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Abstract. We consider the problem of estimating the mean f of a Gaussian vector Y with independent components of common
unknown variance σ 2. Our estimation procedure is based on estimator selection. More precisely, we start with an arbitrary and
possibly infinite collection F of estimators of f based on Y and, with the same data Y , aim at selecting an estimator among F with
the smallest Euclidean risk. No assumptions on the estimators are made and their dependencies with respect to Y may be unknown.
We establish a non-asymptotic risk bound for the selected estimator and derive oracle-type inequalities when F consists of linear
estimators. As particular cases, our approach allows to handle the problems of aggregation, model selection as well as those of
choosing a window and a kernel for estimating a regression function, or tuning the parameter involved in a penalized criterion.
In all theses cases but aggregation, the method can be easily implemented. For illustration, we carry out two simulation studies.
One aims at comparing our procedure to cross-validation for choosing a tuning parameter. The other shows how to implement our
approach to solve the problem of variable selection in practice.

Résumé. Nous présentons une nouvelle procédure de sélection d’estimateurs pour estimer l’espérance f d’un vecteur Y de n

variables gaussiennes indépendantes dont la variance est inconnue. Nous proposons de choisir un estimateur de f , dont l’objectif
est de minimiser le risque l2, dans une collection arbitraire et éventuellement infinie F d’estimateurs. La procédure de choix
ainsi que la collection F ne dépendent que des seules observations Y . Nous calculons une borne de risque, non asymptotique, ne
nécessitant aucune hypothèse sur les estimateurs dans F, ni la connaissance de leur dépendance en Y . Nous calculons des inégalités
de type “oracle” quand F est une collection d’estimateurs linéaires. Nous considérons plusieurs cas particuliers : estimation par
aggrégation, estimation par sélection de modèles, choix d’une fenêtre et du paramètre de lissage en régression fonctionnelle, choix
du paramètre de régularisation dans un critère pénalisé. Pour tous ces cas particuliers, sauf pour les méthodes d’aggrégation,
la méthode est très facile à programmer. A titre d’illustration nous montrons des résultats de simulations avec deux objectifs :
comparer notre méthode à la procédure de cross-validation, montrer comment la mettre en œuvre dans le cadre de la sélection de
variables.
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1. Introduction

1.1. The setting and the approach

We consider the Gaussian regression framework

Yi = fi + εi, i = 1, . . . , n,
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where f = (f1, . . . , fn) is an unknown vector of R
n and the εi are independent centered Gaussian random variables

with common variance σ 2. Throughout the paper, σ 2 is assumed to be unknown which corresponds to the practical
case. Our aim is to estimate f from the observation of Y and we shall use the squared Euclidean norm of R

n denoted
‖·‖2 as a loss function. For specific forms of f , this setting allows to deal simultaneously with the following problems.

Example 1 (Signal denoising). The vector f is of the form

f = (F(x1), . . . ,F (xn)
)
, (1.1)

where x1, . . . , xn are non-random distinct points of a set X and F is an unknown mapping from X into R.

Example 2 (Linear regression). The vector f is assumed to be of the form

f = Xβ, (1.2)

where X is a non-random n × p matrix, β is an unknown p-dimensional vector and p some integer larger than 1
(and possibly larger than n). The columns of the matrix X are usually called predictors. When p is large, one may
assume that the decomposition (1.2) is sparse in the sense that only few βj are non-zero. Estimating f or finding the
predictors associated to the non-zero coordinates of β are classical issues. The latter is called variable selection.

Our estimation strategy is based on estimator selection. More precisely, we start with an arbitrary collection F =
{f̂λ, λ ∈ Λ} of estimators of f based on Y and aim at selecting the one with the smallest Euclidean risk by using the
same observation Y . The way the estimators f̂λ depend on Y may be arbitrary and possibly unknown. For example,
the f̂λ may be obtained from the minimization of a criterion, a Bayesian procedure or the guess of some experts.

1.2. The motivation

The problem of choosing some best estimator among a family of candidate ones is central in Statistics. Let us present
some examples.

Example 3 (Choosing a tuning parameter). Many statistical procedures depend on a (possibly multi-dimensional)
parameter λ that needs to be tuned in view of obtaining an estimator with the best possible performance. For example,
in the context of linear regression as described in Example 2, the Lasso estimator (see Tibshirani [46] and Chen et al.
[19]) defined by f̂λ = Xβ̂λ with

β̂λ = arg min
β∈Rp

[
‖Y − Xβ‖2 + λ

p∑
j=1

|βj |
]

(1.3)

depends on the choice of the parameter λ ≥ 0. Selecting this parameter among some subset Λ of R+ amounts to
selecting a (suitable) estimator among the family F = {f̂λ, λ ∈ Λ}.

Another dilemma for statisticians is the choice of a procedure to solve a given problem. In the context of Example 3,
there exist many competitors to the Lasso estimator and one may alternatively choose a procedure based on ridge
regression (see Hoerl and Kennard [29]), random forest (see Breiman [12]) or PLS (see Tenenhaus [45], Helland
[28] and Helland [27]). Similarly, for the problem of signal denoising as described in Example 1, popular approaches
include spline smoothing, wavelet decompositions and kernel estimators. The choice of a kernel may be tricky.

Example 4 (Choosing a kernel). Consider the problem described in Example 1 with X = R. For a kernel K and a
bandwidth h > 0, the Nadaraya–Watson estimator (see Nadaraya [39] and Watson [48]) f̂K,h ∈ R

n is defined as

f̂K,h = (F̂K,h(x1), . . . , F̂K,h(xn)
)
,
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where for x ∈ R

F̂K,h(x) =
∑n

j=1 K((x − xj )/h)Yj∑n
j=1 K((x − xj )/h)

.

There exist many possible choices for the kernel K , such as the Gaussian kernel K(x) = e−x2/2, the uniform kernel
K(x) = 1|x|<1, etc. Given a (finite) family K of candidate kernels K and a grid H ⊂ R

∗+ of possible values of h, one
may consider the problem of selecting the best kernel estimator among the family F = {f̂λ, λ = (K,h) ∈ K × H}.

1.3. A look at the literature

A common way to address the above issues is to use some cross-validation scheme such as leave-one-out or V -fold.
Even though these resampling techniques are widely used in practice, little is known on their theoretical performances.
For more details, we refer to Arlot and Celisse [4] for a survey on cross-validation techniques applied to model
selection. Compared to these approaches, as we shall see, the procedure we propose may be less time consuming (in
the context of Example 3, a numerical comparison can be found at the end of Section A.2). Moreover, it does not
require to know how the estimators depend on the data Y and we can therefore handle the following problem.

Example 5 (Selecting among mute experts). A statistician is given a collection F = {f̂λ, λ ∈ Λ} of estimators from a
family Λ of experts λ, each of which keeping secret the way his/her estimator f̂λ depends on the observation Y . The
problem is to find which expert λ is the closest to the truth.

Given a selection rule among F, an important issue is to compare the risk of the selected estimator to those of
the candidate ones. Results in this direction are available in the context of model selection where the estimators are
indexed by a non-random collection of models, and which can be seen as a particular case of estimator selection. More
precisely, for the purpose of selecting a suitable model one starts with a collection S of those, typically linear subspaces
of R

n chosen accordingly to the problem at hand and one associates to each model S ∈ S a suitable estimator f̂S with
values in S. Selecting a model then amounts to selecting an estimator among the collection F = {f̂S, S ∈ S}. For
this problem, selection rules based on the minimization of a penalized criterion have been proposed in the regression
setting by Yang [50], Baraud [5], Birgé and Massart [10] and Baraud et al. [7]. Another way, usually called Lepski’s
method, appears in a series of papers by Lepski [33–36] and was originally designed to perform model selection
among collections of nested models. Finally, other procedures based on resampling have interestingly emerged from
the work of Arlot [1,2] and Célisse [18]. An unattractive feature of those approaches lies in the fact that the proposed
selection rules apply to specific collections of estimators only.

An alternative to estimator selection is aggregation which aims at designing a suitable convex, linear or sparse
combination of given estimators in order to outperform each of these separately (and even the best combination of
these) up to a remaining term. Aggregation techniques can be found in Catoni [16,17], Juditsky and Nemirovski
[32], Nemirovski [40], Yang [51–53], Tsybakov [47], Wegkamp [49], Birgé [9], Rigollet and Tsybakov [41], Bunea,
Tsybakov and Wegkamp [13] and Goldenshluger [25] for Lp-losses. Most of the aggregation procedures are based on
a sample splitting, one part of the data being used for building the estimators, the remaining part for selecting among
these. Such a device requires that the observations be i.i.d. or at least that one has at disposal two independent copies
of the data. From this point of view our procedure differs from classical aggregation procedures since we use the
whole data Y to build and select. In the Gaussian regression setting that is considered here, we mention the results of
Leung and Barron [37] for the problem of mixing least-squares estimators, and of Salmon and Dalalyan [42] for the
case of affine estimators. Their procedures use the same data Y to estimate and to aggregate but require the variance
to be known. Giraud [23] extends the results of [37] to the case where it is unknown.

1.4. What is new here?

Our approach for solving the problem of estimator selection is new. We introduce a collection S of linear subspaces
of R

n for approximating the estimators in F and use a penalized criterion to compare them. As already mentioned
and as we shall see, this approach requires no assumption on the family of estimators at hand. The general way of
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comparing estimators described in Baraud [6] has influenced the present paper and the flavor of our results are akin
to those presented there. However, the procedure proposed in Baraud [6] was mainly abstract and inadequate in the
Gaussian framework we consider.

We prove a non-asymptotic risk bound for the estimator we select and show that this bound is optimal in the sense
that it essentially cannot be improved (except for numerical constants maybe) by any other selection rule.

For the sake of illustration and comparison, we apply our procedure to various problems among which model
selection, variable selection and selection among linear estimators. In each of these cases, our approach allows to
recover classical results in the area as well as to establish new ones. Let us give an account of those results. In the
context of selecting some best estimator among a family of linear ones, we propose a new procedure and show that
the selected estimator satisfies an oracle-type inequality. This result requires very few assumptions on the family
at hand. In the context of variable selection, our approach provides a way of selecting a suitable variable selection
procedure among a family of candidate ones. For practical issues, our method is easy to implement, an R-package
being available on http://w3.jouy.inra.fr/unites/miaj/public/perso/SylvieHuet_en.html. We propose thus an alternative
to the well-known cross-validation scheme that is largely used but for which little is known from a theoretical point
of view.

We also consider the aggregation method, focusing on linear, convex and model selection aggregation problems.
For each of these, we propose a procedure which does not assume that the variance is known. We prove that the
resulting estimator satisfies risk bounds which are similar (up to constants) to those obtained in Bunea, Tsybakov and
Wegkamp [13] when the variance is known. Besides, our approach allows to relax the assumption that the components
of the vector f as well as those of the preliminary estimators are uniformly bounded.

Finally, since the first version of this paper [8] a few papers have also addressed the specific problem of selecting
the parameter λ of the Lasso estimator (1.3) when the variance σ 2 is unknown. We refer to Giraud, Huet and Verzelen
[24] for a review of these procedures.

