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We consider the predictive problem of supervised ranking, where the task
is to rank sets of candidate items returned in response to queries. Although
there exist statistical procedures that come with guarantees of consistency
in this setting, these procedures require that individuals provide a complete
ranking of all items, which is rarely feasible in practice. Instead, individu-
als routinely provide partial preference information, such as pairwise com-
parisons of items, and more practical approaches to ranking have aimed at
modeling this partial preference data directly. As we show, however, such an
approach raises serious theoretical challenges. Indeed, we demonstrate that
many commonly used surrogate losses for pairwise comparison data do not
yield consistency; surprisingly, we show inconsistency even in low-noise set-
tings. With these negative results as motivation, we present a new approach
to supervised ranking based on aggregation of partial preferences, and we de-
velop U-statistic-based empirical risk minimization procedures. We present
an asymptotic analysis of these new procedures, showing that they yield con-
sistency results that parallel those available for classification. We complement
our theoretical results with an experiment studying the new procedures in a
large-scale web-ranking task.

1. Introduction. Recent years have seen significant developments in the the-
ory of classification, most notably binary classification, where strong theoretical
results are available that quantify rates of convergence and shed light on qualita-
tive aspects of the problem [3, 45]. Extensions to multi-class classification have
also been explored, and connections to the theory of regression are increasingly
well understood, so that overall a satisfactory theory of supervised machine learn-
ing has begun to emerge [40, 44].

In many real-world problems in which labels or responses are available, how-
ever, the problem is not merely to classify or predict a real-valued response, but
rather to list a set of items in order. The theory of supervised learning cannot be
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considered complete until it also provides a treatment of such ranking problems.
For example, in information retrieval, the goal is to rank a set of documents in
order of relevance to a user’s search query; in medicine, the object is often to rank
drugs in order of probable curative outcomes for a given disease; and in recom-
mendation or advertising systems, the aim is to present a set of products in order
of a customer’s willingness to purchase or consume. In each example, the inten-
tion is to order a set of items in accordance with the preferences of an individual
or population. While such problems are often converted to classification problems
for simplicity (e.g., a document is classified as “relevant” or not), decision makers
frequently require the ranks (e.g., a search engine must display documents in a
particular order on the page). Despite its ubiquity, our statistical understanding of
ranking falls short of our understanding of classification and regression. Our aim
here is to characterize the statistical behavior of computationally tractable infer-
ence procedures for ranking under natural data-generating mechanisms.

We consider a general decision-theoretic formulation of the supervised ranking
problem in which preference data are drawn i.i.d. from an unknown distribution,
where each datum consists of a query, Q € Q, and a preference judgment, Y €
Y, over a set m of candidate items that are available based on the query Q. The
exact nature of the query and preference judgment depend on the ranking context.
In the setting of information retrieval, for example, each datum corresponds to a
user issuing a natural language query and expressing a preference by selecting or
clicking on zero or more of the returned results. The statistical task is to discover
a function that provides a query-specific ordering of items that best respects the
observed preferences. This query-indexed setting is especially natural for tasks
like information retrieval in which a different ranking of webpages is needed for
each natural language query.

Following existing literature, we estimate a scoring function f:Q — R™,
where f(q) assigns a score to each of m candidate items for the query ¢, and
the results are ranked according to their scores [22, 24]. Throughout the paper,
we adopt a decision-theoretic perspective and assume that given a query-judgment
pair (Q, Y), we evaluate the scoring function f via a loss L(f(Q), Y). The goal
is to choose the f minimizing the risk

(1) R(f):=E[L(f(Q),Y)].

While minimizing the risk (1) directly is in general intractable, researchers in ma-
chine learning and information retrieval have developed surrogate loss functions
that yield procedures for selecting f. Unfortunately, as we show, extant procedures
fail to solve the ranking problem under reasonable data generating mechanisms.
The goal in the remainder of the paper is to explain this failure and to propose a
novel solution strategy based on preference aggregation.

Let us begin to elucidate the shortcomings of current approaches to ranking.
One main problem lies in their unrealistic assumptions about available data. The
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losses proposed and most commonly used for evaluation in the information re-
trieval literature [27, 30] have a common form, generally referred to as (Normal-
ized) Discounted Cumulative Gain (N)DCG). The NDCG family requires that the
preference judgments Y associated with the datum (Q, Y) be a vector ¥ € R™
of relevance scores for the entire set of items; that is, ¥; denotes the real-valued
relevance of item j to the query Q. While having complete preference informa-
tion makes it possible to design procedures that asymptotically minimize NDCG
losses (e.g., [12]), in practice such complete preferences are unrealistic: they are
expensive to collect and difficult to trust. In biological applications, evaluating the
effects of all drugs involved in a study—or all doses—on a single subject is in-
feasible. In web search, users click on only one or two results: no feedback is
available for most items. Even when practical and ethical considerations do not
preclude collecting complete preference information from participants in a study,
a long line of psychological work highlights the inconsistency with which humans
assign numerical values to multiple objects (e.g., [31, 39, 41]).

The inherent practical difficulties that arise in using losses based on relevance
scores has led other researchers to propose loss functions that are suitable for par-
tial preference data [16, 22, 28]. Such data arise naturally in a number of real-
world situations; for example, a patient’s prognosis may improve or deteriorate af-
ter administration of treatment, competitions and sporting matches provide paired
results, and shoppers at a store purchase one item but not others. Moreover, the
psychological literature shows that human beings are quite good at performing
pairwise distinctions and forming relative judgments (see, e.g., [37] and references
therein).

More formally, let @ := f(Q) € R™ denote the vector of predicted scores for
each item associated with query Q. If a preference Y indicates that item i is
preferred to j then the natural associated loss is the zero-one loss L(«,Y) =
I(e; < aj). Minimizing such a loss is well known to be computationally in-
tractable; nonetheless, the classification literature [3, 40, 44, 45] has shown that
it is possible to design convex Fisher-consistent surrogate losses for the 0—1 loss
in classification settings and has linked Fisher consistency to consistency. By re-
duction to classification, similar consistency results are possible in certain bipartite
or binary ranking scenarios [10]. One might therefore hope to make use of these
surrogate losses in the ranking setting to obtain similar guarantees. Unfortunately,
however, this hope is not borne out; as we illustrate in Section 3, it is generally
computationally intractable to minimize any Fisher-consistent loss for ranking,
and even in favorable low-noise cases, convex surrogates that yield Fisher consis-
tency for binary classification fail to be Fisher-consistent for ranking.

We find ourselves at an impasse: existing methods based on practical data-
collection strategies do not yield a satisfactory theory, and those methods that do
have theoretical justification are not practical. Our approach to this difficulty is to
take a new approach to supervised ranking problems in which partial preference
data are aggregated before being used for estimation. The point of departure for
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this approach is the notion of rank aggregation (e.g., [21]), which has a long his-
tory in voting [15], social choice theory [2, 11] and statistics [29, 42]. In Section 2,
we discuss some of the ways in which partial preference data can be aggregated,
and we propose a new family of U -statistic-based loss functions that are compu-
tationally tractable. Sections 3 and 4 present a theoretical analysis of procedures
based on these loss functions, establishing their consistency. We provide a fur-
ther discussion of practical rank aggregation strategies in Section 5 and present
experimental results in Section 6. Section 7 contains our conclusions, with proofs
deferred to appendices.

2. Ranking with rank aggregation. We begin by considering several ways in
which partial preference data arise in practice. We then turn to a formal treatment
of our aggregation-based strategy for supervised ranking.

1. Paired comparison data. Data in which an individual judges one item to
be preferred over another in the context of a query are common. Competitions
and sporting matches, where each pairwise comparison may be accompanied by a
magnitude such as a difference of scores, naturally generate such data. In practice,
a single individual will not provide feedback for all possible pairwise comparisons,
and we do not assume transitivity among the observed preferences for an individ-
ual. Thus, it is natural to model the pairwise preference judgment space ) as the
set of weighted directed graphs on m nodes.

2. Selection data. A ubiquitous source of partial preference information is the
selection behavior of a user presented with a small set of potentially ordered items.
For example, in response to a search query, a web search engine presents an or-
dered list of webpages and records the URL a user clicks on, and a store records
inventory and tracks the items customers purchase. Such selections provide partial
information: that a user or customer prefers one item to others presented.

