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INFERENCE OF WEIGHTED V -STATISTICS FOR
NONSTATIONARY TIME SERIES AND ITS APPLICATIONS

BY ZHOU ZHOU1

University of Toronto

We investigate the behavior of Fourier transforms for a wide class of non-
stationary nonlinear processes. Asymptotic central and noncentral limit the-
orems are established for a class of nondegenerate and degenerate weighted
V -statistics through the angle of Fourier analysis. The established theory for
V -statistics provides a unified treatment for many important time and spec-
tral domain problems in the analysis of nonstationary time series, ranging
from nonparametric estimation to the inference of periodograms and spectral
densities.

1. Introduction. Consider the following weighted V -statistics:

Vn =
n∑

k=1

n∑
j=1

Wn(tk, tj )H(Xk,Xj ),(1)

where {Xk}nk=1 is a nonstationary time series, tk = k/n, the kernel H(·, ·) and the
weights Wn(·, ·) are symmetric and Borel measurable functions. Many important
time and spectral domain problems in the analysis of nonstationary time series boil
down to the investigation of weighted V -statistics in the form of (1). For instance,
in various situations one may be interested in estimating parameter functions

θ(t) =
∫
R

∫
R

H(u, v) dF (t, u) dF (t, v)

over time t , where F(t, ·) is the marginal distribution of {Xj } at time t . In this
case many nonparametric estimators of θ(t) are asymptotically equivalent to the
weighted V -statistics

Vn =
n∑

k=1

n∑
j=1

K
(
(tk − t)/bn, (tj − t)/bn

)
H(Xk,Xj ),

where K(·, ·) is two-dimensional kernel function, and bn is a bandwidth that re-
stricts the estimation in a neighborhood of t . Additionally, after the nonparametric
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fitting one may want to specify or test whether the parameter function is of cer-
tain parametric forms. In this case many L2 distance based test statistics are of the
form (1) with degenerate kernels; that is, kernels H(·, ·) such that EH [Xk,x] = 0
for every k and x. See, for instance, the L2 distance based quantile specification
test in Zhou (2010). Furthermore, in spectral analysis of the nonstationary time
series {Xk}, both the periodogram

In(λ) = 1

2πn

∣∣∣∣∣
n∑

j=1

Xj exp(ijλ)

∣∣∣∣∣
2

, 0 ≤ λ ≤ π,

and the classic smoothed periodogram estimate of the spectral density

f̃n(λ) =
∫
R

1

m
K

(
u

m

)
In(λ + 2πu/n)du

are in the form of (1) with kernel H(x,y) = xy. Here i = √−1 stands for the
imaginary unit, K(·) is a kernel function and m = mn is a window size satisfying
m → ∞ with m/n → 0. Note that in every example above, Wn(·, ·) involves a
tuning parameter (either bandwidth or window size) which varies with the sample
size n. Hence it is important to write the weights as a function of n in (1).

The purpose of the paper is to establish an asymptotic theory for (1) through
the angle of Fourier analysis. To illustrate the main idea, suppose that H ∗(x, y) =
H(x, y)/(L(x)L(y)) is absolutely integrable on R

2 for some function L(·). Then
under mild conditions H ∗(·, ·) admits the Fourier representation H ∗(x, y) =∫
R2 g(u, v)ei(xu+yv) dudv. Consequently Vn can be written as

Vn =
∫
R2

g(x, y)

n∑
k,j=1

Wn(tk, tj )βk(x)βj (y) dx dy,(2)

where βk(x) = L(Xk) exp(ixXk). Note that in (2) the complex structure of Vn is
reduced to a process of quadratic forms {∑k,j Wn(tk, tj )βk(x)βj (y)}x,y∈R through
the aid of Fourier transformation. The multiplicative structure of the quadratic
forms makes in-depth asymptotic investigations possible for a wide class of
nonstationary time series. Furthermore, the continuous structure of βk(x) in x

makes a stochastic equi-continuity and continuous mapping argument possible
which is shown to be powerful compared to the discrete spectral decomposition
methods used in the literature. With the aid of the above structural simplifica-
tions, in this paper we are able to establish a uniform approximation scheme of
{∑k,j Wn(tk, tj )βk(x)βj (y)}x,y∈R by a process of Gaussian quadratic forms. As a
consequence we establish a unified asymptotic theory for a class of nondegenerate
and degenerate weighted V -statistics with reflexible weight functions. Both cen-
tral and noncentral limit theorems are developed for a wide class of nonstationary
time series with both smoothly and abruptly changing data generating mechanisms
over time. The established theory can be applied to many problems in the study of
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nonstationary time series, including topics such as nonparametric estimation and
specification, periodogram and spectral density inferences discussed above.

In (1), if the summation is taken over indices 1 ≤ k �= j ≤ n, then the statistics
are commonly called weighted U -statistics in the literature. For many problems
that are of practical importance, statistical theory for the U - and V -statistics can
be established with essentially the same techniques. Since the seminal papers of
von Mises (1947) and Hoeffding (1948), the analysis of V - and U -statistics has
attracted much attention in the statistics and probability literature. It seems that
most efforts have been put in un-weighted U - or V -statistics with Wn(·, ·) ≡ 1 for
stationary data. See, for instance, Yoshihara (1976), Dehling and Taqqu (1989),
Huskova and Janssen (1993), Dehling and Wendler (2010), Leucht (2012) and
Beutner and Zähle (2012, 2013) for various approaches for nondegenerate and
degenerate un-weighted U - and V -statistics. We also refer to the monographs of
Denker (1985), Lee (1990) and Dehling (2006) for more references. As we ob-
serve from the examples in the beginning of this Introduction, it is important to
consider weighted V -statistics with sample size dependent weights in the study of
nonstationary time series.

There are a small number of papers discussing weighted V - or U -statistics in
the literature. See, for instance, de Jong (1987), O’Neil and Redner (1993), Major
(1994) and Rifi and Utzet (2000) for weighted U - and V -statistics of independent
data and Hsing and Wu (2004) for weighted nondegenerate U -statistics of station-
ary time series. For most of the above discussions, the weights are not allowed
to be sample size dependent. Exceptions include de Jong (1987) who discovered a
very deep result that θn,1 → 0 implies asymptotic normality of a very wide class of
weighted degenerate V -statistics for independent data, where θn,1 is the eigenvalue

of the matrix {Wn(tj , tk)/
√∑n

u,v=1 W 2
n (tu, tv)}nj,k=1 with the maximum absolute

value. There the proof heavily depended on the martingale structure of degenerate
V -statistics of independent data and is hard to generalize to the time series setting.
In this paper, from a Fourier analysis angle, we generalize the result of de Jong
(1987) and show that, for many temporally dependent processes, θn,1 → 0 implies
asymptotic normality of Vn for a class of degenerate kernels and weight functions.

Quadratic forms are special cases of (1) with H(x,y) = xy. There are many
papers in the literature devoted to the analysis of such statistics. See, for instance,
de Wet and Venter (1973), Fox and Taqqu (1987), Götze and Tikhomirov (1999),
Gao and Anh (2000) and Bhansali, Giraitis and Kokoszka (2007), among others.
It seems that most of the results are on independent or stationary data. Exceptions
include Lee and Subba Rao (2011) who recently studied asymptotic normality of
a class of quadratic forms with banded weight matrix for α-mixing nonstationary
time series. For independent data, Götze and Tikhomirov (1999), among others, es-
tablished deep theoretical results indicating that distributions of generic quadratic
forms can be approximated by those of corresponding Gaussian quadratic forms.
In this paper, we generalize this type of result and show that the laws of a wide
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class of quadratic forms for nonstationary time series can be well approximated by
the distributions of corresponding quadratic forms of independent Gaussian ran-
dom variables. Consequently, central and noncentral limit theorems are established
for the latter class of quadratic forms for nonstationary time series.

The rest of the paper is organized as follows. In Section 2 we shall introduce
the class of absolutely convergent Fourier transformations and the piece-wise lo-
cally stationary time series models used in this paper. Sections 3 and 4 establish
the asymptotic theory for nondegenerate and degenerate V -statistics, respectively.
Theory for quadratic forms will be covered in Section 4 as a special case of de-
generate V -statistics. In Section 5, we shall apply our theory to the problems of
nonparametric estimation as well as spectral analysis of nonstationary processes.
Several examples will be discussed in detail. Finally, the theoretical results are
proved in Section 6.

2. Preliminaries. We first introduce some notation. For a vector v = (v1, v2,

. . . , vp) ∈ R
p , let |v| = (

∑p
i=1 v2

i )
1/2. Let i = √−1 be the imaginary unit. For

a complex number z = x + yi ∈ C, write |z| =
√

x2 + y2. For q > 0, denote by
Lq(Rp) the collection of functions f :Rp → C such that

∫
Rp |f (x)|q dx < ∞.

For a function f ∈ L1(Rp), denote by f̂ its Fourier transform, that is, f̂ (v) =∫
Rp f (x)e−i〈x,v〉 dx. For a Borel set A in R

p , denote by B(A) the collection of
all Borel sets in A. For a random vector V, write V ∈ Lq (q > 0) if ‖V‖q :=
[E(|V|q)]1/q < ∞ and ‖V‖ = ‖V‖2. Denote by ⇒ the weak convergence. The
symbol C denotes a generic finite constant which may vary from place to place.