The paper is organized as follows. In Section 2 we present our selection rule and the theoretical properties of
the resulting estimator. We show in Section 3 how the procedure can be used to select a linear estimator among a
collection of candidate ones. In particular, we provide an oracle risk bound for the problem of selecting among a
continuous family of kernel ridge estimators. In Section 4, we show how to solve the problem of variable selection,
and illustrate in Section 4.3 how our procedure performs on the basis of two simulation studies. One aims at comparing
the performance of our procedure to the classical V -fold in view of selecting a tuning parameter among a grid. The
other aims at comparing the performance of the variable selection procedure we propose to some classical ones such
as the Lasso, random forest, and others based on ridge and PLS regression.

Finally, Section 5 shows how the procedure can be used to aggregate preliminary estimators and Section 6 is
devoted to the proofs.

Throughout the paper, |A| denotes the cardinality of a finite set A and C,C′,C′′ are constants that may vary from
line to line.

2. The procedure and the main result

2.1. The procedure

Given a collection F = {f̂λ, λ ∈ Λ} of estimators of f based on Y , the selection rule we propose is based on the choices
of a family S of linear subspaces of R

n, a collection {Sλ, λ ∈ Λ} of (possibly data-driven) subsets of S, a weight
function Δ and a penalty function pen, both from S into R+. We introduce those objects below and for illustration
describe them for the particular case of tuning the parameter in the Lasso procedure as described in Example 3. More
examples are given in Sections 3, 4 and 5 in view of handling other statistical problems.

2.1.1. The collection of estimators F

The collection F = {f̂λ, λ ∈ Λ} can be arbitrary. In particular, F need not be finite nor countable and it may consist
of a mix of estimators based on the minimization of a criterion, a Bayes procedure or the guess of some experts. The
dependency of these estimators with respect to Y need not be known. Nevertheless, we shall see on examples how we
can use this information, when available, to improve the performance of our selection rule.

http://w3.jouy.inra.fr/unites/miaj/public/perso/SylvieHuet_en.html


1096 Y. Baraud, C. Giraud and S. Huet

2.1.2. The families S and Sλ

Let S be a family of linear subspaces of R
n satisfying the following.

Assumption 1. The family S is finite or countable and for all S ∈ S, dim(S) ≤ n − 2.

The restriction on the dimensions of the linear subspaces S is only due to the fact the we do not assume that the
variance σ 2 is known.

To each estimator f̂λ ∈ F, we associate a (possibly data-driven) subset Sλ ⊂ S.
There is no universal choice for the collection S. It should depend on the statistical context (signal estimation,

change point problem, variable selection, etc.) and, when available, on the structure of the estimators lying in F.
Typically, the family S should be chosen to possess good approximation properties with respect to the elements of F.
For each λ, Sλ should approximate f̂λ more specifically. One may take Sλ = S but for computational reasons it will
be convenient to allow Sλ to be smaller.

We provide examples of S and Sλ in various statistical settings described in Sections 4 to 5.

Example 3 (continued). Let F be the family of Lasso estimators f̂λ = Xβ̂λ corresponding to the values of λ for
which |β̂λ|0 = |{i = {1, . . . , p}, (β̂λ)i 	= 0}| is not larger than some Dmax ≤ n − 2. This amounts to considering the
family of f̂λ associated to λ that are large enough or equivalently to dealing with the family of (modified) Lasso
estimators indexed by Λ = R+ and defined by f̂λ = Xβ̂λ when |β̂λ|0 ≤ Dmax and f̂λ = 0 otherwise. Denoting by Xj

the j th column of X, we choose S as the family gathering all the linear spans of {Xj , j ∈ m} when m varies among
all the subsets of {1, . . . , p} satisfying |m| ≤ Dmax (with the convention that the linear span generated by the empty
set is {0}). We more specifically associate to each estimator f̂λ ∈ F, the subfamily Sλ reduced to Sλ where Sλ is the
(random) linear span of the columns j of X for which (β̂λ)j 	= 0. With such choices, f̂λ ∈ Sλ for all λ ∈ Λ and the
approximations of the f̂λ by the Sλ are therefore perfect.

2.1.3. The weight function Δ and the associated function penΔ

We consider a function Δ from S into R+ and assume

Assumption 2.

Σ =
∑
S∈S

e−Δ(S) < +∞. (2.1)

Whenever S is finite, inequality (2.1) automatically holds true. However, in practice Σ should be kept to a reason-
able size. When Σ = 1, e−Δ(·) can be interpreted as a prior distribution on S and gives thus a Bayesian flavor to the
procedure we propose. Following the work of Baraud et al. [7], we associate to the weight function Δ, the function
penΔ mapping S into R+ and defined by

E

[(
U − penΔ(S)

n − dim(S)
V

)
+

]
= e−Δ(S), (2.2)

where x+ denotes the positive part of x ∈ R and U,V are two independent χ2 random variables with respectively
dim(S) + 1 and n − dim(S) − 1 degrees of freedom. This function can be easily computed from the quantiles of the
Fisher distribution as we shall see in Section A.1. From a more theoretical point of view, it is shown in Baraud et al.
[7] that under Assumption 3 below, there exists a positive constant C (depending on κ only) such that

penΔ(S) ≤ C
(
dim(S) ∨ Δ(S)

)
. (2.3)

This upper bound is sharp (up to numerical constants). A lower bound of the same order is established in Giraud et al.
[24] (Lemma D.3).

Assumption 3. The collection S is finite and there exists κ ∈ (0,1) such that for all S ∈ S,

1 ≤ dim(S) ∨ Δ(S) ≤ κn.
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2.1.4. The selection criterion
The selection procedure we propose involves a penalty function pen from S into R+ with the following property.

Assumption 4. The penalty function pen satisfies for some K > 1,

pen(S) ≥ KpenΔ(S) for all S ∈ S. (2.4)

Whenever equality holds in (2.4), it follows from (2.3) that pen(S) measures the complexity of the model S in
terms of dimension and weight.

Denoting ΠS the projection operator onto a linear subspace S ⊂ R
n, given the families Sλ, the penalty function

pen and some positive number α, we define

critα(f̂λ) = inf
S∈Sλ

[‖Y − ΠSf̂λ‖2 + α‖f̂λ − ΠSf̂λ‖2 + pen(S)̂σ 2
S

]
, (2.5)

where

σ̂ 2
S = ‖Y − ΠSY‖2

n − dim(S)
. (2.6)

For each estimator f̂λ, the criterion (2.5) seeks among the collection Sλ the space S achieving the best trade-off
between three terms: the first term evaluates the fit of the projected estimator to the data, the second term quantifies
the approximation quality of the space S regarding to the estimator f̂λ and the last term penalizes S according to its
complexity.

From a computational point of view, minimizing (2.5) over Λ requires at most
∑

λ∈Λ |Sλ| steps. In many cases the
criterion (2.5) can be minimized much more efficiently, see e.g. Section 3.4 for the case of kernel ridge estimators
with Λ = R+.

2.2. The main result

For all λ ∈ Λ let us set

A(f̂λ,Sλ) = inf
S∈Sλ

[‖f̂λ − ΠSf̂λ‖2 + pen(S)̂σ 2
S

]
. (2.7)

This quantity corresponds to an accuracy index for the estimator f̂λ with respect to the family Sλ. It is small when the
estimator f̂λ is well approximated by a low dimensional subspace in Sλ. The following result holds.

Theorem 2.1. Let K > 1, α > 0, δ ≥ 0. Assume that Assumptions 1, 2 and 4 hold. There exists a constant C > 0
(given by (6.4)) depending on K and α only such that for any f̂̂λ in F satisfying

critα(f̂̂λ) ≤ inf
λ∈Λ

critα(f̂λ) + δ, (2.8)

we have the following bounds

CE
(‖f − f̂̂λ‖2) ≤ E

(
inf
λ∈Λ

{‖f − f̂λ‖2 + A(f̂λ,Sλ)
})+ Σσ 2 + δ (2.9)

≤ inf
λ∈Λ

{
E
(‖f − f̂λ‖2)+ E

(
A(f̂λ,Sλ)

)}+ Σσ 2 + δ (2.10)

(provided that the quantities involved in the expectations are measurable).
Furthermore, if equality holds in (2.4) and Assumption 3 is satisfied,

C′
E
(‖f − f̂̂λ‖2)≤ E

(
inf
λ∈Λ

{
‖f − f̂λ‖2 + inf

S∈Sλ

[‖f̂λ − ΠSf̂λ‖2 + [Δ(S) ∨ dim(S)
]
σ 2]})+ Σσ 2 + δ, (2.11)

where C′ is a positive constant only depending on κ and K .
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Let us now comment Theorem 2.1.
It turns out that inequality (2.9) leaves no place for a substantial improvement in the sense that the bound we get

is essentially optimal and cannot be uniformly improved (apart from constants) by any other selection rule among F.
To see this, let us assume for simplicity that F is finite so that a measurable minimizer of critα always exists and δ

can be chosen as 0. Let K > 1, α > 0, S a family of linear subspaces satisfying the assumptions of Theorem 2.1 and
pen, the penalty function achieving equality in (2.4). Besides, assume that S contains a linear subspace S such that
1 ≤ dim(S) ≤ n/2 and associate to S the weight Δ(S) = dim(S). If Sλ = S for all λ, we deduce from (2.11) that for
some universal constant C′, whatever F and f ∈ R

n

C′
E
(‖f − f̂̂λ‖2) ≤ E

(
inf
λ∈Λ

{‖f − f̂λ‖2 + ‖f̂λ − ΠSf̂λ‖2 + dim(S)σ 2}). (2.12)

In the opposite direction, the following result holds.

Proposition 1. Let S be a linear subspace of R
n. There exists a universal constant C′′ > 0, such that for any finite

family F = {f̂λ, λ ∈ Λ} of estimators and any selection rule λ̃ based on Y among Λ, there exists f ∈ S such that

C′′
E
[‖f − f̂̃λ‖2]≥ E

[
inf
λ∈Λ

[‖f − f̂λ‖2 + ‖f̂λ − ΠSf̂λ‖2 + dim(S)σ 2]]. (2.13)

We see that, up to a numerical constant, the right-hand sides of (2.12) and (2.13) coincide.
In view of commenting (2.10) further, we continue assuming that F is finite so that we can keep δ = 0 in (2.10).

A particular feature of (2.10) lies in the fact that the risk bound pays no price for considering a large collection F of
estimators. In fact, it is actually decreasing with respect to F (or equivalently Λ) for the inclusion. This means that if
one adds a new estimator to the collection F (without changing neither S nor the families Sλ associated to the former
estimators), the risk bound for f̂̂λ can only be improved. In contrast, the computation of the estimator f̂̂λ is all the
more difficult that |F| is large. More precisely, if the cardinalities of the families Sλ are not too large, the computation
of f̂̂λ requires around |F| steps.

The selection rule we use does not require to know how the estimators depend on Y . In fact, as we shall see, a more
important piece of information is the ranges of the estimators f̂λ = f̂λ(Y ) as Y varies in R

n. A situation of special
interest occurs when each f̂λ belongs to some (possibly data-driven) linear subspace Ŝλ in S with probability one.
This is the case if one considers Lasso types estimators for example. By taking Sλ such that Ŝλ ∈ Sλ for all λ, we
deduce from bound (2.11) in Theorem 2.1 the following corollary.

Corollary 1. Assume that the assumptions of Theorem 2.1 are satisfied, that Assumption 3 holds and that equality
holds in (2.4). If for all λ ∈ Λ there exists a (possibly data-driven) linear subspace Ŝλ ∈ Sλ such that f̂λ ∈ Ŝλ with
probability 1, then f̂̂λ satisfies

CE
[‖f − f̂̂λ‖2]≤ inf

λ∈Λ

[
E
[‖f − f̂λ‖2]+ E

[
dim(Ŝλ) ∨ Δ(Ŝλ)

]
σ 2]+ δ, (2.14)

for some C depending on K and κ only.