3. Partial orders. An individual may also provide preference feedback in terms
of a partial ordering over a set of candidates or items. In the context of elections, for
example, each preference judgment Y € ) specifies a partial order <y over candi-
dates such that candidate i is preferred to candidate j whenever i <y j. A partial
order need not specify a preference between every pair of items.

Using these examples as motivation, we wish to develop a formal treatment of
ranking based on aggregation. To provide intuition for the framework presented in
the remainder of this section, let us consider a simple aggregation strategy appro-
priate for the case of paired comparison data. Let each relevance judgment ¥ €
be a weighted adjacency matrix where the (i, j)th entry expresses a preference for
item i over j whenever this entry is nonzero. In this case, a natural aggregation
strategy is to average all observed adjacency matrices for a fixed query. Specif-
ically, for a set of adjacency matrices {Yl};‘:1 representing user preferences for
a given query, we form the average (1/k) Zf‘: 1 Y. As k — oo, the average ad-
jacency matrix captures the mean population preferences, and we thereby obtain
complete preference information over the m items.
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This averaging of partial preferences is one example of a general class of ag-
gregation strategies that form the basis of our theoretical framework. To formal-
ize this notion, we modify the loss formulation slightly and hereafter assume that
the loss function L is a mapping R” x & — R, where S is a problem-specific
structure space. We further assume the existence of a series of structure func-
tions, sy : V¥ — S, that map sets of preference judgments {Y;} into S. The loss
L depends on the preference feedback (Y1, ..., Yi) for a given query only via the
structure s¢ (Y1, ..., Yx). In the example of the previous paragraph, S is the set of
m x m adjacency matrices, and si(Yy, ..., Yr) = (1/k) Zf;l Y;. A typical loss for
this setting is the pairwise loss [22, 28]

L(a,s(Y1,....Y0)) = Lo, A):= Y Ajjl(a; <aj)+ Y Aijl(e; <aj),
i<j i>j

where « is a set of scores and A = s¢ (Y7, ..., Yx) is the average adjacency ma-
trix with entries A;;. In Section 5, we provide other examples of structure func-
tions for different data collection mechanisms and losses. Hereafter, we abbreviate
sp(Yy, ..., Yr) ass(Yy, ..., Yr) whenever the input length k is clear from context.

To meaningfully characterize the asymptotics of inference procedures, we make
a mild assumption on the limiting behavior of the structure functions.

ASSUMPTION A. Fix a query Q = ¢q. Let the sequence Yy, Y3, ... be drawn
i.i.d. conditional on ¢, and define the random variables Si :=s(Yq, ..., Yi). If ;L’(;
denotes the distribution of Si, there exists a limiting law 4, such that

d
,LLS—)[,Lq as k — oo.

For example, the averaging structure function satisfies Assumption A so long
as E[|Y;;] | Q] < oo with probability 1. Aside from the requirements of Assump-
tion A, we allow arbitrary aggregation within the structure function.

In addition, our main assumption on the loss function L is as follows:

ASSUMPTION B. The loss function L : R™ x S — R is bounded in [0, 1], and,
for any fixed vector « € R™, L(«, -) is continuous in the topology of S.

With our assumptions on the asymptotics of the structure function s and the loss
L in place, we now describe the risk functions that guide our design of inference
procedures. We begin with the pointwise conditional risk, which maps predicted
scores and a measure p on S to [0, 1]:

2) C:R™ x M(S) — [0, 1] where £(a, () := / Lo, s)du(s).

Here, M(S) denotes the closure of the subset of probability measures on the set
§ for which £ is defined. For any query ¢ and o € R™, we have lim; £(a, j1g) =
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£(a, j1g) by the definition of convergence in distribution. This convergence moti-
vates our decision-theoretic approach.
Our goal in ranking is thus to minimize the risk

3) R(f) =) pet(f(@). 1ng).
q

where p, denotes the probability that the query Q = g is issued. The risk of the
scoring function f can also be obtained in the limit as the number of preference
judgments for each query goes to infinity:

@  R(fH= lilgnE[L(f(Q), sV, ..., Yo)] = lilgnZPqﬁ(f(q), )
q

That the limiting expectation (4) is equal to the risk (3) follows from the definition
of weak convergence.

We face two main difficulties in the study of the minimization of the risk (3).
The first difficulty is that of Fisher consistency mentioned previously: since L may
be nonsmooth in the function f and is typically intractable to minimize, when will
the minimization of a tractable surrogate lead to the minimization of the loss (3)?
We provide a precise formulation of and answer to this question in Section 3.
In addition, we demonstrate the inconsistency of many commonly used pairwise
ranking surrogates and show that aggregation leads to tractable Fisher consistent
inference procedures for both complete and partial data losses.

The second difficulty is that of consistency: for a given Fisher consistent sur-
rogate for the risk (3), are there tractable statistical procedures that converge to a
minimizer of the risk? Yes: in Section 4, we develop a new family of aggregation
losses based on U -statistics of increasing order, showing that uniform laws of large
numbers hold for the resulting M -estimators.

3. Fisher consistency of surrogate risk minimization. In this section, we
formally define the Fisher consistency of a surrogate loss and give general neces-
sary and sufficient conditions for consistency to hold for losses satisfying Assump-
tion B. To begin, we assume that the space Q of queries is countable (or finite) and
thus bijective with N. Recalling the definition (3) of the risk and the pointwise
conditional risk (2), we define the Bayes risk for R as the minimal risk over all
measurable functions f: Q9 — R™:

R*:=infR(f) = inf £, 11).
inf R(f) ;pqalerﬁw (@, 1tg)

The second equality follows because Q is countable and the infimum is taken over
all measurable functions.

Since it is infeasible to minimize the risk (3) directly, we consider a bounded-
below surrogate ¢ to minimize in place of L. For each structure s € S, we write
o(-,5):R™ — R, and we assume that for « € R", the function s — ¢(a, s) is
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continuous with respect to the topology on S. We then define the conditional ¢-
risk as

5) b= [ p@s)du)
and the asymptotic ¢-risk of the function f as

(6) Ry(f) = el (f (@), 1tg).
q

whenever each €, (f (), tq) exists [otherwise R, (f) = +o0]. The optimal ¢-risk
is defined to be R(’; :=1infs Ry(f), and throughout we make the assumption that
there exist measurable f such that R, (f) < +00 so that R;’; is finite. The following
is our general notion of Fisher consistency.

DEFINITION 1. The surrogate loss ¢ is Fisher-consistent for the loss L if for
any {p,} and probability measures p, € M(S), the convergence

Ry(fn) — Rf; implies R(f,) — R*.

To achieve more actionable risk bounds and to more accurately compare surro-
gate risks, we also draw upon a uniform statement of consistency:

DEFINITION 2. The surrogate loss ¢ is uniformly Fisher-consistent for the
loss L if for any & > 0, there exists a §(¢) > 0 such that for any {p, } and probability
measures (g € M(S),

@) Ry (f) <R;+5(8) implies R(f) < R* +&.

The bound (7) is equivalent to the assertion that there exists a nondecreas-
ing function ¢ such that ¢(0) =0 and R(f) — R* < ¢(Ry(f) — R;;). Bounds
of this form have been completely characterized in the case of binary classifica-
tion [3], and Steinwart [40] has given necessary and sufficient conditions for uni-
form Fisher-consistency to hold in general risk minimization problems. We now
turn to analyzing conditions under which a surrogate loss ¢ is Fisher-consistent for
ranking.

3.1. General theory. The main approach in establishing conditions for the sur-
rogate risk Fisher consistency in Definition 1 is to move from global conditions for
Fisher consistency to local, pointwise Fisher consistency. Following the treatment
of Steinwart [40], we begin by defining a function measuring the discriminating
ability of the surrogate ¢:

8) H(e):= Me./\i/rllf

[Zw(a, w) —infly(a’, 1) | €(a, p) — inf (e, ) > 8}.
(S),x o o
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This function is familiar from work on surrogate risk Fisher consistency in clas-
sification [3] and measures surrogate risk suboptimality as a function of risk sub-
optimality. A reasonable conditional g-risk will declare a set of scores o € R™
suboptimal whenever the conditional risk ¢ declares them suboptimal. This corre-
sponds to H(e) > 0 whenever ¢ > 0, and we call any loss satisfying this condition
pointwise consistent.

From these definitions, we can conclude the following consistency result, which
is analogous to the results of [40]. For completeness, we provide a proof in the
supplementary material [18].

