
The Annals of Probability
2015, Vol. 43, No. 3, 1157–1201
DOI: 10.1214/13-AOP885
© Institute of Mathematical Statistics, 2015

RANDOM NORMAL MATRICES AND WARD IDENTITIES
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We consider the random normal matrix ensemble associated with a po-
tential in the plane of sufficient growth near infinity. It is known that asymp-
totically as the order of the random matrix increases indefinitely, the eigen-
values approach a certain equilibrium density, given in terms of Frostman’s
solution to the minimum energy problem of weighted logarithmic potential
theory. At a finer scale, we may consider fluctuations of eigenvalues about
the equilibrium. In the present paper, we give the correction to the expecta-
tion of the fluctuations, and we show that the potential field of the corrected
fluctuations converge on smooth test functions to a Gaussian free field with
free boundary conditions on the droplet associated with the potential.

1. Summary. Given a suitable real-valued “weight function” Q in the plane,
it is understood how to associate a corresponding (weighted) random normal ma-
trix ensemble (in short: RNM-ensemble). Under reasonable conditions on Q, the
eigenvalues of matrices picked randomly from the ensemble will condensate on a
certain compact subset S = SQ of the complex plane, as the order of the matrices
tends to infinity. The set S is called the droplet of the ensemble. It is well known
that the droplet may be obtained in terms of weighted logarithmic potential theory
and, that in its turn, the droplet determines the classical equilibrium distribution of
the eigenvalues (Frostman’s equilibrium measure).

In this paper, we obtain a central limit theorem for the fluctuations about the
equilibrium distribution of linear statistics for the eigenvalues of random normal
matrices. We also prove the convergence of the potential fields corresponding to
corrected fluctuations to a Gaussian free field on S with free boundary conditions.

Our proof is based on the application of the Ward identities for the density field
of the point-process of the eigenvalues. These identities are derived from the repa-
rameterization invariance of the partition function and involve the joint intensities
of the process; they are also known as the “loop equation.” In their exact form,
the Ward identities do not provide a closed system of equations, but combined

Received February 2013; revised September 2013.
1Supported by Göran Gustafsson Foundation (KVA).
2Supported by Göran Gustafsson Foundation (KVA) and by Vetenskapsrådet (VR).
3Supported by NSF Grant 0201893.
MSC2010 subject classifications. 60B20, 15B52, 46E22.
Key words and phrases. Random normal matrix, eigenvalues, Ginibre ensemble, Ward identity,

loop equation, Gaussian free field.

1157

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/13-AOP885
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1158 Y. AMEUR, H. HEDENMALM AND N. MAKAROV

with suitable a priori estimates of “error terms,” we may derive the limit form of
the equation, which in fact characterizes the entire fluctuation field as n → +∞,
where n is the number of eigenvalues. This approach is certainly well known in
physics literature, but its mathematical implementation—namely the justification
of the a priori bounds—is a rather delicate matter. Our main source of inspiration
is Johansson’s paper [15], which treats the case of Hermitian matrices (and more
general one-component plasma β-ensembles on the line).

While this paper follows the same general strategy as Johansson [15], we should
emphasize that the nature of the estimates (and the resulting formulae) in the com-
plex case is very different than the Hermitian case. On the one hand, Johansson’s
argument uses the Christoffel–Darboux formula for the reproducing kernel, which
is a consequence of the three-term recursion formula for orthogonal polynomials
on the real line (see, e.g., [20]) and has no analogue in the complex case; moreover,
he assumes that the weight is polynomial. On the other hand, we have to deal with
the fact that the droplet now has a nonempty interior in the complex plane. To this
end, we may apply (as we did in [3]), the techniques of Bergman kernel asymp-
totics, but the control of the Bergman kernel is not so good near the boundary of
the droplet, so the main focus of this paper will be on the study of the boundary
terms, where we have to combine, in a nontrivial way, the global relations derived
from the Ward identities with the local interior information from the Bergman ker-
nel expansion theory. We remark that in [3], only the fluctuations in the interior of
the droplet were studied.

2. Random normal matrix ensembles.

2.1. Notational conventions. By D(a, r) we mean the open Euclidean disk
with center a and radius r . The special case D(0,1) is simplified to D. By distC,
we mean the Euclidean distance in the complex plane C. If An and Bn are ex-
pressions depending on a positive integer n, we write An � Bn to indicate that
An ≤ CBn for all n large enough where C is independent of n, and usually also in-
dependent of other relevant parameters. The notation An � Bn means that An � Bn

and Bn � An. If z = x + iy is the decomposition of a complex number into real
and imaginary parts, we introduce the following notational conventions. We write
∂ = ∂z := 1

2(∂/∂x − i∂/∂y) and ∂̄ = ∂̄z := 1
2(∂/∂x + i∂/∂y) for the usual complex

derivatives. We also write � := �z = ∂2/∂x2 + ∂2/∂y2 for the Laplacian, and in-
troduce the notation Δ = Δz := 1

4�z for a quarter of the usual Laplacian, because
it will appear many times naturally as a consequence of Δz = ∂z∂̄z. The ∇ operator
is defined by ∇f := (∂f/∂x, ∂f/∂y), so that ∇f becomes C

2-valued when f is
C-valued and differentiable. It is easy to check that

|∇f |2 = 2
(|∂f |2 + |∂̄f |2)

.
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We let dA(z) = d2z = dx dy denote the area measure in the complex plane C.
Given suitable functions f and g, such that fg ∈ L1(C), we write

〈f,g〉C :=
∫
C

fg dA.

We will at times understand this bilinear form 〈·, ·〉C more liberally, and think of f

as a test function and g as a distribution. In particular, when f is continuous and
μ is a Borel measure with f ∈ L1(C, |μ|), we write

〈f,μ〉C :=
∫
C

f dμ.

If � is a rectifiable curve in C, we let ds = ds� denote arc length measure along
�, and for suitable functions f,g we write

〈f,g〉� :=
∫
�

fg ds.

2.2. The distribution of eigenvalues. Let Q :C → R ∪ {+∞} be a suitable
lower semi-continuous function subject to the growth condition

lim inf|z|→+∞
Q(z)

log |z| > 1.(2.1)

We refer to Q as the weight function or the potential.
Let NM[n] be the set of all n × n normal matrices M , that is, matrices with

MM∗ = M∗M . The partition function on NM[n] associated with Q is the function

Zn =
∫

NM[n]
e−2n trace[Q(M)] dMn,

where dMn is the Riemannian volume form on NM[n] inherited from the space
C

n2
of all n×n matrices, and where trace[Q] : NM[n] → R∪{+∞} is the random

variable

trace[Q](M) := ∑
λj∈spec(M)

Q(λj ),

that is, it is the usual trace of the matrix Q(M). We equip NM[n] with the proba-
bility measure

d ProbNM[n] := 1

Zn

e−2n trace[Q](M) dMn,

and speak of the random normal matrix ensemble or “RNM-ensemble” associated
with Q. The measure ProbNM[n] induces a probability measure Probn on the space
C

n of eigenvalues, which is known as the density of states in external field Q; it is
given by

d Probn(λ) := 1

Zn

e−Hn(λ) dA⊗n(λ), λ = (λj )
n
1 ∈ C

n.(2.2)
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Here, we have put

Hn(λ) := ∑
j,k:j 
=k

log
1

|λj − λk| + 2n

n∑
j=1

Q(λj ),(2.3)

while dA⊗n(λ) = dA(λ1) · · · dA(λn) denotes Lebesgue measure in C
n and Zn is

the normalization constant giving Probn unit mass. By a slight abuse of language,
we will refer to Zn as the partition function of the ensemble.

We notice that Hn is the energy (Hamiltonian) of a system of n identical point
charges in the plane located at the points λj , under the influence of the external
field 2nQ. In this interpretation, Probn is the law of the Coulomb gas in the external
magnetic field 2nQ (at inverse temperature β = 2). In particular, this explains the
repelling nature of the eigenvalues of random normal matrices; they tend to be very
spread out in the vicinity of the droplet, just like point charges would.

Let us consider the n-point configuration (“set” with possible repeated ele-
ments) {λj }n1 of eigenvalues of a normal matrix picked randomly with respect to
ProbNM[n]. In an obvious manner, the measure Probn induces a probability law on
the n-point configuration space; this is the law of the n-point process �n = {λj }n1
associated to Q.

It is well known that the process �n is determinantal. This means that there
exists an Hermitian function Kn, called the correlation kernel of the process such
that the density of states can be represented in the form

d Probn(λ) = 1

n! det
[
Kn(λj , λk)

]n
j,k=1 dA⊗n(λ), λ ∈C

n.

Here, we have

Kn(z,w) = kn(z,w)e−n(Q(z)+Q(w)),

where kn is the reproducing kernel of the space Poln(e−2nQ), that is, the space of
all analytic polynomials of degree at most n− 1 with norm induced from the usual
L2-space on C associated with the weight function e−2nQ. Alternatively, we can
regard Kn as the reproducing kernel for the subspace

L2
n,Q(C) := {

pe−nQ :p is an analytic polynomial of degree less than n
} ⊂ L2(C);

in particular, we have the frequently useful identities

f (z) =
∫
C

f (w)Kn(w, z)dA(w), f ∈ L2
n,Q(C),

and ∫
C

Kn(z, z)dA(z) = n.

We refer to [8, 10, 16, 21] for more details on point-processes and random matri-
ces.
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2.3. The equilibrium measure and the droplet. We are interested in the asymp-
totic distribution of eigenvalues as n, the order of the random matrix, increases
indefinitely. Let un denote the one-point function of Probn:

un(λ) := 1

n
Kn(λ,λ), λ ∈C.

Given a suitable function f on C, we associate the random variable Trn[f ] on the
probability space (Cn,Probn) via

Trn[f ](λ) :=
n∑

i=1

f (λi).

We reserve the notation En for the expectation with respect to Probn; then, for
example,

En

(
Trn[f ]) = n

∫
C

f un dA.

According to Johansson (see [11, 15]), we have the weak-star convergence of the
measures

dσn(z) := un(z)dA(z)

to some compactly supported probability measure σ = σQ on C. This probability
measure σ is the Frostman equilibrium measure of the logarithmic potential theory
with external field Q. We briefly recall the definition and some basic properties of
this probability measure; cf. [18] and [11] for a more detailed exposition.

We write S = SQ := suppσQ and assume that Q is C2-smooth in some neigh-
borhood of S. Then S is compact and �Q ≥ 0 holds on S; moreover, σ = σQ is
absolutely continuous with density (we recall that Δ = 1

4�)

u := 1

2π
1S�Q = 2

π
1SΔQ.(2.4)

We refer to the compact set SQ as the droplet corresponding to the external field Q.
We will write Q̌ for the maximal subharmonic function ≤ Q which grows like
log |z| + O(1) when |z| → +∞. The predroplet is the super-coincidence set S∗ =
S∗

Q given by

S∗ := {
z ∈ C : Q̌(z) ≥ Q(z)

}
.

Then S∗ is compact with S ⊂ S∗, and if Q is C2-smooth on S∗ \ S, we have
�Q = 0 area-a.e. on S∗ \ S (cf. [11]). If we let δw stand for the unit point mass at
a point w ∈ C, we may form the empirical measure 1

n

∑n
j=1 δλj

. Here, as before,
the λj are the eigenvalues of a random normal matrix, so the empirical measure
is a stochastic probability measure. As n → +∞, we have almost surely that the
empirical measure converges to the Frostman equilibrium measure σ .
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Our present goal is to describe the fluctuations of the density field μn =∑n
j=1 δλj

around the equilibrium. More precisely, we will study the distribution
(linear statistic)

f �→ 〈f,μn〉C − n〈f,σ 〉C = Trn[f ] − n〈f,σ 〉C, f ∈ C∞
0 (C).

We will denote by νn the measure with density n(un − u), that is,

〈f, νn〉C := En

(
Trn[f ]) − n〈f,σ 〉C = n〈f,σn − σ 〉C, f ∈ C∞

0 (C).

2.4. Assumptions on the potential. To state the main results of the paper, we
make the following four assumptions:

(A1) (smoothness) Q is real-analytic (written Q ∈ Cω) in some neighborhood of
the droplet S = SQ;

(A2) (regularity) �Q 
= 0 in S;
(A3) (topology) ∂S is a Cω-smooth Jordan curve;
(A4) (potential theory) S∗ = S (the droplet equals the predroplet).

We will comment on the nature and consequences of these assumptions later. Let
us agree to write

L = LQ := log�Q.