One may apply this result in the context of model selection. One starts with a collection of models S =
{Sm,m ∈ M} and associates to each Sm an estimator f̂m with values in Sm. By taking F = {f̂m,m ∈ M} (here
Λ = M) and Sm = {Sm} for all m ∈ M, our selection procedure leads to an estimator f̂m̂ which satisfies

CE
[‖f − f̂m̂‖2]≤ inf

m∈M

[
E
[‖f − f̂m‖2]+ (dim(Sm) ∨ Δ(Sm)

)
σ 2]. (2.15)

When f̂m = ΠSmY for all m ∈ M, our selection rule becomes

m̂ = arg min
m∈M

[‖Y − f̂m‖2 + pen(Sm)̂σ 2
Sm

]
(2.16)

and coincides with the one described in Baraud et al. [7]. Interestingly, Corollary 1 shows that this selection rule can
still be used for families F of (non-linear) estimators of the form ΠSm̃Y where the Sm̃ are chosen randomly among S
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on the basis of Y , doing thus as if the linear subspaces Sm̃ were non-random. An estimator of the form ΠSm̃Y can be
seen as resulting from a model selection procedures among the family of projection estimators {ΠmY,m ∈ M} and
our selection rule as a way to select among such candidates procedures.

3. Selecting among linear estimators

In this section, we consider the situation where the estimators f̂λ are linear, that is, are of the form f̂λ = AλY for
some known and deterministic n × n matrix Aλ. As mentioned before, this setting covers many popular estimation
procedures including kernel ridge estimators, spline smoothing, Nadaraya estimators, λ-nearest neighbors, projection
estimators, low-pass filters, etc. In some cases Aλ is symmetric (e.g. kernel ridge, spline smoothing, projection esti-
mators), in some others Aλ is non-symmetric and non-singular (as for Nadaraya estimators) and sometimes Aλ can
be both singular and non-symmetric (low pass filters, λ-nearest neighbors). A common feature of those procedures
lies in the fact that they depend on a tuning parameter (possibly multidimensional) and their practical performances
can be quite poor if this parameter is not suitably calibrated. A series of papers have investigated the calibration of
some of these procedures. To mention a few of them, Cao and Golubev [15] focus on spline smoothing, Zhang [54]
on kernel ridge regression, Goldenshluger and Lepski [26] on kernel estimators and Arlot and Bach [3] propose a pro-
cedure to select linear estimators which are, roughly speaking, “shrinkage” or “averaging” estimators. The procedure
we present can handle all these cases in an unified framework. Throughout the section, we assume that Λ is finite,
except in Section 3.4.

3.1. The families Sλ

To apply our selection procedure, we need to associate to each Aλ a suitable collection of approximation subspaces
Sλ. To do so, we introduce below a linear subspace Sλ which plays a key role in our analysis.

For the sake of simplicity, let us consider first the case where Aλ is non-singular. Then Sλ is defined as the linear
span of the right-singular vectors of A−1

λ − I associated to singular values smaller than 1. When Aλ is symmetric,
Sλ is merely the linear span of the eigenvectors of Aλ associated to eigenvalues not smaller than 1/2. If none of the
singular values are smaller than 1, then Sλ = {0}.

Let us now extend the definition of Sλ to singular operators Aλ. Let us recall that R
n = ker(Aλ)⊕ rg(A∗

λ) where A∗
λ

stands for the transpose of Aλ and rg(A∗
λ) for its range. The operator Aλ then induces a one to one operator between

rg(A∗
λ) and rg(Aλ). Write A+

λ for the inverse of this operator from rg(Aλ) to rg(A∗
λ). The orthogonal projection

operator from R
n onto rg(A∗

λ) induces a linear operator from rg(Aλ) into rg(A∗
λ), denoted Πλ. Then Sλ is defined as

the linear span of the right-singular vectors of A+
λ − Πλ associated to singular values smaller than 1. Again if this set

is empty, Sλ = {0}. When Aλ is non-singular or symmetric, we recover the definition of Sλ given above.
For each λ ∈ Λ, take Sλ such that Sλ ⊃ {Sλ}. From a theoretical point of view, it is enough to take Sλ = {Sλ}

but practically it may be wise to use a larger set and by doing so, to possibly improve the approximation of f̂λ by
elements of Sλ. One may for example take Sλ = {S1

λ, . . . , Sn−2
λ } where Sk

λ is the linear span of the right-singular
vectors associated to the k smallest singular values of A+

λ − Πλ.

3.2. Choices of S, Δ and pen

Take S =⋃λ∈Λ Sλ and Δ of the form

Δ(S) = a
(
1 ∨ dim(S)

)
for all S ∈ S,

where a ≥ 1 satisfies Assumption 2 with Σ ≤ 1. One may take a = (log |Λ|) ∨ 1 even though this choice is not
necessarily the best. Finally, for some K > 1, take pen(S) = KpenΔ(S) for all S ∈ S and select f̂̂λ by minimizing the
criterion given by (2.5), taking thus δ = 0 in (2.8).
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3.3. An oracle-type inequality for linear estimators

The following holds.

Corollary 2. Let K > 1, κ ∈ (0,1) and α > 0. If Assumption 1 holds and Δ(S) ≤ κn for all S ∈ S, the estimator f̂̂λ

satisfies

Ca−1
E
[‖f − f̂̂λ‖2]≤ inf

λ
E
[‖f − f̂λ‖2]+ σ 2,

for some C > 0 depending on K,α and κ only.

The problem of selecting some best linear estimator among a family of those have also been considered in Arlot
and Bach [3] in the Gaussian regression framework, and in Goldenshluger and Lepski [26] in the multidimensional
Gaussian white noise model. Arlot and Bach proposed a penalized procedure based on random penalties. Their ap-
proach requires that the operators have some “shrinkage” or “averaging” properties (which is the case for all classical
procedures) and that the cardinality of Λ is at most polynomial with respect to n, except for families of Kernel-ridge
estimators discussed in the next paragraph. Goldenshluger and Lepski proposed a selection rule among families of
kernel estimators to solve the problem of structural adaptation. Their approach requires suitable assumptions on the
kernels while ours requires nothing. Nevertheless, we restrict to the case of the Euclidean loss whereas Goldenshluger
and Lepski considered more general Lp ones.

3.4. Case of kernel-ridge estimators

We can give a more precise result for the case where the family {Aλ : λ ∈ Λ} has a singular value decomposition
of the form Aλ =∑n

k=1 σk(λ)ukv
T
k , for all λ ∈ Λ with σ1(λ) ≥ · · · ≥ σn(λ) for all λ ∈ Λ. Such a situation occurs

for example for low-pass filters and kernel ridge regression (including spline smoothing). For simplicity, we restrict
henceforth to kernel-ridge regression.

Kernel ridge regression arises in the signal denoising setting (1.1). Let H be a Reproducing Kernel Hilbert
Space on X with kernel k and norm ‖ · ‖H. For λ > 0, the kernel ridge regression estimator is the estimator
f̂λ = (F̂λ(x1), . . . , F̂λ(xn)) where F̂λ is the solution of the minimization problem

F̂λ ∈ arg min
F∈H

{
n∑

i=1

(
yi − F(xi)

)2 + λ‖F‖2
H

}
.

It is a linear estimator given by f̂λ = K(K + λIn)
−1Y where In denotes the identity matrix on R

n and K the positive
semi-definite matrix K = [k(xi, xj )]i,j=1,...,n. Hence, by writing K =∑k skvkv

T
k (with s1 ≥ · · · ≥ sn ≥ 0) for the

singular value decomposition of the kernel matrix K , the associated kernel ridge operator Aλ is given by

Aλ =
n∑

k=1

sk

sk + λ
vkv

T
k for all λ > 0.

For a given κ ∈ (0,1), we set kn = �κn�, Λ = (skn,+∞) and S = {S1, . . . , Skn} where Sd = span{v1, . . . , vd}. Writing
cj = 〈f, vj 〉 for all j = 1, . . . , n, the selection criterion (2.5) is given by

critα(f̂λ) = inf
1≤d≤kn

G(λ, d), where G(λ,d) =
∑
j≤d

c2
j

(
λ

λ + sj

)2

+
∑
j>d

c2
j

[
1 + pen(Sd)

n − d
+ α

(
sj

λ + sj

)2]
.

This criterion can be efficiently minimized by computing for each value of d the parameter λd minimizing λ →
G(λ,d) and then by taking λ̂ = λ

d̂
, where d̂ minimizes d → G(λd, d) over {1, . . . , kn}. For the choice pen(S) =

KpenΔ(S) with K > 1 and Δ(S) = dim(S), the resulting estimator f̂̂λ fulfills the risk bound

CE
[‖f − f̂̂λ‖2]≤ inf

λ>skn

E
[‖f − f̂λ‖2]+ σ 2,
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for some C > 0 depending on K,α and κ only. Our procedure therefore achieves an oracle risk bound on the con-
tinuous family of kernel ridge estimators {f̂λ : λ > skn}. The problem of selecting among the collection {f̂λ : λ > 0}
of kernel ridge estimators has also been tackled recently by Arlot and Bach [3]. They provide an oracle risk bound
for this problem but their approach requires the assumptions that for some λ > 0, Tr(Aλ) ≤ √

n and ‖(I − Aλ)f ‖2 ≤
σ 2
√

n log(n).

4. Variable selection

Throughout this section, we consider the problem of variable selection introduced in Example 2. There exist various
ways of evaluating the theoretical performance of a variable selection procedure. One is to look at the difference
between the selected set of predictors and the true one. This will not be the point of view developed in this section
which, as we shall see, will rather be oriented towards the minimization of the risk.

Throughout this section, the vector of observation Y is assumed to be of the form Y = Xβ + ε, with a n × p fixed
design matrix X. We assume that p ≥ 2 in order to avoid trivialities. When p is small enough (say smaller than 20),
this problem can be solved by using a suitable variable selection procedure that explores all the subsets of {1, . . . , p}.
For example, one may use the penalized criterion introduced in Birgé and Massart [10] when the variance is known,
and the one in Baraud et al. [7] when it is not. When p is larger, such an approach can no longer be applied since it
becomes numerically intractable. To overcome this problem, many algorithms based on the minimization of convex
criteria have been proposed: the Lasso, the Dantzig selector of Candès and Tao [14], the elastic net of Zou and Hastie
[58], to mention a few. An alternative to those criteria is the forward-backward algorithm described in Zhang [55],
among others. Since there seems to be no evidence that one of these procedures outperforms all the others, it may
be reasonable to mix them all and let the data decide which is the more appropriate to solve the problem at hand. As
enlarging F can only improve the risk bound of our estimator, only the CPU resources should limit the number of
candidate estimators.

The procedure we propose could not only be used to select among those candidate procedures but also to select the
tuning parameters they depend on. From this point of view, it provides an alternative to the cross-validation techniques
which are quite popular but offer little theoretical guarantees.