PROPOSITION 1. Let ¢ :R™ x § — Ry be a bounded-below loss function
such that for some f, Ry(f) < +00. Then ¢ is pointwise consistent if and only if
the uniform Fisher-consistency definition (7) holds.

Proposition 1 makes it clear that pointwise consistency for general measures @
on the set of structures S is a stronger condition than that of Fisher consistency in
Definition 1. In some situations, however, it is possible to connect the weaker sur-
rogate risk Fisher consistency of Definition 1 with uniform Fisher consistency and
pointwise consistency. Ranking problems with appropriate choices of the space &
give rise to such connections. Indeed, consider the following:

ASSUMPTION C. The space of possible structures S is finite, and the loss L
is discrete, meaning that it takes on only finitely many values.

Binary and multiclass classification provide examples of settings in which As-
sumption C is appropriate, since the set of structures S is the set of class labels, and
L is usually a version of the 0—1 loss. We also sometimes make a weaker version
of Assumption C:

ASSUMPTION C’. The (topological) space of possible structures S is com-
pact, and for some d € N there exists a partition Ay, ..., Ay of R™ such that for
any s €S,

L(a,s)=L(d,s) whenever o, o’ € A;.

Assumption C’ may be more natural in ranking settings than Assumption C. The
compactness assumption holds, for example, if S C R™ is closed and bounded,
such as in our pairwise aggregation example in Section 2. Losses L that depend
only on the relative order of the coordinate values of @ € R”—common in ranking
problems—provide a collection of examples for which the partitioning condition
holds.

Under Assumption C or C’, we can provide a definition of local consistency that
is often more user-friendly than pointwise consistency (8):
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DEFINITION 3. Let ¢ be a bounded-below surrogate loss such that ¢(-, s) is
continuous for all s € S. The function ¢ is structure-consistent with respect to the
loss L if for all u© € M(S),

£3 () = inf (e, p) < igf{ﬁ(p(a, 1) | o & argmin € (o, M)}.
a/

Definition 3 describes the set of loss functions ¢ satisfying the intuitively de-
sirable property that the surrogate ¢ cannot be minimized if the scores o« € R"”
are restricted to not minimize the loss L. As we see presently, Definition 3 cap-
tures exactly what it means for a surrogate loss ¢ to be Fisher-consistent when one
of Assumptions C or C’ holds. Moreover, the set of Fisher-consistent surrogates
coincides with the set of uniformly Fisher-consistent surrogates in this case. The
following theorem formally states this result; we give a proof in the supplementary
material [18].

THEOREM 1. Let ¢:R"™ x S — Ry satisfy R,(f) < +o0 for some measur-
able f.If Assumption C holds, then:

(@) If ¢ is structure consistent (Definition 3), then ¢ is uniformly Fisher-
consistent for the loss L (Definition 2).

(b) If ¢ is Fisher-consistent for the loss L (Definition 1), then ¢ is structure
consistent.

If the function ¢ (-, s) is convex for s € S, and for u € M(S) the conditional risk
Ly(a, u) — oo as ||| — 0o, then Assumption C' implies (a) and (b).

Theorem 1 shows that as long as Assumption C holds, pointwise consistency,
structure consistency, and both uniform and nonuniform surrogate loss consistency
coincide. These four also coincide under the weaker Assumption C’ so long as the
surrogate is 0-coercive, which is not restrictive in practice. As a final note, we
recall a result due to Steinwart [40], which gives general necessary and sufficient
conditions for the consistency in Definition 1 to hold, using a weaker version of
the suboptimality function (8) that depends on pu:

9)  H(e,p) = igf[ﬁ(p(a, W —infly(e’, 1) | £(@, p) —infe(e, ;1) > s}.

PROPOSITION 2 (Steinwart [40], Theorems 2.8 and 3.3). The suboptimality
function (9) satisfies H (g, pg) > 0 for any € > 0 and gy with q € Q and p, > 0 if
and only if ¢ is Fisher-consistent for the loss L (Definition 1).

As a corollary of this result, any structure-consistent surrogate loss ¢ (in the
sense of Definition 3) is Fisher-consistent for the loss L whenever the conditional
risk £(a, ) has finite range, so that o ¢ argmin,, £(c’, u) # @ implies the exis-
tence of an ¢ > 0 such that £(a, p) — infy £(a, ) > e.
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3.2. The difficulty of Fisher consistency for ranking. We now turn to the ques-
tion of whether there exist structure-consistent ranking losses. In a preliminary
version of this work [19], we focused on the practical setting of learning from
pairwise preference data and demonstrated that many popular ranking surrogates
are inconsistent for standard pairwise ranking losses. We review and generalize
our main inconsistency results here, noting that while the losses considered use
pairwise preferences, they perform no aggregation. Their theoretically poor perfor-
mance provides motivation for the aggregation strategies proposed in this work; we
explore the connections in Section 5 (focusing on pairwise losses in Section 5.3).
We provide proofs of our inconsistency results in the supplementary material [18].

To place ourselves in the general structural setting of the paper, we consider
the structure function s(Y71, ..., Yx) = Y1 which performs no aggregation for all ,
and we let Y denote the weighted adjacency matrix of a directed acyclic graph
(DAG) G, so that Y;; is the weight of the directed edge (i — j) in the graph G.
We consider a pairwise loss that imposes a separate penalty for each misordered
pair of results:

(10) L@, Y)=) Yl <aj)+ Y Yijl(ei <aj),

i<j i>j

where we distinguish the cases i < j and i > j to avoid doubly penalizing
I(a; = ;). When pairwise preference judgments are available, use of such losses
is common. Indeed, this loss generalizes the disagreement error described by
Dekel et al. [16] and is similar to losses used by Joachims [28]. If we define
Y/ == [Yijdu(Y), then

(11) o, )= Yl <ap)+) Yl <a)

i<j i>j

We assume that the number of nodes in any graph G (or, equivalently, the num-
ber of results returned by any query) is bounded by a finite constant m. Hence, the
conditional risk (11) has a finite range; if there are a finite number of preference la-
bels Y or the set of weights is compact, Assumptions C or C’ are satisfied, whence
Theorem 1 applies.

3.2.1. General inconsistency. Let the set P denote the complexity class of
problems solvable in polynomial time and NP denote the class of nondeterminis-
tic polynomial time problems (see, e.g., [26]). Our first inconsistency result (see
also [19], Lemma 7) is that unless P = NP (a widely doubted proposition), any
loss that is tractable to minimize cannot be a Fisher-consistent surrogate for the
loss (10) and its associated risk.

PROPOSITION 3. Finding an o minimizing £ is NP-hard.
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In particular, most convex functions are minimizable to an accuracy of ¢ in
time polynomial in the dimension of the problem times a multiple of log é, known
as poly-logarithmic time [4]. Since any o minimizing £, (a, ) must minimize
£(a, ) for a Fisher-consistent surrogate ¢, and £(-, i) has a finite range (so that
optimizing £, to a fixed & accuracy is sufficient), convex surrogate losses are in-
consistent for the pairwise loss (10) unless P = NP.

3.2.2. Low-noise inconsistency. We now turn to showing that, surprisingly,
many common convex surrogates are inconsistent even in low-noise settings in
which it is easy to find an @ minimizing £(«, 1). (Weaker versions of the results
in this section appeared in our preliminary paper [19].) Inspecting the loss defini-
tion (10), a natural choice for a surrogate loss is one of the form [16, 22, 24]

(12) o, Y) =) h(Yij)d(@ —a)),
iJ

where ¢ > 0 is a convex function, and 4 is a some function of the penalties Y;;.
This surrogate implicitly uses the structure function s(Y7, ..., Yx) = Y1 and per-
forms no preference aggregation. The conditional surrogate risk is thus £, (o, u) =
ixjhij¢(a; —aj), where hjj = S h(Y;j)du(Y). Surrogates of the form (12) are
convenient in margin-based binary classification, where the complete description
by Bartlett, Jordan and McAuliffe [3] shows ¢ is Fisher-consistent if and only if it
is differentiable at 0 with ¢'(0) < 0.

We now precisely define our low-noise setting. For any measure p on a space )
of adjacency matrices, let the directed graph G, be the difference graph, that is,
the graph with edge weights max{ijL -Y ]’t, 0} on edges (i — j), where Yi’;- =
JYijdu(Y). Then we say that the edge (i — j) ¢ G, if Yi/;. < Y;‘i (see Figure 1).
We define the following low-noise condition based on self-reinforcement of edges
in the difference graph.