This function is well defined and Cω-smooth in a neighborhood of the droplet S.

2.5. The Neumann jump operator. We will use the following general system
of notation. If g is a continuous function defined in a neighborhood of S, then
we write gS for the continuous and bounded function in C with the following
properties: in S, gS equals g, while in the complement C \ S, gS is harmonic. It is
clear that this determines gS uniquely.

If g is smooth on S, then

N�g := −∂g|S
∂n

, � := int(S),

where n is the (exterior) unit normal of �. We define the normal derivative N��g

for the complementary domain �� := C \ S analogously. If both normal deriva-
tives exist, then we define the Neumann jump:

Ng ≡ N∂Sg := N�g +N��g.

By Green’s formula, we have the identity (of distributions)

�gS = 1��g dA +N
[
gS]

ds,(2.5)

where ds is the arc-length measure on ∂S. Here, �gS is understood in the sense
of distribution theory, and the measure on the right-hand side is understood as a
distribution as well.
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We now verify (2.5). Let φ be a test function. The left-hand side in (2.5) applied
to φ is

〈
φ,�gS 〉

C
= 〈

�φ,gS 〉
C

=
∫
S
g�φ dA +

∫
C\S

gS�φ dA,

while the right-hand side applied to φ equals

〈φ,1��g〉C + 〈
φ,N

[
gS]〉

∂S =
∫
S
φ�g dA +

∫
∂S

φN
[
gS]

ds.

So, we need to check that∫
S
(g�φ − φ�g)dA +

∫
C\S

(
gS�φ − φ�gS)

dA =
∫
∂S

φN
(
gS)

ds.

But this is an immediate consequence of Green’s formula applied to the regions �

and �� separately, and (2.5) follows.

2.6. Main results. We shall prove the following results, which were an-
nounced in [3].

THEOREM 2.1. For all test functions f ∈ C∞
0 (C), the limit

〈f, ν〉C := lim
n→+∞〈f, νn〉C

exists, and

〈f, ν〉C = 1

8π

{∫
S
(�f + f �L)dA +

∫
∂S

fN
(
LS)

ds

}
.

Equivalently, we have the convergence as n → +∞

dνn → dν = 1

8π
�

(
1S + LS)

,

in the sense of distribution theory.

THEOREM 2.2. Let h ∈ C∞
0 (C) be a real-valued test function. Then, as n →

+∞, we have the convergence in distribution

Trn h −En Trn h → N

(
0,

1

4π

∫
C

∣∣∇hS
∣∣2 dA

)
.

The last formula is to be understood in the sense of convergence of the random
variables to a normal law in distribution. As noted in [3], the result may be restated
in terms of convergence of random fields to a Gaussian field with free boundary
conditions.
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2.7. Derivation of Theorem 2.2. By appealing to the variational approach em-
ployed by Johansson in [15], we now show that the Gaussian convergence in The-
orem 2.2 follows from a generalized version of Theorem 2.1, which we now state.

We fix a real-valued test function h ∈ C∞
0 (C) and consider the perturbed poten-

tial

Qh
n := Q − 1

n
h.

We denote by Probh
n the density of states associated with the perturbed potential

Qh
n [cf. (2.2)] given by

d Probh
n(λ) := 1

Zh
n

e−Hh
n (λ) dA⊗n(λ), λ = (λj )

n
1 ∈ C

n,(2.6)

where Zh
n is the appropriate normalization constant (“partition function”) and

Hh
n (λ) = ∑

j,k:j 
=k

log
1

|λj − λk| + 2n

n∑
j=1

Q(λj ) − 2
n∑

j=1

h(λj ).

We let Eh
n denote expectation with respect to the perturbed law Probh

n. We also
write uh

n for the one-point function associated with the density of states Probh
n,

and σh
n for the probability measure with density uh

n (i.e., dσh
n = uh

n dA). We let νh
n

denote the measure n(σh
n − σ), that is,

〈
f, νh

n

〉
C

:= n
〈
f,σh

n − σ
〉
C

= E
h
n Trn[f ] − n〈f,σ 〉C.(2.7)

THEOREM 2.3. For all f ∈ C∞
0 (C), we have the convergence as n → +∞

〈
f, νh

n − νn

〉
C

→ 1

2π

∫
C

∇f S · ∇hS dA.

Here, the dot stands for the inner product of vectors. We supply a proof of
Theorem 2.3 in Section 5.

LEMMA 2.4. Theorem 2.2 is a consequence of Theorem 2.3.

PROOF. We follow the argument of Johansson [14, 15].
We write Xn := Trn[h] − En Trn[h] and let ah

n(τ ) := E
τh
n Xn. Here, τ ≥ 0 is a

parameter, and E
τh
n denotes expectation corresponding to the potential Q − 1

n
τh.

We note that ah
n(0) = 0 because EnXn = 0. In view of Theorem 2.3, we have that

as n → +∞,

ah
n(τ ) → τa, where a = 1

2π

∫
C

∣∣∇hS
∣∣2 dA.(2.8)
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The convergence is for fixed τ . Next, we put

Fn(τ) := logEn

[
e2τXn

]
,

and observe that Fn(0) = 0 and that Fn is convex. Then Johansson’s calculation
(see [15]; the argument is reproduced in [3], pages 66–67) shows that we have

F ′
n(τ ) = 2Eτh

n Xn = 2ah
n(τ ),(2.9)

so the convexity of Fn means that τ �→ ah
n(τ ) is increasing. In particular,

0 = 2ah
n(0) = F ′

n(0) ≤ F ′
n(t) ≤ F ′

n(τ ) = 2ah
n(τ ), 0 ≤ t ≤ τ,

so that by dominated convergence, integration of (2.9) gives that

logEn

[
e2τXn

] = Fn(τ) = Fn(τ) − Fn(0)
(2.10)

=
∫ τ

0
F ′

n(t)dt →
∫ τ

0
2ta dt = aτ 2 as n → +∞.

This calculates the limit of the moment generating function, and we see from (2.10)
that all the moments of Xn converge to the moments of the normal N(0, 1

2a) dis-
tribution. It is well known that this implies convergence in distribution, namely
Theorem 2.2 follows. �

2.8. Comments.

2.8.1. Related work. The one-dimensional analogue of the weighted RNM
theory is the random Hermitian matrix theory. As we mentioned, the convergence
of the fluctuations to a Gaussian field was studied by Johansson in the impor-
tant paper [15]. In the case of normal matrices, the convergence in Theorems 2.1
and 2.2 for test functions supported in the interior of the droplet was obtained in
[3]; see also [5]. Also, in [3], we announced Theorems 2.1 and 2.2 and obtained
several consequences of them, for example, the convergence of the Berezin mea-
sures, rooted at a point in the exterior to S, to harmonic measure. Earlier, Rider
and Virág [17] proved Theorems 2.1 and 2.2 in the special case Q(z) = 1

2 |z|2 (the
Ginibre ensemble). In [9] and [4], the fluctuations of eigenvalues near the boundary
are studied from a different perspective. Finally, we should mention the work of
Wiegmann et al. [22–25], who pioneered—on the physical level—the application
of the method of Ward identities to various aspects or RNM theory.

2.8.2. Assumptions on the potential. Here, we comment on the assumptions
(A1)–(A4) which are made on the potential Q.

The Cω-smoothness assumption (A1) is natural for the study of fluctuation
properties near the boundary of the droplet (For test functions supported in the
interior, one can do with less regularity).
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By extending Sakai’s theory [19] to general real-analytic weights, it was shown
in [12] that the conditions (A1) and (A2) imply that ∂S is a union of finitely many
Cω-smooth curves with a finite number of singularities of known types. We rule
out the singularities by the smoothness assumption (A3). What happens in the
presence of singularities is probably an interesting topic, which we have not ap-
proached. Without singularities, the boundary of the droplet is a union of finitely
many Cω-smooth Jordan curves. The topological ingredient in assumption (A3)
means that we only consider the case of a single boundary component. Our meth-
ods extend without difficulty to the case of a multiply connected droplet. The dis-
connected case requires further analysis, and is not considered in this paper.

The potential theoretic assumption (A4) is needed to ensure exponentially rapid
decay of the (perturbed) one-point function uh

n off the droplet S. We remark that
the assumptions (A1)–(A3) entail that the set S∗ \ S has positive distance to S, but
without (A4), S∗ \ S could nevertheless be rather big.

2.8.3. Droplets and potential theory. Here, we state the properties of the
droplet that will be needed for our analysis. Proofs for these properties can be
found in [11, 18].

We recall that Q̌ is the maximal subharmonic function ≤ Q which grows like
log |z|+O(1) when |z| → +∞. We have that Q̌ = Q on S while Q̌ is C1,1-smooth
in C and

Q̌(z) = QS(z) + G(z,∞), z ∈ C \ S,

where G is the classical Green’s function of C \ S. In particular, if

Uσ (z) =
∫
C

log
1

|z − ζ | dσ(ζ )

denotes the logarithmic potential of the equilibrium measure, then

Q̌ + Uσ ≡ cQ,(2.11)

where cQ is a Robin-type constant.
The following proposition sums up the basic properties of the droplet and the

function Q̌ (compare with [11]). We write W 2,∞ for the usual (local) Sobolev
space of functions with locally bounded second-order partial derivatives.

PROPOSITION 2.5. Suppose Q satisfies (A1)–(A3). Then ∂S is a Cω-smooth
Jordan curve, and Q̌ ∈ W 2,∞(C). Moreover, we have that

∂Q̌ = [∂Q]S,

and

Q(z) − Q̌(z) � δ∂S(z)2, z ∈ C \ S, as δ∂S(z) → 0,(2.12)

where δ∂S(z) denotes the distance from z to the droplet.
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2.8.4. Joint intensities. We will occasionally use the intensity k-point function
of the process �n. This is the function defined by

R(k)
n (z1, . . . , zk) := lim

ε→0

Probn(
⋂k

j=1{�n ∩D(zj , ε) 
= ∅})
(πε2)k

= det
[
Kn(zi, zj )

]k
i,j=1.

In particular, R
(1)
n = nun.

2.8.5. Organization of the paper. We will derive the following statement
which combines Theorems 2.1 and 2.3.

MASTER FORMULA. Let νh
n be the measure defined in (2.7). Then

lim
n→+∞

〈
f, νh

n

〉
C

= 1

8π

{∫
S
(�f + f �L)dA +

∫
∂S

fN
(
LS)

ds

}

(2.13)

+ 1

2π

∫
C

∇f S · ∇hS dA.

Our proof of this formula is based on the limit form of the Ward identities which
we discuss in the next section. To justify this limit form, we need to estimate certain
error terms; this is done in Section 4. In the proof, we refer to some basic estimates
of polynomial Bergman kernels, which we collect in the Appendix. The proof of
the master formula is completed in Section 5.

3. Ward identities.

3.1. Exact identities. For an appropriate function v on C, we define a random
variable W+

n [v] on the probability space (Cn,Probn) by

W+
n [v] := 1

2

∑
j,k:j 
=k

v(λj ) − v(λk)

λj − λk

− 2nTrn[v∂Q] + Trn[∂v].

The minimal requirement on v is that the above expression should be well defined.

PROPOSITION 3.1. Let v :C→C be Lipschitz-continuous with compact sup-
port. Then

EnW
+
n [v] = 0.

PROOF. The proof is based on the observation that the value of the partition
function

Zn :=
∫
Cn

e−Hn(z) dA⊗n(z)

is unchanged under a change of variables in the integral. Here, Hn is the Hamilto-
nian given by (2.3). We will need to analyze the change of the volume element as
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well as the change of the Hamiltonian under the change of variables. To simplify
the notation, we write

W+
n [v] = In[v] − IIn[v] + IIIn[v],

where (a.e.)

In[v](z) := 1

2

∑
j,k:j 
=k

v(zj ) − v(zk)

zj − zk

, IIn[v](z) = 2n

n∑
j=1

∂Q(zj )v(zj ),

IIIn[v](z) =
n∑

j=1

∂v(zj ).

We consider the change of variables zj = φ(ζj ) := ζj + ξv(ζj ), for 1 ≤ j ≤ n.
Here, ξ ∈ C is assumed to be close to 0. The corresponding area element is

dA(zj ) = (∣∣∂φ(ζj )
∣∣2 − ∣∣∂̄φ(ζj )

∣∣2)
dA(ζj )

= {
1 + 2 Re

[
ξ∂v(ζj )

] + O
(|ξ |2)}

dA(ζj ),

so that the corresponding volume element becomes

dA⊗n(z) = {
1 + 2 Re

(
ξ IIIn[v](ζ )

) + O
(|ξ |2)}

dA⊗n(ζ ).