4.1. Implementation roadmap

Start by choosing a family L of variable selection procedures. Examples of such procedures are the Lasso, the Dantzig
selector, the elastic net, among others. If necessary, associate to each � ∈ L a family of tuning parameters H�. For
example, in order to use the Lasso procedure one needs to choose a tuning parameter h > 0 among a grid HLasso ⊂ R+.
If a selection procedure � requires no choice of tuning parameters, then one may take H� = {0}. Let us denote by
m̂(�,h) the subset of {1, . . . , p} corresponding to the predictors selected by the procedure � for the choice of the
tuning parameter h. For m ⊂ {1, . . . , p}, let Sm be the linear span of the column vectors X·,j for j ∈ m (with the
convention S∅ = {0}). For � ∈ L and h ∈ H�, associate to the subset m̂(�,h) an estimator f̂(�,h) of f with values in
Sm̂(�,h) (one may for example take the projection of Y onto the random linear subspace Sm̂(�,h) but any other choice
would suit as well). Finally, consider the family F = {f̂λ, λ ∈ Λ} of these estimators by taking Λ =⋃�∈L({�} × H�)

and set M̂ = {m̂(λ), λ ∈ Λ}. All along we assume that Λ is finite (so that we take δ = 0 in (2.8)).

The approximation spaces and the weight function
Throughout, we shall restrict ourselves to subsets of predictors with cardinality not larger than some Dmax ≤ n − 2.
In view of approximating the estimators f̂λ, we suggest the collection S given by

S =
⋃{

Sm|m ⊂ {1, . . . , p}, card(m) ≤ Dmax
}
. (4.1)

We associate to S the weight function Δ defined for S ∈ S by

Δ(S) = log

[(
p

D

)]
+ log(1 + D) with D = dim(S) ∨ 1. (4.2)
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Since∑
S∈S

e−Δ(S) ≤ 1 +
p∑

D=1

∑
S∈S

dim(S)=D

e−Δ(S)

≤
p∑

D=0

e− log(1+D) ≤ 1 + log(1 + p),

Assumption 2 is satisfied with Σ = 1 + log(1 + p).
Let us now turn to the choices of the Sλ ⊂ S. The criterion given by (2.5) cannot be computed when Sλ = S for all

λ as soon as p is too large. In such a case, one must consider a smaller subset of S and we suggest for λ = (�,h) ∈ Λ

S(�,h) = {Sm̂(�,h′), h
′ ∈ H�

}
(where the Sm are defined above), or preferably

S(�,h) = {Sm̂(�′,h′), �
′ ∈ L, h′ ∈ H�

}
whenever this latter family is not too large. Note that these two families are random.

4.2. The results

Our choices of Δ and Sλ ensure that f̂λ ∈ Sm̂(λ) ∈ Sλ for all λ ∈ Λ and that

1 ≤ dim(Sm̂(λ)) ∨ Δ(Sm̂(λ)) ≤ 2
(
dim(Sm̂(λ)) ∨ 1

)
logp.

Hence, by applying Corollary 1 with Ŝλ = Sm̂(λ), we get the following result.

Corollary 3. Let K > 1, κ ∈ (0,1) and Dmax be some positive integer satisfying Dmax ≤ κn/(2 logp). Let M̂ =
{m̂(λ), λ ∈ Λ} be a (finite) collection of random subsets of {1, . . . , p} with cardinality not larger than Dmax based on
the observation Y and {f̂λ, λ ∈ Λ} a family of estimators f , also based on Y , such that f̂λ ∈ Sm̂(λ). By applying our
selection procedure, the resulting estimator f̂̂λ satisfies

CE
[‖f − f̂̂λ‖2]≤ inf

λ∈Λ

[
E
[‖f − f̂λ‖2]+ E

[
dim(Sm̂(λ)) ∨ 1

]
log(p)σ 2], (4.3)

where C is a constant depending on the choices of K and κ only.

Again, note that the risk bound we get is non-increasing with respect to Λ. This means that if one adds a new
variable selection procedure or considers more tuning parameters to increase Λ, the risk bound we get can only be
improved. It is also worth mentioning that our selection procedure does not require to know how the estimators f̂λ of
the family F depend on the data Y . In particular, these estimators could be obtained from the computation of some
software for which the detailed program is unknown to the user or from the computation of some expert keeping his
art secret.

As already mentioned, our selection procedure can be used in view of tuning the parameter λ > 0 involved in the
Lasso criterion as presented in Example 3. For the family of estimators {f̂λ, λ > 0} given by (1.3), our selection rule
(2.5) with Sλ restricted to {Sm̂(λ)} for all λ > 0 is very similar to that proposed by Zou et al. [59] and amounts to
replacing wn|m̂(λ)| by pen(Sm̂(λ))̂σ

2
m̂(λ)/σ

2 in their formula (2.17) on p. 2182. Since pen(Sm) is of order |m| logp

when |m| logp is small compared to n, the two selection procedures are essentially the same for wn of order logp and
these particular choices of Sλ (up to a model-dependent estimator of σ 2). Nevertheless, as we shall see in Section 4.3.2,
in practice we rather suggest to use (2.5) with a family Sλ which is not restricted to {Sm̂(λ)} in order to improve the
performance of the selection rule.

On the basis of the present paper, further developments have been done in Giraud et al. [24] for the problem of
tuning the parameters involved in the Lasso and the group-Lasso type procedures. In particular, the reader will find
there that (4.3) turns to an oracle inequality under a suitable assumption on design matrix X.
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Finally, under the assumption that f ∈ Sm∗ and that m∗ belongs to M̂ with probability close enough to 1, we can
compare the risk of the estimator f̂̂λ to the cardinality of m∗.

Corollary 4. Assume that the assumptions of Corollary 3 hold and that f̂λ = ΠSm̂(λ)
Y for all λ ∈ Λ. If f ∈ Sm∗ for

some non-void subset m∗ ⊂ {1, . . . , p} with cardinality not larger than Dmax, then

CE
[‖f − f̂̂λ‖2]≤ log(p)

∣∣m∗∣∣σ 2 + Rn

(
m∗),

where C is a constant depending on K and κ only, and

Rn

(
m∗)= (‖f ‖2 + nσ 2)(

P
[
m∗ /∈ M̂

])1/2
.

Zhao and Yu [56] give sufficient conditions on the design X to ensure that P[m∗ /∈ M̂] is exponentially small with
respect to n when the family M̂ is obtained by using the LARS-Lasso algorithm with different values of the tuning
parameter.

4.3. Simulation study

In the linear regression setting described in Example 2, we carry out a simulation study to evaluate the performances
of our procedure to solve the two following problems.

We first consider the problem, described in Example 3, of tuning the smoothing parameter of the Lasso procedure
for estimating f . The performances of our procedure are compared with those of the V -fold cross-validation method.
Secondly, we consider the problem of variable selection. We solve it by using our criterion in view of selecting among
a family L of candidate variable selection procedures.

Our simulation study is based on a large number of examples which have been chosen in view of covering a large
variety of situations. Most of these have been found in the literature in the context of Example 2 either for estimation
or variable selection purposes when the number p of predictors is large.

The section is organized as follows. The simulation design is given in the following section. Then, we describe
how our procedure is applied for tuning the Lasso and performing variable selection. Finally, we give the results of
the simulation study.

4.3.1. Simulation design
An example is determined by the number of observations n, the number of variables p, the n × p matrix X, the
values of the parameters β , and the ratio signal/noise ρ. It is denoted by ex(n,p,X,β,ρ), and the set of all considered
examples is denoted E . For each example, we carry out 400 simulations of Y as a Gaussian random vector with
expectation f = Xβ and variance σ 2In, where In is the n × n identity matrix, and σ 2 = ‖f ‖2/nρ.

The collection E is composed of several collections Ee for e = 1, . . . ,E where each collection Ee is characterized
by a vector of parameters βe, and a set Xe of matrices X:

Ee = {ex(n,p,X,β,ρ) : (n,p) ∈ I,X ∈ Xe, β = βe,ρ ∈ R
}
,

where R = {5,10,20} and I consists of pairs (n,p) such that p is smaller, equal or greater than n. The examples are
described in further details in Section A.2. They are inspired by examples found in Tibshirani [46], Zou and Hastie
[58], Zou [57], and Huang et al. [31] for comparing the Lasso method to the ridge, adaptive Lasso and elastic net
methods. They make up a large variety of situations. They include cases where:

• the covariates are not, moderately or strongly correlated,
• the covariates with zero coefficients are weakly or highly correlated with covariates with non-zero coefficients,
• the covariates with non-zero coefficients are grouped and correlated within these groups,
• the Lasso method is known to be inconsistent,
• few or many effects are present.



1104 Y. Baraud, C. Giraud and S. Huet

Table 1
Mean, standard-error and quantiles of the ratios Rex/Oex calculated over all ex ∈ E such that
Oex < nσ 2/3. The number of such examples equals 654, see Section A.2

Quantiles

Procedure Mean std-err 0% 50% 75% 99% 100%

CV 1.18 0.08 1.05 1.18 1.24 1.36 1.38
penΔ 1.065 0.06 1.01 1.055 1.084 1.18 2.27

4.3.2. Tuning a smoothing parameter
In this section, we consider the problem of tuning the smoothing parameter of the Lasso estimator as described in
Example 3. Instead of considering the Lasso estimators for a fixed grid Λ of smoothing parameters λ, we rather focus
on the sequence {f̂1, . . . , f̂Dmax} of estimators given by the Dmax first steps of the LARS-Lasso algorithm proposed by
Efron et al. [21]. Hence, the tuning parameter is here the number h ∈ H = {1, . . . ,Dmax} of steps. In our simulation
study, we compare the performance of our criterion to that of the V -fold cross-validation for the problem of selecting
the best estimator among the collection F = {f̂1, . . . , f̂Dmax}.

The estimator of f based on our procedure. We recall that our selection procedure relies on the choices of families
S, Sh for h ∈ H , a weight function Δ, a penalty function pen and two universal constants K > 1 and α > 0. We choose
the family S defined by (4.1). We associate to f̂h the family Sh = {Sm̂(h′)|h′ ∈ H } ⊂ S where the Sm are defined in
Section 4.1 and m̂(h′) ⊂ {1, . . . , p} is the set of indices corresponding to the predictors returned by the LARS-Lasso
algorithm at step h′ ∈ H . We take pen(S) = KpenΔ(S) with Δ(S) defined by (4.2) and K = 1.1. This value of K is
consistent with what is suggested in Baraud et al. [7]. The choice of α is based on the following considerations. First,
choosing α around one seems reasonable since it weights similarly the term ‖Y − ΠSf̂λ‖2 which measures how well
the estimator fits the data and the approximation term ‖f̂λ − ΠSf̂λ‖2 involved in our criterion (2.5). Second, simple
calculation shows that the constant C−1 = C−1(1.1, α) involved in Theorem 2.1 is minimum for α close to 0.6. We
therefore carried out our simulations for α varying from 0.2 to 1.5. The results being very similar for α between 0.5
and 1.2, we choose α = 0.5. We denote by f̂penΔ

the resulting estimator of f .

The estimator of f based on V -fold cross-validation. For each h ∈ H , the prediction error is estimated using a V -
fold cross-validation procedure, with V = n/10. The estimator f̂CV is chosen by minimizing the estimated prediction
error.

The results. The simulations were carried out with R (www.r-project.org) using the library elasticnet.
For each example ex ∈ E , we estimate on the basis of 400 simulations the oracle risk

Oex = E

(
min
h∈H

‖f − f̂h‖2
)
, (4.4)

and the Euclidean risks Rex(f̂penΔ
) and Rex(f̂CV ) of f̂penΔ

and f̂CV respectively.
The results presented in Table 1 show that our procedure tends to choose a better estimator than the CV in the sense

that the ratios Rex(f̂penΔ
)/Oex are closer to one than Rex(f̂CV )/Oex.