DEFINITION 4. The measure u on a set Y of adjacency matrices is low-noise
when the corresponding difference graph G, satisfies the following reverse trian-
gle inequality: whenever there is an edge (i — j) and an edge (j — k) in G, the
weight Y i’Z —-Y ,ﬁf on the edge (i — k) is greater than or equal to the path weight
Yl’; —Yj’.f. +Y]’.“;( —Y,f‘j on the path (i — j — k).

2Y12 2Y13 2}/?31 Y12 YIS - Y—?)l

®

2Y53 Ya3

FIG. 1. The two leftmost DAGs occur with probability %, yielding the difference graph G, at right,
assuming Y3 > Y3».
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If pu satisfies Definition 4, its difference graph G, is a DAG. Indeed, the defini-
tion ensures that all global preference information in G, (the sum of weights along
any path) conforms with and reinforces local preference information (the weight
on a single edge). Hence, we would expect any reasonable ranking method to be
consistent in this setting. Nevertheless, typical pairwise surrogate losses are incon-
sistent in this low-noise setting (see also the weaker Theorem 11 in our preliminary
work [19]):

THEOREM 2. Let ¢ be a loss of the form (12) and assume h(0) = 0. If ¢ is
convex, then even in the low-noise setting of Definition 4 the loss ¢ is not structure-
consistent.

Given the difficulties we encounter using losses of the form (12), it is reasonable
to consider a reformulation of the surrogate. A natural alternative is a margin-
based loss, which encodes a desire to separate ranking scores by large margins
dependent on the preferences in a graph. Similar losses have been proposed, for
example, by [38]. The next result shows that convex margin-based losses are also
inconsistent, even in low-noise settings. (See also the weaker Theorem 12 of our
preliminary work [19].)

THEOREM 3. Let h:R — R and ¢ be a loss of the form
(13) e, Y)= Y o —a;—h(¥;).

i,j:Y;;>0

If ¢ is convex, then even in the low-noise setting of Definition 4 the loss ¢ is not
structure-consistent.

3.3. Achieving Fisher consistency. Although Section 3.2 suggests an inherent
difficulty in the development of tractable losses for ranking, tractable Fisher con-
sistency is in fact achievable if one has access to complete preference data. We
review a few of the known results here, showing how they follow from the Fisher
consistency guarantees in Section 3.1, and derive some new Fisher consistency
guarantees for the complete data setting (we defer all proofs to the supplemen-
tary material [18]). These results may appear to be of limited practical value, since
complete preference judgments are typically unavailable or untrustworthy, but, as
we show in Sections 4 and 5, they can be combined with aggregation strategies to
yield procedures that are both practical and come with consistency guarantees.

We first define the normalized discounted cumulative gain (NDCG) family of
complete data losses. Such losses are common in applications like web search,
since they penalize ranking errors at the top of a ranked list more heavily than
errors farther down the list. Let s € S € R™ be a vector of relevance scores and
a € R™ be a vector of predicted scores. Define 7, to be the permutation associated
with «, so that 7y (j) is the rank of item j in the ordering induced by «. Following
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Ravikumar et al. [35], a general class of NDCG loss functions can be defined as
follows:

1 & G(s)) -~ GGy)
14) L(as)=1- o 2= F(rg(j)’
(14)  L(a,s) Z(s) ; F (7o (j)) © n}ﬁx; Fra (1))

where G and F are functions monotonically increasing in their arguments. By
inspection, L € [0, 1], and we remark that the standard NDCG criterion [27] uses
G(sj) =2% —1and F(j) =log(l + j). The “precision at k” loss [30] can also be
written in the form (14), where G(s;) = s; (assuming that s; > 0) and F'(j) =1
for j <k and F(j) = +oo otherwise, which measures the relevance of the top k
items given by the vector «. This form generalizes standard forms of precision,
which assume s; € {0, 1}.

To analyze the consistency of surrogate losses for the NDCG family (14), we
first compute the loss £(«, ;) and then state a corollary to Proposition 2. Observe
that for any u € M(S),

L Gs))
=1 ZF(m(m ZG) O

J=1

Since the function F is increasing in its argument, minimizing ¢ (o, i) corresponds
to choosing any vector o whose values o; obey the same order as the m points
[G(s j)/Z(s)du(s). In particular, the range of £ is finite for any p since it depends
only on the permutation induced by «, so we have Corollary 1.

COROLLARY 1. Define the set

G(s)) G(s1)
d

z) M7 ] 70

A surrogate loss ¢ is Fisher-consistent for the NDCG family (14) if and only if for

all p € M(S),

(15) A(n) = {aeRm | oj > o when d,u(s)}.

igf{z¢(a, ) —infly (o, ) e ¢ A(,u)} > 0.

Corollary 1 recovers the main flavor of the consistency results in the papers
of Ravikumar et al. [35] and Buffoni et al. [6]. The surrogate ¢ is consistent if
and only if it preserves the order of the integrated terms [ G(s;)/Z(s) du(s): any
sequence o, tending to the infimum of £, (ct, 1) must satisfy o, € A(u) for large
enough n. Zhang [44] presents several examples of such losses; as a corollary to
his Theorem 5 (also noted by [6]), the loss

"G
go(a,s):—Z Z((S’))Z¢(az




THE ASYMPTOTICS OF RANKING ALGORITHMS 2305

is convex and structure-consistent (in the sense of Definition 3) whenever ¢ : R —
R is nonincreasing, differentiable and satisfies ¢’(0) < 0. The papers [6, 35] con-
tain more examples and a deeper study of NDCG losses. To extend Corollary 1 to
a uniform result, we note that if G(s;) > 0 for all j and S is compact, then ¢ is
0-coercive over the set {a] = 0},> whence Theorem 1 implies that structure con-
sistency coincides with uniform consistency.

Another family of loss functions is based on a cascade model of user behav-
ior [8]. These losses model dependency among items or results by assuming that a
user scans an ordered list of results from top to bottom and selects the first satis-
factory result. Here, satisfaction is determined independently at each position. Let
T, 1(i) denote the index of item that « € R™ assigns to rank i. The form of such
expected reciprocal rank (ERR) losses is

m

1 i—1
(16) Ll,s)=1-) ﬁ)G(sna_l(i)) [](1-Gs 2 ()
j=1

i=l

where G:R — [0, 1] is a nondecreasing function that indicates the prior proba-
bility that a result with score s; is selected, and F:N — [1, 00) is an increasing
function that more heavily weights the first items. The ERR family also satis-
fies L € [0, 1], and empirically correlates well with user satisfaction in ranking
tasks [8].

Computing the expected conditional risk £(«, u) for general u € M(S) is dif-
ficult, but we can compute it when w is a product measure over sy, ..., s,. Indeed,
in this case, we have

2o
ta=1-Y ;o [ 6t (,))1‘[ = Glsgr ;) dia(s)

i=1
m 1 -
=1 _X;F(l) w[Gy1)] ]:[ u[G 1))

i=

When one believes that the values G (s;) represent the a priori relevance of the re-
sult i, this independence assumption is not unreasonable, and indeed, in Section 5
we provide examples in which it holds. Regardless, we see that £(«, i) depends
only on the permutation r,, and we can compute the minimizers of the conditional
risk for the ERR family (16) using the following lemma, with proof provided in
the supplementary material [18].

LEMMA 1. Let p; =E,[G(s;)]. The permutation w minimizing (o, @) is in
decreasing order of the p;.

3The loss is invariant to linear shifts by the ones vector 1, so we may arbitrarily set a value for «;.
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Lemma 1 shows that an order-preserving property is necessary and sufficient
for the Fisher-consistency of a surrogate ¢ for the ERR family (16), as it was for
the NDCG family (14). To see this, we apply a variant of Corollary 1 where A(u)
as defined in equation (15) is replaced with the set

A(p) = {oz e R" | aj > a; whenever /G(sﬂdu(s) > f G(sl)du(s)}.

Theorem 5 of [44] implies that ¢ (¢, 5) = ?’: 1 G(sj) 21 (o —aj) is a consis-
tent surrogate when ¢ is convex, differentiable and nonincreasing with ¢’(0) < 0.
Theorem 1 also yields an equivalence between structure and uniform consistency
under suitable conditions on S.