We turn to the Hamiltonian after the change of variables. We note that

log |zi − zj |2 = log |ζi − ζj |2 + log
∣∣∣∣1 + ξ

v(ζi) − v(ζj )

ζi − ζj

∣∣∣∣
2

= log |ζi − ζj |2 + 2 Re
(
ξ
v(ζi) − v(ζj )

ζi − ζj

)
+ O

(|ξ |2)
,

so that

∑
j,k:j 
=k

log
1

|zj − zk| =
n∑

j,k:j 
=k

log
1

|ζj − ζk| − 2 Re
[
ξ In(ζ )

] + O
(|ξ |2)

(3.1)

as |ξ | → 0. The external potential Q changes according to

Q(zj ) = Q
(
ζj + ξv(ζj )

) = Q(ζj ) + 2 Re
(
ξ∂Q(ζj )v(ζj )

) + O
(|ξ |2)

,

so that

2n

n∑
j=1

Q(zj ) = 2n

n∑
j=1

Q(ζj ) + 2 Re
[
ξ IIn(ζ )

] + O
(|ξ |2)

.(3.2)

Putting things together, we see that (3.1) and (3.2) imply that the Hamiltonian Hn

given by (2.3) changes according to

Hn(z) = Hn(ζ ) + 2 Re
(−ξ In(ζ ) + ξ IIn(ζ )

) + O
(|ξ |2)

.(3.3)
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We find that after the change of variables, the partition function equals

Zn =
∫
Cn

e−Hn(z) dA⊗n(z)

=
∫
Cn

e−Hn(ζ )−2 Re[−ξ In(ζ )+ξ IIn(ζ )]+O(|ξ |2)

× (
1 + 2 Re

[
ξ IIIn(ζ )

] + O
(|ξ |2))

dA⊗n(ζ ).

As the value of Zn does not depend on the value of the small complex parameter
ξ , a simple argument based on Taylor’s formula gives that

Re
{
ξ

∫
Cn

(
IIIn(ζ ) + In(ζ ) − IIn(ζ )

)
e−Hn(ζ ) dA⊗n(ζ )

}
= 0,(3.4)

that is, Re(ξEnW
+
n [v]) = 0. Considering that ξ is an arbitrary complex number

which is close enough to 0, the claimed assertion En(W
+
n [v]) = 0 is immediate.

�

By applying Proposition 3.1 to the perturbed potential Qh
n = Q− 1

n
h, we obtain

the identity

E
h
nW

+
n,h[v] = 0,(3.5)

where E
h
n is the expectation operation with respect to the weight Qh

n, and

W+
n,h[v] := W+

n [v] + 2 Trn[v∂h].(3.6)

If we write

Vn[v] = 1

2n

∑
i,j :i 
=j

v(λi) − v(λj )

λi − λj

,

we may reformulate (3.5) and (3.6) in the following fashion:

E
h
nVn[v] = 2Eh

n Trn[v∂Q] − 〈
∂v + 2v∂h,σh

n

〉
C

(3.7)
= 〈

2nv∂Q − 2v∂h − ∂v, σh
n

〉
C
.

Here, we recall that σh
n is the measure with density uh

n.

3.2. Some logarithmic potentials. We recall from (2.11) that Q̌ may be written
as

Q̌ = cQ − Uσ ,

where cQ is a Robin-type constant and Uσ is the usual logarithmic potential as-
sociated with σ . More generally, if μ is a finite Borel measure in C, with finite
moment ∫

C

|ζ |d|μ|(ζ ) < +∞,
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its logarithmic potential Uμ is the function

Uμ(z) =
∫
C

log
1

|z − ζ | dμ(ζ ), z ∈ C.

We introduce the following function, associated with the measure σh
n :

Q�n,h := cQ − Uσh
n .(3.8)

We write Q�n := Q�n,0 in case h = 0. Then, as n → +∞, Q�n,h → Q̌, uniformly
in C. Moreover, the way things are set up, we have

�Q�n,h = 2πuh
n.

Using the estimates of the one-point function uh
n developed in Lemma 4.1 and

Theorem 4.2, it is not difficult to show that ∇Q�n,h → ∇Q̌, uniformly in C.

3.3. Cauchy kernels. For each z ∈ C, let κz denote the function

κz(λ) = 1

z − λ
,

so that z �→ 〈κz, σ 〉C is the Cauchy transform of the measure σ . By Proposition 2.5,
we have

〈κz, σ 〉C = 2∂Q̌(z).

We will also need the Cauchy integral 〈κz, σ
h
n 〉C. We observe that

〈
κz, σ

h
n

〉
C

= 2∂Q�n,h(z), z ∈ C.(3.9)

We now introduce the function

Dh
n(z) := 〈

κz, ν
h
n

〉
C
,

and write Dn := D0
n in case h = 0. In terms of the function Q�n,h, we have

Dh
n = 2n∂

[
Q�n,h − Q̌

]
and ∂̄Dh

n = nπ
(
uh

n − u
)
,(3.10)

and if f is a test function, then

〈
f, νh

n

〉
C

= 1

π

∫
C

f ∂̄Dh
n dA = − 1

π

∫
C

Dh
n∂̄f dA.(3.11)

Let Kh
n denote the correlation kernel with respect to the weight Qh

n = Q − 1
n
h. In

terms of Dh
n , we may rewrite the Vn[v] term which appears in the Ward identity as

follows.



RANDOM NORMAL MATRICES AND WARD IDENTITIES 1171

LEMMA 3.2. We have that

E
h
nVn[v] = 2n

∫
C

vuh
n∂Q̌dA +

∫
C

vuh
nD

h
n dA

− 1

2n

∫
C2

v(z) − v(w)

z − w

∣∣Kh
n(z,w)

∣∣2 dA⊗2(z,w).

PROOF. After all, we have

E
h
nVn[v] = 1

2n

∫
C2

v(z) − v(w)

z − w
R

(2)
n,h(z,w)dA⊗2(z,w),

where

R
(2)
n,h(z,w) := Kh

n(z, z)K
h
n(w,w) − ∣∣Kh

n(z,w)
∣∣2.

Next, we see that

1

2n

∫
C2

v(z) − v(w)

z − w
Kh

n(z, z)K
h
n(w,w)dA⊗2(z,w)

= 1

n

∫
C2

v(z)

z − w
Kh

n(z, z)K
h
n(w,w)dA⊗2(z,w)

= n

∫
C2

v(z)

z − w
uh

n(z)u
h
n(w)dA⊗2(z,w) = n

∫
C

v(z)uh
n(z)

〈
κz, σ

h
n

〉
C

dA(z)

= 2n

∫
C

vuh
n∂Q�n,h dA = 2n

∫
C

vuh
n∂Q̌dA +

∫
C

vuh
nD

h
n dA,

where we first used symmetry, second the identity Kh
n(z, z) ≡ nuh

n(z), third, the
equality (3.9) and fourth, the relation (3.10). The proof is complete. �

3.4. Limit form of the Ward identity. The main formula (2.13) will be derived
from Theorem 3.3 below. In this theorem, we make the following assumptions on
the vector field v:

(3.4-i) v is bounded in C;
(3.4-ii) v is Lipschitz-continuous in C;

(3.4-iii) v is uniformly C2-smooth in C \ ∂S.

[The last condition means that the restriction of v to S and the restriction to
(C \ S) ∪ ∂S are both C2-smooth.]

THEOREM 3.3. If v satisfies (3.4-i)–(3.4-iii), then as n → +∞,

2

π

∫
S
vDh

nΔQdA + 2

π

∫
C\S

v∂(Q̌ − Q)∂̄Dh
n dA → −1

2
〈∂v, σ 〉C − 2〈v∂h,σ 〉C.
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We postpone the proof to remark that it will be convenient to integrate by parts
in the second integral in Theorem 3.3. To control the boundary term, we can use
the next lemma.

LEMMA 3.4. For big n, we have the estimate
∣∣Dh

n(z)
∣∣ = O

(
n

|z|2
)

as |z| → +∞,

where the implied constant is independent of n.

PROOF. As uh
n and u are both probability densities, we see that

Dh
n(z)

n
=

∫
C

uh
n(λ) − u(λ)

z − λ
dA(λ) =

∫ (
1

z − λ
− 1

z

)(
uh

n(λ) − u(λ)
)

dA(λ).

Next, since
1

z − λ
− 1

z
= 1

z2

λ

1 − λ/z
,

we need to show that the integrals∫
C

|uh
n(λ) − u(λ)|
|1 − λ/z| |λ|dA(λ)

are uniformly bounded. We use that for some positive constant C1,
∣∣uh

n(λ) − u(λ)
∣∣ ≤ u(λ) + uh

n(λ) ≤ C1

1 + |λ|4 , λ ∈ C,(3.12)

which may be justified by appealing to the basic estimate (cf. Lemma 4.1 below)

uh
n(λ) ≤ C2e−2n(Q(λ)−Q̌(λ)), λ ∈ C,

together with the growth assumption (2.1). It is here that we need n to be big
enough. Next, in view of (3.12),

∫
C

|uh
n(λ) − u(λ)|
|1 − λ/z| |λ|dA(λ) ≤ C1

∫
C

(1 + |λ|)−4

|1 − λ/z| |λ|dA(λ) ≤ 100C1,

where the estimate of the integral can be achieved by splitting the plane into the
disk D(z, 1

2 |z|) and its complement, and by suitably estimating the integrand in
each region. �

Since ∂Q = ∂Q̌ on S, an integration by parts argument leads to the following
reformulation of Theorem 3.3.

COROLLARY 3.5 (“Limit Ward identity”). Suppose that v meets the condi-
tions (3.4-i)–(3.4-iii). Then as n → +∞, we have the convergence

2

π

∫
C

(
vΔQ + ∂̄v∂(Q − Q̌)

)
Dh

n dA → −1

2
〈∂v, σ 〉C − 2〈v∂h,σ 〉C.
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3.5. Error terms and the proof of Theorem 3.3. We recall that the Ward iden-
tity (3.7) states that

E
h
nVn[v] = 〈

2nv∂Q − 2v∂h − ∂v, σh
n

〉
C
,

while Lemma 3.2 supplies the formula

E
h
nVn[v] = 〈

2nv∂Q̌ + vDh
n,σh

n

〉
C

− 1

2n

∫
C2

v(z) − v(w)

z − w

∣∣Kh
n(z,w)

∣∣2 dA⊗2(z,w).

As we equate the two, and perform some rearrangement, we arrive at〈
2nv∂(Q̌ − Q),σh

n − σ
〉
C

+ 〈
vDh

n,σ
〉
C

= −
〈
2v∂h + 1

2
∂v, σh

n

〉
C

− 〈
vDh

n,σh
n − σ

〉
C

(3.13)

+ 1

2n

∫
C2

v(z) − v(w)

z − w

∣∣Kh
n(z,w)

∣∣2 dA⊗2(z,w) − 1

2

〈
∂v, σh

n

〉
C
.

In the rearrangement, we used the facts that σ is supported on S and that
∂(Q̌ − Q) = 0 on S. Let us introduce the first error term by

ε1
n,h[v] := 1

n

∫
C2

v(z) − v(w)

z − w

∣∣Kh
n(z,w)

∣∣2 dA⊗2(z,w) − 〈
∂v, σh

n

〉
C
,(3.14)

and the second error term by

ε2
n,h[v] := 〈

vDh
n,σh

n − σ
〉
C

=
∫
C

vDh
n

(
uh

n − u
)

dA

(3.15)

= − 1

2πn

∫
C

[
Dh

n

]2
∂̄v dA.

We insert these error terms into (3.13), to obtain〈
2nv∂(Q̌ − Q),σh

n − σ
〉
C

+ 〈
vDh

n,σ
〉
C

= −〈
2v∂h + 1

2∂v, σh
n

〉
C

− ε2
n,h[v] + 1

2ε1
n,h[v].

We next rewrite this relation in integral form using (3.10) and (2.4):

2

π

∫
C\S

v∂(Q̌ − Q)∂̄Dh
n dA + 2

π

∫
S
vDh

nΔQdA

(3.16)

= −
〈
2v∂h + 1

2
∂v, σh

n

〉
C

+ 1

2
ε1
n,h[v] − ε2

n,h[v].