Nevertheless, for a few examples these ratios are larger for our procedure than for the CV. These examples corre-
spond to situations where the Lasso estimators are highly biased.

In practice, it is worth considering several estimation procedures in order to increase the chance to have good
estimators of f among the family F. Selecting among candidate procedures is the purpose of the following simulation
experiment in the variable selection context.

4.3.3. Variable selection
In this section, we consider the problem of variable selection and use the procedure and notations introduced in Sec-
tion 4.1. To solve this problem, we consider estimators of the form f̂m̂ = ΠSm̂Y where m̂ is a random subset of
{1, . . . , p} depending on Y . Given a family M̂ = {m̂(�,h), m̂(�,h) ∈ L × H�} of such random sets, we consider the

http://www.r-project.org
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Table 2
For each � ∈ L ∪ {all}, mean, standard-error and quantiles of the ratios Rex,�/Rex,min calculated over all
ex ∈ E . The number of examples in the collection E is equal to 660

Quantiles

Method Mean std-err 50% 75% 95% 100%

Lasso 2.82 9.40 1.12 1.33 6.38 127
ridge 1.76 1.90 1.42 1.82 2.87 36.9
pls 1.50 1.20 1.22 1.50 2.58 17
en 1.46 1.90 1.12 1.33 2.57 29
ALridge 1.20 0.31 1.15 1.26 1.51 5.78
ALpls 1.29 0.87 1.14 1.29 1.75 12.7
rFmse 4.13 9.50 1.38 2.04 19.2 118
rFpurity 3.99 10.00 1.42 2.06 15.1 138
exhaustive 22.9 45 6.30 24.5 92.9 430
all 1.16 0.16 1.12 1.25 1.47 1.95

family F = {f̂m̂(�,h)|(�,h) ∈ L ×H�}. The descriptions of L and H� are postponed to Section A.3. Let us merely men-
tion that we choose L which gathers variable selection procedures based on the Lasso, ridge regression, Elastic net,
PLS1 regression, Adaptive Lasso, Random Forest, and on an exhaustive research among the subsets of {1, . . . , p} with
small cardinality. For each procedure �, the parameter set H� corresponds to different choices of tuning parameters.
For each λ = (�,h) ∈ L × H�, we take Sλ = {Sm̂(�,h)} so that our selection rule among F amounts to minimizing over
M̂

crit(m) = ‖Y − ΠSmY‖2 + KpenΔ(Sm)̂σ 2
Sm

, (4.5)

where penΔ is given by (2.2).

Results. The simulations were carried out with R (www.r-project.org) using the libraries elasticnet, random-
Forest, pls and the program lm.ridge in the library MASS. We first select the tuning parameters associated to
the procedures � in L. More precisely, for each � we select an estimator among the collection F� = {f̂m̂(�,h)|h ∈ H�}
by minimizing criterion (4.5) over M̂� = {m̂(�,h)|h ∈ H�}. We denote by m̂(�) the selected set and by f̂m̂(�) the
corresponding projection estimator. For each example ex ∈ E and each method � ∈ L, we estimate the risk

Rex,� = E
(‖f − f̂m̂(�)‖2)

of f̂m̂(�) on the basis of 400 simulations and we do the same to calculate that of our estimator f̂m̂,

Rex,all = E
(‖f − f̂m̂‖2).

Let us now define the minimum of these risks over all methods:

Rex,min = min{Rex,all,Rex,�, � ∈ L}.
We compare the ratios Rex,�/Rex,min for � ∈ L ∪{all} to judge the performances of the candidate procedures on each

example ex ∈ E . The mean, standard deviations and quantiles of the sequence {Rex,�/Rex,min, ex ∈ E } are presented in
Table 2. In particular, the results show that:

• None of the procedures � in L outperforms all the others simultaneously over all examples.
• The exhaustive procedure gives very bad results, because the research in subsets of {1, . . . , p} is limited to subsets

of very small cardinality, see Section A.3. Nevertheless in some examples with p = 50, the exhaustive method may
give better results than all the others.

• Our procedure, corresponding to � = all, achieves the smallest mean value of the risk ratio. Besides, this value is
very close to one.

http://www.r-project.org


1106 Y. Baraud, C. Giraud and S. Huet

Table 3
False dicovery rate (FDR) and true discovery rate (TDR) using our method, for each example with ρ = 10 and n = p = 100

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

FDR 0.045 0.026 0.004 0.026 0.018 0.041 0.012 0.026 0.042 0.15 0.014
TDR 0.74 0.63 0.18 0.63 0.17 0.99 1 1 0.98 0.29 0.20

• The variability of our procedure is small compared to the others. In particular, it is smaller than the variability of
ALridge which behaves similarly in expectation. Even for the worst examples considered in this collection the risk
is under control.

• For all examples, our procedure selects an estimator the risk of which does not exceed twice that of the oracle.

The false discovery rate (FDR) and the true discovery rate (TDR) are also parameters of interest in the context of
variable selection. These quantities are given at Table 3 for each example when ρ = 10 and n = p = 100. Except for
one example, the FDR is small, while the TDR is varying a lot among the examples.

5. Aggregation

In this section, we assume that we have at hand M ≥ 2 preliminary estimators of f , denoted {φk, k = 1, . . . ,M} that
do not depend on Y . One may either think of the situation where there exists an independent copy Y ′ of Y and that
the estimators φk are obtained from Y ′, or that the φk are deterministic vectors. Let us mention that when the variance
is known, it is always possible to duplicate the Gaussian vector Y in order to have an independent copy of it (by
following some trick given by Nemirovskii in his course of Saint-Flour [40]). Unfortunately, it is no longer possible
when the variance is unknown. In this specific context of an unknown variance, we address here the problems of
Model Selection Aggregation (MS), Convex Aggregation (Cv) and Linear Aggregation (L) defined below. Our aim is
to build an estimator f̂ based on Y whose risk is as close as possible to infg∈FΛ

‖f − g‖2 where

FΛ =
{

fλ =
M∑

j=1

λjφj , λ ∈ Λ

}

and, according to the aggregation problem at hand, Λ is one of the three sets

ΛMS =
{

λ ∈ {0,1}M,

M∑
j=1

λj = 1

}
, ΛCv =

{
λ ∈ R

M+ ,

M∑
j=1

λj = 1

}
, ΛL = R

M.

When Λ = ΛMS, FΛ is the set {φ1, . . . , φM} consisting of the initial estimators. When Λ = ΛCv, FΛ is the convex
hull of the φj . In the literature, one may also find

Λ′
Cv =

{
λ ∈ [0,1]M,

M∑
j=1

λj ≤ 1

}

in place of ΛCv in which case FΛ is the convex hull of {0, φ1, . . . , φM}. Finally, when Λ = ΛL, FΛ is the linear span
of the φj .

Each of these three aggregation problems are solved separately if for each Λ ∈ {ΛMS,ΛCv,ΛL} one can design an
estimator f̂ = f̂ (Λ) satisfying

E
[‖f − f̂ ‖2]− C inf

g∈FΛ

‖f − g‖2 ≤ C′ψn,Λσ 2 (5.1)
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with C = 1, C′ > 0 free of f,n,M and

ψn,Λ =

⎧⎪⎪⎨⎪⎪⎩
M ifΛ = ΛL,√

n log(eM/
√

n) if Λ = ΛCv and
√

n ≤ M,

M if Λ = ΛCv and
√

n ≥ M,

logM if Λ = ΛMS.

(5.2)

These problems have only been considered when the variance is known. The quantity ψn,Λ then corresponds to
the best possible upper bound in (5.1) over all possible f ∈ R

n and preliminary estimators φj and is called the
optimal rate of aggregation. For a more precise definition, we refer the reader to Tsybakov [47]. Bunea et al. [13]
considered the problem of solving these three problems simultaneously by building an estimator f̂ which satisfies
(5.1) simultaneously for all Λ ∈ {ΛMS,ΛCv,ΛL} and some constant C > 1. This is an interesting issue since it is
impossible to know in practice which aggregation device should be used to achieve the smallest risk bound: as Λ

grows (for the inclusion), the bias infg∈FΛ
‖f − g‖2 decreases while the rate ψn,Λ increases.

The aim of this section is to show that our procedure provides a way of solving (or nearly solving) the three
aggregation problems both separately and simultaneously when the variance is unknown.

Throughout this section, we consider the family S consisting of the Sm defined for each m ⊂ {1, . . . ,M} \ {∅} as
the linear span of the φj for j ∈ m and S∅ = {0}. Along this section, we shall use the weight function Δ defined on S

by

Δ(Sm) = |m| + log

[(
M

|m|
)]

if m 	= ∅ and Δ(S∅) = 1

take α = 1/2 and pen(·) = 1.1penΔ(·) taking thus K = 1.1. We make these choices of α and K only to fix up the
ideas. Note that Δ satisfies Assumption 2 with Σ < 1. To avoid trivialities, we assume all along n ≥ 4.

5.1. Solving the three aggregation problems separately

5.1.1. Linear Aggregation
Problem (L) is the easiest to solve. Let us take F = FΛ with Λ = ΛL and

S = SL = {S{1,...,M}} (5.3)

and Sλ = SL for all λ ∈ ΛL. Minimizing critα(fλ) over fλ ∈ FΛ amounts to minimizing ‖Y − fλ‖2 over fλ ∈ S{1,...,M}
and hence, the resulting estimator is merely f̂L = ΠS{1,...,M}Y . The risk of f̂L satisfies

E
[‖f − f̂L‖]≤ inf

g∈FΛ

‖f − g‖2 + (M ∧ n)σ 2

whatever n and M . This solves the problem of Linear Aggregation.

5.1.2. Model Selection Aggregation
To tackle Problem (MS), we take F = FΛ with Λ = ΛMS, that is, FΛ = {φ1, . . . , φM},

S = SMS = {S{1}, . . . , S{M}} (5.4)

and associate to each fλ = φj the collection Sλ reduced to {S{j}}. Note that dim(S) ≤ 1 and Δ(S) = log(eM) ≥
dim(S) for all S ∈ SMS, so that under the assumption that log(eM) ≤ n/2 we may apply Corollary 1 with δ = 0 (since
FΛ is finite), κ = 1/2 and get that for some constant C > 0 the resulting estimator f̂MS satisfies

CE
[‖f − f̂MS‖2]≤ inf

g∈FΛ

‖f − g‖2 + log(M)σ 2.

This risk bound is of the form (5.1) except for the constant C which is not equal to 1.
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5.1.3. Convex Aggregation
Let us consider the family of estimators F = FΛ with Λ = ΛCv and

S = SCv = Sλ = {Sm ∈ S, |m| ≤ d(n,M)
} ∀λ ∈ ΛCv, (5.5)

where d(n,M) = n/(2 log(eM)). The set ΛCv being compact, λ �→ critα(fλ) admits a minimum λ̂ over ΛCv and we
set f̂Cv = f̂̂λ. For such an estimator, the following holds.