2.1. Absolutely convergent Fourier transforms. Following the classic nota-
tion, a function f :R2 →R is said to belong to W0(R

2) if there exists a function g,
R

2 →C, such that g ∈ L1(R2) and

f (x, y) =
∫
R2

g(t, s)eitx+isy dt ds.(3)

The class W0(R
2) is called the Wiener ring or Wiener algebra, naming after Nor-

bert Wiener for his fundamental contributions in the study of absolutely conver-
gent Fourier integrals. Due to its importance in various problems, the possibility
to represent a function as an absolutely convergent Fourier integral has been inten-
sively studied in mathematics, and various sufficient conditions are continuously
being discovered in recent years. For a relatively comprehensive survey, we refer
to Liflyand, Samko and Trigub (2012).

For the study of V -statistics of dependent data, we need to further define the
subclass Wδ

0 (R2) of W0(R
2) as follows. We call f ∈ Wδ

0 (R2) for some δ ≥ 0 if
f ∈ W0(R

2) with representation (3) and∫
R2

∣∣(t, s)∣∣δ∣∣g(t, s)
∣∣dt ds < ∞,(4)
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where 00 := 1. Note that W 0
0 (R2) = W0(R

2).
In order for f ∈ W0(R

2), it is necessary that f is uniformly continuous on R
2

and vanishes at ∞. However, the above conditions are generally not sufficient.
Generally speaking, the Fourier transform of a smoother function tends to have a
lighter tail at infinity. The latter fact implies that stronger smoothness conditions
are needed to insure f ∈ W0(R

2).

PROPOSITION 1. Suppose that a symmetric function f ∈ L1(R2). (i) [Lifly-
and, Samko and Trigub (2012), Theorem 10.11]. Assume that f is uniformly con-
tinuous on R

2 and vanishes at ∞. Let f and its partial derivative (∂/∂x)f be
locally absolutely continuous on (R \ {0})2 in each variable. Further let each par-
tial derivative (∂/∂x)f and [∂2/(∂x ∂y)]f exist and belong to Lp(R2) for some
p ∈ (1,∞). Then f ∈ W0(R

2). (ii) If f satisfies∣∣∣∣ ∂2

∂x2 f (x + ε, y) − ∂2

∂x2 f (x, y)

∣∣∣∣ +
∣∣∣∣ ∂2

∂x2 f (x, y + ε) − ∂2

∂x2 f (x, y)

∣∣∣∣
+

∣∣∣∣ ∂2

∂x ∂y
f (x + ε, y) − ∂2

∂x ∂y
f (x, y)

∣∣∣∣(5)

≤ C|ε|γ k(x, y)

for sufficiently small ε, where γ > 0 and k ∈ L1(R2), then f ∈ Wδ
0 (R2) for any

δ ∈ [0, γ ).

Proposition 1 gives some easily checkable sufficient conditions for f ∈ W0(R
2)

and Wδ
0 (R2) based on the smoothness of its partial derivatives. In the literature,

numerous other sufficient conditions based on various notions of smoothness or
variation are available; see, for instance, the review of Liflyand, Samko and Trigub
(2012). We point out here that the conditions in Proposition 1 are not minimal
sufficient. For instance, the function f = exp(−|x|) ∈ Wδ

0 (R2) for any δ ∈ [0,1/2).
But the latter function is not differentiable on R

2. Thanks to the fast computation
of Fourier transforms, in practice when facing specific choice of f , condition (4)
with g = f̂ can also be checked via numerical computation.

2.2. Nonstationary time series models. For an observed process {Xj }nj=1, con-
sider the class of nonstationary time series models of the form [Zhou (2013), Def-
inition 1]

Xk =
r∑

j=0

Gj(tk,Fk)I(bj ,bj+1](tk), k = 1,2, . . . , n,(6)

where b1 < b2 < · · · < br are r unknown (but nonrandom) break points with
b0 = 0, and br+1 = 1, I·(·) is the indicator function, Gj : (bj , bj+1] × R

N → R

are (B((bj , bj+1]) × B(R)N, B(R))-measurable functions, j = 0, . . . , r , Fk =
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(. . . , εk−1, εk) and εk’s are i.i.d. random variables. Recall that tk = k/n. We ob-
serve from (6) that the data generating mechanism could break at the points bk ,
k = 1, . . . , r and hence lead to structural breaks of {Xj } at the latter points. On
the other hand, note that if Gk(t, ·) are smooth functions of t for each k, then the
data generating mechanisms change smoothly between adjacent break points. As
a consequence {Xj } is approximately stationary in any small temporal interval be-
tween adjacent break points. By the above discussion, we shall call the class of
time series in the form of (6) piece-wise locally stationary (PLS) processes.

Time series in the form of (6) constitute a relatively large class of nonstationary
time series models which allow the data generating mechanism to change flexibly
over time. In particular, when the number of the break points r = 0, then (6) re-
duces to the locally stationary time series models in Zhou and Wu (2009). On the
other hand, if for each k = 0,1, . . . , r , Gk(t,Fj ) does not depend on t , then (6)
is a piece-wise stationary time series which is studied, for instance, in Davis, Lee
and Rodriguez-Yam (2006), among others. Process (6) can be viewed as a time-
varying nonlinear system with εk’s being the inputs and Xk’s being the outputs.
The functions Gk(t, . . .) can be viewed as time-varying filters of the system. From
this point of view, we adapt the following dependence measures of {Xk} in Zhou
(2013):

δ(j,p) = sup
t

max
k

∥∥Gk(t,Fk) − Gk(t,Fk,k−j )
∥∥
p,(7)

where Fj,k is a coupled version of Fj with ε′
k in Fj replaced by an i.i.d. copy ε′

k ;
that is,

Fj,k = (
. . . , εk−1, ε

′
k, εk+1, . . . , εj−1, εj

)
,

and {ε′
j } is an i.i.d. copy of {εj }.

We observe from (7) that δ(j,p) measures the impact of the system’s inputs
j -steps before on the current output of the system. When δj,p decays fast to zero
as j tends to infinity, we have short memory of the series as the system tends to fast
“forget about” past inputs. We refer to Section 2 on page 728 of Zhou (2013) and
Section 4 on pages 2706–2708 of Zhou and Wu (2009) for more examples of linear
and nonlinear nonstationary time series of the form (6) and detailed calculations
of the dependence measures (7).

3. Nondegenerate V -statistics. Suppose that, for some function L(·),
H ∗(s, t) := H(s, t)/[L(s)L(t)] ∈ W0(R

2) and maxj ‖L(Xj )‖ < ∞. Then Vn de-
fined in (1) admits the representation (2) with

∫
R2 |g(x, y)|dx dy < ∞. Now define

Hj(x) = E
[
H(x,Xj )

] = E
[
H(Xj , x)

] =
∫
R2

g(t, s)L(x) exp(itx)E
[
βj (s)

]
dt ds

and γj (x) = βj (x) − E[βj (x)]. Then elementary calculations using the Hoeffd-
ing’s decomposition show that Vn can be decomposed as

Vn −EVn = 2Nn + Dn −E[Dn],(8)
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where

Nn =
n∑

k=1

n∑
j=1

Wn(tk, tj )
{
Hj(Xk) −E

[
Hj(Xk)

]}
,

Dn =
∫
R2

g(x, y)
∑
k,j

Wn(tk, tj )γk(x)γj (y) dx dy.

Here Nn and Dn are the nondegenerate and degenerate part of Vn, respectively.
To investigate the limiting behavior of Nn, we need the following conditions:

(A1) For some η ∈ (0,1], H ∗(t, s) := H(t, s)/[L(t)L(s)] ∈ W
η
0 (R2) for some

function L(·).
(A2) The function L is differentiable with derivative L′. maxa≤t≤b |L′(t)| ≤

C(|L′(a)| + |L′(b)| + 1) for all a, b, where C is a finite constant independent of a

and b. maxj ‖L(Xj )‖4+2ε < ∞ and maxj ‖L′(Xj )‖4+2ε < ∞ for some ε > 0.
(A3) Define Wj,· = ∑n

r=1 |Wn(tj , tr )|, j = 1,2, . . . , n. Let Wj,· = 0 for j > n.
Let W(n) = ∑n

j=1 W 2
j,·. For sequences ln, mn and sn = ln + mn, define

Aj =
ln∑

k=1

W 2
sn(j−1)+k,· and aj =

sn∑
k=ln+1

W 2
sn(j−1)+k,·,

j = 1,2, . . . , �n/sn�.
Assume that there exist sequences mn/ logn → ∞ with ln/n → 0 and mn/ln → 0,
such that ∑

j

aj /W(n) → 0 and max
j

Aj/W(n) → 0.

(A4) φn := Var(Nn)/W(n) ≥ c for some c > 0 and sufficiently large n.
(A5) The dependence measures δX(k,4+2ε) = O(ρk) for some ρ ∈ [0,1) and

ε > 0.