Before concluding this section, we make a final remark, which has bearing on
the aggregation strategies we discuss in Section 5. We have assumed that the struc-
ture spaces S for the NDCG (14) and ERR (16) loss families consist of real-valued
relevance scores. This is certainly not necessary. In some situations, it may be more
beneficial to think of s € S as simply an ordered list of the results or as a directed
acyclic graph over {1, ..., m}. We can then apply a transformation r : § — R to
get relevance scores, using r(s) in place of s in the losses (14) and (16). This has
the advantage of causing S to be finite, so Theorem 1 applies, and there exists
a nondecreasing function ¢ with ¢£(0) = O such that for any distribution and any
measurable f,

R(f) = R* <¢(Ry(f) — R}).

4. Uniform laws and asymptotic consistency. In Section 3, we gave ex-
amples of losses based on readily available pairwise data but for which Fisher-
consistent tractable surrogates do not exist. The existence of Fisher-consistent
tractable surrogates for other forms of data, as in Section 3.3, suggests that ag-
gregation of pairwise and partial data into more complete data structures, such as
lists or scores, makes the problem easier. However, it is not obvious how to design
statistical procedures based on aggregation. In this section, we formally define a
class of suitable estimators that permit us to take advantage of the weak conver-
gence of Assumption A and show that uniform laws of large numbers hold for
our surrogate losses. This means that we can indeed asymptotically minimize the
risk (3) as desired.

Our aim is to develop an empirical analogue of the population surrogate risk (6)
that converges uniformly to the population risk under minimal assumptions on the
loss ¢ and structure function s. Given a dataset {(Q;, ¥;)}!_, with (Q;,Y;) € Q x
Y, we begin by defining, for each query g, the batch of data belonging to the query,
B(g)={i €{l,...,n}| Q; = g}, and the empirical count of the number of items
in the batch, 71, = |B(q)|. As a first attempt at developing an empirical objective,
we might consider an empirical surrogate risk based on complete aggregation over
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the batch of data belonging to each query:
l . :
(17 —2 a0 (f@,s({¥i; 1i; € B@)})).
q

While we would expect this risk to converge uniformly when ¢ is a sufficiently
smooth function of its structure argument, the analysis of the complete aggregation
risk (17) requires overly detailed knowledge of the surrogate ¢ and the structure
function s.

To develop a more broadly applicable statistical procedure, we instead consider
an empirical surrogate based on U -statistics. By trading off the nearness of an
order-k U -statistic to an i.i.d. sample and the nearness of the limiting structure
distribution wu, to a structure s(Y1, ..., ¥x) aggregated over k draws, we can ob-
tain consistency under mild assumptions on ¢ and s. More specifically, for each
query g, we consider the surrogate loss

~ -1
(18) (”,j) S w(f @) s ).
i <--<ig,

ijGB(q)

When 72, < k, we adopt the convention ('}¢) = 1, and the above sum becomes the

single term ¢ (f(q), s({Yij |ij € B(q)})) as in the expression (17). Hence, our U-
statistic loss recovers the complete aggregation loss (17) when k = oo.

An alternative formulation to loss (18) might consist of [|B(g)|/k] aggregation
terms per query, with each query-preference pair appearing in a single term. How-
ever, the instability of such a strategy is high: a change in the ordering of the data
or a substitution of queries could have a large effect on the final estimator. The
U -statistic (18) grants robustness to such perturbations in the data. Moreover, by
choosing the right rate of increase of the aggregation order k as a function of n, we
obtain consistent procedures for a broad class of surrogates ¢ and structures s.

We associate with the surrogate loss (18) a surrogate empirical risk that weights
each query by its empirical probability of appearance:

- 1 g\ !
19 R =, Y0 () T eU@sti )
q

i<--<ig,

ijeB(q)
Let P, denote the probability distribution of the queries given that the dataset is
of size n. Then by iteration of expectation and Fubini’s theorem, the surrogate
risk (19) is an unbiased estimate of the population quantity

(20) Ryn(f):= Z[Z 1P, (tg = DE[p(f(Q), s(Y1, ..., Yir0) ‘ Q= 61]]

q Li=1

It remains to establish a uniform law of large numbers guaranteeing the conver-
gence of the empirical risk (19) to the target population risk (6). Under suitable
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conditions such as those of Section 3, this ensures the asymptotic consistency of
computationally tractable statistical procedures. Hereafter, we assume that we have
a nondecreasing sequence of function classes F,, where any f € F;, is a scoring
function for queries, mapping f:Q — R™ and giving scores to the (at most m)
results for each query ¢ € Q. Our goal is to give sufficient conditions for the con-
vergence in probability

Q1) fsuﬁlﬁw,n(f)—Rw(f)\—p)O as n — 00.
€Sn

While we do not provide fully general conditions under which the conver-
gence (21) occurs, we provide representative, checkable conditions sufficient for
convergence. At a high level, to establish (21), we control the uniform difference
between the expectations Ry ,(f) and R, (f) and bound the distance between the
empirical risk 1’?\@,” and its expectation Ry , via covering number arguments. We
now specify assumptions under which our results hold, deferring all proofs to the
supplementary material [18].

Without loss of generality, we assume that p,, the true probability of seeing the
query ¢, is nonincreasing in the query index q. First, we describe the tails of the
query distribution:

ASSUMPTION D. There exist constants 8 > 0 and Ky > 0 such that p, <
Ki1g—P~! for all g. That is, Pg = O(g—F 1.

Infinite sets of queries O are reasonable, since search engines, for example,
receive a large volume of entirely new queries each day. Our arguments also apply
when Q is finite, in which case we can take 8 1 oo.

Our second main assumption concerns the behavior of the surrogate loss ¢
over the function class F;,, which we assume is contained in a normed space with
norm |-

ASSUMPTION E (Bounded Lipschitz losses). The surrogate loss function ¢ is
bounded and Lipschitz continuous over F,: for any s € S, any f, f1, f» € F,, and
any g € Q, there exist constants B, and L, < oo such that

0<¢(f(q),s) < By

and

lo(f1(@),s) —@(f2(@), s)| < Lall f1 — f2ll.

This assumption is satisfied whenever ¢(-, s) is convex and F,, is compact [and
contained in the interior of the domain of ¢(-, s)] [25]. Our final assumption gives
control over the sizes of the function classes J;, as measured by their covering
numbers. (The e-covering number of F is the smallest N for which there are f',
i < N, such that min; || f* — f|| <& forany f € F.)
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ASSUMPTION F. For all ¢ > 0, F, has e-covering number N (g, n) < 00.

With these assumptions in place, we give a few representative conditions that
enable us to guarantee uniform convergence (21). Roughly, these conditions con-
trol the interaction between the size of the function classes F,, and the order k
of aggregation used with n data points. To that end, we let the aggregation or-
der k, grow with n. In stating the conditions, we make use of the shorthand

Eglo(f(q), s(Y1u))] for E[p(f(Q), s(Y1,...,Yr) | Q =4l

CONDITION I. There exist a p > 0 and constant C such that for all ¢ € O,
neN,keN,and f € F,,

[Eglo(f @) s, Yo)] = HmEq[o(f (@), s(Fr...... Ye))]| < CBuk .
Additionally, the sequences B,, and k,, satisfy B, = o(k,'? ).

This condition is not unreasonable; when ¢ and s are suitably continuous, we
expect p > % We also consider an alternative covering number condition.

CONDITION I'.  Sequences {&,} C R4 and {k,} C N and an &,-cover .7-"”1, ceey

FNEnn) of T, can be chosen such that

max inf |R — E ,s(Yy, .. Y, +2L,&g, — 0.
ey n o(f) ;pq ale(f(@).s(V1 )] n€n

Condition I’ is weaker than Condition I, since it does not require uniform con-
vergence over g € Q. If the function class F is fixed for all n, then the weak
convergence of s(Y1,..., Yx) as in Assumption A guarantees Condition I, since
N(e,n) = N(e,n’) < oo, and we may take ¢ arbitrarily small. We require one ad-
ditional condition, which relates the growth of k,,, B,,, and the function classes F,
more directly.