Proposition 2. Assume that M ≤ en/4−1 and let ρ = supj=1,...,M ‖φj‖/σ . The estimator f̂Cv satisfies for some uni-
versal constant C > 0

CE
[‖f − f̂Cv‖2]≤ inf

g∈FΛ

‖f − g‖2 + BCvσ
2,

where BCv is defined as follows:

BCv =
⎧⎨⎩ρ
√

log(eM/ρ) ∧ (ρ2 ∨ 1) if ρ ≤ M ∧ d(n,M),

M if ρ > M ∧ d(n,M) and M ≤ d(n,M),

ρ2/d(n,M) + d(n,M) log(eM/d(n,M)) if ρ > M ∧ d(n,M) and M > d(n,M).

(5.6)

In the literature, only the dependency of the aggregation rate with respect to n and M is emphasized and that
with respect to L = ρ/

√
n omitted. If one considers L as a constant, so that ρ is of order

√
n, and assumes that M

remains small enough compared to n (more precisely, M ≤ d(n,M)), BCv is of order min{M,
√

n log(eM/
√

n)} and
one recovers the usual aggregation rate. However, one may get different rates by considering L as a function of n.
This is a somewhat reasonable point of view since typically the φj are estimators of f . Unfortunately, the value of L

is unknown to the statistician, since it depends on σ , and it is therefore impossible to design an aggregation rule based
on L in order to achieve these rates. A particular feature of our aggregation strategy, which does not depend on σ , lies
in the fact that it does not rely on the prior knowledge of L.

5.2. Solving the three problems simultaneously

Consider now three estimators f̂L, f̂MS, f̂Cv with values respectively in S{1,...,M},
⋃M

j=1 S{j} and the convex hull C
of the φj (we use a new notation for this convex hull to avoid ambiguity). One may take the estimators defined in
Section 5.1 but any others would suit. The aim of this section is to select the one with the smallest risk to estimate f .
To do so, we apply our selection procedure with F = {f̂L, f̂MS, f̂Cv}, taking thus Λ = {L,MS,Cv}, and associate
to each of these three estimators the families SL,SMS,SCv defined by (5.3), (5.4) and (5.5) respectively and choose
S = SL ∪ SMS ∪ SCv.

Proposition 3. Assume that M ≤ min{en/4−1, d(n,M)} where d(n,M) = n/(2 log(eM)). There exists a universal
constant C > 0 such that whatever f̂L, f̂MS and f̂Cv with values in S{1,...,M},

⋃M
j=1 S{j} and C respectively, the selected

estimator f̂̂λ satisfies for all f ∈ R
n,

CE
[‖f − f̂̂λ‖2]≤ inf

λ∈{L,MS,Cv}
[
E
[‖f − f̂λ‖2]+ Bλσ

2],
where BL = M , BMS = logM and BCv is given by (5.6). In particular, if f̂L, f̂MS and f̂Cv are the estimators defined
in Sections 5.1.1, 5.1.2 and 5.1.3 respectively then

CE
[‖f − f̂̂λ‖2]≤ inf

λ∈{L,MS,Cv}

[
inf

g∈Fλ

‖f − g‖2 + Bλσ
2
]
,

where Fλ stands for FΛ when Λ = Λλ.
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6. Proofs

6.1. Proof of Theorem 2.1

We denote by 〈·, ·〉 the inner product of R
n and for all λ ∈ Λ and S ∈ Sλ, write

critα(f̂λ, S) = ‖Y − ΠSf̂λ‖2 + σ 2pen(S) + α‖f̂λ − ΠSf̂λ‖2,

where

pen(S) = pen(S)̂σ 2
S /σ 2 for all S ∈ S. (6.1)

For all λ ∈ Λ, let S(λ) ∈ Sλ be such that

critα
(
f̂λ, S(λ)

)≤ critα(f̂λ) + δ.

We also write ε = Y − f and S for the linear subspace generated by S and f . It follows from the facts that for all
λ ∈ Λ and S ∈ Sλ

critα
(
f̂̂λ, S(̂λ)

)≤ critα(f̂̂λ) + δ ≤ critα(f̂λ) + 2δ ≤ critα(f̂λ, S)+2δ

and simple algebra that

‖f − ΠS(̂λ)f̂̂λ‖2 + α‖f̂̂λ − ΠS(̂λ)f̂̂λ‖2

≤ ‖f − ΠSf̂λ‖2 + α‖f̂λ − ΠSf̂λ‖2 + 2σ 2pen(S) + 2δ

+ 2〈ε,ΠS(̂λ)f̂̂λ − f 〉 − σ 2pen
(
S(̂λ)

)+ 2〈ε,f − ΠSf̂λ〉 − σ 2pen(S).

For λ ∈ Λ and S ∈ S, let us set uλ,S = (ΠSf̂λ − f )/‖ΠSf̂λ − f ‖ if ΠSf̂λ 	= f and uλ,S = 0 otherwise. For all λ and
S, we have uλ,S ∈ S and

‖f − ΠS(̂λ)f̂̂λ‖2 + α‖f̂̂λ − ΠS(̂λ)f̂̂λ‖2

≤ ‖f − ΠSf̂λ‖2 + α‖f̂λ − ΠSf̂λ‖2 + 2σ 2pen(S)+2δ

+ 2
∣∣〈ε, ûλ,S(̂λ)〉

∣∣‖ΠS(̂λ)f̂̂λ − f ‖ − σ 2pen
(
S(̂λ)

)
+ 2
∣∣〈ε,uλ,S〉∣∣‖ΠSf̂λ − f ‖ − σ 2pen(S)

≤ ‖f − ΠSf̂λ‖2 + α‖f̂λ − ΠSf̂λ‖2 + 2σ 2pen(S)+2δ

+ K−1‖f − ΠS(̂λ)f̂̂λ‖2 + K‖ΠS̄(̂λ)ε‖2 − σ 2pen
(
S(̂λ)

)
+ K−1‖f − ΠSf̂λ‖2 + K‖ΠS̄ε‖2 − σ 2pen(S),

the second inequality following from ab ≤ K−1a2 + Kb2 for all positive K .
Let Σ̃ be defined as follows

Σ̃ = 2K
∑
S∈S

(
‖ΠSε‖2 − penΔ(S)

n − dim(S)
‖Y − ΠSY‖2

)
+
.

By using (2.4) and (6.1), and noting that for each S ∈ S,

‖Y − ΠSY‖2

n − dim(S)
≥ ‖Y − ΠSY‖2

n − dim(S)
,
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we get(
1 − K−1)‖f − ΠS(̂λ)f̂̂λ‖2 + α‖f̂̂λ − ΠS(̂λ)f̂̂λ‖2

≤ (1 + K−1)‖f − ΠSf̂λ‖2 + α‖f̂λ − ΠSf̂λ‖2 + 2σ 2pen(S) + Σ̃+2δ

≤ 2
(
1 + K−1)‖f − f̂λ‖2+2δ

+ (α + 2
(
1 + K−1))‖f̂λ − ΠSf̂λ‖2 + 2σ 2pen(S) + Σ̃. (6.2)

Now, since the variable ‖Y − ΠSY‖2 is independent of ‖ΠSε‖2 and is stochastically larger than (or equal to)
‖ε − ΠSε‖2, we deduce from the definition of penΔ(S) and (2.1), that on the one hand E(Σ̃) ≤ 2Kσ 2Σ .

On the other hand, since S is arbitrary among Sλ and since(
1

α
+ 1

1 − K−1

)−1

‖f − f̂̂λ‖2 ≤ (1 − K−1)‖f − ΠS(̂λ)f̂̂λ‖2 + α‖f̂̂λ − ΠS(̂λ)f̂̂λ‖2

we deduce from (6.2) that for all λ ∈ Λ,

‖f − f̂̂λ‖2 ≤ C−1[‖f − f̂λ‖2 + A(f̂λ,Sλ) + Σ̃ + δ
]

(6.3)

with

C−1 = C−1(K,α) = 2
(1 + α − K−1)(α + 2(1 + K−1))

α(1 − K−1)
, (6.4)

and (2.10) follows by taking the expectation on both sides of (6.3). Note that provided that

inf
λ∈Λ

[‖f − f̂λ‖2 + A(f̂λ,Sλ)
]

is measurable, we have actually proved the stronger inequality

CE
[‖f − f̂̂λ‖2]≤ E

[
inf
λ∈Λ

{‖f − f̂λ‖2 + A(f̂λ,Sλ)
}]+ σ 2Σ + δ. (6.5)

Let us now turn to the second part of the theorem. Since equality holds in (2.4), under Assumption 3 by (2.3)

pen(S) = KpenΔ(S) ≤ C(κ,K)
(
dim(S) ∨ Δ(S)

) ∀S ∈ S.

Combining this bound with Assumption 3 we obtain from simple algebra that for all S ∈ S and λ ∈ Λ

pen(S)̂σ 2
S = pen(S)

n − dim(S)
‖Y − ΠSY‖2 ≤ pen(S)

n − dim(S)
‖Y − ΠSf̂λ‖2

≤ 3
pen(S)

n − dim(S)

(‖ε‖2 + ‖f − f̂λ‖2 + ‖f̂λ − ΠSf̂λ‖2)
≤ C

([
dim(S) ∨ Δ(S)

]
σ 2 + (‖ε‖2 − 2nσ 2)

+ + ‖f − f̂λ‖2 + ‖f̂λ − ΠSf̂λ‖2),
where C is a positive constant depending on K and κ only. Putting together this bound with (6.5) and E[(‖ε‖2 −
2nσ 2)+] ≤ 3σ 2, gives (2.11).

6.2. Proof of Proposition 1

For all λ ∈ Λ and f ∈ S, ‖f − f̂λ‖ ≥ ‖ΠSf̂λ − f̂λ‖ and hence,

‖f − f̂̃λ‖2 ≥ inf
λ∈Λ

‖f − f̂λ‖2 ≥ 1

2
inf
λ∈Λ

[‖f − f̂λ‖2 + ‖ΠSf̂λ − f̂λ‖2].
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Besides, since the minimax rate of estimation over S is of order dim(S)σ 2, for some universal constant C,

C sup
f ∈S

E
[‖f − f̂̃λ‖2]≥ dim(S)σ 2.

Putting these bounds together lead to the result.

6.3. Proof of Corollary 2

Since Assumptions 1 to 4 are fulfilled and F is finite, we may apply Theorem 2.1 and take δ = 0. By using (2.11), we
have for some C depending on K,α and κ ,

CE
[‖f − f̂̂λ‖2]

≤ inf
λ∈Λ

{
E
[‖f − f̂λ‖2]+ E

[‖f̂λ − ΠSλf̂λ‖2]+ a
(
1 + dim(Sλ)

)
σ 2}.

For all λ ∈ Λ,

E
[‖f − f̂λ‖2] = ‖f − Aλf ‖2 + E

[‖Aλε‖2]
= ‖f − Aλf ‖2 + Tr

(
A∗

λAλ

)
σ 2

≥ max
{‖f − Aλf ‖2,Tr

(
A∗

λAλ

)
σ 2}

and

E
[‖f̂λ − ΠSλf̂λ‖2] = ∥∥(I − ΠSλ)Aλf

∥∥2 + E
[∥∥(I − ΠSλ)Aλε

∥∥2]
≤ 2 max

{∥∥(I − ΠSλ)Aλf
∥∥2

,E
[‖Aλε‖2]}

= 2 max
{∥∥(I − ΠSλ)Aλf

∥∥2
,Tr
(
A∗

λAλ

)
σ 2}

and hence, Corollary 2 follows from the next lemma.

Lemma 1. For all λ ∈ Λ we have:

(i) ‖(I − ΠSλ)Aλf ‖ ≤ ‖f − Aλf ‖ ,
(ii) dim(Sλ) ≤ 4Tr

(
A∗

λAλ

)
.

