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We consider the problem of quantifying temporal coordination between
multiple high-dimensional responses. We introduce a family of multi-way
stochastic blockmodels suited for this problem, which avoids preprocessing
steps such as binning and thresholding commonly adopted for this type of
data, in biology. We develop two inference procedures based on collapsed
Gibbs sampling and variational methods. We provide a thorough evaluation of
the proposed methods on simulated data, in terms of membership and block-
model estimation, predictions out-of-sample and run-time. We also quantify
the effects of censoring procedures such as binning and thresholding on the
estimation tasks. We use these models to carry out an empirical analysis of
the functional mechanisms driving the coordination between gene expres-
sion and metabolite concentrations during carbon and nitrogen starvation, in
S. cerevisiae.

1. Introduction. In recent years, the biology community at large has engaged
in an effort to characterize coordinated mechanisms of cellular regulation, to en-
able a systems-level understanding of cellular functions. Reference databases, such
as the yeast genome database (SGD), catalog the many regulatory roles of genes
and proteins with links to the originating literature [Cherry et al. (1997), Kanehisa
and Goto (2000)]. Recent work spans approaches that leverage these databases to
integrate genomic information across multiple studies and technologies about the
same regulatory mechanism, for example, transcription [Cope et al. (2004), Franks
et al. (2012)], as well as approaches to integrate genomic information across levels
of regulation, for example, epigenetic markers, chromatin modifications, transcrip-
tion and translation [Troyanskaya et al. (2003), Lu et al. (2009), Markowetz et al.
(2009)].

We consider the problem of quantifying temporal coordination between gene
expression and metabolite concentrations in yeast [Brauer et al. (2006, 2008)].
More generally, we are interested in statistical methods to analyze multiple coor-
dinated high-dimensional measurements about a system organism, where correla-
tion among pairs of measurements is believed to indicate coordinated functional
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and regulatory roles. We develop methods for analyzing experiments on regulation
dynamics that involve the following: (1) data collections about multiple stages of
regulations (transcriptional and metabolic) that offer complementary views of the
cellular response (to Nitrogen and Carbon starvation), quantified in terms of high-
dimensional measurements; and (2) data collected according to a specific coordi-
nated temporal design, whereby the experiments at different stages of regulation
are conducted on cell cultures with matching conditions (nutrient limitations, en-
vironmental stress and chemical compounds present) over time. Coordinated time
courses about complementary stages of regulation arguably provide the best op-
portunity to characterize coordinated regulation dynamics, quantitatively.

A popular approach to study coordinated cellular responses in biology involves
Bayesian networks [Bradley et al. (2009), Troyanskaya et al. (2003)]. This ap-
proach requires binning real-valued measurements into discrete categories. A de-
terministic alternative to explore coordination is the cross-associations algorithm
[Chakrabarti et al. (2004)], which instead requires thresholding the matrix of corre-
lations between pairs of genes and metabolites into binary on–off relations. While
binning and thresholding are accepted data preprocessing steps in the computa-
tional biology literature, they raise serious statistical issues [Blocker and Meng
(2013)]. On the one hand, the lack of appropriate and principled alternatives, to-
gether with the sizable amount of data typical in a coordinated study of cellular re-
sponses, for example, genome-wide expression and hundreds of metabolites, make
preprocessing necessary. These preprocessing steps reduce the computational bur-
den of the analysis with Bayesian networks and cross-associations. On the other
hand, however, these preprocessing steps are essentially censoring mechanisms
that may compromise the patterns of variation and covariation in the original data,
when the discovery in such patterns, local and global, is the primary goal of the
analysis [Turnbull (1976), Vardi (1985)].

In this paper we develop a family of blockmodels to analyze a correlation ma-
trix among sets of temporally paired measurements on two distinct populations of
objects. Our work extends a recent block modeling approach that leverages the no-
tion of structural equivalence [Snijders and Nowicki (1997), Nowicki and Snijders
(2001)] to the analysis of coordinated measurements on two populations. For more
details on blockmodels see Goldenberg et al. (2009). Section 2 introduces two-way
(and multi-way) stochastic blockmodels for a function of the high-dimensional re-
sponses, such as their correlation. These simple models explicitly allow different
objects in the two (or more) populations to be associated with multiple blocks, say,
of correlation, to different degrees, and does not require binning or thresholding.
Estimation and inference using variational methods is outlined in Section 2.4. De-
tails of variational and MCMC inference are provided in the supplement [Airoldi,
Wang and Lin (2013b)]. Section 3 develops a thorough evaluation of the proposed
methods on simulated data, including a comparative evaluation of the MCMC and
variational inference procedures in terms of the following: (1) membership and
blockmodel matrix estimation, (2) predictions out-of-sample, and (3) run-time.
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We assess the effects of thresholding on inference in Section 3.7. In Section 4 we
analyze two recently published collections of time-course data to explore the func-
tional mechanisms underlying the coordination of transcription and metabolism
during carbon and nitrogen starvation, in S. cerevisiae. We compare the results
with published results on the same data using binning and Bayesian networks, and
to new results we obtain using thresholding and cross-associations.

2. Multi-way stochastic blockmodels. In this section we introduce multi-
way stochastic blockmodels and the associated inference procedures. This family
of models generalizes mixed membership stochastic blockmodels for analyzing
interactions within a single population [Airoldi et al. (2008)] to interactions be-
tween two or more populations. Multi-way stochastic blockmodels models enable
the discovery of interactions between latent groups across different populations,
and provide estimates of the group memberships for each subject. We develop
two inference strategies: one based on collapsed Gibbs sampling [Liu (1994)], the
other based on variational Expectation–Maximization (vEM) [Jordan et al. (1999),
Airoldi (2007)].

2.1. Two-way blockmodels. Consider a two-way interaction table between two
sets of nodes N1 and N2 of size N1 and N2, respectively. These two sets of
nodes represent elements of two distinct populations. An observation Y(j, k),
j = 1, . . . ,N1, k = 1, . . . ,N2, denotes the strength of the interaction between the
j th element of N1 and the kth element of N2.

As a running example, we consider the coordinated time course data we analyze
in Section 4. The data consists of N1 time series of gene expression levels and of
N2 time series of metabolite concentrations, before and after Nitrogen and Carbon
starvation for a total of seven time points, in yeast [Brauer et al. (2006), Bradley
et al. (2009)]. We posit a model for the N1 × N2 matrix of Fisher-transformed
correlations of time courses for each gene–metabolite pair or for any of its sub-
matrices obtained by selecting subsets of genes and metabolites of special interest
to biologists. The goal of the analysis is to reveal interactions between gene func-
tions and metabolic pathways, operationally defined as sets of genes and sets of
metabolites, respectively, with similar correlation patterns.

In the context of this application, we posit that each gene can participate in up
to K1 functions, that is, latent row groups, and that each metabolite can participate
in up to K2 metabolic pathways, that is, latent column groups.2 Latent Dirichlet
vectors �πj and �pk capture the relative fractions of time gene j and metabolite
k participate in the different cellular functions and pathways, or latent groups.
The distribution of the correlation, or, more generally, interaction, Y(j, k), is then

2We refer to gene functions and metabolic pathways as defined in the yeast genome database and
the Kyoto encyclopedia of genes and genomes.
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a function of the interactions among the latent groups, fully specified by a K1 ×
K2 matrix B , together with the latent memberships of the gene and metabolite
involved. The data generating process, given α,β,B and σ , is as follows:

�πj ∼ Dirichlet(α),(2.1)

�pk ∼ Dirichlet(β),(2.2)

Y(j, k) ∼ Normal
(�π ′

jB �pk,σ
2)

,(2.3)

where indices j = 1, . . . ,N1 and k = 1, . . . ,N2 run over genes and metabolites,
respectively, vectors �πj and �pk are K1- and K2-dimensional, respectively, and
elements of the blockmodel mean matrix Bgh ∈R.