As n → +∞, we have the convergence σh
n → σ in the weak-star sense of mea-

sures. For h = 0, this is Johansson’s theorem (see [11, 15]), while in this more
general setting, it follows from the one-point function estimates in Lemma 4.1
and Theorem 4.2 below. We see from (3.16) that once we have established that
ε
j
n,h[v] → 0 as n → +∞ for j = 1,2, the assertion of Theorem 3.3 is immediate.
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In the next section, we will show that for each v satisfying conditions (3.4-i)–
(3.4-iii), the error terms ε

j
n,h[v] tend to zero as n → +∞, for j = 1,2, which

completes the proof of Theorem 3.3.

4. Estimates of the error terms.

4.1. Estimates of the kernel Kh
n. We will use two different estimates, one

which gives control in the interior int(S) of the droplet S, and another which gives
control in the exterior domain C \ S.

4.1.1. The exterior estimate. We recall that Kh
n(z,w) is the correlation kernel

of the n-point process associated with potential Qh
n = Q − 1

n
h. We have the fol-

lowing global estimate, which is particularly useful in the exterior of the droplet.

LEMMA 4.1. There exists a positive constant C which only depends on Q,h

such that

Kh
n(z, z) ≤ Cne−2n(Q−Q̌)(z), z ∈ C.

This estimate has been recorded (see, e.g., [2], Section 3) for the kernels Kn,
that is, in the case h = 0. Since obviously∫

C

|p|2e−2nQh
n dA �

∫
C

|p|2e−2nQ dA,

the norms of the point evaluation functionals are equivalent in the spaces
Poln(e−2nQ) and Poln(e−2nQh

n). In terms of reproducing kernels, this means that
kn(z, z) � kh

n(z, z), and so Kn(z, z) � Kh
n(z, z) as well. It follows that the case

h 
= 0 does not require any separate treatment.
In the following, we shall use the notation

δ∂S(z) := distC(z, ∂S)

and

δn := n−1/2[logn]2.

In view of our assumptions on the droplet (see Proposition 2.5), and the growth
control (2.1) together with our assumption (A4), we have, for some small but pos-
itive real parameter ε,

Q(z) − Q̌(z) ≥ ε min
{
log

(
2 + |z|), δ∂S(z)2}

, z ∈ C \ S.(4.1)

For big n, it follows that for any N > 0 there exists a constant CN such that

Kh
n(z, z) ≤ CNn−N(1 + |z|)−3 for z ∈ C \ S with δ∂S(z) ≥ δn.(4.2)
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4.1.2. The interior estimate. Let us recall that we assume that Q is real-
analytic in some neighborhood of S. This means that we can lift Q to a complex
analytic function of two variables in some neighborhood in C

2 of the conjugate-
diagonal

{
(z, z̄) : z ∈ S

} ⊂ C
2.

We will use the same letter Q for this extension, so that, for example,

Q(z) = Q(z, z̄).

We have

Q(z,w) = Q(w̄, z̄)

and

∂1Q(z, z̄) = ∂Q(z), ∂1∂2Q(z, z̄) = ∂∂̄Q(z) = ΔQ(z),

∂2
1Q(z, z̄) = ∂2Q(z), etc.

Using this extension and some technical mathematical machinery, one can show
that for z,w confined to the interior of the droplet S, the leading contribution to
the perturbed correlation kernel Kh

n is of the form

K�
n,h(z,w) = 2n

π
(∂1∂2Q)(z, w̄)en[2Q(z,w̄)−Q(z)−Q(w)]e−2i Im[(z−w)∂h(w)].(4.3)

The diagonal restriction of this approximate correlation kernel is

K�
n,h(w,w) = 2n

π
ΔQ(w) = n

2π
�Q(w).

THEOREM 4.2. Suppose that z,w ∈ S, with δ∂S(z) > 2δn and |z − w| < δn.
Then

∣∣Kh
n(z,w) − K�

n,h(z,w)
∣∣ = O(1)

as n → +∞, where the implied constant in O(1) depends on Q,h, but not on n.

Similar types of expansions are discussed, for example, in [1, 2, 7]. As there
is no convenient reference for this particular result, and to make the paper self-
contained, we include a proof in the Appendix.

We now turn to the proof that the error terms ε1
n,h[v] and ε2

n,h[v] [cf. (3.14)–
(3.15)] are negligible. Our proof is based on the above mentioned estimates of the
correlation kernels Kh

n.
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4.2. The first error term. We start with the observation that if w ∈ S and
δ∂S(w) > 2δn then at short distances the so-called Berezin kernel rooted at w

B〈w〉
n,h(z) = |Kh

n(z,w)|2
Kh

n(w,w)

is close to the heat kernel

H 〈w〉
n (z) = 1

π
ane−an|z−w|2, a := 2ΔQ(w) > 0.

Both kernels determine probability measures indexed by w. Most of the heat kernel
measure is concentrated in the disc D(w, δn),∫

C\D(w,δn)
H 〈w〉

n (z)dA(z) = O
(
n−N )

as n → +∞,(4.4)

where N denotes an arbitrary (large) positive number.

LEMMA 4.3. Suppose that z,w ∈ S, with δ∂S(w) > 2δn and |z − w| < δn.
Then

∣∣B〈w〉
n,h(z) − H 〈w〉

n (z)
∣∣ = O

(
n1/2)

as n → +∞,

where the implied constant only depends on Q,h.

PROOF. In view of Theorem 4.2, we have

B〈w〉
n (z) = |K�

n,h(z,w)|2
K�

n,h(w,w)
+ O(1),

where K�
n,h is as in (4.3). Next, we fix w and apply Taylor’s formula to get that

Re
{
2Q(z, w̄) − Q(z) − Q(w)

}
= 2 ReQ(z, w̄) − Q(z) − Q(w)

= 2 Re
{
Q(w) + (z − w)∂Q(w) + 1

2(z − w)2∂2Q(w)
}

− {
Q(w) + 2 Re

[
(z − w)∂Q(w)

]
+ Re

[
(z − w)2∂2Q(w)

] + |z − w|2ΔQ(w)
}

− Q(w) + O
(|z − w|3)

= −|z − w|2ΔQ(w) + O
(|z − w|3)

.

Note that for 0 ≤ t < +∞,

t1/2e−nt ≤ n−1/2, t3/2e−nt ≤ n−3/2.(4.5)



RANDOM NORMAL MATRICES AND WARD IDENTITIES 1177

Using the explicit formula (4.3), we find that with a = 2ΔQ(w),

|K�
n,h(z,w)|2

K�
n,h(w,w)

= n

π

[
a + O

(|z − w|)]e−αn|z−w|2+O(n|z−w|3) = H 〈w〉
n (z) + O

(
n1/2)

,

where in the last step we rely on (4.5). This does it. �

COROLLARY 4.4. If w ∈ S and δ∂S(w) > 2δn, then
∫
C\D(w,δn)

B〈w〉
n,h(z)dA(z) = O

(
n1/2δ2

n

) = O
(
n−1/2[logn]4)

.

PROOF. We notice that∫
C\D(w,δn)

B〈w〉
n,h dA = 1 −

∫
D(w,δn)

B〈w〉
n,h dA

= 1 −
∫
D(w,δn)

H 〈w〉
n dA +

∫
D(w,δn)

(
H 〈w〉

n −B〈w〉
n,h

)
dA

=
∫
C\D(w,δn)

H 〈w〉
n dA +

∫
D(w,δn)

(
H 〈w〉

n −B〈w〉
n,h

)
dA.

The assertion now follows from Lemma 4.3 and the decay (4.4) of the heat kernel.
�

PROPOSITION 4.5. Suppose that v meets the conditions (3.4-i)–(3.4-iii). Then
ε1
n,h[v] = O(n1/2δ2

n) = O(n−1/2[logn]4) as n → +∞.

PROOF. We consider the auxiliary function

Fh
n [v](w) :=

∫
C

{
v(z) − v(w)

z − w
− ∂v(w)

}
B〈w〉

n,h(z)dA(z), w ∈ C.

Then the error term defined by (3.14) may be expressed in the form

ε1
n,h[v] =

∫
C

uh
n(w)Fh

n [v](w)dA(w).(4.6)

As v is globally Lipschitz-continuous, Fh
n [v] is uniformly bounded; indeed, we

have the estimate
∥∥Fh

n [v]∥∥L∞(C) ≤ 2‖∇v‖L∞(C).(4.7)

Let Bn be the thin “tube” or “belt” around ∂S given by

Bn := {
z ∈ C : δ∂S(z) < 2δn

}
.(4.8)
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Since the area of Bn is � δn, it follows that∫
Bn

uh
n(w)

∣∣Fh
n (w)

∣∣ dA ≤ 2‖∇v‖L∞(C)

∫
Bn

uh
n(w)dA

≤ 2C‖∇v‖L∞(C)

∫
Bn

dA = O(δn)

as n → +∞, where C is the constant of Lemma 4.1, which only depends on
Q,h. We turn to the estimation of the same integrand over the complementary set
C \ Bn. For w ∈ C \ Bn and z ∈ C with |z − w| < δn, then both z,w lie in the
same component of C \ ∂S where the assumptions on v tell us that v is uniformly
C2-smooth. By Taylor’s formula, then we have

v(z) = v(w) + (z − w)∂v(w) + (z̄ − w̄)∂̄v(w) + O
(|z − w|2)

,

where the implied constant is uniform. As a consequence, we get that

v(z) − v(w)

z − w
− ∂v(w) = ∂̄v(w)

z̄ − w̄

z − w
+ O

(|z − w|),
with a uniform implied constant. This leads to

∫
D(w,δn)

{
v(z) − v(w)

z − w
− ∂v(w)

}
H 〈w〉

n (z)dA(z)

= ∂̄v(w)

∫
D(w,δn)

z̄ − w̄

z − w
H 〈w〉

n (z)dA(z) + O
(
n−1/2) = O

(
n−1/2)

,

by the radial symmetry of the heat kernel; the error term may be obtained by inte-
gration against the heat kernel. Next, we use Lemma 4.3 and the global Lipschitz-
continuity of v to see that∣∣∣∣

∫
D(w,δn)

{
v(z) − v(w)

z − w
− ∂v(w)

}[
B〈w〉

n,h(z) − H 〈w〉
n (z)

]
dA(z)

∣∣∣∣
= O

(
n1/2δ2

n

) = O
(
n−1/2[logn]4)

,

uniformly in w ∈ C \ Bn. Finally, we use the global Lipschitz-continuity of v to-
gether with Corollary 4.4 to see that

∫
C\D(w,δn)

∣∣∣∣v(z) − v(w)

z − w
− ∂v(w)

∣∣∣∣B〈w〉
n,h(z)dA(z)

= O
(
n−1/2[logn]4)

as n → +∞,

uniformly in w ∈ C \ Bn. Putting the above ingredients together, we realize that
we have obtained that

∣∣Fh
n (w)

∣∣ =
∣∣∣∣
∫
C

{
v(z) − v(w)

z − w
− ∂v(w)

}
B〈w〉

n,h(z)dA(z)

∣∣∣∣ = O
(
n−1/2[logn]4)
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as n → +∞, uniformly in w ∈ C \Bn. This entails that∫
C\Bn

∣∣Fh
n (w)

∣∣uh
n(w)dA(w) = O

(
n−1/2[logn]4)

,

which combined with the previous estimate of the integral over Bn gives the asser-
tion of the proposition. �

4.3. The second error term. We shall prove the following proposition.

PROPOSITION 4.6. We have that for some small β > 0,

ε2
n,h[v] = − 1

2πn

∫
C

[
Dh

n

]2
∂̄v dA

= O
(
n−β/2(‖v‖L∞(C) + ‖∇v‖L∞(C)

)) = o(1) as n → +∞.

The proof will involve certain estimates of the function

Dh
n(z) = 〈

κz, ν
h
n

〉
C

= n
〈
κz, σ

h
n − σ

〉
C

= n

∫
C

uh
n(ζ ) − u(ζ )

z − ζ
dA(ζ ).