A few comments on the regularity conditions are in order. The role of L(t)

in (A1) is to lighten the tail of H(s, t) and hence make it absolutely integrable
on R

2. Some typical choices of L(t) are (1 + t2)p for kernels H(·, ·) with alge-
braically increasing tails and exp[(1 + t2)p] for kernels H(·, ·) with exponentially
increasing tails. Since the function L(t) controls the tail behavior of the kernel
H(·, ·), condition (A1) essentially poses some smoothness requirement on H(·, ·).
In practice, Proposition 1 or direct numerical computations can be used to check
H ∗(t, s) ∈ Wδ

0 (R2).
Condition (A2) posts some moment restrictions on L(Xj ) and L′(Xj ). The re-

quirement maxa≤t≤b |L′(t)| ≤ C(|L′(a)| + |L′(b)| + 1) is mild and in particular
it is always satisfied when |L′(·)| is piece-wise monotone or piece-wise convex
with finite many pieces. Consequently, the latter inequality holds for functions
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L(t) = (1 + t2)p or exp[(1 + t2)p] listed above. Condition (A3) requires that
{1,2, . . . , n} can be divided into big blocks and small blocks such that the sum
of squares of Wj,· in the small blocks is negligible and Wj,· in the big blocks sat-
isfy a Lindeberg type condition. Condition (A3) can be checked easily in practice.
Examples 1–3 below verify (A3) for some frequently used weight functions. By
the proof of Theorem 1 in Section 6, Var(Nn) = O(W(n)). Condition (A4) avoids
degenerate kernels with Nn ≡ 0 and other degenerate cases with non-Gaussian lim-
its. For instance, if H(x,y) = x + y, Wn(x, y) ≡ 1/n and Xj = Yj − Yj−1, where
Yj is a weakly stationary time series, then we have that Nn = Yn − Y0 fails to be
asymptotically normal. Note in this case W(n) = n and Var(Nn)/W(n) → 0. Fi-
nally (A5) requires that the dependence measures of {Xj } decay exponentially fast
to zero. The theoretical results of the paper can be derived with δX(k,p) decaying
polynomially fast to zero at the expense of much more complicated conditions and
proofs. For presentational simplicity and clarity we assume exponentially decaying
dependence measures throughout the paper.

THEOREM 1. Under conditions (A1)–(A5), we have

Nn/
√

Var(Nn) ⇒ N(0,1).

Theorem 1 establishes a central limit result for the nondegenerate part of Vn.
Due to nonstationarity, Hj(x) = E[H(x,Xj )] is j -dependent. Consequently
asymptotic investigations for Nn are much more difficult than the stationary case.
Thanks to the structural simplification by the Fourier transformation, we are able
to control the dependence structure of Nn and establish the above central limit
results. By Theorem 1, if the degenerate part Dn is asymptotically negligible com-
pared to Nn, then CLT for Vn can be derived. To this end, the following Theorem 2
is crucial.

(A6) Assume that there exist functions fn and a p ∈ (0,∞), such that∣∣Wn(tl, tm) − Wn(tk, tj )
∣∣ ≤ fn(tk, tj )

∣∣(l,m) − (k, j)
∣∣p

for all integers k, j, l,m ∈ {1,2, . . . , n}.
Condition (A6) requires that, for each fixed n, the weight function Wn(x, y)

grows algebraically fast at any (x, y). (A6) is mild and is satisfied by most fre-
quently used weight functions. In particular, if Wn(·, ·) is Lipschitz continuous in
the sense that |Wn(t, s) − Wn(t1, s)| ≤ qn|t1 − t | for every t, t1 and s, then fn(·, ·)
can be chosen as Cqn/n.

THEOREM 2. Assume that conditions (A2) and (A5) hold with 4 + 2ε therein
replaced by 8. Further assume (A1) and (A6). Then

‖Dn −EDn‖2 = O(W(n) + �n) where W(n) =
n∑

k=1

n∑
j=1

W 2
n (tk, tj )



WEIGHTED V -STATISTICS FOR NONSTATIONARY TIME SERIES 95

and �n = ∑n
k=1

∑n
j=1 |Wn(tk, tj )|fn(tk, tj ).

Theorem 2 investigates the order of Dn. Observe that if Xj ’s are independent
with H(x,y) = xy, then simple calculations yield ‖Dn − EDn‖2 = O(W(n)). For
many important weight functions (see, e.g., Examples 1–3 below) �n = O(W(n))

and the order established in Theorem 2 is sharp. For un-weighted U -statistics
of stationary mixing data, deep theoretical results on the order of the degenerate
part of U -statistics were obtained in Yoshihara (1976) and Dehling and Wendler
(2010), among others. Our Theorem 2 extends the latter results to weighted V -
statistics of nonstationary processes from a Fourier analysis angle.

COROLLARY 1. Assume that conditions (A2) and (A5) hold with 4 + 2ε

therein replaced by 8. Further assume that (A1), (A3), (A4) and (A6) hold and
W(n)/[W(n) + �n] → ∞. Then we have (Vn −EVn)/

√
Var(Vn) ⇒ N(0,1).

Corollary 1 is an immediate consequence of Theorems 1 and 2. Corollary 1
establishes a CLT for Vn. It is clear from the definitions of W(n) and W(n) that
W(n) ≥ W(n). Examples 1–3 below verify W(n)/[W(n) + �n] → ∞ and condi-
tion (A3) for some frequently used weight functions.

EXAMPLE 1. Consider the case where Wn(tj , tk) = f (tj , tk)/n for some sym-
metric function f on [0,1] × [0,1] such that |f (x1, y) − f (x2, y)| ≤ C|x1 − x2|
for all x1, x2 and y in [0,1]. Note that the classic un-weighted V -statistics are con-
tained in this case with f (·, ·) ≡ 1. Elementary calculations yield Wj,· = f (tj , ·)+
O(1/n), where f (t, ·) = ∫ 1

0 |f (t, x)|dx, W(n) = n
∫ 1

0 (
∫ 1

0 |f (x, y)|dy)2 dx +
O(1), W(n) = O(1) and �n = O(1/n). Hence W(n)/[W(n) + �n] → ∞ pro-
vided that f is not a constant zero function. Additionally, it is elementary to
check that (A3) is satisfied for every sequence mn/ logn → ∞, ln/n → 0 and
mn/ln → 0 provided that f is not always 0.

EXAMPLE 2. In this example we investigate weight functions in the form
Wn(tj , tk) = g((tj − t)/bn, (tk − t)/bn)/(nbn), where t ∈ [0,1], g(·, ·) is a con-
tinuously differentiable function and bn → 0 with nbn → ∞. This type of
weights may appear in nonparametric estimation of nonstationary time series.
Assume that g(·, ·) is absolutely integrable and its first-order partial deriva-
tives are bounded on R

2. Then elementary calculations show that W(n) =
(nbn)

∫
R
(
∫
R

|g(x, y)|dy)2 dx + O(1), W(n) = O(1) and �n = O(1/(nbn)) for
any t ∈ (0,1). Therefore W(n)/[W(n) + �n] → ∞ provided that g is not always
zero and (A3) is satisfied for every sequence mn/ logn → ∞, ln/(nbn) → 0 and
mn/ln → 0 provided that g is not always 0. Similar results hold for t = 0 or 1.

EXAMPLE 3. Consider the class of weights Wn(tj , tk) = √
mnh(|tj − tk|mn)/

n, where h(·) is a continuously differentiable and nonconstant function on [0,∞)
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and mn → ∞ with mn/n → 0. This type of weight functions may appear, for
instance, in nonparametric specification tests and spectral analysis of {Xj }. Further
assume that h is absolutely integrable on [0,∞) with bounded derivatives. After
some simple algebra, we have W(n) = n

mn
[4(

∫ ∞
0 |h(x)|dx)2 + o(1)], W(n) = O(1)

and �n = O(mn/n). Therefore W(n)/[W(n) + �n] → ∞ and (A3) is satisfied for
every sequence mn/ logn → ∞, ln/n → 0 and mn/ln → 0.

4. Degenerate V -statistics. Without loss of generality, throughout Section 4
we assume c ≤ ∑n

k=1
∑n

j=1 W 2
n (tk, tj ) ≤ C for some constants 0 < c ≤ C < ∞.

In this section we shall investigate the class of degenerate V -statistics for which
E[H(x,Xj )] = 0 for every j and x. Then it is clear that Nn = 0 in (8) and Vn =
Dn. Before we state the theoretical results, we need to post the following regularity
conditions:

(A7) Define

Vn =
n−1∑
j=1

[
n∑

k=1

(
Wn(tj , tk) − Wn(tj+1, tk)

)2
]1/2

+
[

n∑
k=1

W 2
n (1, tk)

]1/2

.

Assume that n1/4 log2 nVn = o(1). Further assume that for some δ > 0,
n∑

j=1

[ ∑
|k−j |≤log1+δ n

(
Wn(tj , tj ) − Wn(tj , tk)

)2
]1/2

= o(1).(9)

(A8) If |m − l| = O(logn), then
∑l

k=m[∑|j−k|≤log1+δ n W 2
n (tk, tj )]1/2 = o(1)

for some δ > 0.
(A9) For s = (s1, s2, . . . , sm)� ∈ R

m and t ∈ [0,1], define

βk,j (t, s) = L
(
Gk(t,Fj )

)(
cos

(
s1Gk(t,Fj )

)
, sin

(
s1Gk(t,Fj )

)
, . . . ,

cos
(
smGk(t,Fj )

)
, sin

(
smGk(t,Fj )

))�
.

Let β∗
k,j (t, s) = (L(Gk(t,Fj )), β

�
k,j (t, s))

�. For k = 0,1, . . . , r , define the long-
run covariances �k(t, s) = ∑∞

j=−∞ Cov[βk,0(t, s), βk,j (t, s)] and �∗
k (t, s) =∑∞

j=−∞ Cov[β∗
k,0(t, s), β

∗
k,j (t, s)]. Assume that for all m ∈ N and all s ∈ R

m with
s1 < s2 < · · · < sm and sj �= 0, �k(t, s) is positive definite for t ∈ [bk, bk+1],
k = 0,1, . . . , r if L(x) ≡ C. Replace �k(t, s) by �∗

k (t, s) in the above assumption
for all other functions L(x).