While the observations Y(j, k) in the motivation application are Fisher-
transformed correlations, real-valued with real-valued mean matrix B , the pro-
posed models are more flexible. For instance, we develop a two-way block model
for binary observations in Section 2.2, that is used in Section 3.7 for quantifying
the effects of censoring the data matrix Y .

For inference purposes, we consider an augmented data generating process, in
which we introduce latent indicator vectors �Dj→k and �Ej←k that denote the single
memberships of gene j and metabolite k for the correlation Y(j, k). The latent in-
dicators {D,E} do not have a clear biological interpretation, but serve to improve
computational tractability of the inference; they lead to optimization problems that
have analytical solutions. The trade-offs of such a strategy have been explored else-
where [e.g., see Airoldi et al. (2008)]. From a statistical perspective, introducing
{D,E} amounts to a specific representation of the interactions in terms of random
effects.

2.2. Extension to non-Gaussian responses. In the data generating process
above, Y is generated from a Normal distribution and the blockmodel’s elements
take real values. Extending the proposed model to other distributions to account
for data Y that live in a different space is straightforward. And because of the
hierarchical structure of the model, only a minor portion of the inference and esti-
mation strategies detailed in Section 2.4 will need to be modified appropriately, as
a consequence.

We will consider one such extension to binary observations Y(j, k)—namely,
correlations after thresholding—in Section 3.7 to assess the effects of preprocess-
ing on the accuracy in estimating the blockmodel. The data generating process
in Section 2.1 is modified as follows. The blockmodel’s elements now take val-
ues in the unit interval, since they capture the probability that there is a correlation
above threshold between members of any pair of blocks, Bgh ∈ [0,1]. For each pair
(j, k), j = 1, . . . ,N1, k = 1, . . . ,N2, we sample the pairwise binary observation
Y(j, k) ∼ Bernoulli( �D′

j→kB
�Ej←k). Variational Bayes and MCMC inference also

remain mostly unchanged. New updating equations for the elements of B will be
needed; see equation (2.11) and the supplement [Airoldi, Wang and Lin (2013b)].
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2.3. Extension to multi-way blockmodels. The two-way blockmodel intro-
duced above can also be extended for analyzing multi-way interactions between
three or more populations.

Consider a three-way interaction table Y(i1, i2, i3) observed on three popula-
tions N1, N2, N3, where i1 ∈ N1, i2 ∈ N2 and i3 ∈ N3. Assume that there are K1,
K2 and K3 latent groups existing in N1, N2 and N3, respectively. We can treat
the three way interaction observed in Y as a result of three way group interac-
tions. Namely, Y(i1, i2, i3) can be fully characterized by B(g1, g2, g3), with items
{i1, i2, i3} belonging to group {g1, g2, g3}, respectively. Therefore, inferences pro-
cedures for this three-way blockmodel can be developed in a similar fashion as
those for the two-way blockmodel. Note that although the ideas for generalizations
to higher order tables remain the same, keeping track of indices during inference
becomes tedious.

2.4. Parameter estimation and posterior inference. The main inference task is
to estimate the matrix B and the mixed membership vectors �π and �p. Given the
observed data Y = Y(j, k), latent variable X = {�πj , �pk, �Dj→k, �Ej←k} and the pa-
rameters � = {α,β,σ 2,B}, the complete data likelihood p(Y,X|�) can be writ-
ten as

p
(
Y,X|α,β,B,σ 2)

= ∏
j

p1(�πj |α)
∏
k

p1( �pk|β)(2.4)

× ∏
j,k

p0
(
Y(j, k)| �Dj→k, �Ej←k,B,σ 2)

p2( �Dj→k| �πj )p2( �Ej←k| �pk),

where p0 is a Normal distribution with mean μ = �D′
j→kB

�Ej←k and variance σ 2,
p1 is a Dirichlet distribution, and p2 is a Multinomial distribution with n = 1. The
posterior distribution of the latent variable X is

p(X|Y,�) = p(Y,X|�)

p(Y |�)
,(2.5)

where the marginal distribution p(Y |�) has the following form:

p(Y |�) =
∫
X

p(Y,X|�)dX

= ∑
�D

∑
�E

{∫ ∫ ∏
j

p1(�πj |α)
∏
k

p1( �pk|β)

× ∏
j,k

p2( �Dj→k| �πj )p2( �Ej←k| �pk) d �π d �p

× ∏
j,k

p0
(
Y(j, k)| �Dj→k, �Ej←k,B,σ 2)}

.
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There does not exist an explicit solution to the maximization of p(Y |�). There-
fore, we propose an iterative procedure based on variational Bayes for parameter
estimation. In comparison, we also develop a MCMC scheme based on collapsed
Gibbs sampling to achieve the desired statistical inferences.

2.4.1. Variational expectation–maximization. To achieve variational infer-
ence, we introduce free variational parameters �νj and �ξk to approximate �πj and �pk ,
free variational variables �φj→k and �ηj←k to approximate �Dj→k and �Ej←k , and
latent distribution q(X) to approximate the true posterior distribution p(X|Y,�).
By Jensen’s inequality, we have the following likelihood lower bound:

logp(Y |�) ≥ Eq

[
logp(Y,X|�)

] − Eq

[
logq(X)

]
.(2.6)

A coordinate ascend algorithm can be applied to obtain a local maximizer of this
lower bound, which results in the updates (2.7)–(2.11). Detailed derivations are
left in the supplementary material [Airoldi, Wang and Lin (2013b)]. The resulting
variational EM algorithm is given in Algorithm 1:

φj→k,g ∝ exp
(
ψ(νj,g) − ψ

(∑
g

νj,g

))

(2.7)
× ∏

h

(
σ 2 · e(Y (j,k)−B(g,h))2/σ 2)−1/2ηj←k,h ,

ηj←k,h ∝ exp
(
ψ(ξk,h) − ψ

(∑
h

ξk,h

))

(2.8)
× ∏

g

(
σ 2 · e(Y (j,k)−B(g,h))2/σ 2)−1/2φj→k,g ,

νj,g = ∑
k

φj→k,g + α,(2.9)

ξk,h = ∑
j

ηj←k,h + β,(2.10)

B(g,h) =
∑

j,k φj→k,gηj←k,hY (j, k)∑
j,k φj→k,gηj←k,h

.(2.11)

3. Evaluating inference and effects of preprocessing. Here we use sim-
ulated data to compare the performance of variational and MCMC inference
procedures for the two-way block model along multiple dimensions: estimation
accuracy of mixed membership vectors, accuracy of predictions out-of-sample,
estimation accuracy of the blockmodel interaction matrix B and run-time. This
extensive comparative evaluation provides a practical guideline for choosing the
proper inference procedure in a real setting, especially when analyzing large ta-
bles. In addition, we quantify the effect of censoring on the inference in terms of
estimation error.
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Variational EM
(
Y (j, k)

N1,N2
j=1,k=1, α,β,σ 2 )

1 initialize �φj→k := 1/K1 for all j and k

2 initialize �ηj←k := 1/K2 for all j and k

3 initialize �νj := N2/K1 + α for all j

4 initialize �ξk := N1/K2 + β for all k

5 initialize B(g,h) for all g and h as the data mean plus a random noise
repeat

6 E step: update �φj→k for all j and k using equation (2.7) and normalize to sum to 1
7 update �ηj←k for all j and k using equation (2.8) and normalize to sum to 1
8 update �νj for all j using equation (2.9)
9 update �ξk for all k using equation (2.10)

10 M step: update B(g,h) for all g,h using equation (2.11)
until convergence;

11 return ( �φ, �η, �ν, �ξ,B)

Algorithm 1: The variational EM algorithm. The E steps 6–9 are also repeated
until convergence to achieve the most stabilized mutual updates for the set of free
parameters �φ, �η, �ν, �ξ .

