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FIRST-ORDER GLOBAL ASYMPTOTICS FOR CONFINED
PARTICLES WITH SINGULAR PAIR REPULSION

BY DJALIL CHAFAÏ, NATHAEL GOZLAN AND PIERRE-ANDRÉ ZITT
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We study a physical system of N interacting particles in Rd , d ≥ 1, sub-
ject to pair repulsion and confined by an external field. We establish a large
deviations principle for their empirical distribution as N tends to infinity. In
the case of Riesz interaction, including Coulomb interaction in arbitrary di-
mension d > 2, the rate function is strictly convex and admits a unique mini-
mum, the equilibrium measure, characterized via its potential. It follows that
almost surely, the empirical distribution of the particles tends to this equilib-
rium measure as N tends to infinity. In the more specific case of Coulomb
interaction in dimension d > 2, and when the external field is a convex or
increasing function of the radius, then the equilibrium measure is supported
in a ring. With a quadratic external field, the equilibrium measure is uniform
on a ball.

1. Introduction. We study in this work a physical system of N particles at
positions x1, . . . , xN ∈ R

d , d ≥ 1, with identical “charge” qN := 1/N , subject to
a confining potential V :Rd → R coming from an external field and acting on
each particle, and to an interaction potential W :Rd ×R

d → (−∞,+∞] acting on
each pair of particles. The function W is finite outside the diagonal and symmet-
ric: for all x, y ∈ R

d with x �= y, we have W(x,y) = W(y,x) < ∞. The energy
HN(x1, . . . , xN) of the configuration (x1, . . . , xN) ∈ (Rd)N takes the form

HN(x1, . . . , xN)

:=
N∑

i=1

qNV (xi) + ∑
i<j

q2
NW(xi, xj )

(1.1)

= 1

N

N∑
i=1

V (xi) + 1

N2

∑
i<j

W(xi, xj )

=
∫

V (x)dμN(x) + 1

2

∫∫
�=

W(x,y) dμN(x) dμN(y),
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where μN := 1
N

∑N
i=1 δxi

is the empirical measure of the particles, and where
the subscript “ �=” indicates that the double integral is off-diagonal. The energy
HN : (Rd)N →R∪ {+∞} is a quadratic form functional in the variable μN .

From now on, and unless otherwise stated, we denote by | · | the Euclidean norm
of Rd , and we make the following additional assumptions:

(H1) The function W :Rd ×R
d → (−∞,+∞] is continuous on R

d ×R
d , sym-

metric, takes finite values on R
d ×R

d \ {(x, x);x ∈ R
d} and satisfies the following

integrability condition: for all compact subset K ⊂ R
d , the function

z ∈ R
d 	→ sup

{
W(x,y); |x − y| ≥ |z|, x, y ∈ K

}
is locally Lebesgue-integrable on R

d .
(H2) The function V :Rd → R is continuous and such that lim|x|→+∞ V (x) =

+∞ and ∫
Rd

exp
(−V (x)

)
dx < ∞.

(H3) There exist constants c ∈ R and εo ∈ (0,1) such that for every x, y ∈R
d ,

W(x,y) ≥ c − εo

(
V (x) + V (y)

)
.

(This must be understood as “V dominates W at infinity.”)

Let (βN)N be a sequence of positive real numbers such that βN → +∞ as
N → ∞. Under (H2)–(H3), there exists an integer N0 depending on εo such that
for any N ≥ N0, we have

ZN :=
∫
Rd

· · ·
∫
Rd

exp
(−βNHN(x1, . . . , xN)

)
dx1 · · ·dxN < ∞,

so that we can define the Boltzmann–Gibbs probability measure PN on (Rd)N by

dPN(x1, . . . , xN) := exp (−βNHN(x1, . . . , xN))

ZN

dx1 · · ·dxN .(1.2)

The law PN is the equilibrium distribution of a system of N interacting Brow-
nian particles in R

d , at inverse temperature βN , with equal individual “charge”
1/N , subject to a confining potential V acting on each particle, and to an interac-
tion potential W acting on each pair of particles; see Section 1.5.10. Note that for
βN = N2, the quantity βNHN can also be interpreted as the distribution of a sys-
tem of N particles living in R

d , with unit “charge,” subject to a confining potential
NV acting on each particle, and to an interaction potential W acting on each pair
of particles.

Our work is motivated by the following physical control problem: given the
(internal) interaction potential W , for instance, a Coulomb potential, a target prob-
ability measure μ� on R

d , for instance, the uniform law on the unit ball, and a
cooling scheme βN → +∞, for instance, βN = N2, can we tune the (external)
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confinement potential V (associated to an external confinement field) such that
μN → μ� as N → ∞? In this direction, we provide some partial answers in The-
orems 1.1 and 1.2, Corollaries 1.3 and 1.4 below. We also discuss several possible
extensions and related problems in Section 1.5.

Let M1(R
d) be the set of probability measures on R

d . The mean-field sym-
metries of the model suggest to study, under the exchangeable measure PN , the
behavior as N → ∞ of the empirical measure μN , which is a random variable
on M1(R

d). With this asymptotic analysis in mind, we introduce the functional
I :M1(R

d) → (−∞,+∞] given by

I (μ) := 1

2

∫∫ (
V (x) + V (y) + W(x,y)

)
dμ(x) dμ(y).

Assumptions (H2)–(H3) imply that the function under the integral is bounded from
below, so that the integral defining I makes sense in R ∪ {+∞} = (−∞,+∞]. If
it is finite, then

∫
V dμ and

∫∫
W dμ2 both exist (see Lemma 2.2), so that

I (μ) =
∫

V dμ + 1

2

∫∫
W dμ2.