CONDITION II. The sequences k, and B, satisfy knB,(,Hﬂ)//3 = o(n). Addi-
tionally, for any fixed ¢ > 0, the sequences satisfy

e 1/2

By inspection, Condition II is satisfied for any k, = o(y/n) if the function
classes JF, are fixed for all n. Similarly, if for all kK > ko, s(Y1,...,Yx) =
s(Y1,...,Y), so s depends only on its first ky arguments, Condition II holds

whenever max{B,(,Hﬂ)/’g, B,% log N(¢/4L,, n)} = o(n). If the function classes F;,
consist of linear functionals represented by vectors § € R% in a ball of some finite
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radius, then log N (g, n) ~ d, loge~!, which means that Condition II roughly re-
quires k,+/d,/n — 0 as n — co. Modulo the factor k,, this condition is familiar
from its necessity in the convergence of parametric statistical problems.

The conditions in place, we come to our main result on the convergence of our
U -statistic-based empirical loss minimization procedures.

THEOREM 4. Assume Condition 1 or I and additionally assume the growth
Condition 11. Under Assumptions D, E and F,

sup [Ryn(f) — Ry(f)]| >0  asn— oo.
feFu

We remark in passing that if Condition II holds, with the change that the o(y/n)
bound is replaced by O (n”) for some p < %, the conclusion of Theorem 4 can be
strengthened to both convergence almost surely and in expectation.

By inspection, Theorem 4 provides our desired convergence guarantee (21).
By combining the Fisher-consistent loss families outlined in Section 3.3 with the
consistency guarantees provided by Theorem 4, it is thus possible to design statis-
tical procedures that are both computationally tractable—minimizing only convex
risks—and asymptotically consistent.

5. Rank aggregation strategies. In this section, we give several examples
of practical strategies for aggregating disparate user preferences under our frame-
work. Motivated by the statistical advantages of complete preference data high-
lighted in Section 3.3, we first present strategies for constructing complete vectors
of relevance scores from pairwise preference data. We then discuss a model for
the selection or “click” data that arises in web search and information retrieval and
show that maximum likelihood estimation under this model allows for consistent
ranking. We conclude this section with a brief overview of structured aggregation
strategies.

5.1. Recovering scores from pairwise preferences. Here we treat partial pref-
erence observations as noisy evidence of an underlying complete ranking and at-
tempt to achieve consistency with respect to a complete preference data loss. We
consider three methods that take as input pairwise preferences and output a rel-
evance score vector s € R™. Such procedures fit naturally into our ranking-with-
aggregation framework: the results in Section 3.3 and Section 4 show that a Fisher-
consistent loss is consistent for the limiting distribution of the scores s produced
by the aggregation procedure. Thus, it is the responsibility of the statistician—the
designer of an aggregation procedure—to determine whether the scores accurately
reflect the judgments of the population. We present our first example in some de-
tail to show how aggregation of pairwise judgments can lead to consistency in our
framework and follow with brief descriptions of alternate aggregation strategies.
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For an introduction to the design of aggregation strategies for pairwise data, see
Tsukida and Gupta [43] as well as the book by David [14].

Thurstone—Mosteller least squares and skew-symmetric scoring. The first ag-
gregation strategy constructs a relevance score vector s in two phases. First, it
aggregates a sequence of observed preference judgments Y; € ), provided in any
form, into a skew-symmetric matrix A € R™*™ satisfying A = —AT. Each en-
try A;; encodes the extent to which item i is preferred to item j. Given such
a skew-symmetric matrix, Thurstone and Mosteller [32] recommend deriving a
score vector s such that s; —s; ~ A;;. In practice, one may not observe preference
information for every pair of results, so we define a masking matrix Q € {0, 1}"*>*™
withQ=QT, Q;; =1,and Q; j = 1 if and only if preference information has been
observed for the pair i # j. Letting o denote the Hadamard product, a natural ob-
jective for selecting scores (e.g., [23]) is the least squares objective

1
(22) Tlgmﬁlzoe ZQ’J ij — (xi — Xj))z = Z”Q o(A— (1XT - XIIT))HIZ%'
i.j

The gradient of the objective (22) is
Dgox — (o A)1 — Qx where Dq := diag(€21).

Setting s = (Dg — ©2)7(Q o A)1 yields the solution to the minimization prob-
lem (22), since Dg — €2 is an unnormalized graph Laplacian matrix [9], and there-
fore 1Ts =17 (Do — 2)T(Qo A)L =0.

If @ =117, so that all pairwise preferences are observed, then the eigenvalue
decomposition of Dg — Q =mlI — 117 can be computed explicitly as VEV T,
where V is any orthonormal matrix whose first column is 1//m, and ¥ is a di-
agonal matrix with entries 0 (once) and m repeated m — 1 times. Thus, letting
s4 and sp denote solutions to the minimization problem (22) with different skew-
symmetric matrices A and B and noting that A1 L 1 since 1" A1 = 0, we have the
Lipschitz continuity of the solutions s in A:

Isa —sgl3 = (mI —117) (A - B)1|3 = QMA Bmh<—wA BII.

Similarly, when €2 is fixed, the score structure s is likewise Lipschitz in A for any
norm |[|-|| on skew-symmetric matrices.

A variety of procedures are available for aggregating pairwise comparison data
Y; € YV into a skew-symmetric matrix A. One example, the Bradley—Terry—Luce
(BTL) model [5], is based upon empirical log-odds ratios. Specifically, assume that
Y; € Y are pairwise comparisons of the form j > [, meaning item j is preferred to
item /. Then we can set

P >D+e

Aj=log=———"— for observed pairs j, 1,
LS TP pairs g
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where P denotes the empirical distribution over {Y1, ..., Yz} and ¢ > 0 is a smooth-
ing parameter.

Since the proposed structure s is a continuous function of the skew-symmetric
matrix A, the limiting distribution p is a point mass whenever A converges almost
surely, as it does in the BTL model. If aggregation is carried out using only a finite
number of preferences rather than letting k approach oo with n, then u converges
to a nondegenerate distribution. Theorem 1 grants uniform consistency since the
score space S is finite.

Borda count and budgeted aggregation. The Borda count [15] provides a com-
putationally efficient method for computing scores from election results. In a gen-
eral election setting, the procedure counts the number of times that a particular
item was rated as the best, second best, and so on. Given a skew-symmetric ma-
trix A representing the outcomes of elections, the Borda count assigns the scores
s = AL. As above, a skew-symmetric matrix A can be constructed from input
preferences {Y1, ..., Yz}, and the choice of this first-level aggregation can greatly
affect the resulting rankings. Ammar and Shah [1] suggest that if one has limited
computational budget and only pairwise preference information then one should
assign to item j the score

sj= —ZIF’(J >1),

m—1iZ
which estimates the probability of winning an election against an opponent chosen
uniformly. This is equivalent to the Borda count when we choose Aj; = IP( Jj >
1) — P(j J <) as the entries in the skew-symmetric aggregate A.

Principal eigenvector method. Saaty [36] describes the principal eigenvector
method, which begins by forming a reciprocal matrix A € R™*™, with positive
entries A;; = (A ji)_l, from pairwise comparison judgments. Here A;; encodes a
multiplicative preference for item i over item j; the idea is that ratios preserve pref-

erence strength [36]. To generate A, one may use, for example, smoothed empirical
B(j>Dtc

P(j<l)+c
suggesting using the Perron vector of the matrix, that is, the first eigenvector of A.

ratios Aj; = . Saaty recommends finding a vector s so that s; /s; ~ A;;,

5.2. Cascade models for selection data. Cascade models [8, 13] explain the
behavior of a user presented with an ordered list of items, for example from a web
search. In a cascade model, a user considers results in the presented order and
selects the first to satisfy him or her. The model assumes the result / satisfies a
user with probability p;, independently of previous items in the list. It is natural to
express a variety of ranking losses, including the expected reciprocal rank (ERR)
family (16), as expected disutility under a cascade model, but computation and
optimization of these losses require knowledge of the satisfaction probabilities p;.
When the satisfaction probabilities are unknown, Chapelle et al. [8] recommend
plugging in those values p; that maximize the likelihood of observed click data.
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Here we show that risk consistency for the ERR family is straightforward to char-
acterize when scores are estimated via maximum likelihood.