It is convenient to split the integral into two parts:

Dh
n(z) = Dh

n,I(z) + Dh
n,II(z),

where

Dh
n,I(z) := n

∫
Bn

uh
n(ζ ) − u(ζ )

z − ζ
dA(ζ ),

Dh
n,II(z) := n

∫
C\Bn

uh
n(ζ ) − u(ζ )

z − ζ
dA(ζ );

here, Bn is the thin “belt” around ∂S given by (4.8). Since

n
[
uh

n(ζ ) − u(ζ )
] = Kh

n (ζ, ζ ) − 2n

π
1S(ζ )ΔQ(ζ ),

we get from Theorem 4.2 that

n
∣∣uh

n(ζ ) − u(ζ )
∣∣ = O(1), ζ ∈ S \Bn,(4.9)

uniformly in ζ , as n → +∞. The estimate (4.2) supplies fast decay of n|uh
n −u| in

C\(S∪Bn), and together with the above estimate (4.9), this leads to the conclusion
that

∥∥Dh
n,II

∥∥
L∞(C) ≤ n sup

z∈C

∫
C\Bn

|uh
n(ζ ) − u(ζ )|

|z − ζ | dA(ζ )

(4.10)
= O(1) as n → +∞.

We turn to the estimation of Dh
n,I.
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LEMMA 4.7. We have∥∥Dh
n,I

∥∥
L∞(C) = O

(
n1/2[logn]3)

as n → +∞.

PROOF. As we shall see, this follows from the trivial bound ‖uh
n −u‖L∞(C) =

O(1) as n → +∞, which is a consequence of Lemma 4.1. We just need to estimate
the integral

∫
Bn

dA(ζ )

|z − ζ | .

Without loss of generality, we can take z = 0 and replace Bn by the rectangle
|x| < 1, |y| < δn (with z = x + iy). We have

∫
Bn

dA(ζ )

|ζ | =
∫ 1

−1
dx

∫ δn

−δn

dy√
x2 + y2

= I + II,

where I is the integral where x is confined to the interval −δn < x < δn, and II is
the remaining term. By passing to polar coordinates, we see that

I �
∫ δn

0

rdr

r
= δn = n−1/2[logn]2

and

II � δn

∫ 1

δn

dx

x
� δn log

1

δn

= O
(
n−1/2[logn]3)

as n → +∞.

The assertion of the lemma is immediate. �

Lemma 4.7 and (4.10) together give us the following estimate of the second
error term:

ε2
n,h[v] ≤ C3[logn]6‖∇v‖L1(C)(4.11)

for some positive constant C3. This comes rather close but is still weaker than what
we want. Our strategy will be to use (4.11) and iterate the argument with the Ward
identity. This will supply a better estimate in the interior of the droplet.

LEMMA 4.8. For big n, we have that for some positive constant C4,

∣∣Dh
n,I(z)

∣∣ ≤ C4
[logn]6

δ∂S(z)3 , z ∈ S.

PROOF. Let ψ be a function of Lipschitz norm ≤ 1 supported inside the
droplet S, that is, ‖∇ψ‖L∞(C) ≤ 1. Then we have

∣∣ε1
n,h[ψ]∣∣ ≤ 2,

∣∣ε2
n,h[ψ]∣∣ ≤ C3[logn]6,
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where the constants do not depend on ψ ; the first estimate follows from a combi-
nation of (4.6) and (4.7), and the second one is just (4.11). By (3.16) applied to the
function ψ , we have

2

π

∫
S
ψDh

nΔQdA = −
〈
2ψ∂h + 1

2
∂ψ,σh

n

〉
C

+ 1

2
ε1
n,h[ψ] − ε2

n,h[ψ],
and, therefore,∣∣∣∣ 2

π

∫
S
ψDh

nΔQdA

∣∣∣∣ ≤ 2‖ψ‖L∞(C)‖∇h‖L∞(C) + 1

2
‖∇ψ‖L∞(C)

+ 1

2

∣∣ε1
n,h[ψ]∣∣ + ∣∣ε2

n,h[ψ]∣∣(4.12)

≤ C5[logn]6

for a suitable positive constant C5. The claimed estimate is trivial for z ∈ S with
δ∂S(z) ≤ n−1/3, as it is a consequence of the global estimate of Lemma 4.7. In the
remaining case when z ∈ S has δ∂S(z) ≥ n−1/3, we consider the function

ψ(ζ ) = max
{
(1/2)δ∂S(z) − |ζ − z|

ΔQ(ζ)
,0

}
.

Then ψ has Lipschitz norm � 1, and by the analyticity of Dh
n,I in S \ Bn, we get

the mean value identity
∫
S
ψ(ζ )Dh

n,I(ζ )ΔQ(ζ )dA(ζ ) = 2πDh
n,I(z)

∫ (1/2)δ∂S(z)

0

(
1

2
δ∂S(z) − r

)
r dr

= π

24

[
δ∂S(z)

]3
Dh

n,I(z).

Combined with (4.12), this gives the claimed estimate. �

4.3.1. A flow of curves. We need to introduce a family of curves �[ε], where
�[0] = � = ∂S, for 0 ≤ ε � 1. Let n�(ζ ) denote the exterior unit normal vector
to � at the point ζ ∈ �. The curve �[ε] consists of the points

ζ [ε] = ζ [ε,�] = ζ + εn�(ζ ), ζ ∈ �.

As � is a real-analytically smooth Jordan curve, so is �[ε] for small ε. We now
check that the normal vector is preserved under the flow of curves �[ε]:

n�[ε]
(
ζ [ε]) = n�(ζ ), ζ ∈ �.(4.13)

To this end, let � be parametrized with positive orientation by ζ(t), 0 ≤ t ≤ 1,
where ζ ′(t) 
= 0 and ζ(0) = ζ(1). Then n�(ζ(t)) = −iζ ′(t)/|ζ ′(t)|, so that

ζ [ε](t) = ζ(t) + εn�

(
ζ(t)

) = ζ(t) − iε
ζ ′(t)
|ζ ′(t)|
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parameterizes �[ε]. A calculation gives that

(
ζ [ε])′(t) = ζ ′(t)

(
1 + ε

Im[ζ̄ ′(t)ζ ′′(t)]
|ζ ′(t)|3

)
,

which means that the two tangents point in the same direction. As a consequence,
the two normals point in the same direction as well.

Finally, we need an estimate of Dh
n,I in the exterior of the droplet S. This will

be done in the next subsection by reflecting the previous interior estimate in the
curve � := ∂S. We then use the following lemma. Let us fix some sufficiently
small positive number, for example, β = 1

10 will do, and define �n := �[n−β], in
the above notation. For big n, �n is then a Cω-smooth curve in C \S which is very
close to � = ∂S. The complement C \ �n has two connectivity components; let
�n be component which is bounded, and ��

n the remaining component, which is
unbounded.

Let L2(�n) denote the usual L2 space of functions on �n with respect to arc-
length measure.

LEMMA 4.9. We have that∥∥Dh
n,I

∥∥2
L2(�n) = O

(
n1−(1/2)β)

as n → +∞.

Given this estimate, we can complete the proof of Proposition 4.6 as follows.

PROOF OF PROPOSITION 4.6. By the correlation kernel decay in (4.2) and the
uniform estimate of Dh

n supplied by (4.10) and Lemma 4.7, we have that

ε2
n,h[v] =

∫
C

vDh
n

(
uh

n − u
)

dA =
∫
�n

vDh
n

(
uh

n − u
)

dA + O
(
n−100‖v‖L∞(C)

)

= 1

2πn

∫
�n

v∂̄
([

Dh
n

]2)
dA + O

(
n−100‖v‖L∞(C)

)

= − 1

2πn

∫
�n

[
Dh

n

]2
∂̄v dA + 1

4πn

∫
�n

[
Dh

n(z)
]2

v(z)dz

+ O
(
n−100‖v‖L∞(C)

)
,

if we use the Cauchy–Green formula. As a consequence, we find that

∣∣ε2
n,h[v]∣∣ ≤ 1

2πn

∥∥Dh
n

∥∥2
L2(�n)‖∇v‖L∞(C) + 1

4πn

∥∥Dh
n

∥∥2
L2(�n)‖v‖L∞(C)

+ O
(
n−100‖v‖L∞(C)

)
.

The second term is taken care of by Lemma 4.9. To estimate the first term, we
consider the set

An = {
z ∈ C : δ∂S(z) < n−β}

.
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The area of An is � n−β , and in S \ An we have |Dh
n,I| = O(n3β[logn]6) (cf.

Lemma 4.8). Inside An, we apply the uniform bound of Lemma 4.7. Since we
have that �n ⊂ S ∪An, we find that
∥∥Dh

n

∥∥2
L2(�n) =

∫
�n

∣∣Dh
n

∣∣2 dA ≤
∫
S∪An

∣∣Dh
n

∣∣2dA

=
∫
An

∣∣Dh
n

∣∣2 dA +
∫
S\An

∣∣Dh
n

∣∣2 dA = O
(
n1−β[logn]6 + n6β[logn]12)

,

so that ∥∥Dh
n

∥∥2
L2(�n) = O

(
n1−(1/2)β)

.

This finishes the proof of the proposition. �

4.4. The proof of Lemma 4.9. We first establish the following fact, uniformly
as n → +∞:∣∣Im{

n�(ζ )Dh
n,I

(
ζ
[
n−β])}∣∣ = O

(
n1/2−(1/4)β)

, ζ ∈ �.(4.14)

PROOF. Without loss of generality, we may take ζ = 0 and n�(ζ ) = i. Then
the tangent to � at 0 is horizontal, so � is the graph of a function y = y(x) where
y(x) = O(x2) as x → 0. We will show that∣∣Re

{
Dh

n,I
(
in−β) − Dh

n,I
(−in−β)}∣∣ = O

(
n1/2−(1/4)β)

.(4.15)

This implies the desired estimate (4.14), because by Lemma 4.8, there exists a
positive constant C6 such that∣∣Dh

n,I
(−in−β)∣∣ ≤ C6n

3β[logn]6 ≤ n1/2−(1/3)β,

where the right-hand side estimate is valid for big n, provided β < 3
20 . To obtain

(4.15), we notice that

I := Re
{
Dh

n,I
(
in−β) − Dh

n,I
(−in−β)}

= n

∫
Bn

Re
{

1

z + in−β
− 1

z − in−β

}(
uh

n(z) − u(z)
)

dA(z).

We next subdivide the thin belt Bn into two parts:

B1
n := Bn ∩ {

x + iy : max
{|x|, |y|} ≤ n−γ }

, B2
n := Bn \B1

n,

where γ is a parameter with 0 < γ < β < 1
2 (we have some freedom here). The

part B1
n is the local part, and B2

n is the remainder. This allows us to split the integral
I accordingly: I = I 1 + I 2, where

I 1 := n

∫
B1

n

Re
{

1

z̄ − in−β
− 1

z − in−β

}(
uh

n(z) − u(z)
)

dA(z)
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and

I 2 := n

∫
B2

n

Re
{

1

z + in−β
− 1

z − in−β

}(
uh

n(z) − u(z)
)

dA(z);

note that in the first formula, we use that for complex numbers ξ , we have Re ξ̄ =
Re ξ . By Lemma 4.1, the function uh

n −u is uniformly bounded, say |uh
n −u| ≤ C7,

so that
∣∣I 1∣∣ ≤ C7n

∫
B1

n

2| Im z|
|(z − in−β)(z + in−β)| dA(z).(4.16)

The analogous estimate involving I 2 reads

∣∣I 2∣∣ ≤ C7n

∫
B2

n

2n−β

|(z − in−β)(z + in−β)| dA(z).(4.17)

Since curve � is parameterized by y = y(x) with y(x) = O(x2) as x → 0, we see
that | Im z| = |y| = O(n−2γ ) on B1

n. Moreover, geometric considerations lead to
∣∣(z − in−β)(

z + in−β)∣∣ � |Re z|2 + n−2β = x2 + n−2β, z = x + iy ∈ B1
n,

and ∣∣(z − in−β)(
z + in−β)∣∣ � |z|2, z ∈ B2

n.

As we combine the above estimates with (4.16) and (4.17), and recall that Bn is a
thin belt of width � δn = n−1/2[logn]2 around � = ∂S, we realize that

∣∣I 1∣∣ � n1−2γ δn

∫ nγ

−n−γ

dt

t2 + n−2β
= n1+β−2γ δn

∫ nβ−γ

−nβ−γ

dτ

1 + τ 2
(4.18)

≤ πn1/2+β−2γ [logn]2

and

∣∣I 2∣∣ � n1−βδn

∫ 1

n−γ

dt

t2 � n1+γ−βδn = n1/2+γ−β [logn]2.(4.19)

If we now pick γ := 2
3β , we obtain

I = I 1 + I 2 = O
(
n1/2−(1/3)β [logn]2)

as n → +∞,

which is even better than claimed. As a consequence, (4.14) follows. �

To complete the proof of Lemma 4.9, we let n�n be the exterior unit normal of
�n. By (4.13), n�n at the point ζ [n−β] ∈ �n for ζ ∈ � is the same as n�(ζ ). So,
from (4.14) we may derive that∣∣Im[

n�nD
h
n,I

]∣∣ = O
(
n1/2−(1/4)β)

as n → +∞,(4.20)
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uniformly on �n. Next, let De := {z : |z| > 1} denote the exterior disk, and consider
the conformal map

φn :��
n →D

e,

which fixes the point at infinity (φn(∞) = ∞). We put

Gh
n := φn

φ′
n

Dh
n,I.