3.1. Design of experiments. In the past decade, variational EM (vEM) has be-
come a practical alternative to MCMC when dealing with large data sets, despite
its lack of theoretical guarantees [Jordan et al. (1999), Airoldi (2007), Joutard et al.
(2008)]. The relative merits between vEM and MCMC have been established em-
pirically for a number of models [e.g., see Blei and Jordan (2006), Braun and
McAuliffe (2010)]. We designed simulations with the goal of exploring the trade-
off between estimation accuracy and computational burden that vEM helps manage
in the context of estimation and posterior inference with the proposed model.

Briefly, vEM is an optimization approach, no sampling is involved, which re-
quires key choices about the following: (1) error tolerance for both the approxi-
mate E step and the M step, and (2) how to design multiple initializations and how
many to use. MCMC is a sampling approach, which requires key choices about
the following: (1) convergence criteria, (2) burn-in, (3) thinning to reduce auto-
correlation, and (4) multiple chains. For the variational EM approach, we set the
overall error tolerance at 1e–5, the maximum number of iterations for the varia-
tional E steps at 10, and 10 random initializations. For the MCMC approach, we
investigated the convergence using Gelman–Rubin and Raftery–Lewis for the me-
dian, autocorrelation using trace plots and partial autocorrelation functions. Based
on these studies, we chose to use 1000 iterations for burn-in, 6000 iterations and
a 10 to 1 thinning ratio, which results in 500 draws for each chain, and we used
10 chains. For both approaches, we use the true Dirichlet parameters α,β and the
true variance σ 2 = 0.01. Overall, this seems a fair comparison.
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The data are generated using the procedures described in Section 2.1 with the
following specifications. The B(g,h) follows a Normal distribution B(g,h) ∼
Normal(μB(g,h), σ 2

B(g,h)), where μB(g,h) = 0 and σ 2
B(g,h) = 1. Three sets of

block sizes are considered: (K1,K2) = (2,3), (4,6) and (6,9). The correspond-
ing table sizes are (N1,N2) = (10,15), (50,75) and (100,150), respectively. The
Dirichlet parameters are set to be α = β = 0.2 or α = β = 0.05. In all the experi-
ments, we set σ 2 = 0.01.

3.2. Mixed membership estimation. Here we evaluate the competing estima-
tion procedures on recovering mixed membership vectors. We report results on the
accuracy of the first and second largest membership components. It is well known
that mixture models and mixed membership models suffer from identifiability is-
sues, that is, their likelihood is uniquely specified up to permutations of the labels
[Titterington, Smith and Makov (1985)]. We evaluate the performance for a fixed
permutation, obtained empirically by sorting the membership vectors for the vEM
and by using a standard Procrustes transform for the MCMC [Stephens (2000)].
We note that vEM converged quickly to a (local) optimum, thus involving a consid-
erably more mitigated label switching issue than the collapsed Gibbs sampler. This
is an advantage, especially given that the empirical vEM estimation error reported
in Table 1 is comparable to that of the more principled MCMC sampler.

To quantify accuracy, we identify the locations of the largest two components in
the estimated vector of probabilities, �πj , and take those to be the first and second
choice of group memberships for the j th row. These assignments are compared,
via zero-one loss, with the true memberships: if there is a match, we note the
accuracy as 1, otherwise 0. The recorded row accuracy is the average over all the
rows and the ten experiments. The column accuracy is defined in a similar fashion.

The results for the estimated first and second memberships are summarized in
Table 1. The results for the first membership suggest that estimation is well be-
haved in the proposed model; the true membership can be recovered with a fairly
high successful rate under different experimental settings. As expected, the esti-
mation accuracy decreases with the increase on the block size. The lowest pair
reported in the table are 0.485 and 0.357 for K1 = 6 and K2 = 9, still much better
than random assignments where the accuracy would be 1/6 and 1/9, respectively.
For the second membership, we only consider elements with an estimated second
membership probability greater than a threshold. In this study, the thresholds are

1
10K1

and 1
10K2

for row and column memberships, respectively. It is clear that the
variational Bayes approach performs much better than MCMC in estimating the
second membership. One explanation can be that the second membership is more
ambiguous than the first membership, requiring a large number of iterations for
MCMC to converge.

Another factor that affects model performances is the Dirichlet parameters α

and β . Judging from the table, the accuracy when α = β = 0.05 is generally higher
than those of α = β = 0.2. This result is reasonable since a smaller α and β value
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TABLE 1
Comparisons on row and column estimation accuracy of estimates for the first highest membership (regular font) and second highest membership (italic

font) obtained with variational EM and MCMC. Standard errors are quoted inside parenthesis

K1 = 2 and K2 = 3 K1 = 4 and K2 = 6 K1 = 6 and K2 = 9

(N1, N2) α/β Row Column Row Column Row Column

vEM
(10,15) 0.2 0.970 (0.067) 0.667 (0.031) 0.620 (0.063) 0.587 (0.069) 0.470 (0.048) 0.520 (0.076)

0.970 (0.067) 0.522 (0.075) 0.233 (0.152) 0.179 (0.077) 0.210 (0.129) 0.060 (0.058)
0.05 0.980 (0.042) 0.967 (0.085) 0.870 (0.125) 0.807 (0.066) 0.780 (0.063) 0.567 (0.085)

0.980 (0.042) 0.533 (0.233) 0.233 (0.179) 0.190 (0.110) 0.317 (0.123) 0.133 (0.112)

(50,75) 0.2 0.784 (0.122) 0.751 (0.146) 0.680 (0.034) 0.471 (0.039) 0.426 (0.053) 0.416 (0.041)
0.784 (0.122) 0.694 (0.130) 0.304 (0.097) 0.175 (0.033) 0.194 (0.054) 0.136 (0.031)

0.05 0.980 (0.000) 0.849 (0.074) 0.620 (0.104) 0.575 (0.058) 0.634 (0.046) 0.483 (0.053)
0.980 (0.000) 0.662 (0.132) 0.239 (0.118) 0.216 (0.058) 0.210 (0.073) 0.149 (0.047)

(100,150) 0.2 0.960 (0.000) 0.823 (0.106) 0.601 (0.077) 0.670 (0.076) 0.485 (0.048) 0.357 (0.029)
0.960 (0.000) 0.612 (0.247) 0.261 (0.055) 0.237 (0.063) 0.194 (0.029) 0.137 (0.022)

0.05 0.946 (0.092) 0.743 (0.132) 0.769 (0.055) 0.707 (0.057) 0.553 (0.084) 0.479 (0.052)
0.946 (0.092) 0.520 (0.227) 0.361 (0.057) 0.236 (0.064) 0.217 (0.060) 0.135 (0.028)

MCMC
(10,15) 0.2 0.922 (0.148) 0.730 (0.102) 0.678 (0.015) 0.665 (0.012) 0.669 (0.008) 0.521 (0.007)

0.922 (0.148) 0.504 (0.167) 0.306 (0.053) 0.204 (0.031) 0.207 (0.011) 0.157 (0.004)
0.05 0.841 (0.121) 0.901 (0.120) 1.000 (0.000) 0.878 (0.031) 0.884 (0.005) 0.825 (0.007)

0.841 (0.121) 0.409 (0.138) 0.520 (0.122) 0.413 (0.091) 0.227 (0.052) 0.161 (0.022)