(A10) ‖Gk(t,F0) − Gk(s,F0)‖4 ≤ C|t − s| for t, s ∈ [bk, bk+1] and k =
0,1, . . . , r .

Condition (A7) posts some restrictions on the smoothness of the weight func-
tion Wn(·, ·). Condition (A8) is a mild technical condition. In particular, elemen-
tary calculations show that (A7) and (A8) are satisfied by weight functions in Ex-
ample 1. We have (A7) and (A8) hold if bn � n−1/2 log4 n under the additional
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assumption that
∫
R
(
∫
R
(
∂g(x,y)

∂y
)2 dy)1/2 dx < ∞ in Example 2. For weights con-

sidered in Example 3, we have (A7) and (A8) hold when mn � n1/4/ log2 n under
the extra assumption that

∫ ∞
0 (h′(x))2 dx < ∞.

By definition, �k(t, s) and �∗
k (t, s) are the spectral density matrices of the time

series {βk,j (t, s)}∞j=0 and {β∗
k,j (t, s)}∞j=0 at frequency 0, respectively. Hence it

is clear that the latter spectral density matrices are positive semi-definite. Con-
dition (A9) is mild, and it requires that the latter spectral density matrices are
nonsingular. Finally, condition (A10) means that the data generating mechanism
Gk(t, ·) changes smoothly between adjacent break points. The following theorem
investigates the asymptotic behavior of degenerate weighted V -statistics:

THEOREM 3. Write L∗(x) = xL(x). Let condition (A2′) be condition (A2)
when L(x) therein is replaced by L∗(x). Assume that conditions (A2), (A2′) and
(A5) hold with 4+2ε therein replaced by 8+4ε for some ε > 0. Assume (A1) and
(A7)–(A10). Then there exist constants αn,1, αn,2, . . . with

∑∞
k=1 α2

n,k = O(1) and
i.i.d. standard normal random variables Z1,Z2, . . . , such that for any bounded
and continuous function h(·)∣∣∣∣∣E[

h(Dn −EDn)
] −E

[
h

( ∞∑
j=1

αn,j

(
Z2

j − 1
))]∣∣∣∣∣ → 0.(10)

Let �(t, s) = (�1(t, s),�2(t, s))
� be a centered two-dimensional Gaussian pro-

cess defined on [0,1] ×R with the covariance function

Cov
[
�(t1, s1),�(t2, s2)

] =
∫ min(t1,t2)

0
�ζ(t)

(
t, (s1, s2)

�)
dt,

where ζ(t) = k if bk < t ≤ bk+1, k = 0,1, . . . , r , ζ(0) = 0 and

�k

(
t, (s1, s2)

�) =
∞∑

j=−∞
Cov

[
βk,0(t, s1), βk,j (t, s2)

]
.

Define the complex-valued Gaussian process �∗(t, s) = �1(t, s) + i�2(t, s) and
let

�∗
n(t, s) = √

n

[
�∗(t, s) − �∗

(
t − 1

n
, s

)]
, t ≥ 1/n.(11)

Let �n(x, y) = ∑n
k,j=1 Wn(tk, tj )�

∗
n(tk, x)�∗

n(tj , y). Then by the classic Gaus-
sian process theory [see, for instance, Kuo (1975), Chapter 1.2], the real part of∫
R2 g(x, y)�n(x, y) dx dy is a quadratic form of i.i.d. Gaussian random variables

Z1,Z2, . . . . The coefficients αn,j , j = 1,2, . . . , in Theorem 3 correspond to the
eigenvalues of the latter Gaussian quadratic form. Theorem 3 establishes a general
asymptotic result for degenerate V -statistics with smooth weight functions. Define
the Lévy–Prokhorov metric

π(μ, ν) = inf
{
ε > 0|μ(A) ≤ ν

(
Aε)+ε, ν(A) ≤ μ

(
Aε)+ε for every Borel set A

}
,
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where Aε is the ε-neighborhood of A. Then (10) is equivalent to

π

(
law(Dn −EDn), law

( ∞∑
j=1

αn,j

(
Z2

j − 1
)))

→ 0.

In other words, the distribution of Dn − EDn can be well approximated asymp-
totically by that of a weighted sum of i.i.d. centered χ2(1) random vari-
ables. An important observation from (10) is that if max1≤j<∞ |αn,j | → 0,
then π(law(

∑∞
j=0 αn,j (Z

2
j − 1)), law(N(0,2

∑∞
j=0 α2

n,j ))) → 0. Consequently
Dn − EDn is asymptotically normal. On the other hand, if αn,j → αj uniformly
in j as n → ∞, then

∑∞
j=1 αn,j (Z

2
j − 1)) → ∑∞

j=1 αj (Z
2
j − 1)) and therefore

Dn −EDn converges to a mixture of i.i.d. centered χ2(1) random variables. In the
following, Corollaries 2 to 4 explore the above discussions in detail.

COROLLARY 2. Let θn,1, θn,2, . . . , θn,n be the eigenvalues of the matrix
{Wn(tj , tk)}j,k=1,...,n with |θn,1| ≥ |θn,2| ≥ |θn,n|. Assume that θn,1 → 0. Then un-
der the conditions of Theorem 3, we have for any bounded and continuous func-
tion h(·) ∣∣Eh[Dn −EDn] −Eh

{
N

(
0,Var[Dn])}∣∣ → 0.(12)

Note that by Lemma 4 in Zhou (2013), Var[Dn] = O(1). Corollary 2 asserts that
|θn,1| → 0 implies max1≤j<∞ |αn,j | → 0 and hence the asymptotical normality
of Dn. In the literature, de Jong (1987) derived that θn,1 → 0 implies asymptotic
normality of a very wide class of weighted degenerate V -statistics of indepen-
dent data based on very deep martingale techniques. The martingale arguments
depended heavily on the independence assumption and are hard to generalize to
dependent data. From a Fourier analysis point of view, Corollary 2 generalizes
the latter result to a class of weighted degenerate V -statistics of nonstationary
time series with smooth weights. A particular case of this type is Example 3
where the weight matrix is Toeplitz. From standard Toeplitz matrix theory we have
|θn,1| ≤ ∑n

j=1
√

mn|h(tjmn)|/n = O(1/
√

mn) = o(1), and hence (12) holds for
this type of weight matrices.

COROLLARY 3. Suppose that (a): Wn(t, s) = Q1(t, s)/n and Q1(t, s) satis-
fies (5) with R

2 therein replaced by [0,1] × [0,1]; or (b): Wn(t, s) = ∑∞
j=1 aj ×

f1,j (t)f2,j (s)/n, where
∑∞

j=1 |aj | < ∞ and f1,j (·) and f2,j (·) are continuous
functions defined on [0,1]. Then under the conditions of Theorem 3, there exist
constants α1, α2, . . . with

∑∞
j=1 α2

j < ∞ and i.i.d. standard normal random vari-
ables Z1,Z2, . . . , such that

Dn −EDn ⇒
∞∑

j=1

αj

(
Z2

j − 1
)
.
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COROLLARY 4. Suppose (a): Wn(t, s) = Q2((t − a)/bn, (s − b)/bn)/(nbn)

for some a, b ∈ [0,1], where Q2(t, s) has support [−1,1] × [−1,1] and satisfies
(5) with R

2 therein replaced by [−1,1] × [−1,1] and bn → 0; or (b): Wn(t, s) =∑∞
j=1 ajg1,j ((t − a)/bn)g2,j ((s − b)/bn)/(nbn) for some a, b ∈ [0,1], where∑∞
j=1 |aj | < ∞, bn → 0 and g1,j (·) and g2,j (·) are continuous functions on R

with support [−1,1]. Then under the conditions of Theorem 3, there exist con-
stants α1, α2, . . . with

∑∞
j=1 α2

j < ∞ and i.i.d. standard normal random variables
Z1,Z2, . . . , such that

Dn −EDn ⇒
∞∑

j=1

αj

(
Z2

j − 1
)
.

Corollaries 3 and 4 are proved in the online supplement of the paper, Zhou
(2014). Corollaries 3 and 4 establish that Dn converges to a mixture of i.i.d. cen-
tered χ2(1) random variables for four classes of smooth weight functions which
are absolutely integrable on R

2. Note that the classic un-weighted V -statistics be-
long to cases (a) and (b) in Corollary 3. In the literature, Leucht (2012), among
others, derived asymptotic distributions of un-weighted U -statistics for stationary
time series. Corollary 3 generalizes the latter results to a class of weighted V -
statistics of nonstationary data. Weight functions in Corollary 4 may appear, for
instance, in nonparametric estimation of nonstationary time series.

Quadratic forms of a centered nonstationary process {Xj } are of the form

Qn =
n∑

j=1

n∑
k=1

Wn(tj , tk)XjXk.(13)

Clearly Qn is a special case of the degenerate V -statistics with H(x,y) = xy.
Hence the theory established above applies to this class of statistics. However,
due to the special multiplicative structure, the asymptotic theory for Qn can be
established with weaker conditions. The following proposition follows from the
corresponding proofs of Theorem 3 and Corollaries 2 to 4.

PROPOSITION 2. Assume that conditions (A7), (A8) and (A10) hold and
(A5) holds with 4 + 2ε therein replaced by 4. Further assume that σ̃ 2(k, t) :=∑∞

j=−∞ Cov[Gk(t,F0),Gk(t,Fj )] > 0 for k = 0,1, . . . , r and t ∈ [bk, bk+1].
Write σ̃ 2(t) = σ̃ 2(ζ(t), t). Then we have that conclusions of Theorem 3 and Corol-
laries 2 to 4 hold with Dn therein replaced by Qn.

