 16.32 54.86 1737.94 11711.14

RMHMC 10.78 19.78 1420.74 7091.47

θ3

MH 52.92 158.12 6164.20 39463.93

MALA 52.66 130.14 6671.19 31738.70

SMMALA 31.27 80.33 2941.56 18124.88

MMALA 35.73 92.19 3410.03 21372.32

HMC 13.70 47.72 1786.99 9884.59

RMHMC 9.20 20.18 1415.10 6054.57

θ4

MH 11.46 27.02 1736.54 27297.00

MALA 21.83 40.49 3369.44 29738.73

SMMALA 16.08 36.89 1678.99 28860.57

MMALA 18.59 42.93 1993.76 31953.08

HMC 7.42 15.42 1223.61 13729.68

RMHMC 4.99 10.19 941.38 11939.83

Table R.2: Estimated variance reduction factors (VRFs) for each parameter of the
Bayesian logit and probit models applied on the Swiss banknotes data after nc = 100
realized chains, each of post burn-in length n = 50, 000. The same model is simulated
under the logit and probit link functions, and therefore the parameter estimators are di-
rectly comparable between the logit and the probit implementation. VRFs are obtained
using both linear and quadratic polynomials, corresponding to the columns labelled as
L-ZV-MCMC and Q-ZV-MCMC.
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MCMC L-ZV-MCMC Q-ZV-MCMC

Variance Variance VRF Variance VRF

θ1

MH 0.5619 0.0219 25.65 0.0002 2429.47

MALA 0.4128 0.0242 17.03 0.0004 1078.57

SMMALA 0.5701 0.0277 20.57 0.0006 943.24

MMALA 0.4835 0.0170 28.46 0.0003 1503.32

HMC 0.1711 0.0120 14.30 0.0002 854.04

RMHMC 0.0727 0.0057 12.81 0.0001 714.91

θ2

MH 4.5668 0.3055 14.95 0.0029 1552.23

MALA 5.5498 0.3640 15.25 0.0048 1151.53

SMMALA 3.3729 0.3213 10.50 0.0065 515.48

MMALA 2.3447 0.1930 12.15 0.0037 631.06

HMC 0.9252 0.1825 5.07 0.0022 424.87

RMHMC 0.3807 0.0702 5.42 0.0010 368.14

θ3

MH 2.3059 0.1461 15.79 0.0006 3960.80

MALA 2.2995 0.1607 14.31 0.0011 2185.78

SMMALA 1.8359 0.1709 10.74 0.0012 1471.48

MMALA 1.2912 0.0943 13.70 0.0008 1639.25

HMC 0.4752 0.0819 5.80 0.0005 966.86

RMHMC 0.2009 0.0348 5.78 0.0003 750.29

Table R.3: Estimated asymptotic variances (rescaled by multiplying by the simulation
length n = 50, 000 of each chain) and variance reduction factors for each parameter
of the Bayesian probit model applied on the vaso constriction data after nc = 100
realized chains. The estimated asymptotic variances of both MCMC and ZV-MCMC
are smaller for more effective samplers. As a consequence, the VRFs of more effective
algorithms are smaller. The variances and VRFs have been rounded to the fourth
and second decimal places respectively, while the cells in bold represent the smallest
variances and reduction factors across the six samplers demonstrating that RMHMC is
the most effective sampler.
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L-ZV-MCMC Q-ZV-MCMC

Logit Probit Logit Probit

θ1

MH 17.59 25.65 865.19 2429.47

MALA 10.90 17.03 465.33 1078.57

SMMALA 18.71 20.57 613.84 943.24

MMALA 24.13 28.46 790.76 1503.32

HMC 13.11 14.30 464.73 854.04

RMHMC 9.22 12.81 369.02 714.91

θ2

MH 6.52 14.95 1613.51 1552.23

MALA 6.86 15.25 1394.05 1151.53

SMMALA 5.70 10.50 625.98 515.48

MMALA 6.47 12.15 724.15 631.06

HMC 2.71 5.07 424.42 424.87

RMHMC 2.56 5.42 293.50 368.14

θ3

MH 6.67 15.79 1088.45 3960.80

MALA 6.46 14.31 792.99 2185.78

SMMALA 5.83 10.74 536.11 1471.48

MMALA 6.79 13.70 642.47 1639.25

HMC 2.87 5.80 352.39 966.86

RMHMC 2.65 5.78 242.09 750.29

Table R.4: Estimated variance reduction factors (VRFs) for each parameter of the
Bayesian logit and probit models applied on the vaso constriction data after nc = 100
realized chains, each of post burn-in length n = 50, 000. The same model is simulated
under the logit and probit link functions, and therefore the parameter estimators are di-
rectly comparable between the logit and the probit implementation. VRFs are obtained
using both linear and quadratic polynomials, corresponding to the columns labelled as
L-ZV-MCMC and Q-ZV-MCMC.
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MCMC ZV-MCMC a for L-ZV a for Q-ZV