(50,75) 0.2 0.871 (0.121) 0.671 (0.097) 0.711 (0.095) 0.659 (0.084) 0.682 (0.106) 0.562 (0.051)
0.871 (0.121) 0.437 (0.186) 0.380 (0.039) 0.300 (0.065) 0.301 (0.093) 0.231 (0.026)

0.05 0.994 (0.013) 0.676 (0.113) 0.775 (0.176) 0.753 (0.129) 0.824 (0.088) 0.839 (0.054)
0.994 (0.013) 0.452 (0.131) 0.383 (0.135) 0.319 (0.142) 0.357 (0.090) 0.365 (0.074)

(100,150) 0.2 0.971 (0.032) 0.653 (0.150) 0.682 (0.119) 0.633 (0.083) 0.735 (0.069) 0.614 (0.078)
0.968 (0.034) 0.420 (0.223) 0.332 (0.080) 0.255 (0.054) 0.310 (0.074) 0.235 (0.059)

0.05 0.830 (0.208) 0.773 (0.138) 0.810 (0.140) 0.772 (0.127) 0.780 (0.046) 0.750 (0.064)
0.829 (0.208) 0.463 (0.203) 0.354 (0.151) 0.277 (0.088) 0.285 (0.053) 0.249 (0.046)
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corresponds to a higher likelihood of a dominating component, which is easier to
identify than more ambiguous memberships.

The membership accuracy computed through variational Bayes aligns with
those calculated from MCMC, and even slightly better when the block size is
small. Since variational inference is typically much more efficient than MCMC, the
former method is preferred for practical analysis, especially for high-dimensional
cases. We will present run-time comparisons between these two approaches in the
next section.

3.3. Predictions out-of-sample. Prediction power is a useful criterion for eval-
uating statistical models. When some data are missing, is the model sufficiently
flexible to provide correct inferences and to predict the missing values with high
accuracy? To answer this question, we randomly select 2/3 of rows and 2/3 of
columns from the table, whose intersections are 4/9 of the entries. We set half of
them (i.e., 2/9) as missing (to avoid eliminating an entire row or column), and run
the model on the remaining 7/9 entries. The first membership prediction accuracy
is reported in Table 2. They are slightly lower than those estimated without miss-
ing values, but overall much better than the baseline probabilities 1/K1 and 1/K2.
Furthermore, the prediction accuracy achieved by variational Bayes is compara-
ble or better than those obtained by MCMC. This result reinforces our belief that
variational Bayes is a good inference approach for the proposed blockmodel.

3.4. Blockmodel matrix estimation. Here we compare the variational Bayes
and MCMC in terms of estimating the matrix B . The estimation error εB is defined
as the 1-norm of the matrix |B − B̂|, where B̂ is the estimated matrix. The result
for K1 = 2, K2 = 3 is shown in Table 3. Except for the case of α = β = 0.05 and
N1 = 10, N2 = 15, variational Bayes performs close to or better than MCMC. The
true B in this simulation study is(−0.5009 0.0687 1.5887

0.4148 −0.8086 −1.3112

)
.

3.5. Sensitivity to initialization and priors specifications. Here we analyzed
the sensitivity of the inference to informative versus noninformative prior spec-
ifications, and to uniform versus random initialization of some constants in our
model. The results show no significant sensitivity of the estimation error to these
choices. This evidence supports our claim that inference is well behaved and that
identifiability is not an issue for the model we proposed, in practice, in the data
regimes we considered.

In Algorithm 1 (vEM) and the supplement (MCMC), we initialized a subset
of parameters (π,η, ν, ε in vEM and D,E in MCMC) uniformly. To assess the
sensitivity of inference to this initialization strategy, we tested alternative versions
of these algorithms in which we initialized these parameters at random, on the
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TABLE 2
Comparisons on row and column estimation accuracy between variational EM and MCMC, when 2/9 of the entries are missing. Standard errors are

inside the parenthesis

K1 = 2 and K2 = 3 K1 = 4 and K2 = 6 K1 = 6 and K2 = 9

(N1, N2) α/β Row Column Row Column Row Column

vEM
(10,15) 0.2 0.780 (0.148) 0.600 (0.094) 0.610 (0.110) 0.507 (0.118) 0.520 (0.063) 0.547 (0.103)

0.05 0.900 (0.067) 0.853 (0.117) 0.730 (0.125) 0.547 (0.108) 0.700 (0.094) 0.613 (0.042)

(50,75) 0.2 0.664 (0.067) 0.615 (0.134) 0.452 (0.081) 0.383 (0.039) 0.366 (0.034) 0.335 (0.037)
0.05 0.930 (0.034) 0.843 (0.077) 0.570 (0.135) 0.564 (0.074) 0.504 (0.076) 0.444 (0.040)

(100,150) 0.2 0.786 (0.091) 0.672 (0.128) 0.472 (0.124) 0.362 (0.055) 0.313 (0.049) 0.326 (0.059)
0.05 0.751 (0.194) 0.749 (0.136) 0.656 (0.102) 0.503 (0.091) 0.397 (0.068) 0.373 (0.056)

MCMC
(10,15) 0.2 0.703 (0.100) 0.617 (0.083) 0.480 (0.091) 0.460 (0.085) 0.406 (0.012) 0.368 (0.054)

0.05 0.770 (0.145) 0.726 (0.115) 0.540 (0.161) 0.446 (0.073) 0.454 (0.101) 0.456 (0.070)

(50,75) 0.2 0.788 (0.145) 0.645 (0.104) 0.544 (0.064) 0.443 (0.032) 0.357 (0.062) 0.343 (0.039)
0.05 0.809 (0.194) 0.647 (0.098) 0.606 (0.072) 0.567 (0.068) 0.473 (0.054) 0.479 (0.074)

(100,150) 0.2 0.813 (0.103) 0.576 (0.102) 0.575 (0.061) 0.492 (0.042) 0.411 (0.048) 0.395 (0.028)
0.05 0.867 (0.150) 0.834 (0.111) 0.639 (0.051) 0.524 (0.040) 0.514 (0.092) 0.497 (0.030)
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TABLE 3
Comparisons on εB as the estimation error of B between variational Bayes and MCMC

(N1, N2) (10,15) (50,75) (100,150)

α/β 0.05 0.2 0.05 0.2 0.05 0.2

VB 0.152 (0.042) 0.022 (0.022) 0.048 (0.024) 0.061 (0.061) 0.053 (0.029) 0.002 (0.001)
MCMC 0.019 (0.006) 0.027 (0.047) 0.110 (0.058) 0.045 (0.066) 0.134 (0.065) 0.105 (0.058)

data set analyzed in Section 3.7. Briefly, in vEM, we initialized each �φj→k and
�ηj←k with random membership vectors, then initialized �νj , �ξk using equations
(2.9) and (2.10). The blockmodel B is initialized as in Algorithm 1. In MCMC,
we initialized each �Dj→k , �Ej←k with a membership with a single positive entry
assigned at random, we computed �Dj→·, �E·←k , Ygh, ngh accordingly from these
initial values of �D and �E, then initialized p(Dj→k,g = 1,Ej←k,h = 1) as detailed
in the supplement [Airoldi, Wang and Lin (2013b)]. The results of this experiment
are shown in Table 4.

Another input for Algorithm 1 and the MCMC inference algorithm is the Dirich-
let parameters α and β . A priori, α, β < 1 favor a single dominating membership
component while α, β > 1 favor diffuse membership. In the analysis of real data,
we expect few dominating memberships, so we typically set α = β equal to either
0.2 or 0.05 and assess sensitivity of resulting estimated memberships and other
parameters. However, the question arises as to whether an alternative strategy that
features informative priors is more useful than using noninformative as we do.
Using informative priors for the membership parameters might lead to improved
inference, especially in the case of substantial nonidentifiability.