By the proof of Theorem 3, on a possibly richer probability space, there exist
i.i.d. standard normal random variables Z1,Z2, . . . ,Zn, such that

Qn − Qo
n = oP(1), where Qo

n =
n∑

j,k=1

Wn(tj , tk)σ̃ (tj )Zj σ̃ (tk)Zk.(14)
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The above equation asserts that Qn can be well approximated a quadratic form of
independent Gaussian random variables. In the literature, Götze and Tikhomirov
(1999), among others, established deep theoretical results showing that distribu-
tions of quadratic forms of independent data can be approximated by those of
corresponding Gaussian quadratic forms. In (14), we generalize these results to a
class of quadratic forms of nonstationary time series with smooth weights.

5. Applications.

5.1. Nonparametric estimation of nonstationary time series. Let F(t, ·) be the
marginal distribution function of {Xj } at time t ; namely F(t, ·) is the distribution
of Gζ(t)(t,F0). Under various situations one is interested in estimating the quantity

θ(t) =
∫ ∞
−∞

∫ ∞
−∞

H(x,y) dF (t, x) dF (t, y)(15)

for all t ∈ [0,1]. Here H(·, ·) is assumed to be a symmetric function. For in-
stance, if H(x,y) = (x − y)2/2, then θ(t) is the time-varying variance func-
tion of the process {Xj }. In the statistics literature, enormous efforts have been
put on nonparametric estimation of parameter functions τ(t) in the form τ(t) =∫ ∞
−∞ M(x)dF(t, x) = E[M[Gζ(t)(t,F0)]]; see, for instance, the monographs of

Fan and Gijbels (1996) and Fan and Yao (2003) and the citations therein. Note that
τ(t) is a special case of (15) with H(x,y) = [M(x)+M(y)]/2. On the other hand,
however, it seems that there are few results on nonparametric inference of general
parameter functions in the form of θ(t) in (15). One of the major difficulties, es-
pecially in the case of time series applications, lies in the lack of corresponding
theoretical results on weighted V -statistics for dependent data. Define

θ(t, s) =
∫ ∞
−∞

∫ ∞
−∞

H(x,y) dF (t, x) dF (s, y).(16)

Assume θ(t, s) is smooth at (t∗, t∗) for some t∗ ∈ (0,1). By the first-order local
Taylor expansion of θ(t, s), θ(t∗) can be estimated by θ̂bn(t

∗), where(
θ̂bn

(
t∗

)
, η̂1, η̂2

)
= argmin

(η0,η1η2)∈R3

n∑
j,k=1

(
H(Xj ,Xk) − η0 − η1

(
tj − t∗

)
(17)

− η2
(
tk − t∗

))2
Wn(tj , tk).

Here for presentational simplicity we assume that

Wn(tj , tk) = K
((

tj − t∗
)
/bn

)
K

((
tk − t∗

)
/bn

)
/(nbn),

where K ∈ K and K is the collection of continuously differentiable and symmetric
density functions with support [−1,1]. Furthermore, the bandwidth bn satisfies



WEIGHTED V -STATISTICS FOR NONSTATIONARY TIME SERIES 101

bn → 0 with nbn → ∞. Estimator (17) is an extension of the classic local linear
kernel methods [Fan and Gijbels (1996)] to second-order parameter functions of
the form (15). Meanwhile, if higher-order Taylor expansions of θ(t, s) are used
in (17), then one obtains local polynomial estimations of θ(t∗).

It is easy to see that the asymptotic behavior of θ̂bn(t
∗) is decided by that of the

V -statistics Vn = ∑n
j,k=1 H(Xj ,Xk)Wn(tj , tk). The following proposition, which

is proved in Zhou (2013), investigates the limiting distribution of θ̂bn(t
∗):

PROPOSITION 3. Assume that conditions (A2) and (A5) hold with 4 + 2ε

therein replaced by 8. Further assume that (A1) and (A4) hold and θ(t, s) is C2 in
a neighborhood of (t∗, t∗). Then under the above assumptions of K(·) and bn, we
have

√
nbn√

4φn

∫ 1
−1 K2(x) dx

[
θ̂bn

(
t∗

) − θ
(
t∗

) − Bn

(
t∗

)] ⇒ N(0,1),(18)

where Bn(t
∗) = b2

n
∂2θ(t∗,t∗)

∂t2

∫ 1
−1 x2K(x)dx.

EXAMPLE 4 (Estimating the time-varying variance function). Consider the
kernel H(x,y) = (x − y)2/2. Then θ(t) in (15) equals Var[Gζ(t)(t,F0)] =
E[Gζ(t)(t,F0) −EGζ(t)(t,F0)]2. In particular, θ(ti) = Var[Xi].

For this variance kernel H , we can choose L(x) = (1 + x2)2 and assume that
E[X32

i ] < ∞, i = 1,2, . . . , n. Then L(x) satisfies condition (A2) with 4 + 2ε

therein replaced by 8. By Proposition 1, condition (A1) is satisfied with η = 1.
Furthermore, condition (A3) is satisfied by Example 2 and the assumption that
K ∈ K. Note that Hj(x) = E[H(x,Xj )] = (x2 − 2xE[Xj ] + E[X2

j ])/2 does not
always equal 0. Hence the kernel is nondegenerate. Meanwhile,

2θ(t, s) = E
[
G2

ζ(t)(t,F0)
] +E

[
G2

ζ(s)(s,F0)
] − 2E

[
Gζ(t)(t,F0)

]
E

[
Gζ(s)(s,F0)

]
.

Assuming that μ(t) := E[Gζ(t)(t,F0)] and v(t) := E[G2
ζ(t)(t,F0)] are C2 in a

neighborhood of t∗, then θ(t, s) is C2 in a neighborhood of (t∗, t∗). Further assume
that t∗ is not a break point of the time series and condition (A10). By the local
stationarity of {Xj } in the neighborhood of t∗, we have that 4φn → σ 2(t∗), where

σ 2(t) =
∞∑

j=−∞
Cov

{
G2

ζ(t)(t,F0) − 2μ(t)Gζ(t)(t,F0),G
2
ζ(t)(t,Fj )

− 2μ(t)Gζ(t)(t,Fj )
}
.

Note that σ 2(t) is the spectral density of the stationary sequence {G2
ζ(t)(t,Fj ) −

2μ(t)Gζ(t)(t,Fj )}∞j=−∞ at frequency 0. Hence condition (A4) holds provided
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σ 2(t∗) > 0. Finally, we have under the other regularity assumptions of Proposi-
tion 3 that √

nbn√
σ 2(t∗)

∫ 1
−1 K2(x) dx

[
θ̂bn

(
t∗

) − θ
(
t∗

) − B̃n

(
t∗

)] ⇒ N(0,1),

where B̃n(t
∗) = b2

n

2 [v′′(t∗) − 2μ(t∗)μ′′(t∗)] ∫ 1
−1 x2K(x)dx.

5.2. Spectral analysis. Consider a PLS time series {Xj } defined in (6). As-
sume further that E[Xj ] = 0 and ‖Xj‖ < ∞, j = 1,2, . . . , n. Then we can define
its spectral density at time t as

f (t, λ) = 1

2π

∞∑
k=−∞

γ (t, k) cos(kλ), λ ∈ [0,2π ],

where γ (t, k) = Cov[Gζ(t)(t,F0),Gζ(t)(t,Fk)] is the kth-order auto covariance
of {Xj } at time t . Write the classic periodogram of the series {Xj }

In(λ) = 1

2πn

∣∣Sn(λ)
∣∣2, where Sn(λ) =

n∑
j=1

Xj exp(ijλ),0 ≤ λ ≤ π.

Consider also the classic smoothed periodogram estimate of the spectral density

f̃n(λ) =
∫ m

−m

1

m
K

(
u

m

)
In(λ + 2πu/n)du,

where K(·) ∈ K is an even function, and m is a block size satisfying m → ∞
with n/m → ∞. The analysis of f̃n(λ) depends heavily on the theory of quadratic
forms for nonstationary processes. For strictly stationary time series, the asymp-
totic behaviors of the periodogram and spectral density estimates have been in-
tensively studied in the literature. See, for instance, Brillinger (1969), Priestley
(1981), Rosenblatt (1984), Walker (2000) and Shao and Wu (2007) among others.
On the other hand, however, there are few corresponding results for nonstation-
ary time series. Exceptions include, among others, Dwivedi and Subba Rao (2011)
who studied the asymptotic behavior of the periodogram for short memory locally
stationary linear processes and Dette, Preuss and Vetter (2011) who studied the
behavior of the averaged spectral density estimates for locally stationary Gaussian
linear processes. In this section we shall investigate the behaviors of In(λ) and
f̃n(λ) for linear and nonlinear PLS time series. The following is a key theorem
which establishes a Gaussian approximation result for Fourier transforms of non-
stationary time series. Theorem 4 could be of separate interest in spectral analysis
of nonstationary processes.