Proof. Writing f = f0 + f1 ∈ ker(Aλ) ⊕ rg(A∗
λ) and using the fact that rg(A∗

λ) = ker(Aλ)
⊥ and the definition of Πλ,

we obtain

‖f − Aλf ‖2 = ‖f0 + f1 − Aλf1‖2

= ‖f0 − Πker(Aλ)Aλf1‖2 + ∥∥(I − ΠλAλ)f1
∥∥2

≥ ∥∥(A+
λ − Πλ

)
Aλf1

∥∥2

≥
mλ∑
k=1

s2
k 〈Aλf,vk〉2,

where s1 ≥ · · · ≥ smλ are the singular values of A+
λ − Πλ counted with their multiplicity and (v1, . . . , vmλ) is

an orthonormal family of right-singular vectors associated to (s1, . . . , smλ). If s1 < 1, then Sλ = R
n and we have

‖f − Aλf ‖ ≥ ‖(I − ΠSλ)Aλf ‖ = 0. Otherwise, s1 ≥ 1, we may consider kλ as the largest k such that sk ≥ 1 and
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derive that

‖f − Aλf ‖2 ≥
kλ∑

k=1

s2
k 〈Aλf,vk〉2

≥
kλ∑

k=1

〈Aλf,vk〉2 = ∥∥(I − ΠSλ)Aλf
∥∥2

,

which proves the assertion (i).
For the bound (ii), we set Mλ = A+

λ − Πλ and note that

(Mλ − Πλ)(Mλ − Πλ)
∗ = MλM

∗
λ + ΠλΠ

∗
λ − MλΠ

∗
λ − ΠλM

∗
λ

induces a semi-positive quadratic form on rg(A∗
λ). As a consequence the quadratic form (Mλ + Πλ)(Mλ + Πλ)

∗ is
dominated by the quadratic form 2(MλM

∗
λ + ΠλΠ

∗
λ) on rg(A∗

λ). Furthermore

(Mλ + Πλ)(Mλ + Πλ)
∗ = (A+

λ

)(
A+

λ

)∗ = (A∗
λAλ

)+
,

where (A∗
λAλ)

+ is the inverse of the linear operator Lλ : rg(A∗
λ) → rg(A∗

λ) induced by A∗
λAλ restricted on rg(A∗

λ). We
then have that the quadratic form induced by (A∗

λAλ)
+ is dominated by the quadratic form

2
(
A+

λ − Πλ

)(
A+

λ − Πλ

)∗ + 2ΠλΠ
∗
λ

on rg(A∗
λ). In particular the sequence of the eigenvalues of (A∗

λAλ)
+ is dominated by the sequence (2s2

k + 2)k=1,mλ

so

Tr
(
A∗

λAλ

) = Tr(Lλ) ≥
mλ∑
k=1

1

2(1 + s2
k )

≥
mλ∑

k=kλ+1

1

2(1 + s2
k )

≥ dim(Sλ)/4,

which conclude the proof of Lemma 1. �

6.4. Proof of Corollary 4

Along the section, we write S∗ for Sm∗ and Ŝλ for Sm̂(λ) for short. First, note that when Dmax ≤ κn/(2 logp), As-
sumption 3 holds. Since Σ ≤ 1 + log(1 + p), by using (2.11) with δ = 0 we have

CE
[‖f − f̂̂λ‖2]≤ E

[
inf
λ∈Λ

‖f − ΠŜλ
Y‖2 + dim(Ŝλ) log(p)σ 2

]
+ (1 + log(p + 1)

)
σ 2,

for some constant C > 0 depending on K and κ only. Writing B for the event B = {m∗ /∈ M̂}, we have

E

[
inf
λ∈Λ

{‖f − ΠŜλ
Y‖2 + dim(Ŝλ) log(p)σ 2}]≤ An + R′

n,

where

An = E
[‖f − ΠS∗Y‖2 + dim(S∗) log(p)σ 2]= (1 + log(p)

)
dim(S∗)σ 2,

R′
n = E

[
inf
λ∈Λ

{‖f − ΠŜλ
Y‖2 + dim(Ŝλ) log(p)σ 2}1B

]
.
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Let us bound R′
n. For all λ ∈ Λ, ‖f −ΠŜλ

Y‖2 ≤ ‖f ‖2 +‖ε‖2. Since for all S ∈ S, dim(S) ≤ Dmax ≤ κn/(2 logp),
by using (2.3), we have for all λ ∈ Λ, dim(Ŝλ) log(p)σ 2 ≤ nσ 2 and hence,

R′
n ≤ E

[(‖f ‖2 + ‖ε‖2 + nσ 2)1B

]
.

Straightforward calculation shows that E[(‖f ‖2 + ‖ε‖2)2] ≤ (‖f ‖2 + 2nσ 2)2 and hence, by Cauchy–Schwarz in-
equality

R′
n ≤ (‖f ‖2 + 3nσ 2)√

P(B).

The result follows.

6.5. Proof of Proposition 2

Since eM ≤ en/4, d(n,M) = n/(2 log(eM)) ≥ 2 and hence S is not empty. Besides, for all Sm ∈ SCv(
dim(Sm) ∨ 1

)≤ Δ(Sm) = |m| + log

[(
M

|m|
)]

≤ |m|(1 + logM) ≤ n

2
,

and hence Assumptions 1 to 4 are satisfied with Σ = 1 and κ = 1/2. Besides, the set ΛCv being compact, λ �→
critα(fλ) admits a minimum over ΛCv (we shall come back to the minimization of this criterion at the end of the
subsection) and hence we can take δ = 0. By applying Theorem 2.1 and using (2.11), the resulting estimator f̂Cv = f̂̂λ

satisfies for some universal constant C > 0

CE
[‖f − f̂Cv‖2]≤ inf

g∈FΛ

{‖f − g‖2 + A(g,S)
}
, (6.6)

where

A(g,S) = inf
S∈S

[‖g − ΠSg‖2 + (dim(S) ∨ Δ(S)
)
σ 2]. (6.7)

Case ρ ≤ M ∧ d(n,M)

If ρ ≤ 2
√

log(eM/ρ), we choose S = {0} in (6.9). By convexity, for all g in the convex hull of the φj , σ−1‖g‖ ≤ ρ

and therefore,

A(g,S) ≤
(‖g‖2

σ 2
+ 1

)
σ 2 ≤ 2

(
ρ2 ∨ 1

)
σ 2. (6.8)

Let us now turn to the situation where 2
√

log(eM/ρ) < ρ ≤ M ∧ d(n,M). We bound A(g,S) from above by using
the following approximation result which is due to Maurey. A proof is available in Makovoz [38].

Lemma 2. For all g in the convex hull FΛ of the φj and all D ≥ 1, there exists m ⊂ {1, . . . ,M} such that |m| =
(2D) ∧ M and

‖g − ΠSmg‖2 ≤ 4D−1 sup
j=1,...,M

‖φj‖2.

By using this lemma, we get that

A(g,S) ≤ inf
D

[
4ρ2

D
+ [(2D) ∧ M

](
1 + log

(
eM

[(2D) ∧ M]
))]

σ 2, (6.9)

where the infimum runs among all D ≥ 1 such that (2D) ∧ M ≤ d(n,M). We choose D = D∗ as the integer part of

d∗ = ρ

2
√

log(eM/ρ)
≥ 1.
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Note that D∗ ≥ 1 and under the assumption ρ ≤ d(n,M) ∧ M we have(
2D∗)∧ M ≤ 2D∗ ≤ ρ√

log(eM/ρ)
≤ ρ ≤ d(n,M).

For such a choice of D = D∗ in (6.9) and suitable numerical constants C > 0 we get

A(g,S) ≤ Cσ 2ρ
√

log(eM/ρ). (6.10)

Combining the two bounds (6.8) and (6.10), we finally obtain

A(g,S) ≤ C′σ 2 min
(
ρ
√

log(eM/ρ),ρ2 ∨ 1
)

when ρ ≤ M ∧ d(n,M).

Case ρ > M ∧ d(n,M)

If M ≤ d(n,M), we choose S = S{1,...,M} (which belongs to S) and get

A(g,S) ≤ 0 + Δ(S{1,...,M})σ 2 = Mσ 2.

Otherwise, M > d(n,M) and we choose D as the integer part of d(n,M)/2 and get from (6.9)

A(g,S) ≤ C

[
ρ2

d(n,M)
+ d(n,M) log

(
eM

d(n,M)

)]
σ 2,

which concludes the proof.

Computation of f̂Cv
Finally, concerning the computation of f̂Cv, note that

inf
λ∈Λ

critα(fλ) = inf
λ∈Λ

inf
S∈SCv

[‖Y − ΠSfλ‖2 + α‖fλ − ΠSfλ‖2 + pen(S)̂σ 2
S

]
= inf

S∈SCv

{[
inf
λ∈Λ

(‖Y − ΠSfλ‖2 + α‖fλ − ΠSfλ‖2)]+ pen(S)̂σ 2
S

}
,

and hence, one can solve the problem of minimizing critα(fλ) over λ ∈ Λ by proceeding into two steps. First, for each
S in the finite set SCv minimize the convex criterion

critα(S,fλ) = ‖Y − ΠSfλ‖2 + α‖fλ − ΠSfλ‖2

over the convex (and compact set) ΛCv. Denote by f̂Cv,S the resulting minimizers. Then, minimize the quantity
critα(S, f̂Cv,S) + pen(S)̂σ 2

S for S varying among SCv. Denoting by Ŝ such a minimizer, we have that f̂Cv = f̂Cv,Ŝ .

6.6. Proof of Proposition 3

Under the assumption M ≤ min{en/4−1, d(n,M)}, the families Sλ with λ ∈ {L,MS} are subsets of S = SCv and
Assumption 3 holds. We may therefore apply Theorem 2.1 (more precisely (2.11)) and get

CE
[‖f − f̂̂λ‖2]≤ inf

λ∈{L,MS,Cv}
[
E
[‖f − f̂λ‖2]+ E

[
A(f̂λ,Sλ)

]]
,

where A(·, ·) is given by (6.7). It remains to bound from above the quantity E[A(f̂λ,Sλ)] for each λ ∈ {L,MS,Cv}.
For λ = L, f̂L ∈ S{1,...,M},Δ(S{1,...,M}) = M and hence,

E
[
A(f̂L,SL)

]= E
[‖f − f̂L‖2]+ Mσ 2.
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For λ = MS, f̂MS ∈ SMS and for all Sm ∈ SMS, dim(Sm) ≤ Δ(Sm) = log(eM). Therefore

E
[
A(f̂MS,SMS)

]≤ E
[‖f − f̂MS‖2]+ log(eM)σ 2.

Finally, let us turn to the case λ = Cv and denote by g the best approximation of f in C . Since f̂Cv ∈ C , for all S ∈ SCv,

‖f̂Cv − ΠSf̂Cv‖ ≤ ‖f̂Cv − ΠSg‖ = ‖f̂Cv − f + f − g + g − ΠSg‖
≤ 2‖f − f̂Cv‖ + ‖g − ΠSg‖,

and hence

8−1
E
[
A(f̂Cv,SCv)

]≤ E
[‖f − f̂Cv‖2]+ A(g,SCv).

By arguing as in Section (5.1.3), we deduce that under the assumption that eM ≤ en/4,

C′
E
[
A(f̂Cv,SCv)

]≤ E
[‖f − f̂Cv‖2]+ BCvσ

2.