To evaluate this issue, we generated a data set with informative priors �α =
(0.3,0.7)′ for the rows and �β = (0.6,0.3,0.10)′ for the columns. Then we fit the
model with the vEM algorithm on this data set using both noninformative uniform
priors (α = β = 0.05) and informative priors with the vectors �α, �β set at the true
values. The results are presented in Table 5 from which we see that the results are

TABLE 4
Comparisons on εB as the estimation error of B and the first highest membership accuracy between

different initialization for variational Bayes and MCMC

vEM MCMC

Init. εB Row Column εB Row Column

Random 0.200 (0.163) 0.916 (0.184) 0.907 (0.120) 0.171 (0.179) 0.872 (0.171) 0.818 (0.177)
Uniform 0.205 (0.173) 0.916 (0.117) 0.880 (0.102) 0.115 (0.175) 0.957 (0.047) 0.820 (0.157)
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TABLE 5
Comparison of vEM fits using informative and noninformative priors, in terms of estimation error

εB and accuracy in estimating the highest membership component

Noninformative priors Informative priors

εB Row Column εB Row Column

0.385 (0.176) 0.868 (0.121) 0.827 (0.134) 0.203 (0.121) 0.788 (0.157) 0.870 (0.091)

comparable. This justifies the simple choice of noninformative prior in our algo-
rithms.

3.6. Run-time comparison. As seen previously, variational Bayes performs as
effectively as MCMC in parameter and membership estimation as well as held-out
prediction accuracy. In the following, we present results on run-time comparison
between these two approaches. Our goal is to quantify the magnitude of savings
that variational Bayes can achieve while obtaining similar inferences to those ob-
tained through MCMC.

For each experiment we run 10 times, and the average log run-time is recorded.
The plots are shown in Figure 1. Three table sizes are considered in this simula-
tion: 10 × 15, 50 × 75 and 100 × 150. From this figure, the run-time for MCMC is
consistently several times larger more than that of variational Bayes. For example,
when block sizes equal (6,9), and Dirichlet parameters equal 0.05, one experi-
ment takes about 30 minutes to run for variational Bayes, and it takes roughly
6 hours for MCMC. This trend continues when table size increases, and the saving
on computational cost can be much more. These results suggest that variational
Bayes should be preferred for analyzing large tables. Recently developed infer-
ence strategies based on spectral clustering [Rohe and Yu (2012)] and binary factor
graphs [Azari and Airoldi (2012)] should also be considered.

3.7. Quantifying the effects of censoring. One of the issues in existing stud-
ies of coordinated cellular responses is the preprocessing of the original mea-
surements. This kind of censoring reduces data utility and decreases estimation
accuracy. The goal of this study is to quantify the effects of censoring by thresh-
olding on the estimation of the blockmodel.

The data Y are generated from Y(j, k) ∼ Normal(�π ′
jB �pk,σ

2). The domain
of Y(j, k) is (−∞,+∞). We perform Inverse Fisher Transformation (IFT) that
maps Y(j, k) to ρ(j, k) so that its range is [−1,1]. The censored data are de-
fined as S(j, k) = 1(|ρ(j, k)| ≥ τ), where τ can be median, mean or 0.5. Clearly,
S(j, k) ∈ {0,1}.

The Normal blockmodel is applied to the original data Y(j, k) and the Bernoulli
blockmodel described in Section 2.2 is applied to the censored data S(j, k).
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FIG. 1. Log run-time for simulated data. Red lines represent variational Bayes and black lines
represent MCMC via collapsed Gibbs. The x-axis is the number of elements in a table. For instance,
0.15 (thousand) represents a 10 by 15 table with 150 elements.

To make the comparison in the same scale, we define ρ̂(j, k) as the IFT of
�φ′
j→kB̂ �ηj←k , where �φj→k , B̂ and �ηj←k are estimated from the Normal block-

model. The estimation error is defined as

ε =
∑

(j,k) |ρ(j, k) − ρ̂(j, k)|
N1 × N2

.

The estimation error for the censored experiment is computed in the same fashion,
with ρ̂(j, k) = �φ′

j→kB̂ �ηj←k , where �φj→k , B̂ and �ηj←k are estimated from the
Bernoulli blockmodel, and ρ(j, k) replaced by |ρ(j, k)|.

We compare our model with a bi-clustering method popular in computational
biology [Cheng and Church (2000)], fit to both the raw and censored correlations.
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TABLE 6
Comparison of estimation error on censored and noncensored data. Standard errors are inside

the parenthesis

Data Method Bic. Error ε Recall Precision

Raw ρij 2-way Normal 6 0.054 (0.010) 0.841 (0.169) 0.881 (0.116)

Hier. clustering 6 0.221 (–) 0.967 (–) 0.970 (–)
Cheng & Church 2 – 0.367 (–) 0.679 (–)

|ρij | > ρ(0.5) 2-way Bernoulli 6 0.175 (0.006) 0.518 (0.017) 0.722 (0.048)

Hier. clustering 6 0.125 (–) 0.700 (–) 0.850 (–)
Cheng & Church 2 – 0.232 (–) 0.640 (–)

Cross-associations 4 – 0.667 (–) 0.762 (–)

|ρij | > ρ̄ 2-way Bernoulli 6 0.182 (0.003) 0.528 (0.014) 0.773 (0.056)

Hier. clustering 6 0.187 (–) 0.500 (–) 0.841 (–)
Cheng & Church 3 – 0.237 (–) 0.640 (–)

Cross-associations 6 – 0.667 (–) 0.841 (–)

|ρij | > 0.5 2-way Bernoulli 6 0.158 (0.002) 0.528 (0.022) 0.835 (0.030)

Hier. clustering 6 0.189 (–) 0.500 (–) 0.841 (–)
Cheng & Church 3 – 0.239 (–) 0.640 (–)

Cross-associations 8 – 0.613 (–) 0.667 (–)

We match each estimated bicluster to a true block and compute recall and preci-
sion in estimating absolute correlations above a threshold. Results are presented
in Table 6, where the results obtained with BCCC are optimized over a range of
input parameter values. For completeness, we also add results obtained with hier-
archical clustering to rows and columns independently, and with cross-association
[Chakrabarti et al. (2004)].

The effects of censoring are clearly seen from Table 6. The estimation error
increases more than threefold when using the censored data with the Bernoulli
block model. The effect of thresholding parameter τ is not very significant.

4. Analyzing transcriptional and metabolic coordination in response to
starvation. Functions in a cell are executed by cascades of molecular events. In-
tuitively, proteins are the messengers, while metabolites and other small molecules
are the messages. Measuring protein activity over time, directly, is difficult and ex-
pensive. An indication of the abundance of most proteins, however, can be inferred
from the amount of the messenger RNA transcripts. These transcripts are copies
of genes and lead to the translation of proteins. This is especially true in yeast
where alternatives to the transcription-translation hypothesis, such as alternative
splicing, are not frequent. Metabolite concentrations add an essential perspective
to the study of cascades of molecular events.

We conducted an integrated analysis of two data collections recently published:
temporal profiles of metabolite concentrations [Brauer et al. (2006)] and tempo-
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ral profiles of gene expression [Bradley et al. (2009)], both measured in Saccha-
romyces cerevisiae with matching sampling schemes.

An integrated analysis of the coordination between gene expression and
metabolite concentrations may lead to the identification of sets of genes (i.e.,
the corresponding proteins) and metabolites that are functionally related, which
will provide additional insights into regulatory mechanisms at multiple levels and
open avenues of inquiry. The identification and quantification of such coordinated
regulatory behavior is the goal of our analysis.