Let λ = λn be a sequence of frequencies of interest. For 1 ≤ a < b ≤ n, define
S∗

a,b,λ = ∑b
j=a Xj cos(jλ) and So

a,b,λ = ∑b
j=a Xj sin(jλ). Write S∗

a,λ := S∗
1,a,λ

and So
a,λ := So

1,a,λ.
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THEOREM 4. Assume that γ (t, h) is Cp in t on (bk, bk+1] for any h, k =
0,1, . . . , r , p ≥ 1. Further assume that conditions (A5) and (A10) hold with
4 + 2ε therein replaced by 4 and inft∈[0,1] f (t, λ) > 0. (i): If 0 < λ∗ ≤ λ ≤
λ∗ < π for some constants λ∗ and λ∗, then on a possibly richer probabil-
ity space, there exist i.i.d. two-dimensional standard normal random vectors
(G1,1,G1,2)

�, . . . , (Gn,1,Gn,2)
�, such that

max
1≤j≤n

∣∣∣∣∣(S∗
j,λ, S

o
j,λ

)� −
j∑

k=1

√
π

(
f 1/2(tk, λ)Gk,1, f

1/2(tk, λ)Gk,2
)�∣∣∣∣∣

= oP
(
np∗

log2 n
)
,

where p∗ = (p + 4)/[4(p + 2)]. (ii): If λ = 0 or π , then on a possibly richer
probability space, there exist i.i.d. standard normal random variables G∗

1, . . . ,G
∗
n,

such that

max
1≤j≤n

∣∣∣∣∣S∗
j,λ − √

2π

j∑
k=1

f 1/2(tk, λ)G∗
k

∣∣∣∣∣ = oP
(
n1/4 log2 n

)
.

Based on Theorem 4, we have the following corollary on the behavior of the
periodogram for nonstationary time series.

COROLLARY 5. Under the conditions of Theorem 4, we have (i): if the fre-
quency λ satisfies 0 < λ∗ ≤ λ ≤ λ∗ < π , then

In(λ)/

∫ 1

0
f (t, λ) dt ⇒ Exp(1),

where Exp(1) stands for the exponential distribution with mean 1. (ii) If λ = 0
or π , then In(λ)/

∫ 1
0 f (t, λ) dt converges in distribution to a χ2(1) random vari-

able.

REMARK 1. The condition 0 < λ∗ ≤ λ ≤ λ∗ < π is important for the validity
of Theorem 4 and Corollary 5. By (ii) of Lemma 5 in Zhou (2013), we have if
1 ≤ k ≤ C for some finite constant C, then∣∣∣∣∣Cov

(
S∗

n,λk
, So

n,λk

) − π

n∑
j=1

f (tj , λk) sin(4πktj )

∣∣∣∣∣ = O
(
log2 n

)
,(19)

where λk = 2πk/n. Therefore the real and imaginary parts of Sn(λk) are no longer
uncorrelated, and the periodogram does not converge to an Exp(1) distribution.
Similar results hold for frequencies near π . This is drastically different from the
stationary case where it is well known that the real and imaginary parts of Sn(λk)

are asymptotically independent and In(λk)/f (λk) ⇒ Exp(1). Indeed, note that
if f (t, λk) does not change with t , then we have

∑n
j=1 f (tj , λk) sin(4πktj ) = 0

in (19). Due to the time-varying nature of f (t, λk), the behavior of Fourier trans-
forms near frequency 0 or π is complicated for nonstationary time series.
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The following proposition investigates the asymptotic behavior of f̃n(λ) for
PLS time series.

PROPOSITION 4. Assume that K ∈ K is even. Then under the conditions of
Theorem 4 and the assumption that m → ∞ with m/(np/[4(p+2)] log2 n) → 0, we
have (i): if 0 < λ∗ ≤ λ ≤ λ∗ < π , then

√
m

(
f̃n(λ) −Ef̃n(λ)

) ⇒ N

(
0,

∫ 1

−1

[
K(t)

]2
dt

∫ 1

0
f 2(t, λ) dt

)
;

and (ii): if λ = 0 or π , then

√
m

(
f̃n(λ) −Ef̃n(λ)

) ⇒ N

(
0,2

∫ 1

−1

[
K(t)

]2
dt

∫ 1

0
f 2(t, λ) dt

)
.

Proposition 4, which is proved in Zhou (2013), establishes the asymptotic nor-
mality of f̃n(λ) for a class of nonstationary nonlinear processes. Simple calcu-
lations show that Ef̃n(λ) = ∫ 1

0 f (t, λ) dt + o(1). Hence f̃n(λ) is a consistent es-
timator of the averaged energy at frequency λ over time. An important observa-
tion from Proposition 4 is that the asymptotic variance of f̃n(λ) is determined
by

∫ 1
0 f 2(t, λ) dt , the averaged squared spectral density over time. The latter

quantity should be estimated if one wishes to construct confidence intervals for∫ 1
0 f (t, λ) dt .

6. Proofs.

PROOF OF THEOREM 1. Let Zk = ∑n
j=1 Wn(tk, tj ){Hj(Xk) − E[Hj(Xk)]},

k = 1,2, . . . , n. Note that Nn = ∑n
j=1 Zj . To prove the theorem, we need to deal

with the dependence structure of {Zj } first. According to (2),

Zk =
∫
R2

g(t, s)

{
n∑

j=1

Wn(tk, tj )E
[
βj (s)

]}
γk(t) dt ds

:=
∫
R2

g(t, s)�k(s)γk(t) dt ds.

Let Zk,r = ∑n
j=1 Wn(tk, tj ){Hj(Xk,r) − E[Hj(Xk,r)]}. By Lemmas 1 and 2 in

Zhou (2013), the dependence measures

‖Zk − Zk,r‖p

≤
∫
R2

∣∣g(t, s)
∣∣∣∣�k(s)

∣∣∥∥γk(t) − γk,r (t)
∥∥
p dt ds

≤
∫
R2

∣∣g(t, s)
∣∣∣∣�k(s)

∣∣{∥∥L(Xk)
∥∥

2p|t |η[
δX(r, η2p)

]η + δL(X)(r,p)
}
dt ds

≤
∫
R2

C
(
1 + |t |η)∣∣g(t, s)

∣∣∣∣�k(s)
∣∣ρr

1
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for some ρ1 ∈ (0,1), where p = 2 + ε. On the other hand, note that

�k(s) ≤
n∑

j=1

∣∣Wn(tk, tj )
∣∣∣∣E[

βj (s)
]∣∣ ≤

n∑
j=1

∣∣Wn(tk, tj )
∣∣∥∥L(Xj )

∥∥ ≤ CWk,·.

Hence ‖Zk − Zk,r‖p ≤ CWk,·ρr
1. As a second step, we shall approximate Nn

by the sum of an m-dependent sequence. Define Zk,{m} = E[Zk|F̃k,k−m], where
F̃k,k−m = (εk, εk−1, . . . , εk−m). For j ∈ Z, define the projection operator

Pj (·) = E[·|Fj ] −E[·|Fj−1].
Elementary manipulations show that Pk−rZk,{m} = E[Pk−rZk|F̃k,k−m]. Hence by
Jensen’s inequality,∥∥Pk−r [Zk − Zk,{m}]

∥∥
p ≤ ‖Pk−rZk‖p + ‖Pk−rZk,{m}‖p ≤ 2‖Pk−rZk‖p

(20)
≤ 2‖Zk − Zk,r‖p ≤ CWk,·ρr

1.

Note that Zk,{m} − Zk = ∑∞
j=m{E[Zk|F̃k,k−j ] − E[Zk|F̃k,k−j−1]} and the sum-

mands form a martingale difference sequence. By Burkholder’s inequality,

‖Zk,{m} − Zk‖2
p ≤ C

∞∑
j=m

∥∥E[Zk|F̃k,k−j ] −E[Zk|F̃k,k−j−1]
∥∥2
p

≤ C

∞∑
j=m

‖Zk − Zk,j‖2
p ≤ CW 2

k,·ρ2m
1 .

Therefore ∥∥Pk−r [Zk − Zk,{m}]
∥∥
p ≤ ‖Zk,{m} − Zk‖p ≤ CWk,·ρm

1 .(21)

By (20), (21) and Burkholder’s inequality, for any r ≥ 0,
∥∥∥∥∥

n∑
k=1

Pk−r [Zk − Zk,{m}]
∥∥∥∥∥

2

p

≤
n∑

k=1

∥∥∥∥∥Pk−r [Zk − Zk,{m}]
∥∥∥∥∥

2

p

≤ CW(n)ρ
2 max(m,r)
1 .

Observe that
∑n

k=1[Zk − Zk,{m}] = ∑∞
r=0

∑n
k=1 Pk−r [Zk − Zk,{m}]. Therefore∥∥∥∥∥

n∑
k=1

[Zk − Zk,{m}]
∥∥∥∥∥
p

≤
∞∑

r=0

∥∥∥∥∥
n∑

k=1

Pk−r [Zk − Zk,{m}]
∥∥∥∥∥
p

(22)
≤ C

√
W(n)mρm

1 .

Inequality (22) shows that Nn can be well approximated by the sum of the m-
dependent sequence {Zk,{m} − E[Zk,{m}]}. In particular, let m = C logn. Then
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clearly approximation error in (22) can be made as O(n−p)
√

W(n) for any
p > 0. In the final step we shall prove a central limit theorem for Nn,{m} :=∑n

k=1{Zk,{m} −E[Zk,{m}]}. Define the big blocks and small blocks

Rj =
ln∑

k=1

{
Z(j−1)m+k,{m} −E[Z(j−1)m+k,{m}]} and

rj =
sn∑

k=ln+1

{
Z(j−1)m+k,{m} −E[Z(j−1)m+k,{m}]},

j = 1,2, . . . , �n/sn�. Note that Rj ’s are independent and rj ’s are also indepen-
dent. Then similar to the proof of (22), we can obtain |Var[Nn] − Var[Nn,{m}]| =
o(W(n)), ‖Rj‖2

p = O(Aj ),

∥∥∥∥∑
j

Rj

∥∥∥∥
2

p

= O

(∑
j

Aj

)
and

∥∥∥∥∑
j

rj

∥∥∥∥
2

p

= O

(∑
j

aj

)
.(23)

Therefore by condition (A3),∥∥∥∥Nn,{m} − ∑
j

Rj

∥∥∥∥
p

=
∥∥∥∥∑

j

rj

∥∥∥∥
p

= o
(√

W(n)
)
.(24)

By (22), ‖Nn,{m} − Nn‖p = o(
√

W(n)). By condition (A4), (23) and (24),

Var
[∑

j

Rj

]
/W(n) ≥ c/2 for sufficiently large n.