By putting these bounds together we get the result.

Appendix

A.1. Computation of penΔ(S)

The penalty penΔ(S), defined at equation (2.2), is linked to the EDkhi function introduced in Baraud et al. [7] (see
Definition 3), via the following formula:

penΔ(S) = n − dim(S)

n − dim(S) − 1
EDkhi

(
dim(S) + 1, n − dim(S) − 1,

e−Δ(S)

dim(S) + 1

)
.

Therefore, according to the result given in Section 6.1 in Baraud et al. [7], penΔ(S) is the solution in x of the equation

e−Δ(S)

D + 1
= P

(
FD+3,N−1 ≥ x

N − 1

N(D + 3)

)
− x

N − 1

N(D + 1)
P

(
FD+1,N+1 ≥ x

N + 1

N(D + 1)

)
.

A.2. Simulated examples

The collection E is composed of several collections E1, . . . , E11 that are detailed below. The collections E1 to E10 are
composed of examples where X is generated as n independent centered Gaussian vectors with covariance matrix C.
For each e ∈ {1, . . . ,10}, we define a p × p matrix Ce and a p-vector of parameters βe. We denote by Xe the set of 5
matrices X simulated as n-i.i.d Np(0,Ce). The collection Ee is then defined as follows:

Ee = {ex(n,p,X,β,ρ), (n,p) ∈ I,X ∈ Xe, β = βe,ρ ∈ R
}
,

where R = {5,10,20} and

I = {(100,50), (100,100), (100,1000), (200,100), (200,200)
}

(A.1)

in Section 4.3.2, and

I = {(100,50), (100,100), (200,100), (200,200)
}

(A.2)

in Section 4.3.3.
Let us now describe the collections E1 to E10.
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Collection E1
The matrix C equals the p × p identity matrix denoted Ip . The parameters β satisfy βj = 0 for j ≥ 16, βj = 2.5 for
1 ≤ j ≤ 5, βj = 1.5 for 6 ≤ j ≤ 10, βj = 0.5 for 11 ≤ j ≤ 15.

Collection E2
The matrix C is such that Cjk = r |j−k|, for 1 ≤ j, k ≤ 15 and 16 ≤ j, k ≤ p with r = 0.5. Otherwise Cj,k = 0. The
parameters β are as in Collection E1.

Collection E3
The matrix C is as in Collection E2 with r = 0.95, the parameters β are as in Collection E1.

Collection E4
The matrix C is such that Cjk = r |j−k|, for 1 ≤ j, k ≤ p, with r = 0.5, the parameters β are as in Collection E1.

Collection E5
The matrix C is as in Collection E4 with r = 0.95, the parameters β are as in Collection E1.

Collection E6
The matrix C equals Ip . The parameters β satisfy βj = 0 for j ≥ 16, βj = 1.5 for j ≤ 15.

Collection E7
The matrix C satisfies Cj,k = (1−ρ1)1j=k +ρ1 for 1 ≤, j, k ≤ 3, Cj,k = Ck,j = ρ2 for j = 4, k = 1,2,3, Cj,k = 1j=k

for j, k ≥ 5, with ρ1 = 0.39 and ρ2 = 0.23. The parameters β satisfy βj = 0 for j ≥ 4, βj = 5.6 for j ≤ 3.

Collection E8
The matrix C satisfies Cj,k = 0.5|j−k| for j, k ≤ 8, Cj,k = 1j=k for j, k ≥ 9. The parameters β satisfy βj = 0 for
j /∈ {1,2,5}, β1 = 3, β2 = 1.5, β5 = 2.

Collection E9
The matrix C is defined as in Example E8. The parameters β satisfy βj = 0 for j ≥ 9, βj = 0.85 for j ≤ 8.

Collection E10
The matrix C satisfies Cj,k = 0.51j 	=k + 1j=k for j, k ≤ 40, Cj,k = 1j=k for j, k ≥ 41. The parameters β satisfy
βj = 2 for 11 ≤ j ≤ 20 and 31 ≤ j ≤ 40, βj = 0 otherwise.

Collection E11
In this last example, we denote by X11 the set of 5 matrices X simulated as follows. For 1 ≤ j ≤ p, we denote by Xj

the column j of X. Let E be generated as n i.i.d. Np(0,0.01Ip) and let Z1,Z2,Z3 be generated as n i.i.d. N3(0, I3).
Then for j = 1, . . . ,5, Xj = Z1 + Ej , for j = 6, . . . ,10, Xj = Z2 + Ej , for j = 11, . . . ,15, Xj = Z3 + Ej , for
j ≥ 16, Xj = Ej . The parameters β are as in Collection E6. The Collection E11 is defined as the set of examples
ex(n,p,X,β,ρ) for (n,p) ∈ I , X ∈ X11, and ρ ∈ R.

The Collection E is thus composed of 660 examples for I chosen as in (A.2), and 825 for I chosen as in (A.1).
For some of the examples, the Lasso estimators were highly biased leading to high values of the ratio Oex/nσ 2, see
Equation (4.4). In these cases, our procedure that tends to choose an estimator with small dimension, leads to very high
value of the risk. We only keep the examples for which the Lasso estimator improves the risk of the naive estimator Y

by a factor at least 1/3. This convention leads us to remove 171 examples over 825. These pathological examples are
coming from the Collections E1, E6 and E7 for n = 100 and p ≥ 100, and from Collections E2 and E4 when p = 1000.
The examples of Collection E7 were chosen by Zou to illustrate that the Lasso estimators may be highly biased, the
others correspond to matrices X that are nearly orthogonal.

Computation time. The computation time for tuning the Lasso parameter depends on n, p, the maximum number of
steps in the Lasso algorithm, max.steps, and, for our procedure, it depends on the cardinality of S or equivalently
on Dmax (see Equation (4.1)). For example, for n = p = max.steps= 100, the CV procedure using elasticnet,
takes 4 s, and the penΔ procedure, taking Dmax = min{p,n/ log(p)}, takes 0.2 s.
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A.3. Procedures for calculating sets of predictors

Let M̂ =⋃�∈L M̂� where we recall that for � ∈ L, M̂� = {m̂(�,h)|h ∈ H�}.
The Lasso procedure is described in Section 4.3.2. The collection M̂Lasso = {m̂(1), . . . , m̂(Dmax)} where m̂(h) is

the set of indices corresponding to the predictors returned by the LARS-Lasso algorithm at step h ∈ {1, . . . ,Dmax}
(see Section 4.3.2).

The ridge procedure is based on the minimization of ‖Y − Xβ‖2 + h‖β‖2 with respect to β , for some positive h,
see for example Hoerl and Kennard [30]. Tibshirani [46] noted that in the case of a large number of small effects, ridge
regression gives better results than the Lasso for variable selection. For each h ∈ Hridge, the regression coefficients
β̂(h) are calculated and a collection of predictors sets is built as follows. Let j1, . . . , jp be such that |β̂j1(h)| > · · · >
|β̂jp (h)| and set

Mh = {{j1, . . . , jk}, k = 1, . . . ,Dmax
}
.

Then, the collection M̂ridge is defined as M̂ridge = {Mh,h ∈ Hridge}.
The elastic net procedure proposed by Zou and Hastie [58] mixes the �1 and �2 penalties of the Lasso and the ridge

procedures. Let Hridge be a grid of values for the tuning parameter h of the �2 penalty. We choose M̂en = {M(en,h) : h ∈
Hridge} where M(en,h) denotes the collection of the active sets of cardinality less than Dmax, selected by the elastic net
procedure when the �2-smoothing parameter equals h. For each h ∈ Hridge the collection M(en,h) can be conveniently
computed by first calculating the ridge regression coefficients and then applying the LARS-Lasso algorithm, see Zou
and Hastie [58].

The partial least squares regression (PLSR1) aims to reduce the dimensionality of the regression problem by
calculating a small number of components that are usefull for predicting Y . Several applications of this procedure
for analysing high-dimensional genomic data have been reviewed by Boulesteix and Strimmer [11]. In particular, it
can be used for calculating subsets of covariates as we did for the ridge procedure. The PLSR1 procedure constructs,
for a given h, uncorrelated latent components t1, . . . , th that are highly correlated with the response Y , see Helland
[27]. Let Hpls be a grid a values for the tuning parameter h. For each h ∈ Hpls, we write β̂(h) for the PLS regression
coefficients calculated with the first h components. We then set M̂PLS = {Mh : h ∈ Hpls}, where Mh is build from
β̂(h) as for the ridge procedure.

The adaptive Lasso procedure proposed by Zou [57] starts with a preliminary estimator β̃ . Then one applies
the Lasso procedure replacing the parameters |βj |, j = 1, . . . , p in the �1 penalty by the weighted parameters
|βj |/|β̃j |γ , j = 1, . . . , p for some positive γ . The idea is to increase the penalty for coefficients that are close to
zero, reducing thus the bias in the estimation of f and improving the variable selection accuracy. Zou showed that, if
β̃ is a

√
n-consistent estimator of β , then the adaptive Lasso procedure is consistent in situations where the Lasso is

not. A lot of work has been done around this subject, see Huang et al. [31] for example.
We apply the procedure with γ = 1, and considering two different preliminary estimators:

- Using the ridge estimator, β̃(h) as preliminary estimator. For each h ∈ Hridge, the adaptive Lasso procedure is
applied for calculating the active sets, MALridge,h, of cardinality less than Dmax. The collection M̂ALridge is thus
defined as M̂ALridge = {MALridge,h, h ∈ Hridge}.

- Using the PLSR1 estimator, β̃(h), as preliminary estimator. The procedure is the same as described just above. The
collection MALpls is defined as MALpls = {MALpls,h, h ∈ Hpls}.
The random forest algorithm was proposed by Breiman [12] for classification and regression problems. The pro-

cedure averages several regression trees calculated on bootstrap samples. The algorithm returns measures of variable
importance that may be used for variable selection, see for example Díaz-Uriarte and Alvares de Andrés [20], Genuer
et al. [22], Strobl et al. [43,44].

Let us denote by h the number of variables randomly chosen at each split when constructing the trees and

HrF = {p/j |j ∈ {3,2,1.5,1}}.
For each h ∈ HrF , we consider the set of indices

Mh = {{j1, . . . , jk}, k = 1, . . . ,Dmax
}
,
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where {j1, . . . , jk} are the ranks of the variable importance measures. Two importance measures are proposed. The
first one is based on the decrease in the mean square error of prediction after permutation of each of the variables.
It leads to the collection M̂rFmse = {Mh,h ∈ HrF }. The second one is based on the decrease in node impurities, and
leads similarly to the collection M̂purity.

The exhaustive procedure considers the collection of all subsets of {1, . . . , p} with dimension smaller than Dmax.
We denote this collection Mexhaustive.

Choice of tuning parameters
We have to choose Dmax, the largest number of predictors considered in the collection M̂. For all methods, except the
exhaustive method, Dmax may be large, say Dmax ≤ min(n−2,p). Nevertheless, for saving computing time, we chose
Dmax large enough such that the dimension of the estimated subset is always smaller than Dmax. For the exhaustive
method, Dmax must be chosen in order to make the calculation feasible: Dmax = 4 for p = 50, Dmax = 3 for p = 100
and Dmax = 2 for p = 200.

For the ridge method we choose Hridge = {10−3,10−2,10−1,1,5}, and for the PLSR1 method, Hpls = 1, . . . ,5.
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