To this end, fix a query ¢, and let each affiliated preference judgment Y; consist
of a triple (m;, m;, ¢;), where m; is the number of results presented to the user,
m; is the order of the presented results, which maps positions {1, ...,m;} to the
full result set {1, ...,m}, and ¢c; € {1, ..., m; + 1} is the position clicked on by the
user (m; + 1 if the user chooses nothing). The likelihood g of an i.i.d. sequence
{Y1, ..., Yx} under a cascade model p is

ci—1

k
L(ci=m;
gp.n1,.... Y)) = pﬂffcsm)n(l—pm(j)),
j=1

i=1

and the maximum likelihood estimator of the satisfaction probabilities has the
closed form

A YK 1) =1)
(Y1,....Y) = _ .
P A S S () =D

To incorporate this maximum likelihood aggregation procedure into our frame-
work, we define the structure function s to be the vector

s(Yi,....Y ) :=pYy,....Y) e R"

=1,...,m.

of maximum likelihood probabilities, and we take as our loss L any member of the
ERR family (16). The strong law of large numbers implies the a.s. convergence of
p to a vector p € [0, 1], so that the limiting law 4 ({p}) = 1. Since g is a prod-
uct measure over [0, 1]™, Lemma 1 implies that any « inducing the same ordering
over results as p minimizes the conditional ERR risk ¢(«, 1t). By application of
Theorems 1 (or Proposition 2) and 4, it is possible to asymptotically minimize the
expected reciprocal rank by aggregation.

5.3. Structured aggregation. Our framework can leverage aggregation proce-
dures (see, e.g., [21]) that map input preferences into representations of combinato-
rial objects. Consider the setting of Section 3.2, in which each observed preference
judgment Y is the weighted adjacency matrix of a directed acyclic graph, our loss
of interest L is the edgewise indicator loss (10), and our candidate surrogate losses
have the form (18). Theorems 2 and 3 establish that risk consistency is not gener-
ally attainable when s(Y1, ..., Yx) = Y1. In certain cases, aggregation can recover
consistency. Indeed, define

1 k
S(Yl»---,Yk)3:%ZYi»
i=1

the average of the input adjacency matrices. For an i.i.d. sequence Yy, Y3, ... asso-
ciated with a given query g, we have s(Yq, ..., Yy) R E(Y | Q = ¢q) by the strong
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law of large numbers, and hence the asymptotic surrogate risk
Ry(f)= qu/ (f@)-5)dig() = Y pye(f @) EY | = ).
q
Recalling the conditional pairwise risk (11), we can rewrite the risk as

RD=Lr, SV @ < @) + DV U@ < £@)]

i<j i>j
—quZE[Y,,|Q q]
i>j
+quZE i —Yiil 0=ql1(fi(@) < fi(@)).
i<j

The discussion immediately following Proposition 2 shows that any consistent
surrogate ¢ must be bounded away from its minimum for « ¢ argmin,, £, (', @).
Since the limiting distribution w is a point mass at some adjacency matrix s for
each g, a surrogate loss ¢ is consistent if and only if

igf[(p(a, s) —infe(a’, s) | a ¢ argmin L(c/, s)} > 0.

o o
In the important special case when the difference graph G, associated with E[Y |
Q =q] is a DAG for each query ¢ (recall Section 3.2.2), structure consistency is
obtained if for each a* € argmin,, ¢(e, ), sign(e] — a;‘) = sign(s;; — s;;) for each
pair of results i, j. As an example, in this setting

(23) o(a,s) =Y [sij — sjil+P (i — aj)
iJ
is consistent when ¢ is nonincreasing, convex, and has derivative ¢’(0) < 0.

The Fisher-consistent loss (23) is similar to the inconsistent losses (12) con-
sidered in Section 3.2, but the coefficients adjoining each ¢ («; — o;) summand
exhibit a key difference. While the inconsistent losses employ coefficients based
solely on the average i — j weight s;;, the consistent loss coefficients are nonlin-
ear functions of the edge weight differences s;; — s;;: they are precisely the edge
weights of the difference graph G, introduced Section 3.2.2. Since at least one
of the two coefficients [s;; — s;;]+ and [s;; — s;;]4 is always zero, the loss (23)
penalizes misordering either edge i — j or j — i. This contrasts with the incon-
sistent surrogates of Section 3.2, which simultaneously associate nonzero convex
losses with opposing edges i — j and j — i. Note also that our argument for
the consistency of the loss (23) does not require Definition 4’s low-noise assump-
tion: consistency holds under the weaker condition that, on average, a population’s
preferences are acyclic.
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6. Experimental study and implementation. In this section, we describe
strategies for solving the convex programs that emerge from our aggregation ap-
proach to ranking and demonstrate the empirical utility of our proposed proce-
dures. We begin with a broad description of implementation strategies and end
with a presentation of specific experiments.

6.1. Minimizing the empirical risk. At first glance, the empirical risk (19) ap-
pears difficult to minimize, since the number of terms grows exponentially in the
level of aggregation k. Fortunately, we may leverage techniques from the stochas-
tic optimization literature [17, 33] to minimize the risk (19) in time linear in k£ and
independent of n. Let us consider minimizing a function of the form

N 1 ¥ ,
(24) Ry(f)i= 2 e(fis) +@(f),
i=1

where {s'} i— 1s some collection of data, (-, s) is convex in its first argument, and
® is a convex regularizing function (possibly zero).

Duchi and Singer [17], using ideas similar to those of Nemirovski et al. [33],
develop a specialized stochastic gradient descent method for minimizing compos-
ite objectives of the form (24). Such methods maintain a parameter f’, which is
assumed to live in convex subset F of a Hilbert space with inner product (-, -), and
iteratively update f’ as follows. At iteration 7, an index i, € [N] is chosen uni-
formly at random and the gradient V s (7, s't) is computed at f’. The parameter
f is then updated via

(25) fi= argmin{(f, Vo(f', s")+@(f) + 2i||f —-f IIZ},
fer Nt

where 7; > 0 is an iteration-dependent stepsize and ||-|| denotes the Hilbert norm.

The convergence guarantees of the update (25) are well understood [17, 20, 33].

Define ?T =(1/T) Zthl S to be the average parameter after T iterations. If the

function Ry is strongly convex—meaning it has at least quadratic curvature—the

step-size choice n; o< 1/t gives

~ ~ 1
B[R (7))~ int Ru(H)=0( ).

where the expectation is taken with respect to the indices i; chosen during each
iteration of the algorithm. In the convex case (without assuming any stronger prop-
erties than convexity), the step-size choice 1, o< 1/+/1 yields

~ T PPN _ (1
B[Ry (7)) - int Rv(H) =0 ﬁ).

These guarantees also hold with high probability [20, 33].
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FI1G. 2. Timing experiments for different values of k and n when applying the method (25). The hor-
izontal axes are the number of stochastic gradient iterations; the vertical axes are the estimated opti-
mality gap for the empirical surrogate risk. Left: varying amount of aggregation k, fixedn =4 - 10°.
Right: varying total number of samples n, fixed k = 102.

Neither of the convergence rates 1/ 7 or 1/+/T depends on the number of terms
N in the stochastic objective (24). As a consequence, we can apply the composite
stochastic gradient method (25) directly to the empirical risk (19): we sample a
query g with probability 71, /n, after which we uniformly sample one of the (")

k
collections {i1, ..., ix} of k indices associated with query ¢, and we then perform
the gradient update (25) using the gradient sample Vo (f7,s(Y;,, ..., Y;)). This

stochastic gradient scheme means that we can minimize the empirical risk in a
number of iterations independent of both n and k; the run-time behavior of the
method scales independently of » and depends on k only so much as computing
an instantaneous gradient Vo (f, s(Yq, ..., Yi)) increases with k.

In Figure 2, we show empirical evidence that the stochastic method (25) works
as described. In particular, we minimize the empirical U -statistic-based risk (19)
with the loss (28) we employ in our experiments in the next section. In each plot
in Figure 2, we give an estimated optimality gap, §¢,n( fH —infrer ﬁw,n( f),as
a function of ¢, the number of iterations. As in the section to follow, F consists
of linear functionals parameterized by a vector 6 € R¢ with d = 136. To esti-
mate inf rc 7, we perform 100,000 updates of the procedure (25), then estimate
infrcr ﬁ(p, »(f) using the output predictor f evaluated on an additional (indepen-
dent) 50,000 samples (the number of terms in the true objective is too large to
evaluate). To estimate the risk I/Q\%n (f"), we use a moving average of the previous
100 sampled losses ¢(f7, s'7) for T € {t —99, ..., ¢}, which is an unbiased esti-
mate of an upper bound on the empirical risk ﬁ(p, 2(f1) (see, e.g., [7]). We perform
the experiment 20 times and plot averages as well as 90% confidence intervals. As
predicted by our theoretical results, the number of iterations to attain a particular
accuracy is essentially independent of n and k; all the plots lie on one another.
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6.2. Experimental evaluation. To perform our experimental evaluation, we
use a subset of the Microsoft Learning to Rank Web10K dataset [34], which con-
sists of 10,000 web searches (queries) issued to the Microsoft Bing search engine,
a set of approximately 100 potential results for each query, and a relevance score
r € R associated with each query/result pair. A query/result pair is represented by
a d = 136-dimensional feature vector of standard document-retrieval features.