Time Time Time % Time %

Logit on Swiss banknotes

MALA 1437.55 1441.90 0.67 0.0465 3.68 0.2552

SMMALA 2880.91 2887.63 1.21 0.0418 5.51 0.1910

MMALA 4426.95 4432.03 0.78 0.0177 4.29 0.0969

HMC 3043.35 3048.40 0.78 0.0256 4.27 0.1402

RMHMC 28479.06 28484.63 0.86 0.0030 4.70 0.0165

Probit on Swiss banknotes

MALA 6627.71 6634.68 1.28 0.0193 5.69 0.0858

SMMALA 6442.69 6448.35 0.85 0.0132 4.80 0.0745

MMALA 16104.12 16109.87 0.87 0.0054 4.89 0.0303

HMC 14168.16 14175.66 1.38 0.0097 6.12 0.0432

RMHMC 93272.78 93278.47 0.96 0.0010 4.72 0.0051

Logit on vaso constriction data

MALA 2022.26 2026.92 1.17 0.0577 3.50 0.1725

SMMALA 2384.82 2387.57 0.44 0.0183 2.31 0.0968

MMALA 5429.94 5434.12 0.90 0.0165 3.28 0.0603

HMC 3758.81 3763.25 1.00 0.0265 3.45 0.0916

RMHMC 23119.01 23121.60 0.47 0.0020 2.12 0.0092

Probit on vaso constriction data

MALA 5052.16 5055.41 0.65 0.0128 2.59 0.0513

SMMALA 5841.20 5844.39 0.61 0.0104 2.58 0.0441

MMALA 12179.25 12182.31 0.52 0.0043 2.55 0.0209

HMC 11772.57 11776.24 0.77 0.0065 2.90 0.0247

RMHMC 72031.10 72033.78 0.53 0.0007 2.16 0.0030

Table R.5: Runtime in seconds of each geometric ZV-MCMC simulation using the
Bayesian logit and probit models on the Swiss banknotes and vaso constriction data. The
time (in seconds) required for the calculation of the coefficients of linear and quadratic
polynomials is, respectively, less than 0.05% and 0.26% of the total ZV-MCMC runtime
for each of the five ZV-MCMC algorithms in all tabulated examples.
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MCMC L-ZV-MCMC Q-ZV-MCMC

Variance Variance VRF Variance VRF

θ1

MH 0.0080 0.0004 21.34 0.0000 380.59

MALA 0.1789 0.0029 62.61 0.0000 4549.38

SMMALA 0.0095 0.0004 25.59 0.0000 743.08

MMALA 0.0065 0.0002 41.65 0.0000 424.64

HMC 0.0079 0.0007 10.57 0.0001 109.26

RMHMC 0.0393 0.0004 90.84 0.0000 1528.78

θ2

MH 0.2101 0.0461 4.56 0.0038 54.70

MALA 6.2353 0.9301 6.70 0.0031 2012.30

SMMALA 0.3032 0.0925 3.28 0.0011 270.58

MMALA 0.2260 0.0510 4.43 0.0043 52.11

HMC 2.9346 0.3626 8.09 0.0558 52.63

RMHMC 0.6390 0.0298 21.46 0.0020 316.37

θ3

MH 0.0393 0.0068 5.77 0.0002 163.49

MALA 0.9877 0.1418 6.97 0.0022 444.03

SMMALA 0.0884 0.0237 3.74 0.0011 83.19

MMALA 0.0305 0.0066 4.64 0.0007 43.45

HMC 0.0228 0.0110 2.07 0.0010 22.13

RMHMC 0.2059 0.0070 29.31 0.0004 577.33

Table R.6: Estimated asymptotic variances (rescaled by multiplying by the simulation
length n = 10, 000 of each chain) and variance reduction factors for each parameter of the
Fitzhugh-Nagumo ODE model after nc = 100 realized chains. Despite the simplification
in the implementation, and more specifically without developing a population MCMC
framework for the ODE model, the VRFs show that ZV reduces the variance across the
simulated chains.
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