Being the Cauchy transform of a density supported in Bn, the function Dh
n,I(z) is

holomorphic in C \Bn, with decay rate O(|z|−1) as |z| → +∞. More precisely,

Dh
n,I(z) = n

z

∫
Bn

(
uh

n − u
)

dA + O
(
n|z|−2)

as |z| → +∞.(4.21)

The quotient φn(z)/φ
′
n(z) grows like z + O(1) as |z| → +∞, so the function Gh

n

gets to be bounded near infinity. Since ��
n ⊂ C \Bn for big n, Gh

n is holomorphic
and bounded in ��

n for big n. The conformal mappings φn are uniformly smooth
in ��

n , as a consequence of the smoothness assumptions on � which lead to the
corresponding uniform smoothness of �n. In particular, we have |φ′

n| � 1 in ��
n

uniformly in n for big n. The Green function for the point at infinity in ��
n may

be expressed as log |φn|, and at the boundary �n its gradient points in the outward
normal direction. This means that the outward unit normal n�n is

n�n(z) = ∂̄ log |φn(z)|
|(∂̄ log |φn(z)|)| = φ̄′

n(z)|φn(z)|
φ̄n(z)|φ′

n(z)|
= φn(z)|φ′

n(z)|
φ′

n(z)|φn(z)| , z ∈ �n.

It follows that

Im
[
n�nD

h
n,I

] = |φ′
n|

|φn| Im
[
Gh

n

]
on �n,

so we see that (4.20) asserts that∥∥Im
[
Gh

n

]∥∥
L∞(�n) = O

(
n1/2−(1/4)β)

as n → +∞.(4.22)

Moreover,

Gh
n(∞) = O(1) as n → +∞,(4.23)

as we easily see from the decay information (4.21) and from the identity

n

∫
Bn

(
uh

n − u
)

dA =
∫
S\Bn

(
K�

n,h − Kh
n

)
dA −

∫
C\(S∪Bn)

Kh
n dA,

if we recall the estimate (4.2) and Theorem 4.2. The harmonic conjugation operator
is bounded in the setting of Hp spaces on the unit disk (or on the exterior disk if
we like), and as we transfer this result to the context of ��

n , we get from (4.22)
that∥∥Gh

n

∥∥
Lp(�n) ≤ C(p)‖ ImGn‖Lp(�n) + O(1) = Op

(
n1/2−(1/4)β)

as n → +∞
for any fixed p, 1 < p < +∞, where the positive constant C(p) depends on p.
The special case p = 2 gives us the assertion of Lemma 4.9. �
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5. Proof of the main formula. In this section, we will use the limit form of
the Ward identity (Corollary 3.5) to derive our main formula (2.13): for every test
function f the limit 〈

f, νh〉
C

:= lim
n→+∞

〈
f, νh

n

〉
C

exists and equals

〈
f, νh〉

C
= 1

8π

{∫
S
(�f + f �L)dA +

∫
∂S

fN
(
LS)

ds

}

(5.1)

+ 1

2π

∫
C

∇f S · ∇hS dA.

5.1. Decomposition of the test function. The following statement uses our as-
sumption that ∂S is a Cω-smooth Jordan curve.

LEMMA 5.1. Let f ∈ C∞(C) be bounded. Then f has the following repre-
sentation:

f = f+ + f− + f0,

where:

(i) all three functions are C∞-smooth and bounded in C,
(ii) ∂̄f+ = 0 and ∂f− = 0 in C \ S,

(iii) f0 = 0 on � = ∂S.

PROOF. Let us consider a conformal map

φ :De →C \ S,

which preserves the point at infinity; here, De = {z ∈ C : |z| > 1} is the exterior
disk. The smoothness assumptions on � imply that φ is extremely smooth (e.g.,
real-analytic on T). The restriction of the function F := f ◦ φ to T is in C∞(T),
and so it has a Fourier series representation

F(ζ ) =
+∞∑

j=−∞
aj ζ

j , ζ ∈ T.

The functions

F+(z) =
+∞∑
j=0

a−j z
−j , F−(z) =

+∞∑
j=1

aj

z̄j
,

are then well defined in the closed exterior disk D̄
e, and C∞-smooth up to the

boundary. It is easy to extend F+,F− to C∞-smooth functions on all of C. Like-
wise, we may extend φ to C∞-smooth diffeomorphism φ :C→C. We put

f+ := F+ ◦ φ−1, f− := F− ◦ φ−1,
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and realize that f+, f− are both C∞-smooth and bounded, and that (ii) holds.
Finally, we put

f0 := f − f+ − f−.

It is automatic that f0 is C∞-smooth and bounded, and that f0 vanishes on � = ∂S.
�

CONCLUSION. It is enough to prove the main formula (5.1) only for functions
of the form f = f+ + f− + f0 as in the last lemma with an additional assumption
that f0 is supported inside any given neighborhood of the droplet S. Indeed, either
side of the formula (5.1) will not change if we “kill” f0 outside the neighborhood.
The justification is immediate by Lemma 4.1 (exterior decay).

In what follows, we will choose a neighborhood O of S such that the potential
Q is real-analytic, strictly subharmonic in O , and

∂Q 
= ∂Q̌ in O \ S,

and will assume supp(f0) ⊂ O .

5.2. The choice of the vector field in the Ward identity. We will now compute
the limit 〈

f, νh〉
C

:= lim
n→+∞

〈
f, νh

n

〉
C

(and prove its existence) in the case where

f = f+ + f0.

To apply the limit Ward identity (see Corollary 3.5),

2

π

∫
C

{
vΔQ + ∂̄v∂(Q − Q̌)

}
Dh

n dA

(5.2)

→ −
〈
1

2
∂v + 2v∂h,σ

〉
C

as n → +∞,

we set

v = v+ + v0,

where

v0 = ∂̄f0

ΔQ
1S + f0

∂(Q − Q̌)
1C\S(5.3)

and

v+ = ∂̄f+
ΔQ

1S.(5.4)
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Here, we need the additional assumption made on the support of f0. We may com-
bine the above to

v = ∂̄f

ΔQ
1S + f0

∂(Q − Q̌)
1C\S.

We calculate that

vΔQ + ∂̄v∂(Q − Q̌) = ∂̄f on C \ ∂S,

but to plug this information into (5.2), we need to that it is an identity in the
sense of distribution theory on all of C. This will be all right if, for example, v

is Lipschitz-continuous near ∂S. We would then also need to know that v satisfies
the conditions (3.4-i)–(3.4-iii).

LEMMA 5.2. The vector field v defined above is bounded and globally
Lipschitz-continuous. Moreover, the restrictions of v to S and to S� := (C\S)∪∂S

are both C∞-smooth.

PROOF. The vector field v+ is C∞-smooth and supported on S, as ∂̄f+ is C∞-
smooth and supported on S, and ΔQ 
= 0 on S. It remains to handle the vector field
v0. We need to check the following items:

(i) v0|S and v0|S� are both C∞-smooth, and
(ii) v0 is continuous across ∂S.

PROOF OF (i). It is clear from the defining formula that v0|S is C∞-smooth.
As for v0|S� , we have v0 = f0/g in C\S where g = ∂(Q−Q̌). Since the statement
is local, we consider a conformal map ψ that takes a neighbourhood of a boundary
point in ∂S onto a neighbourhood of a point in R and takes (parts of) ∂S to R. We
fix the map so that (locally) S� is mapped into the upper half plane y ≥ 0. If we
denote F = f0 ◦ψ and G = g ◦ψ , then F = 0 and G = 0 on R. Moreover, locally,
G is the restriction to y ≥ 0 of a real-analytic function, with non-vanishing partial
derivative ∂yG along the real line. Thus it is enough to check that

F(x + iy)

y
=

∫ 1

0

∂F

∂y
(x + iyτ)dτ

has bounded derivatives of all orders. But this is pretty obvious, since we may
differentiate under the integral sign.

PROOF OF (ii). Let n = n�(ζ ) be the exterior unit normal with respect to S.
By Taylor’s formula, we have

f0(ζ + δn) = δ
∂f0

∂n
(ζ ) + O

(
δ2) = 2δ∂̄f0(ζ )n(ζ ) + O

(
δ2)

.
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Similarly, if g := ∂(Q − Q̌) on C \ S, then g extends to a real-analytically smooth
function on S�. This real-analytic function has a unique extension to a neighbor-
hood of S�, which we also denote by g. Since g = 0 on ∂S and ∂̄g = ΔQ in C\S,
Taylor’s formula gives that

g(ζ + δn) = δ
∂g

∂n
(ζ ) + O

(
δ2) = 2δ∂̄g(ζ )n(ζ ) + O

(
δ2)

.

It follows that

f0(ζ + δn)

g(ζ + δn)
= ∂̄f0(ζ )

ΔQ(ζ )
+ O(δ),

and an inspection shows that the implied constant is locally uniform in ζ ∈ � = ∂S.
This shows that v0 is continuous across �. �

We have now established that the vector field v = v0 + v+ meets the conditions
(3.4-i)–(3.4-iii). This gives us the following result.

COROLLARY 5.3. If f = f0 + f+, then〈
f, νh〉

C
= 1

4〈∂v, σ 〉C + 〈v∂h,σ 〉C.

PROOF. The conclusion is immediate from (5.2) and (3.11). �

5.3. The conclusion of the proof.

5.3.1. General test functions. We now turn to the general case

f = f+ + f0 + f−.

In view of Corollary 5.3, we have〈
f+, νh〉

C
= 1

4〈∂v+, σ 〉C + 〈v+∂h,σ 〉C,

where v+ is given by (5.4). By applying complex conjugation to this relation,
while using the fact that the perturbation h is real-valued and the measures νh

n are
all real-valued (and so the limit νh is real-valued, too), we get a similar expression
for f−: 〈

f−, νh〉
C

= 1
4〈∂̄v−, σ 〉C + 〈v−∂̄h, σ 〉C,

where

v− := ∂f−
∂∂̄Q

· 1S.(5.5)

Adding up the three contributions from f+, f−, f0, we find that〈
f, νh〉

C
= 1

4〈∂v0, σ 〉C + 〈v0∂h,σ 〉C + 1
4〈∂v+, σ 〉C + 〈v+∂h,σ 〉C

+ 1
4〈∂̄v−, σ 〉C + 〈v−∂̄h, σ 〉C.
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The expression we get when we put h = 0 is ν = ν0, so that

〈f, ν〉C = 1
4〈∂v0 + ∂v+ + ∂̄v−, σ 〉C(5.6)

and 〈
f, νh − ν

〉
C

= 〈v0∂h + v+∂h + v−∂̄h, σ 〉C.(5.7)

5.3.2. The computation of ν. We recall that

dσ = 1

2π
1S�QdA = 2

π
1SΔQdA and L = log�Q.

Using (5.6), we compute

〈f, ν〉C = 1

2π

∫
S

{
∂

(
∂̄f0 + ∂̄f+

∂∂̄Q

)
+ ∂̄

(
∂f−
∂∂̄Q

)}
ΔQdA

= 1

2π

∫
S

{
Δ(f0 + f+ + f−) − ∂̄f0∂ logΔQ

− ∂̄f+∂ logΔQ − ∂f−∂̄ logΔQ
}

dA

= 1

2π

∫
S
{Δf − ∂̄f0∂L − ∂̄f+∂L − ∂f−∂̄L}dA.

At this point, we modify L outside some neighborhood of S to get a smooth func-
tion with compact support. We will still use the notation L for the modified func-
tion. The last expression clearly does not change as a result of this modification.
We can now transform the part of the integral which involves L as follows using
the Cauchy–Green formula:

−
∫
S
{∂̄f0∂L + ∂̄f+∂L + ∂f−∂̄L}dA =

∫
S
f0ΔLdA −

∫
C

{∂̄f+∂L + ∂f−∂̄L}dA

=
∫
S
f0ΔLdA +

∫
C

(f+ + f−)ΔLdA

=
∫
S
f ΔLdA +

∫
C\S

f SΔLdA.