To understand the benefits of aggregation and consistency in the presence of
partial preference data, we generate pairwise data from the observed query/result
pairs, so that we know the true asymptotic generating distribution. We adopt a
loss L from the NDCG-family (14) and compare three surrogate losses: a Fisher-
consistent regression surrogate based on aggregation, an inconsistent but com-
monly used pairwise logistic loss [16], and a Fisher-consistent loss that requires
access to complete preference data [35]. Recalling the NDCG score (14) of a pre-
diction vector « € R™ for scores s € R" (where 7, is the permutation induced
by «), we have the loss

1 & G(s))
L N - 1 - )
@9 =17 76 2 For)

where Z(s) is the normalizing value for the NDCG score, and F(-) and G(-) are
increasing functions.

Given a set of queries g and relevance scores r; € R, we generate n pairwise
preference observations according to a Bradley—Terry—Luce (BTL) model [5].
That is, for each observation, we choose a query ¢ uniformly at random and then
select a uniformly random pair (i, j) of results to compare. The pair is ordered as
i > j (item i is preferred to j) with probability p;;, and j > i with probability
1-— Pij = Dji» where

exp(ri —rj)
I +exp(ri —rj)

(26) pij =

for r; and r; the respective relevances of results i and j under query q.
We define our structure functions s; as score vectors in R, where given a set
of k preference pairs, the score for item i is

P(j PG <)
si(i) = —— Z
i ]P’( j>i)’
the average empirical log-odds of result i being preferred to any other result. Under
the BTL model (26), as k — oo the structural score converges for each i € [m] to

27 sG) = m— Z log(1 +exp(ri —r;j)) —log(1 +exp(r; — ri))].
J#i
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In our setting, we may thus evaluate the asymptotic NDCG risk of a scoring func-
tion f by computing the asymptotic scores (27). In addition, Corollary 1 shows
that if all minimizers of a loss obey the ordering of the values

G(s(j))
s Z(s)

then the loss is Fisher-consistent. A well-known example [12, 35] of such a loss is
the least-squares loss, where the regression labels are G(s(j))/Z(s):

1 & G(s())\*
(28) o, s>=%21(aj -5
p

du(s), jel{l,...,m}

We compare the least-squares aggregation loss with a pairwise logistic loss natural
for the pairwise data generated according to the BTL model (26). Specifically,
given a data pair with i > j, the logistic surrogate loss is

(29) @(e, i > j) =log(l + exp(a; — o)),

which is equivalent or similar to previous losses used for pairwise data in the rank-
ing literature [16, 28]. For completeness, we also compare with a Fisher-consistent
surrogate that requires access to complete preference information in the form of
the asymptotic structure scores (27). Following Ravikumar et al. [35], we obtain
such a surrogate by granting the regression loss (28) direct access to the asymp-
totic structure scores. Note that such a construction would be infeasible in any true
pairwise data setting.

Having described our sampling procedure, aggregation strategy, and loss func-
tions, we now describe our model. We let xq denote the feature vector for the ith re-
sult from query ¢, and we model the scoring function f(g); = (0, x; 7y for a vector
6 € RY. For the regression loss (28), we minimize the U -statistic- based empirical
risk (19) over a variety of orders k, while for the pairwise logistic loss (29), we min-
imize the empirical risk over all pairs sampled according to the BTL model (26).
We regularize our estimates by adding ®(0) = (1/2)||6 ||% to the objective mini-
mized, and we use the specialized stochastic method (25) to minimize the empiri-
cal risk.

Our goals in the experiments are to understand the behavior of the empirical risk
minimizer as the order k of the aggregating statistic is varied and to evaluate the
extent to which aggregation improves the estimated scoring function. A secondary
concern is to verify that the method is insensitive to the amount A of regularization
performed on 8. We run each experiment 50 times and report confidence intervals
based on those 50 experiments.

Let 6 g denote the estimate of 6 obtained from minimizing the empirical
r1sk (19) w1th the regression loss (28) on n samples with aggregation order k, let

£ denote the estimate of 6 obtained from minimizing the empirical pairwise lo-
gistic loss (29), and let 6! denote the estimate of 6 obtained from minimizing the
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FIG. 3. NDCG risk and 95% confidence intervals for 6 estimated using the logistic pairwise

loss (29) and the U -statistic empirical risk with ¢ chosen to be regression loss (28). The horizontal
axis of each plot is the order k of the aggregation in the U -statistic (19), the vertical axis is the NDCG
risk, and each plot corresponds to a different number n of samples. () n =2 - 105; (b)yn=4-10%;
©n=8-10°(d)n=1.6-10°,

empirical risk with surrogate loss (28) using the asymptotic structure scores (27)
directly. Then each plot of Figure 3 displays the risk R(@f}‘f) as a function of the

aggregation order k, using R(Q,l,og) and R(6™!") as references. The four plots in the
figure correspond to different numbers n of data pairs.

Broadly, the four plots in Figure 3 match our theoretical results. Consistently
across the plots, we see that for small &, it appears there is not sufficient aggrega-
tion in the regression-loss-based empirical risk, and for such small k the pairwise
logistic loss is better. However, as the order of aggregation k grows, the risk per-

formance of Q;e,% improves. In addition, with larger sample sizes n, the difference

. 1 .
between the risk of 6,°% and O,rle,% becomes more pronounced. The second salient

feature of the plots is a moderate flattening of the risk R(G;e,%) and widening of the
confidence interval for large values of k. This seems consistent with the estima-
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F1G. 4. NDCG risk and 95% confidence intervals for 6 estimated using the U -statistic empiri-
cal risk (19) with ¢ chosen as the regression loss (28) under various choices of the regularization
parameter, \.

tion error guarantees in the theoretical results in Lemmas 7 and 10 in the appen-
dices, where the order k being large has an evidently detrimental effect. Interest-

ingly, however, large values of £ still yield significant improvements over R(H,llog).
For very large k, the improved performance of 0;?% over 6™ is a consequence
of sampling artifacts and the fact that we use a finite dimensional representation.
[By using sufficiently many dimensions d, the estimator 6™ attains zero risk by
matching the asymptotic scores (27) directly.]

Figure 4 displays the risk R(G,rf,%) for n = 800,000 pairs, kK = 100, and multiple
values of the regularization multiplier A on ||0 ||%. The results, which are consistent
across many choices of n, suggest that minimization of the aggregated empirical
risk (19) is robust to the choice of regularization multiplier.

7. Conclusions. In this paper, we demonstrated both the difficulty and the fea-
sibility of designing consistent, practicable procedures for ranking. By giving nec-
essary and sufficient conditions for the Fisher consistency of ranking algorithms,
we proved that many natural ranking procedures based on surrogate losses are
inconsistent, even in low-noise settings. To address this inconsistency while ac-
commodating the incomplete nature of typical ranking data, we proposed a new
family of surrogate losses, based on U -statistics, that aggregate disparate partial
preferences. We showed how our losses can fruitfully leverage any well behaved
rank aggregation procedure and demonstrated their empirical benefits over more
standard surrogates in a series of ranking experiments.

Our work thus takes a step toward bringing the consistency literature for ranking
in line with that for classification, and we anticipate several directions of further
development. First, it would be interesting to formulate low-noise conditions under
which faster rates of convergence are possible for ranking risk minimization (see,
e.g., the work of [10], which focuses on the minimization of a single pairwise loss).
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Additionally, it may be interesting to study structure functions s that yield nonpoint
distributions p as the number of arguments k grows to infinity. For example, would
scaling the Thurstone—Mosteller least-squares solutions (22) by v/k—to achieve
asymptotic normality—induce greater robustness in the empirical minimizer of the
U -statistic risk (19)? Finally, exploring tractable formulations of other supervised
learning problems in which label data is naturally incomplete could be fruitful.
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