The methodology in Section 2 allows us to identify genes and metabolites that
show correlated responses to metabolic stress, namely, starvation. To evaluate the
biological significance of the results, we quantify to what extent correlated re-
sponses are associated with metabolic-related functions and to what extent esti-
mated models can be used to identify functionally related genes and metabolites
out-of-sample.

4.1. Data and experimental design. The expression data consist of messenger
RNA transcript levels measured using Agilent microarrays on cultures of S. cere-
visiae before and after carbon starvation (glucose removal), and before and after
nitrogen starvation (ammonium removal). Collection times were 0 minutes (before
starvation) and 10, 30, 60, 120, 240 and 480 minutes after starvation. For more de-
tails about the data and the experimental protocol see Bradley et al. (2009). The
metabolite concentrations data were obtained using liquid chromatography-mass
spectrometry before and after carbon starvation (glucose removal), and before and
after nitrogen starvation (ammonium removal). Collection times were 0 minutes
(before starvation) and 10, 30, 60, 120, 240 and 480 minutes after starvation. For
more details about the data and the experimental protocol see Brauer et al. (2006).

The concentration of each metabolite and the transcript level of each gene at
time point t are expressed as log2 ratios versus the corresponding measurements at
the zero time point. Thus, for each gene j we have a sequence Gjt , t = 1, . . . ,6,
and for each metabolite k we have a sequence Mkt , t = 1, . . . ,6, representing for
the 6 time points observation after time 0. Complete temporal profiles are available
for 5039 genes and for 61 metabolites; 783 genes and 7 metabolites with missing
data were not considered.

Using the temporal profile, we can calculate the sample correlation coefficient

of each gene and metabolite pair (j, k): ρ(j, k) =
∑T

t=1(Gjt−Ḡj )(Mkt−M̄k)

(T −1)SGSM
, where

Ḡj = ∑
t Gjt/T and M̄k = ∑

t Mkt/T are the sample mean, and SG and SM

are the sample standard deviation. We then transform these correlations using
the Fisher transformation Z(j, k) = 1

2 log 1+ρ(j,k)
1−ρ(j,k)

. With the true correlation be-
tween genes and metabolites denoted as ρ0, we have Z(j, k) following asymptoti-
cally Normal distribution with mean μz = 1

2 log 1+ρ0
1−ρ0

and standard error 1/
√

T − 3
[Fisher (1915, 1921)]. Under the hypothesis that there is no correlation between
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genes and metabolites, we will expect ρ0 = 0 and μz = 1
2 log 1+ρ0

1−ρ0
= 0. These

Fisher transformed quantities provide the input to our model.
We do not expect the multi-way blockmodel assumption to hold for all the 5039

genes. Instead, we provide separate joint analyses on subsets of genes and all 61
metabolites, for a number of gene lists of interest, which we expect to be involved
in the cellular response to starvation. We consider gene lists that were obtained in
studies exploring the environmental stress response (ESR), cellular proliferation,
metabolism and the cell cycle [Gasch et al. (2000), Tu et al. (2005), Brauer et al.
(2008), Airoldi et al. (2009, 2013a), Slavov et al. (2013)].

For all the experiments we rely on variational Bayes implementation of our
model due to its advantage in convergence speed, which is crucial when deal-
ing with correlation tables involving hundreds of genes. We adopt the setting as
described in Section 3.6 for VB, with specific changes described as they become
relevant. In the remainder of this section, with the exception of Section 4.5, we con-
sistently set the number of metabolite blocks K2 = 4, since there are four metabo-
lite classes, and we use informative priors for the memberships of each metabolite,
depending on which class they are known to belong to. Specifically, each of the 61
metabolites belongs to one of the four classes: TCA, AA, GLY, BSI. If a metabolite
is in class TCA, say, Aconitate, its �ξ vector will be initialized as �ξ = [100 1 1 1],
normalized to unit norm. By assuming a dominating component on the true index
in the initial membership, the metabolites will mostly remain stably associated to
their classes during VB inference.

For the optimal number of gene blocks, we select K1 by minimizing the
Bayesian information criterion (BIC). The general BIC formula is −2 logL + k ×
log(n), in which k is the number of parameters, n is the number of observations,
and L is the likelihood. For our model, the approximated BIC is

−2 logL + |B, �π, �p| × log |Y |,
where |B, �π, �p| is the number of parameters, which is approximately equal to
K1 × K2, and |Y | is the number of entries in the table, that is, |Y | = N1 × N2.

In Section 4 we present some of the results with the goal of showcasing how the
data analysis, via the multi-way block model, supports the biological research.

4.2. Multifaceted functional evaluation of coordinated responses. Here we
evaluate to what extent the proposed model is useful in revealing the genes’ mul-
tifaceted functional roles. We rely on the functional enrichment analysis using the
Gene Ontology to evaluate the functional content of clusters of genes [Ashburner
et al. (2000), Boyle et al. (2004)].

One aspect of our model that distinguishes it from clustering and bi-clustering
methods is the mixed membership assumption. That is, in our model, each gene
can participate in multiple functions, as modeled via the gene-specific latent mem-
bership vectors �π . In practice, the membership assumption lets us identify multiple
levels of functional enrichment.
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To illustrate this point, we consider 521 genes that were found to be strongly
associated with metabolic activities, that is, up-regulated in response to increas-
ing growth rate, in previous studies [Brauer et al. (2008), Airoldi et al. (2009)].
We use the largest estimated memberships for each gene πgi , i = 1, . . . ,K1, to
assign genes g = 1, . . . ,521 to metabolite classes j = 1, . . . ,4. Then we perform
functional analysis on the resulting sets of genes associated with each metabolite
class.

More formally, we proceed as follows. First, the largest estimated membership
is used to assign gene g to gene block i, according to îg = arg maxi=1,...,K1 πgi .
Then the largest estimated gene-block to metabolite-class association |Bij | is then
used to assign gene g with a metabolite class, according to

ĵg = arg max
j=1,...,4

|B
îg,j

|.

The collection of estimated gene-to-metabolite class associations, {ĵg , g =
1, . . . ,521}, is used to partition genes into four sets, for example, AA =
{g s.t. ĵg = 1}. We perform functional enrichment analysis for each of these four
sets. In addition, the mixed membership nature of the proposed multi-way block-
model allows us to analyze second-order functional enrichment. We repeat the
procedure above but we estimate îg using the second-largest membership in �πg .

The functional analysis results obtained for both first- and second-largest mem-
berships are reported in Table 7. Interestingly, subsets of genes associated with

TABLE 7
Example functional evaluation. Gene Ontology terms associated with first- and second-largest

membership scores for the Nitrogen starvation experiment

Memb. Class Ontology Term description p-value

First AA Component DNA-directed RNA polymerase I complex 9.8E–6
First AA Component Preribosome, small subunit precursor 0.00324
First AA Function Translation factor activity, nucleic acid binding 5.11E–14
First AA Function Translation initiation factor activity 1.64E–10
First AA Function DNA-directed RNA polymerase activity 1.45E–6
First BSI Component Preribosome, large subunit precursor 0.00013
First BSI Function GTP binding 0.03314
First BSI Function Guanyl ribonucleotide binding 0.03314

Second AA Component DNA-directed RNA polymerase III complex 6.76E–10
Second AA Component DNA-directed RNA polymerase II core complex 0.00322
Second AA Function RNA polymerase activity 1.27E–6
Second AA Function ATP-dependent RNA helicase activity 3.43E–6
Second BSI Component Ribonucleoprotein complex 6.47E–12
Second BSI Component 90S preribosome 0.00124
Second BSI Function Aminoacyl-tRNA ligase activity 0.0000817
Second BSI Function N-methyltransferase activity 0.0455
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the same metabolite class, for instance, AA, are functionally enriched for multi-
ple functions, to different degrees. For instance, genes use AA metabolites when
performing translational activities in the nucleus primarily, however, they use
AA metabolites when performing polymerase-related activities on the polymerase
II and II complexes to a lesser extent. Similarly, genes use BSI metabolites for
binding activities in the preribosome primarily, and for ligase and transferase activ-
ities in the preribosome and the ribonucleoprotein complex to a minor extent. The
magnitude of the components of the relevant mixed membership vectors provides
more information on the degree of involvement the various gene blocks in these
many activities. This type of multifaceted functional analysis is possible thanks to
the mixed membership assumption encoded in the multi-way blockmodel.