In other words, we have that

〈f, ν〉C = 1

8π

{∫
S
(�f + f �L)dA +

∫
C\S

f S�LdA

}
.

We remark that the formula for 〈f, ν〉C was stated in this form in [3].
Finally, we express the last integral in terms of the Neumann jump. By Green’s

formula, we have∫
C\S

f S�LdA =
∫
C\S

(
f S�L − L�f S)

dA =
∫
∂S

(
f S ∂L

∂n� − LS ∂f S

∂n�

)
ds

=
∫
∂S

(
f S ∂L

∂n� − f S ∂LS

∂n�

)
ds =

∫
∂S

fN
(
LS)

ds,
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where the last step just involved the definition of the Neumann jump. In an inter-
mediate step, we used that

∫
∂S

(
f S ∂LS

∂n� − LS ∂f S

∂n�

)
ds =

∫
C\S

(
f S�LS − LS�f S)

dA = 0,

which comes from Green’s formula. Here, n� is the unit normal vector which point
into S. In conclusion, we arrive at

〈f, ν〉C = 1

8π

{∫
S
(�f + f �L)dA +

∫
∂S

fN
(
LS)

ds

}
.(5.8)

5.3.3. The computation of νh −ν. Using the identity (5.7), we can deduce that

〈
f, νh − ν

〉
C

= 2

π

∫
S
{∂̄f+∂h + ∂f−∂̄h + ∂̄f0∂h}dA

(5.9)

= 1

2π

∫
∇f S · ∇hS dA.

This is because of the following calculations:
∫
S
∂̄f+∂hdA =

∫
C

∂̄f+∂hdA = −1

4

∫
C

f+�hdA = 1

4

∫
C

∇f+ · ∇hdA,

and analogously
∫
S
∂f−∂̄hdA = 1

4

∫
C

∇f− · ∇hdA;
moreover, on the other hand, we have∫

S
∂̄f0∂hdA = −1

4

∫
S
f0�hdA = 1

4

∫
S
∇f0 · ∇hdA.

The above three identities lead to

〈
f, νh − ν

〉
C

= 1

2π

{∫
S
∇f · ∇hdA +

∫
C\S

∇f S · ∇hdA

}
,

and if we use that ∫
C\S

∇f S · ∇hdA =
∫
C\S

∇f S · ∇hS dA,

which is a consequence of the fact that harmonic functions minimize the Dirichlet
norm, we arrive at (5.9) right away. By combining (5.8) and (5.9), we see that

〈
f, νh〉

C
= 1

8π

{∫
S
(�f + f �L)dA +

∫
∂S

fN
(
LS)

ds

}
+ 1

2π

∫
C

∇f S · ∇hS dA,

and the main formula (5.1) has been completely established. �
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APPENDIX: THE PROOF OF THEOREM 4.2

A.1. Polynomial Bergman spaces. For a suitable (extended) real-valued
function φ, we denote by L2(e−2φ) the space normed by

‖f ‖2
e−2φ :=

∫
C

|f |2e−2φ dA.

We denote by A2(e−2φ) the subspace of L2
φ consisting of a.e. entire functions;

Poln(e−2φ) denotes the subspace consisting of analytic polynomials of degree at
most n − 1.

Next, we consider a potential Q, real-analytic with �Q > 0 on the droplet S,
which is subject to the usual growth condition. The smoothness assumption is
excessive here, and one can do with less (e.g., C∞-smoothness is enough, cf. [6]).
We will discuss this issue below. We are interested in the perturbed weight

Qh
n := Q − 1

n
h,

where h is a C∞-smooth bounded real-valued function.
We denote by kn the reproducing kernel for the space Poln(e−2nQ). The corre-

sponding orthogonal projection Pn :L2(e−2nQ) → Poln(e−2nQ) is then given by

Pn[f ](z) =
∫
C

kn(z,w)f (w)e−2nQ(w) dA(w), z ∈ C.

Analogously, in the perturbed case, the orthogonal projection map Ph
n :

L2(e−2nQh
n) → Poln(e−2nQh

n) is given in terms of the reproducing kernel kh
n for

the space Poln(e−2nQh
n).

A.2. Polarization of smooth weights. The polarization of C∞-smooth
weights was outlined briefly in [6]. We will explain how this works in the sim-
ple case of one complex variable.

We begin with a C∞-smooth function F :R → C. To describe the natural ex-
tensions, we need the notation of flat functions. We say that a continuous function
f :C→C is R-flat if∣∣f (z)

∣∣ ≤ C(N,R)| Im z|N, |z| ≤ R,

holds for all positive N,R, for some positive constant C(N,R). It is well known
that a C∞-smooth function F :R→C has an extension F̃ :C →C with ∂̄F̃ which
is R-flat; we call such an extension almost holomorphic. Also, if G :C → R has
the property that ∂̄G is R-flat, then the restriction of G to R is C∞-smooth. So
the property of having an extension with R-flat ∂̄-derivative characterizes the
C∞-smooth functions. If the almost holomorphic extension F̃ has the property
conj(F̃ (z)) = F̃ (z) [“conj” stands for complex conjugation], we say that F̃ is sym-
metric. By considering the function

1
2

(
F̃ (z) + F̃ (z̄)

)
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in place of F̃ , we see that every C∞-smooth real-valued function F :R → R has
a symmetric almost holomorphic extension. The almost holomorphic extensions
F̃ which are possible all differ by an R-flat function. Next, if F :R2 → C is C∞-
smooth, it has an extension F̃ :C2 →C such that ∂̄1F̃ and ∂̄2F̃ are both R

2-flat in
the natural sense; such an extension is said to be almost holomorphic in this setting
as well. If F is real-valued, it has a symmetric almost holomorphic extension F̃ ;
this means that conj(F̃ (z1, z2)) = F̃ (z̄1, z̄2), as in the one-variable case. We apply
this to the setting of a C∞-smooth function � :C → R. By equating the com-
plex plane with R

2 in the standard fashion, we find a function �0 :R2 → R with
�0(x1, x2) = �(x1 + ix2). This function �0 has a symmetric almost holomorphic
extension �̃0(z1, z2). Now, if we define �̃ to be the function

�̃(z, w̄) := �̃0

(
z + w̄

2
,
z − w̄

2i

)
,

we have a function with �̃(z, z̄) = �(z) and the Hermitian property �̃(z, w̄) =
�̃(w, z̄). Moreover, if � were real-analytic to start with, we would naturally
choose �̃(z, w̄) to be holomorphic in (z, w̄) near the diagonal z = w. We call
�̃(z, w̄) the polarization of �(z). The theory of almost holomorphic functions has
its roots in the independent work of Hörmander and of Dyn’kin.

A.3. Approximate Bergman kernels. We define approximate reproducing
kernels and Bergman projection as follows. In the unperturbed case h = 0, the
well-known first-order approximation inside the droplet is given by the expression

k�(z,w) = 2n

π
(∂1∂2Q)(z, w̄)e2nQ(z,w̄),

where Q(z, w̄) is a polarization of Q (see Section A.2), which in our real-analytic
situation means that near the diagonal z = w, Q(z, w̄) is the unique holomorphic
function in (z, w̄) with

Q(w, w̄) = Q(w).

The polarization can be defined (up to flat functions) also for C∞-smooth functions
Q; see Section A.2 for details. In the perturbed case, we could do the same, and
use a polarization h(z, w̄) of h, which would give us the expression

2

π

{
n(∂1∂2Q)(z, w̄) − (∂1∂2h)(z, w̄)

}
e2nQ(z,w̄)e−2h(z,w̄)(A.1)

for the approximate perturbed Bergman kernel. Now, we are going to throw away
all terms in (A.1) that can go into the error term O(en[Q(z)+Q(w)]). This allows us
to simplify the approximate perturbed Bergman kernel in (A.1) to

2n

π
(∂1∂2Q)(z, w̄)e2nQ(z,w̄)e−2h(z,w̄).(A.2)
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Moreover, Taylor’s formula shows that the polarization of h looks like

h(z, w̄) = h(w) + (z − w)∂h(w) + O
(|z − w|2)

,

and it is actually possible to throw the “O” term into the error term. This leaves us
with the approximate perturbed Bergman kernel

k�
n,h(z,w) := 2n

π
(∂1∂2Q)(z, w̄)e2nQ(z,w̄)e−2hw(z),(A.3)

where hw(z) := h(w) + (z − w)∂h(w) is the Taylor approximant of h(z,w). This
kernel is not Hermitian, which is the cost of replacing the polarization of h with
its Taylor approximant. However, it is easy to show that it is almost Hermitian, in
the sense that

∣∣k�
n,h(z,w) − k�

n,h(w, z)
∣∣ = O

(
en[Q(z)+Q(w)])(A.4)

as n → +∞, where the implied constant only depends on Q,h, provided that z,w

are confined to the droplet S and |z − w| < δn. The corresponding approximate
Bergman projection is

P�
n,h[f ](w) =

∫
S

k�
n,h(ζ,w)f (ζ )e−2nQh

n(ζ ) dA(ζ ),

whenever the integral makes sense.

A.4. Local approximate Bergman projections. We have the following re-
sult, which says that the approximate perturbed Bergman kernel is indeed a good
approximation.

LEMMA A.1. If z ∈ S, δ∂S(z) > 2δn, and if |z − w| < δn, then
∣∣kh

n(z,w) − k�
n,h(z,w)

∣∣ = O
(
en[Q(z)+Q(w)])

as n → +∞, where the implied constant only depends on Q,h and not on n.

From Lemma A.1, Theorem 4.2 follows in a straightforward fashion.

PROOF OF THEOREM 4.2. We recall that the correlation kernel of the deter-
minantal process associated with the perturbed potential Qh

n is

Kh
n(z,w) = kh

n(z,w)e−n[Qh
n(z)+Qh

n(w)] = kh
n(z)e

−n[Q(z)+Q(w)]eh(z)+h(w).

In view of Lemma A.1, we then have

Kh
n(z,w) = 2n

π
(∂1∂2Q)(z, w̄)en[2Q(z,w̄)−Q(z)−Q(w)]e−2hw(z)+h(z)+h(w) + O(1).

Moreover, since Taylor’s formula gives

−2hw(z) + h(z) + h(w) = −2i Im
[
(z − w)∂h(w)

] + O
(|z − w|2)

,
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we get that

Kh
n(z,w) = 2n

π

{
(∂1∂2Q)(z, w̄) + O

(|z − w|2)}

× en[2Q(z,w̄)−Q(z)−Q(w)]e−2i Im[(z−w)∂h(w)] + O(1).

Next, an exercise involving Taylor’s formula shows that for z,w close enough to
one another,

Re
[
2Q(z, w̄) − Q(z) − Q(w)

] ≤ −b|z − w|2(A.5)

holds for some constant b > 0, as long as z,w are confined to S. This allows us to
use the elementary estimate

te−nt ≤ 1

n
, 0 ≤ t < +∞,

to get rid of the O(|z − w|2) term:

Kh
n(z,w) = 2n

π
(∂1∂2Q)(z, w̄)en[2Q(z,w̄)−Q(z)−Q(w)]e−2i Im[(z−w)∂h(w)] + O(1).

Theorem 4.2 is now immediate. �

In the sequel, a lot of positive constants will appear, and we will denote them by
Cj for positive integers j . We will usually not mention each appearance of such a
constant.

We turn to the proof of Lemma A.1. The first ingredient is the following.

LEMMA A.2. Let χz be a cut-off function with the following properties: 0 ≤
χz ≤ 1 on C, while χz = 1 on D(z, 3

2δn) and χz = 0 off D(z,2δn); in addition, we
require that ‖∂̄χz‖L2(C) ≤ C1, for some positive absolute constant C1. Then, if f

is analytic and bounded in the disk D(z,2δn), we have

∣∣f (z) − P�
n,h[χzf ](z)∣∣ ≤ C2n

−1/2enQ(z)

{∫
D(z,2δn)

|f |e−2nQ dA

}1/2
,

where C2 is a positive constant.

PROOF. Without loss of generality, we may take z = 0; we then write χz = χ0.
We observe that

P�
n,h[χ0f ](0)

= 2n

π

∫
S
[χ0f ](ζ )(∂1∂2Q)(0, ζ̄ )e2[h(ζ )−h(0)−ζ̄ ∂̄h(0)]e2n[Q(0,ζ̄ )−Q(ζ)] dA(ζ ).