Now by (23),

∑
j ‖Rj‖p

p

(Var[∑j Rj ])p/2 ≤ C

∑
j A

p/2
j

[W(n)]p/2 ≤
{

maxAj

[W(n)]
}p/2−1 ∑

j Aj

W(n)
.

Hence by condition (A3),
∑

j ‖Rj‖p
p/Var[∑j Rj ])p/2 → 0. Therefore by the Lya-

punov CLT,
∑

j Rj/
√

Var[∑j Rj ] ⇒ N(0,1). Now by (22)–(24), the theorem fol-
lows. �

PROOF OF THEOREM 2. For any fixed (x, y) ∈ R
2, define

�n(x, y) = ∑
k,j

Wn(tk, tj )γk(x)γj (y).

We shall first determine the order of magnitude of �n(x, y). For complex-valued
random variables X and Y , define V (X) = E|X −EX|2 and Cov[X,Y ] = E[(X −
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EX)(Ȳ −EȲ )]. Note that, by (A6) and the symmetry of W(·, ·),
V

(
�n(x, y)

) = ∑
k,j

∑
l,m

Wn(tl, tm)Wn(tk, tj )Cov
[
γl(x)γm(y), γk(x)γj (y)

]

≤ ∑
k,j

∑
l,m

W 2
n (tk, tj )

∣∣Cov
[
γl(x)γm(y), γk(x)γj (y)

]∣∣
+ 2p/2

∑
k,j

∑
l,m

fn(tk, tj )
∣∣Wn(tk, tj )

∣∣ρp
k,j (l,m)

× ∣∣Cov
[
γl(x)γm(y), γk(x)γj (y)

]∣∣
:= ∑

k,j

W 2
n (tk, tj )�k,j (x, y;0)

+ 2p/2
∑
k,j

fn(tk, tj )
∣∣Wn(tk, tj )

∣∣�k,j (x, y;p),

where ρk,j (l,m) = min{max(|l − k|, |m − j |),max(|l − j |, |m − k|)} and

�k,j (x, y;p) = ∑
l,m

ρ
p
k,j (l,m)

∣∣Cov
[
γl(x)γm(y), γk(x)γj (y)

]∣∣.
We will omit the subscripts k, j in ρk,j (l,m) in the sequel for simplicity. Let

ρ∗(l,m) = max
{
min

(|k − l|, |k − m|, |j − l|, |j − m|),
min

(|l − k|, |l − j |, |l − m|),min
(|m − k|, |m − j |, |m − l|),

min
(|k − l|, |k − m|, |k − j |),min

(|j − l|, |j − m|, |j − k|)}.
We shall first show that

ρ(l,m) ≤ 2ρ∗(l,m) for all l,m.(25)

By the symmetry of ρ(l,m) and ρ∗(l,m), we only need to consider the case l ≤ m

and k ≤ j . Now if l ≤ k, then

2 min
(|l − k|, |l − j |, |l − m|) ≥ |k − l| if m ≥ (l + k)/2 and

2 min
(|k − l|, |k − m|, |j − l|, |j − m|) ≥ |l − k| if m ≤ (l + k)/2.

If l ≥ k, then

2 min
(|k − l|, |k − m|, |k − j |) ≥ |k − l| if j ≥ (l + k)/2 and

2 min
(|k − l|, |k − m|, |j − l|, |j − m|) ≥ |l − k| if j ≤ (l + k)/2.

In summary, 2ρ∗(l,m) ≥ |l − k|. Similarly, 2ρ∗(l,m) ≥ |j − m|. Hence (25) fol-
lows. Now by Lemmas 1, 2 and 7 in Zhou (2013), elementary calculations using
condition (A5) show that∣∣Cov

[
γl(x)γm(y), γk(x)γj (y)

]∣∣ ≤ C
(|x|η + 1

)(|y|η + 1
)
r
ρ∗(l,m)
1

(26)
≤ C

(∣∣(x, y)
∣∣2η + 1

)
r
ρ∗(l,m)
1
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for some r1 ∈ [0,1). Observe that for r = 0,1, . . . , n, the number of pairs (l,m)

such that ρ(l,m) = r is at most 2r2. Now by (25) and (26), we obtain that, for
r2 = √

r1,

�k,j (x, y;p) ≤ C
∑
l,m

ρp(l,m)
(∣∣(x, y)

∣∣2η + 1
)
r
ρ(l,m)
2

(27)
≤ C

(∣∣(x, y)
∣∣2η + 1

)
.

Note that the constant C does not depend on (k, j). Now by (27), we obtain∥∥�n(x, y) −E�n(x, y)
∥∥ ≤ C

(∣∣(x, y)
∣∣η + 1

)√
W(n) + �n.

Therefore by condition (A1),

‖Dn −EDn‖ ≤
∫
R2

∣∣g(x, y)
∣∣∥∥�n(x, y) −E�n(x, y)

∥∥dx dy

≤ C
√

W(n) + �n

∫
R2

(∣∣(x, y)
∣∣η + 1

)∣∣g(x, y)
∣∣dx dy

≤ C
√

W(n) + �n.

The theorem follows. �

PROOF OF THEOREM 3. Let �n(x, y) = ∑n
k,j=1 Wn(tk, tj )�

∗
n(tk, x)�∗

n(tj , y).
Recall the definition of �∗

n(t, s) in (11). We shall show that the two processes
�n(x, y) and �n(x, y) are close in the sense that∣∣∣∣Eh

[∫
R2

g(x, y)
[
�n(x, y) −E�n(x, y)

]
dx dy

]
(28)

−Eh

[∫
R2

g(x, y)
[
�n(x, y) −E�n(x, y)

]
dx dy

]∣∣∣∣ → 0

for any bounded and continuous h. For any s > 0, define the region A(s) =
{(x, y) ∈ R

2, |x| ≤ s, |y| ≤ s}, and let Ā(s) = R
2/A(s). Note that, by Lemma 4

in Zhou (2013), we have∥∥∥∥
∫
Ā(s)

g(x, y)
[
�n(x, y) −E�n(x, y)

]
dx dy

∥∥∥∥
≤

∫
Ā(s)

∣∣g(x, y)
∣∣∥∥�n(x, y) −E�n(x, y)

∥∥dx dy

≤ C

∫
Ā(s)

∣∣g(x, y)
∣∣(1 + ∣∣(x, y)

∣∣η)
dx dy.

Observe that
∫
Ā(s) |g(x, y)|(1 + |(x, y)|η) dx dy is independent of n and con-

verges to 0 as s → ∞. Similar inequality holds for
∫
Ā(s) g(x, y)[�n(x, y) −
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E�n(x, y)]dx dy. Hence, to prove (28), one only need to show that, for each
fixed s, (28) holds with R

2 therein replaced by A(s). To this end, we shall first
show that, for any (x1, y1), . . . , (xm, ym) ∈ A(s) and any bounded and continuous
h :Rm →R,

Eh
{(

�n(x1, y1) −E�n(x1, y1), . . . , �n(xm, ym) −E�n(xm, ym)
)}

−Eh
{(

�n(x1, y1) −E�n(x1, y1), . . . ,�n(xm, ym) −E�n(xm,ym)
)}

(29)

= o(1).

We shall only prove the case m = 1 since similar arguments apply to general m.
Consider the case x, y �= 0. By Corollary 2 of Wu and Zhou (2011), we have,
on a possibly richer probability space, a sequence a i.i.d. 4-dimensional standard
normal random vectors Z1,Z2, . . . ,Zn, such that

max
1≤k≤n

∣∣∣∣∣
k∑

j=1

{(
γj,1(x), γj,2(x), γj,1(y), γj,2(y)

)� − �
1/2
j∗

(
tj , (x, y)�

)
Zj

}∣∣∣∣∣
(30)

= oP
(
n1/4 log2 n

)
.