These results highlight the role of the mixed membership assumption in sup-
porting a detailed multifaceted functional analysis, which is not possible with tra-
ditional methods.

4.3. Predicting functional annotations out-of-sample. Here we assess the
goodness of fit of the proposed method on real data, in terms of predictions out-
of-sample. We present results of an experiment in which we predict held-out func-
tional annotations πgi . This analysis leverages use of informative priors on a subset
of known functional annotations.

We consider 57 genes that were found in previous studies to be strongly asso-
ciated with cellular growth [Airoldi et al. (2009), Brauer et al. (2008)], 760 genes
that were found to be involved in the environmental response to stress [Gasch et al.
(2000)], and 19 genes that were found to be involved in metabolic cycling [Tu et al.
(2005)].

Good out-of-sample prediction performance will enable biologists to use this
method to guide which functions they should be testing at the bench, speeding up
the exploration of the functional landscape through statistical analysis of gene–
metabolite associations.

To establish the ground truth for this experiment, we collected functional anno-
tations for each gene in the same four lists as in Section 4.2 which will be held-out
and predicted using the multi-way blockmodel. Table 8 reports summary statistics

TABLE 8
Statistics for the lists of genes. Column three reports the number of genes with one, some and no

functional annotations. K1 is the number of gene blocks in the fitted blockmodel

No. of genes No. of functional annotations

Gene list Total One/some/none Min 25% 50% 75% Max Mean K1

Growth rate 57 5/19/38 1 1.25 4 7 7 4.26 12
ESR induced 240 0/215/25 2 5 7 12 31 9.31 76
ESR repressed 520 1/503/17 1 10 19 22 31 16.93 78
Metabolic cycle 19 4/14/5 1 1 6.5 10 20 7.29 25
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of the functional annotations in each list of genes, obtained using the Gene On-
tology term finder (SGD). Column two reports the total number of genes in each
list. Column three reports the number of genes with one, some and no functional
annotations. Columns 4–9 report the quantiles from the distribution of the number
of functional annotations for the genes in each list. Column 10 reports the value
of K1 we selected for fitting the blockmodel.

To perform the second experiment, we held out the annotations for 50% of the
genes with multiple functional annotations, and we also held out the annotation
for 50% of the genes with a single functional annotation. When fitting the multi-
way blockmodel, in addition to using informative priors for the memberships of
each metabolite depending on which class they are known to belong, as detailed
in Section 4.1, we used informative priors for the functional annotations we did
not hold out. For the held-out annotations, we used noninformative values for the
hyperparameters instead. For instance, suppose that the known vector of functional
annotations for gene g is �ag = [1 0 0 1 1 0 0 0 0 1], and that ag(1) and ag(4) were
to be held out in a particular replication, so that we have �ag = [NA 0 0 NA 1 0 0 0
0 1]. The prior for the functional annotation for that gene would be set at �ξg = [1
1 1 1 100 1 1 1 1 100], normalized to unit norm. The rationale for this choice is
to fit a multi-way blockmodel with known biological structure for those genes and
metabolites that are used for parameter estimation, but agnostic about the biology
we want to predict out-of-sample. We claimed success in each prediction if the
imputed annotations, ξ̂g(k) = 1, corresponded to real held-out annotations, and if
the imputed absences of annotations, ξ̂g(i) = 0, corresponded to absences of real
held-out annotations. We repeated this procedure 10 times, for each of the four
lists of genes.

Table 9 reports the accuracy results, detailed by genes with single and multi-
ple annotations, and evaluated separately for annotations (i.e., the 1s) and lack of
annotations (i.e., the 0s). The baseline accuracy for predicting single annotations,
using random guesses for each gene independently, ranges between 1/19 ≈ 5% for

TABLE 9
Out-of-sample predictions of functional annotations for the Nitrogen starvation experiment.

Accuracy in recovering (single/multiple) annotations for four lists of genes

Single annotations Multiple annotations

Observed Missing Observed Missing

Gene list 0s 1s 0s 1s 0s 1s 0s 1s

Growth rate 0.94 0.36 0.94 0.36 0.83 0.75 0.84 0.74
ESR induced – – – – 0.92 0.39 0.92 0.46
ESR repressed – – 0.99 0.00 0.84 0.43 0.85 0.50
Metabolic cycle 0.97 0.25 0.96 0.10 0.78 0.65 0.80 0.63
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the metabolic cycle genes to 1/520 ≈ 0.2% for the ERS genes. The baseline accu-
racy is slightly higher for predicting multiple annotations, since predicting single
annotations is a harder problem.

For completeness, we also report the accuracy in predicting annotations that
were known during model fitting to get a sense of the goodness of fit from a sub-
stantive, biological perspective. In fact, if the model assumptions are accurate, we
would expect accurate predictions for the known annotations. If the model is not
accurate, or if the model provides too much shrinkage, we would expect lower
accuracy on known annotations.

Overall, the blockmodel assumptions are substantiated by the results in Table 9.
The model is useful for encoding biological information about single and multiple
functional annotations. The out-of-sample prediction accuracy of the multi-way
blockmodel is solid and consistently much higher than the baseline. These results
complement and confirm the out-of-sample prediction results we obtained in Sec-
tion 3.3.

4.4. Coordinated and differential regulatory response to Nitrogen and Carbon
starvation. Here we provide an illustration of how the multi-way blockmodel can
be used to perform quantitative and qualitative analysis of coordinated regulation
in response to Nitrogen starvation and differential regulation in response to Carbon
starvation. We perform this analysis for the same four lists of genes we considered
in Section 4.2.

The quantitative analysis of coordinated regulation is based on the number of
genes which are estimated to be associated with the various metabolite classes, in
both the Nitrogen and the Carbon starvation experiments.

We used the same procedure described in Section 4.2 to estimate the metabolite
classes associated with each gene, using the estimated largest and second-largest
(gene-block) memberships. Table 10 reports the number of genes that were found
to be associated with a primary metabolite class (largest membership) and with

TABLE 10
Quantitative evaluation of coordinated regulatory responses. Number of genes associated with the
same metabolite class in both the Nitrogen and Carbon starvation experiments. The association is

estimated using both largest and second-largest membership scores

Largest membership Second-largest membership

Gene list AA BSI GLY TCA AA BSI GLY TCA

Growth rate 11 6 10 2 10 5 3 1
ESR induced 55 13 4 0 48 21 4 0
ESR repressed 128 22 1 17 109 52 0 27
Metabolic cycle 2 3 1 0 2 3 1 0
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a secondary metabolite class (second-largest membership) for each of the four lists
of genes we consider.