Here, we understand that χ0f is extended to vanish off D(z,2δn) = D(0,2δn).
Since

∂̄ζ

{
e2n[Q(0,ζ̄ )−Q(ζ,ζ̄ )]} = −2n

{
(∂2Q)(ζ, ζ̄ ) − (∂2Q)(0, ζ̄ )

}
e2n[Q(0,ζ̄ )−Q(ζ,ζ̄ )],
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we may rewrite the expression as follows:

P�
n,h[χ0f ](0)

(A.6)

= − 1

π

∫
S

1

ζ
f (ζ )χ0(ζ )A(ζ )B(ζ )∂̄

{
e2n[Q(0,ζ̄ )−Q(ζ,ζ̄ )]} dA(ζ ),

where

A(ζ ) = ζ(∂1∂2Q)(0, ζ̄ )

(∂2Q)(ζ, ζ̄ ) − (∂2Q)(0, ζ̄ )
, B(ζ ) = e2[h(ζ )−h(0)−ζ̄ ∂̄h(0)].

It is an elementary but important observation that

A(ζ ),B(ζ ) = O(1), ∂̄A(ζ ), ∂̄B(ζ ) = O
(|ζ |)(A.7)

for ζ ∈ D̄(0,2δn), where the implicit constants are uniformly bounded throughout.
Since A(0) = B(0) = 1, an integration by parts exercise based on (A.6) gives that

P�
n,h[χ0f ](0) = f (0) + β1 + β2,(A.8)

where

β1 :=
∫
C

A(ζ )B(ζ )∂̄(f χ0)(ζ )e2n[Q(0,ζ̄ )−Q(ζ)] dA(ζ )

ζ

and

β2 :=
∫
C

(f χ0)(ζ )∂̄
(
A(ζ )B(ζ )

)
e2n[Q(0,ζ̄ )−Q(ζ)] dA(ζ )

ζ
.

Since ∂̄(f χ0) is supported in the annulus D̄(0,2δn) \D(0, 3
2δn), we may estimate

β1 by

|β1| ≤ C3

δn

∫
D(0,2δn)\D(0,(3/2)δn)

∣∣f (ζ )∂̄χ0(ζ )
∣∣

(A.9)
× e2n[ReQ(0,ζ̄ )−Q(ζ)] dA(ζ ),

where C3 is the product of the bounds of |A(ζ )| and |B(ζ )| in (A.7). Analogously,
we see that since f χ0 is supported in the disk D̄(0,2δn), and ∂̄(AB) = A∂̄B +
B∂̄A,

|β2| ≤ C4

∫
D(0,2δn)

∣∣f (ζ )χ0(ζ )
∣∣e2n[ReQ(0,ζ̄ )−Q(ζ)] dA(ζ ),(A.10)

where constant C4 comes from (A.7). Next, we observe that by (A.5),

2nReQ(0, ζ̄ ) − nQ(ζ ) ≤ nQ(0) − nb|ζ |2,
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so that the Cauchy–Schwarz inequality applied to (A.10) gives (0 ≤ χ0 ≤ 1)

|β2|2 ≤ C2
4e2nQ(0)

∫
D(0,2δn)

|f |2e−2nQ dA

∫
D(0,2δn)

e−2nb|ζ |2 dA(ζ )

(A.11)
≤ C2

4
π

nb
e2nQ(0)

∫
D(0,2δn)

|f |2e−2nQ dA.

Similarly, we obtain from (A.9) that

|β1|2 ≤ C2
3

δ2
n

e2nQ(0)
∫
D(0,2δn)\D(0,(3/2)δn)

|f |2e−2nQ dA

×
∫
D(0,2δn)\D(0,(3/2)δn)

∣∣∂̄χ0(ζ )
∣∣2e−2nb|ζ |2 dA(ζ )(A.12)

≤ C2
1C2

3e2nQ(0) e−2nbδ2
n

δ2
n

∫
D(0,2δn)

|f |2e−2nQ dA,

where we used the assumed bound on the L2-norm of ∂̄χ0. Finally, the claimed
bound now follows from (A.8) combined with the estimates (A.11) and (A.12).

�

PROOF OF LEMMA A.1. We are in the setting that distC(z,C \ S) > 2δn and
|w − z| < δn. By applying Lemma A.2 to the function f (ζ ) = kh

n(ζ,w), we obtain
that ∣∣kh

n(z,w) − P�
n,h

[
χzkh

n(·,w)
]
(z)

∣∣
(A.13)

≤ C2n
−1/2enQ(z)

{∫
C

∣∣kh
n(ζ,w)

∣∣2e−nQ(ζ ) dA(ζ )

}1/2

.

Since h is bounded, the reproducing property of the kernel kh
n gives that∫

C

∣∣kh
n(ζ,w)

∣∣2e−nQ(ζ ) dA(ζ ) =
∫
C

∣∣kh
n(ζ,w)

∣∣2e−nQh
n(ζ )e−h(ζ ) dA(ζ )

≤ e‖h‖L∞(C)

∫
C

∣∣kh
n(ζ,w)

∣∣2e−nQh
n(ζ ) dA(ζ )(A.14)

= e‖h‖L∞(C)kh
n(w,w).

In view of the global estimate (cf. [2], Section 3)

kh
n(w,w) ≤ C5nenQ̌h

n(w) ≤ C5nenQh
n(w) ≤ C5ne‖h‖L∞(C)enQ(w)

for a suitable positive constant C5 that only depends on Q,h, (A.13) and (A.14)
combine to show that∣∣kh

n(z,w) − P�
n,h

[
χzkh

n(·,w)
]
(z)

∣∣ ≤ C6en[Q(z)+Q(w)].(A.15)
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Next, we observe that (kh
n is an Hermitian kernel)

P�
n,h

[
χzkh

n(·,w)
]
(z) =

∫
C

k�
n,h(ζ, z)χz(ζ )kh

n(w, ζ )e−nQh
n(ζ ) dA(ζ )

(A.16)
= Ph

n

[
χzk�

n,h(·, z)
]
(w).

We shall obtain the estimate∣∣k�
n,h(w, z) − Ph

n

[
χzk�

n,h(·, z)
]
(w)

∣∣ ≤ C7en[Q(z)+Q(w)].(A.17)

When we combine (A.15) with (A.17), and take into account the almost Her-
mitian property (A.4), the assertion of Lemma A.1 is immediate. The verifica-
tion of (A.17) is the same as in [7] or [1], and depends on the observation that
L2(e−2nQ) = L2(e−2nQh

n) as spaces, with equivalence of norms. To make the pre-
sentation as complete as possible, we supply a detailed argument.

For a given smooth function f , we consider U0, the norm minimal solution in
L2(e−2nQ) to the problem

∂̄U = ∂̄f and u − f ∈ Poln,(A.18)

where Poln stands for the n-dimensional space of all polynomials of degree ≤
n − 1. Let U1 be the corresponding norm minimal solution in L2(e−2nQh

n). We
quickly argue that

e−‖h‖L∞(C)‖U0‖e−2nQ ≤ ‖U1‖e−2nQh
n

≤ e‖h‖L∞(C)‖U0‖e−2nQ.(A.19)

Next, we note that

U0 = f − Pn[f ], U1 = f − Ph
n[f ].

We put f := χzk�
n,h(·, ξ), where ξ ∈ C will be determined later; then

U0(ζ ) = χz(ζ )k�
n,h(ζ, ξ) − Pn

[
χzk�

n,h(·, ξ)
]
(ζ ).

We shall obtain the estimate

‖U0‖e−2nQ ≤ C8
∥∥∂̄[

χzk�
n,h(·, ξ)

]∥∥
e−2nQ.(A.20)

To this end, we put

2φ(ζ ) := 2nQ̌(ζ ) + log
(
1 + |ζ |2)

,

and consider the function V0, the minimal norm solution in L2(e−2φ) to the prob-
lem

∂̄V = ∂̄
[
χzk�

n,h(·, ξ)
]
.

As defined, the function φ is strictly subharmonic, and in fact, �φ(ζ ) ≥ 2(1 +
|ζ |2)−2. Hörmander’s standard minimal norm estimate for the ∂̄-equation gives
(see, e.g., [13], page 250)

‖V0‖2
e−2φ ≤ 2

∫
C

∣∣∂̄[
χzk�

n,h(·, ξ)
]∣∣2 e−2φ

�φ
dA.
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Since χz is supported inside the droplet S, where Q̌ = Q, and �φ ≥ n�Q ≥ nε

holds for some constant ε > 0 in the interior of S, we find that

‖V0‖e−2φ ≤ C9n
−1/2∥∥∂̄[

χzk�
n,h(·, ξ)

]∥∥
e−2nQ.

From the growth assumption (2.1) on Q near infinity, the inequality 2φ ≤ 2nQ +
O(1) holds in the whole complex plane, and hence

‖V0‖e−2nQ ≤ C10‖V0‖e−2φ .

In view of the above two displayed equations, we have

‖V0‖e−2nQ ≤ C11n
−1/2∥∥∂̄[

χzk�
n,h(·, ξ)

]∥∥
e−2nQ,(A.21)

with C11 := C9C10. The difference, the function V0 −χzkn,h�(·, ξ), belongs to the
weighted Bergman space A2(e−2φ) of all entire functions in L2(e−2φ). For fixed
(big) n, we have that

2φ(ζ ) = 2(n + 1) log |ζ | + O(1) as |ζ | → +∞,

which leads to the conclusion that the Bergman space A2(e−2φ) coincides with
the polynomial space Poln as a linear space. We now see that function V0 is a
solution to the problem (A.18). As U0 is the norm minimal solution, (A.20) is a
consequence of (A.21).

We see from the norm equivalence (A.19) that the estimate (A.20) implies that

‖U1‖e−2nQh
n

≤ C12n
−1/2∥∥∂̄[

χzk�
n,h(·, ξ)

]∥∥
e−2nQh

n
,(A.22)

where

U1(ζ ) = χz(ζ )k�
n,h(ζ, ξ) − Ph

n

[
χzk�

n,h(·, ξ)
]
(ζ )

is the norm minimal solution in L2(e−2nQh
n) to the equation (A.18) with f (ζ ) =

χz(ζ )k�
n.h(ζ, ξ). We need to turn the norm estimate (A.22) into a pointwise esti-

mate. Since

∂̄U1(ζ ) = ∂̄ζ

[
χz(ζ )k�

n,h(ζ, ξ)
]
(ζ ) = k�

n,h(ζ, ξ)∂̄χz(ζ ),

we obtain from (A.5) that
∣∣∂̄U1(ζ )

∣∣2e−2nQ(ζ ) = ∣∣∂̄χz(ζ )
∣∣2∣∣k�

n,h(ζ, ξ)
∣∣2e−2nQ(ζ )

≤ C13n
2∣∣∂̄χz(ζ )

∣∣2e2n(Q(ξ)−b|ζ−ξ |2)

holds provided that ζ, ξ are sufficiently close to one another, and confined to a fixed
compact set. We finally fix ξ ; we put ξ := z. With this choice, δn ≤ |ζ − z| ≤ 2δn

for ζ with ∂̄χz(ζ ) 
= 0, so the points are close enough, and confined to the droplet
S, and from the above estimate, we get

∣∣∂̄U1(ζ )
∣∣2e−2nQ(ζ ) ≤ C13n

2e−2nbδ2
n
∣∣∂̄χz(ζ )

∣∣2e2nQ(z).
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We plug this into (A.22), and arrive at

‖U1‖e−2nQh
n

≤ C14n
1/2e−nbδ2

nenQ(z),(A.23)

if we use the assumed L2-control on ∂̄χz and the equivalence of the norms associ-
ated with Q and Qh

n. Another appeal to norm equivalence gives us

‖U1‖e−2nQ ≤ C15n
1/2e−nbδ2

nenQ(z).(A.24)

The function χz(ζ )k�(ζ, z) is holomorphic as a function of ζ in the disk D(z, 3
2δn),

and subtraction of a polynomial does not change that. This permits us to invoke
Lemma 3.2 of [2], which says that

∣∣U1(w)
∣∣2e−2nQ(w) ≤ C16n‖U1‖2

e−2nQ, w ∈ D(z, δn).

In combination with (A.24), this gives (since χz(w) = 1)
∣∣k�

n,h(w, z) − Ph
n

[
χzk�

n,h(·, z)
]
(w)

∣∣ = ∣∣U1(w)
∣∣ ≤ C17ne−nbδ2

nen[Q(z)+Q(w)].

Given the strong exponential decay, this estimate is actually much stronger than
required to obtain (A.17). This concludes the proof of Lemma A.1. �
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