Define the complex-valued random variables Z∗
j = [�1/2

j∗ (tj , (x, y)�)Zj ]1 +
i[�1/2

j∗ (tj , (x, y)�)Zj ]2 and Z∗∗
j = [�1/2

j∗ (tj , (x, y)�)Zj ]3 + i[�1/2
j∗ (tj , (x, y)�)×

Zj ]4, where [�1/2
j∗ (tj , (x, y)�)Zj ]r denotes the r th element of �

1/2
j∗ (tj , (x, y)�)×

Zj . Define the quadratic form

�♦
n (x, y) =

n∑
k,j=1

Wn(tk, tj )Z
∗
kZ∗∗

j .(31)

Note that ∣∣�n(x, y) − �♦
n (x, y)

∣∣ ≤
∣∣∣∣∑
k,j

Wn(tk, tj )
[
γk(x) − Z∗

k

]
γj (y)

∣∣∣∣
+

∣∣∣∣∑
k,j

Wn(tk, tj )
[
γj (y) − Z∗∗

j

]
Z∗

k

∣∣∣∣.
Using the summation by parts technique and similar to the proof of inequality (12)
in Zhou (2013), we have |�n(x, y) − �♦

n (x, y)| = oP(1). Now by the above in-
equality and Lemma 3 in Zhou (2013), we obtain∣∣�n(x, y) −E�n(x, y) − [

�♦
n (x, y) −E�♦

n (x, y)
]∣∣ = oP(1).(32)

By condition (A10), we have that �k(t, (x, y)�) is continuous on [bk, bk+1],
k = 0,1, . . . , r . Therefore elementary calculations show that, on a possibly richer
probability space,∣∣�♦

n (x, y) −E�♦
n (x, y) − [

�n(x, y) −E�n(x, y)
]∣∣ = oP(1).(33)
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Hence (29) with m = 1 follows from (32) and (33). Now consider the case x = 0.
If L(·) ≡ C, then �n(0, y) ≡ 0 and �n(0, y) ≡ 0. Hence (29) trivially holds. If L(·)
is not a constant, then (29) follows from similar and simpler arguments as above
by considering the covariance matrix �∗

k (y). In summary, (29) follows.
As a second step toward (28), we prove that {�n(x, y) − E�n(x, y)} is tight on

C(A(s)), where C(A(s)) is the collection of all complex-valued continuous func-
tions on A(s) equipped with the uniform topology. Note that

�n(x1, y1) −E�n(x1, y1) − [
�n(x2, y2) −E�n(x2, y2)

]
= i

∫ y1

y2

ρ(1)
n (x2, y) dy + i

∫ x1

x2

ρ(2)
n (x, y2) dx(34)

−
∫ x1

x2

∫ y1

y2

ρ(3)
n (x, y) dx dy,

where ρ
(1)
n (x, y) = ∑

k,j Wn(tk, tj )[γk(x)γ
♦
j (y) − Eγk(x)γ

♦
j (y)], ρ

(2)
n (x, y) =∑

k,j Wn(tk, tj )× [γ ♦
k (x)γj (y) −Eγ

♦
k (x)γj (y)] and

ρ(3)
n (x, y) = ∑

k,j

Wn(tk, tj )
[
γ

♦
k (x)γ

♦
j (y) −Eγ

♦
k (x)γ

♦
j (y)

]

with γ
♦
j (x) = L∗(Xj )e

ixXj −E[L∗(Xj )e
ixXj ]. By the proof of Lemma 4 in Zhou

(2013), we have

sup
k=1,2,3,(x,y)∈A(s)

∥∥ρ(k)
n (x, y)

∥∥
2+ε = O(1).(35)

By (34) and (35), we have, for any fixed (x0, y0) ∈ A(s) and δ > 0,∥∥∥ sup
|(x,y)−(x0,y0)|≤δ

∣∣�n(x, y) −E�n(x, y) − [
�n(x0, y0) −E�n(x0, y0)

]∣∣∥∥∥
2+ε

(36)
= O(δ).

Define ω(δ) = sup|(x1,y1),(x2,y2)∈A(s),|(x1,y1)−(x2,y2)|≤δ| |�n(x1, y1) −E�n(x1, y1) −
[�n(x2, y2) − E�n(x2, y2)]|. By (36) and a standard chaining technique, we have
for each fixed ε > 0

lim
δ→0

lim sup
n→∞

P
(
ω(δ) > ε

) = 0.

Hence {�n(x, y) −E�n(x, y)} is tight on A(s). By standard smooth Gaussian pro-
cess techniques, it is easy to see that �n(x, y)−E�n(x, y) is tight on A(s). Since
both processes are relatively compact on A(s) and the differences of their finite
dimensional distributions converge in the sense of (29), we have for any bounded
and continuous function h∗,

Eh∗(
�n(x, y) −E�n(x, y)

) −Eh∗(
�n(x, y) −E�n(x, y)

) → 0.
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Since g(x, y) ∈ L1(R2), we have K(f ) := ∫
A(s) g(x, y)f (x, y) dx dy is continu-

ous on C(A(s)). Hence (28) follows.
Finally, note that �∗

n(tk, s)’s are independent complex-valued Gaussian pro-
cesses, k = 0,1,2, . . . , n. By the classic Gaussian process theory [see, e.g., Kuo
(1975), Chapter 1.2], we have �∗

n(tk, s) can be represented as (in the sense of
equality in distribution)

(�(
�∗

n(tk, s)
)
,�(

�∗
n(tk, s)

))� =
∞∑

j=1

An,j (tk, s)Bk,j , k = 0,1,2, . . . , n,

where �(·) and �(·) denotes real and imaginary parts of a complex number, re-
spectively, An,j (t, s)’s are 2 × 2 matrix functions and Bk,j ’s are independent 2-
dimensional standard normal random vectors. Hence it is straightforward to see
that

∫
R2 g(x, y)[�n(x, y)−E�n(x, y)]dx dy is a quadratic form of i.i.d. standard

normal random variables G1,G2, . . . . Moreover, by the arguments of Lemma 4 in
Zhou (2013), we have ‖ ∫

R2 g(x, y)[�n(x, y)−E�n(x, y)]dx dy‖ = O(1). Hence

∫
R2

g(x, y)
[
�n(x, y) −E�n(x, y)

]
dx dy =

∞∑
j=1

αn,j

(
Z2

j − 1
)

with
∑∞

j=1 α2
n,j < ∞. �

REMARK 2. As we can see from the proof of (30), the positive-definiteness
requirement on �k(t, s) and �∗

k (t, s) in (A9) is to facilitate a Gaussian approxi-
mation result in Wu and Zhou (2011). We point out that the positive-definiteness
requirement can be weakened to the assumption that certain block sums of the lat-
ter long-run covariance matrices are positive definite. See Remark 2 of Wu and
Zhou (2011). For presentational simplicity, we shall stick to the everywhere posi-
tive definiteness assumption in this paper.

PROOF OF COROLLARY 2. We shall prove this corollary by showing that
�n(x, y) − E�n(x, y) converges to a Gaussian measure on C(A(s)). By the tight-
ness of {�n(x, y) − E�n(x, y)} and the arguments in the proof of Theorem 3, it
suffices to show that any finite dimensional distribution of the latter sequence
of measures converges to a (multivariate) normal distribution. To this end, we
will only show that ρ∗

n(x, y) − Eρ∗
n(x, y) converges to a Gaussian distribution

for any (x, y) ∈ A(s) since all other cases follow by similar arguments and the
Cramer–Wold device. Here ρ∗

n(x, y) = ∑n
k,j=1 Wn(tk, tj )γk,1(x)γj,1(y), γk,1(x) =

�(γk(x)) and γk,2(x) = �(γk(x)). Consider the case x, y �= 0. Then by the proof
of (32), we have∣∣ρ∗

n(x, y) −Eρ∗
n(x, y) − [

ρ
♦
n,1(x, y) −Eρ

♦
n,1(x, y)

]∣∣ = oP(1),



112 Z. ZHOU

where ρ
♦
n,1(x, y) = ∑n

k,j=1 Wn(tk, tj )�(Z∗
k )�(Z∗∗

j ). Recall the definitions of Z∗
k

and Z∗∗
j in (31). Note that ρ

♦
n,1(x, y) is a quadratic form of i.i.d. normal random

variables. More specifically, ρ
♦
n,1(x, y) can be written as

2ρ
♦
n,1(x, y) = Z�D�(Wn ⊗ A)DZ,(37)

where Z = (Z�
1 , . . . ,Z�

n )� is a length 4n vector of i.i.d. standard normal random

variables, D = Diag(�
1/2
1∗ (t1, (x, y)�), . . . ,�

1/2
n∗ (tn, (x, y)�)) is a 4n × 4n block

diagonal matrix, A is the 4 × 4 matrix with (1,3)th and (3,1)th elements equal-
ing 1 and all other entries equaling 0 and ⊗ denotes the Kronecker product. Let
Mn = D�Wn ⊗ AD. By condition (A9), D is positive definite with eigenvalues
bounded both above and below. Then it is easy to see that there exist constants
0 < c ≤ C < ∞, such that c ≤ ∑4n

k,j=1 M2
n(k, j) ≤ C. By the Lyapunov CLT, to

prove the asymptotic normality of ρ
♦
n,1(x, y)−Eρ

♦
n,1(x, y), it suffices to show that

the |θ∗
n,1| → 0, where θ∗

n,1 is the eigenvalue of Wn ⊗A with the maximum absolute
value. By the basic property of Kronecker product, we have that the eigenvalues
of Wn ⊗ A are the products of the eigenvalues of Wn and A. Hence it is clear that
|θ∗

n,1| = |θn,1| → 0. The case when x = 0 or y = 0 follows similarly. �

SKETCH OF PROOF OF THEOREM 4. Theorem 4 follows from Lemma 5 in
the online supplement of the paper with |b − a| = �c1/2n1/2 log−1 n� for some
finite constant c together with a careful check of the proof of Theorem 1 in Wu
and Zhou (2011) with l = �c logn� and m = �l1/2n1/2 log−3/2 n� therein. �
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SUPPLEMENTARY MATERIAL

Supplement for “Inference of weighted V -statistics for nonstationary time
series and its applications” (DOI: 10.1214/13-AOS1184SUPP; .pdf). This sup-
plementary material contains auxiliary lemmas and proofs of Propositions 1, 3, 4
and Corollaries 3, 4 of the paper.
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