About a fourth of the genes are found to be associated with a primary metabolite
class. Despite the similarity in the patterns of primary and secondary associations,
the gene sets involved in them are different. These results imply that another fourth
of the genes are found to be associated to a secondary metabolite class. Overall, the
blockmodel suggests a substantial amount of overlap between the coordinated reg-
ulatory response to Nitrogen and Carbon starvation. A similar quantitative analy-
sis could be conducted for highlighting Nitrogen- and Carbon-specific coordinated
regulatory responses.

The qualitative analysis of differential regulation is based on the functional en-
richment analysis of those genes associated with a given metabolite class in the
Nitrogen experiment, but associated with a different metabolic class in the Car-
bon experiment. For this analysis, we used the procedure above to estimate the
metabolite classes associated with each gene, using the estimated largest member-
ships only, for the list of genes that were found to be ESR induced. The results
of the functional analysis obtained for the largest memberships, using the Gene
Ontology term finder, are reported in Table 11.

TABLE 11
Functional evaluation of gene–metabolite associations that are differentially regulated in Nitrogen

and Carbon. Gene Ontology terms for gene–metabolite associations unique to the Nitrogen
starvation experiment. Association is computed using the largest memberships

Class Ontology Term description p-value

AA Function Alcohol dehydrogenase (NADP+) activity 0.01775
AA Function Aldo-keto reductase (NADP) activity 0.01775
AA Process Vacuolar protein catabolic process 0.00026
AA Process Catabolic process 0.00808
BSI Function Peroxidase activity 0.0000568
BSI Function Antioxidant activity 0.0004
BSI Function Carbohydrate kinase activity 0.00083
BSI Function Glutathione peroxidase activity 0.0214
BSI Process Carbohydrate catabolic process 2.98E–7
BSI Process Cellular response to oxidative stress 0.0000131
BSI Process Trehalose metabolic process 0.0000203
BSI Process Alcohol catabolic process 0.0000231
BSI Process Glycoside metabolic process 0.000061
GLY Function Oxidoreductase activity 0.0000116
GLY Process Oxidation–reduction process 0.00097
GLY Process Cellular carbohydrate metabolic process 0.0011
GLY Process Carbohydrate metabolic process 0.00143
GLY Process Cellular aldehyde metabolic process 0.00351
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These results highlight how the same set of genes (a proxy for proteins) may
be using metabolites differently to execute a response to the Carbon. For instance,
metabolites in the BSI class are used to process glycoside, alcohol and trehalose,
as part of antioxidant activities. Metabolites in the GLY class are used to execute
oxidoreductase activities and metabolize aldehyde and carbohydrates. The magni-
tude of the components of the relevant mixed membership vectors provides more
information on the degree of involvement the various gene blocks in these many
activities.

A similar qualitative analysis could be carried out to explore the functional land-
scape, that is, shared by the Nitrogen and Carbon coordinated regulatory responses
to starvation.

4.5. Comparative analysis of raw and preprocessed data. Here we compare
a blockmodel analysis of coordinated regulation with an analysis using cross-
association Chakrabarti et al. (2004), quantitatively, in terms of number of gene–
metabolite class associations found. We consider the four lists of genes above for
this analysis.

Cross-association takes a binary table as input. We built such a genes-by-
metabolites binary matrix Y by thresholding the corresponding matrix of corre-
lations. We assign Y(j, k) = 1 whenever ρ(j, k) is above the 75th percentile or
below the 25th percentile of the empirical correlation distribution.

Cross-association provides a two-way blockmodel as output, in which K1 and
K2 are estimated using a metric based on information gain. To make a valid com-
parison, we fit the stochastic multi-way blockmodel with the same number of gene
and metabolite blocks.

An additional complication in this analysis is that the number of metabolite
blocks can be different from four, for both cross-association and the stochastic
blockmodel. We use noninformative priors on the metabolites memberships in the
stochastic blockmodel. In addition, we developed a greedy matching procedure to
associate metabolite blocks to metabolite classes, after inference. We proceeded as
follows. Each metabolite was associated with a block using its largest (metabolite-
block) membership. Each metabolite is associated with a known metabolite class.
We assigned a metabolite class label to each metabolite block according to a simple
majority rule.

We used the same procedure described in Section 4.2 to estimate the metabolite
classes associated with each gene, using the estimated largest and second-largest
(gene-block) memberships.

Table 12 reports the number of Gene Ontology terms that were found to be
associated with a primary metabolite class (largest membership) in the first four
rows, and with a secondary metabolite class (second-largest membership) in the
next four rows, for each of the four lists of Gene Ontology terms we consider.
The last four rows report the number of genes that were found to be associated
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TABLE 12
Quantitative evaluation of Gene Ontology terms associated with gene–metabolite class found.

Shown in the tables are results for multi-way blockmodel’s largest (1st) and second-largest (2nd)
memberships as well as cross-associations (CA)

AA BSI TCA

Memb. Gene list BP CC MF BP CC MF BP CC MF Total

1st Growth rate 1 – – 1 6 5 – – – 13
1st ESR induced 33 7 11 2 1 2 16 – 5 77
1st ESR repressed – 45 26 32 23 5 – – – 131
1st Metabolic cycle 13 6 6 – – – – – – 25

2nd Growth rate 4 6 3 – – – – – – 13
2nd ESR induced – 1 6 – 16 14 – – 1 38
2nd ESR repressed – 47 21 – 34 11 – – – 113
2nd Metabolic cycle – – – 12 6 8 – – – 26

CA Growth rate – 6 2 2 – 2 – – – 12
CA ESR induced – – – – 21 19 – – – 40
CA ESR repressed – 47 20 – 30 20 – – – 117
CA Metabolic cycle – – – 12 6 7 – – – 25

with a metabolite class using cross-association. The multi-way stochastic block-
model finds more primary associations than cross-association, 246 versus 194. In
addition, if we consider the secondary associations, the blockmodel analysis un-
covers 190 more associations. In fact, subsets of genes associated with the same
primary and secondary metabolite class, for instance, AA, are not overlapping by
construction.

Overall, cross-association is not well suited for any analysis of biological cor-
relations because of a number of shortcomings, including its reliance on binary
input and its lack of flexibility for incorporating prior biological information, for
example, the number of metabolite blocks. Our results show that the multi-way
stochastic blockmodel outperforms cross-associations quantitatively, even when
we do not make use of biological prior knowledge.

5. Concluding remarks. In order to analyze the temporal coordination be-
tween gene expression and metabolite concentrations in yeast cells, in response
to starvation, we developed a family of multi-way stochastic blockmodels. These
models extend the mixed membership stochastic blockmodel [Airoldi et al. (2008)]
to the case of two sets of measurements and to the case of Gaussian and binary re-
sponses. We developed and compared various inference schemes for multi-way
blockmodels, including Monte Carlo Markov chains and variational Bayes.

We further explored the impact of thresholding and binning on the analysis.
These censoring mechanisms are often used as preprocessing steps. The trans-
formed data are then amenable to the analysis of coordination using off-the-shelf
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methods, including Bayesian networks and popular blocking algorithms from the
data mining literature [Bradley et al. (2009), Chakrabarti et al. (2004)]. The sensi-
tivity analysis suggests that the impact of preprocessing steps that involve censor-
ing is substantial, both from a quantitative perspective and in terms of its impact
on biological discovery, in our case study.

Acknowledgments. The authors thank David Madigan for suggesting exten-
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verse events. EMA is an Alfred P. Sloan Research Fellow.

SUPPLEMENTARY MATERIAL

Supplement to “Multi-way blockmodels for analyzing coordinated high-
dimensional responses” (DOI: 10.1214/13-AOAS643SUPP; .pdf). We provide
additional supporting plots that show both good and poor performance of the Hill
estimator for the index of regular variation in a variety of examples.
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