The energy HN defined by (1.1) is “almost” given by I (μN), where the infinite
terms on the diagonal are forgotten.

1.1. Large deviations principle. Theorem 1.1 below is our first main result.
It is of topological nature, inspired from the available results for logarithmic
Coulomb gases in random matrix theory [4, 5, 28, 43]. We equip M1(R

d) with
the weak topology, defined by duality with bounded continuous functions. For any
set A ⊂ M1(R

d) we denote by int(A), clo(A) the interior and closure of A with
respect to this topology. This topology can be metrized by the Fortet–Mourier dis-
tance defined by (see [25, 44])

dFM(μ, ν) := sup
max(|f |∞,|f |Lip)≤1

{∫
f dμ −

∫
f dν

}
,(1.3)

where |f |∞ := sup |f | and |f |Lip := supx �=y |f (x) − f (y)|/|x − y|.
To formulate the large deviations result we need to introduce the following ad-

ditional technical assumption:

(H4) For all ν ∈ M1(R
d) such that I (ν) < +∞, there is a sequence (νn)n∈N

of probability measures, absolutely continuous with respect to Lebesgue, such that
νn converges weakly to ν and I (νn) → I (ν), when n → ∞.

It turns out that assumption (H4) is satisfied for a large class of potentials V,W ,
and several examples are given in Proposition 2.8 and Theorem 1.2.

Throughout the paper, if (aN)N and (bN)N are nonnegative sequences, the no-
tation aN � bN means that aN = bNcN , for some cN that goes to +∞ when
N → ∞.
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THEOREM 1.1 (Large deviations principle). Suppose that

βN � N log(N).

If (H1)–(H3) are satisfied, then:

(1) I has compact level sets (and is thus lower semi-continuous) and
infM1(R

d ) I > −∞.
(2) Under (PN)N , the sequence (μN)N of random elements of M1(R

d)

equipped with the weak topology has the following asymptotic properties. For ev-
ery Borel subset A of M1(R

d),

lim sup
N→∞

logZNPN(μN ∈ A)

βN

≤ − inf
μ∈clo(A)

I (μ)

and

lim inf
N→∞

logZNPN(μN ∈ A)

βN

≥ − inf
{
I (μ);μ ∈ int(A),μ � Lebesgue

}
.

(3) Under the additional assumption (H4), the full Large Deviation Principle
(LDP) at speed βN holds with the rate function

I� := I − inf
M1(R

d )
I.

More precisely, for all Borel set A ⊂ M1(R
d),

− inf
μ∈int(A)

I�(μ) ≤ lim inf
N→∞

logPN(μN ∈ A)

βN

≤ lim sup
N→∞

logPN(μN ∈ A)

βN

≤ − inf
μ∈clo(A)

I�(μ).

In particular, by taking A = M1(R
d), we get

lim
N→∞

logZN

βN

= inf
M1(R

d )
I�.

(4) Let Imin := {μ ∈ M1 : I�(μ) = 0} �= ∅. If (H4) is satisfied and if (μN)N are
constructed on the same probability space, and if d stands for the Fortet–Mourier
distance (1.3), then we have, almost surely,

lim
N→∞dFM(μN, Imin) = 0.

A careful reading of the proof of Theorem 1.1 indicates that if Imin = {μ�} is a
singleton, and if (H4) holds for ν = μ�, then μN → μ� almost surely as N → ∞.
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1.2. Case βN = N and link with Sanov theorem. If we set W = 0, then the
particles become i.i.d., and PN becomes a product measure η⊗N

N where ηN ∝
e−(βN/N)V , where the symbol “∝” means “proportional to.” When βN = N , then
ηN ∝ e−V does not depend on N , and we may denote it η. To provide perspective,
recall that the classical Sanov theorem [19], Theorem 6.2.10, for i.i.d. sequences
means in our settings that if W = 0 and βN = N , then (μN)N satisfies to a large
deviations principle on M1(R

d) at speed N and with good rate function

μ 	→ K(μ|η) :=
⎧⎨
⎩

∫
f log(f ) dη, if μ � η, with f := dμ

dη
;

+∞, otherwise
(Kullback–Leibler relative entropy or free energy). This large deviations principle
corresponds to the convergence limN→∞ dFM(μN,η) = 0. Note that if μ is abso-
lutely continuous with respect to Lebesgue measure with density function g, then
K(μ|η) can be decomposed in two terms,

K(μ|η) =
∫

V dμ − H(μ) + logZV ,

where ZV := ∫
Rd e−V (x) dx and where H(μ) is the Boltzmann–Shannon “con-

tinuous” entropy H(μ) := − ∫
g(x) log(g(x)) dx; therefore at the speed βN = N ,

the energy factor
∫

V dμ and the Boltzmann–Shannon entropy factor H(μ) both
appear in the rate function. In contrast, note that Theorem 1.1 requires a higher
inverse temperature βN � N log(N). If we set W = 0 in Theorem 1.1, then PN

becomes a product measure, the particles are i.i.d. though their common law de-
pends on N , the function μ 	→ I∗(μ) = ∫

V dμ − infV is affine, its minimizers
Imin over M1(R

d) coincide with

MV := {
μ ∈M1

(
R

d) : supp(μ) ⊂ arg infV
}

and Theorem 1.1 boils down to a sort of Laplace principle, which corresponds to
the convergence limN→∞ dFM(μN,MV ) = 0. It is worthwhile to notice that the
main difficulty in Theorem 1.1 lies in the fact that W can be infinite on the diagonal
(short scale repulsion). If W is continuous and bounded on R

d ×R
d , then one may

deduce the large deviations principle for (μN)N from the case W = 0 by using
the Laplace–Varadhan lemma [19], Theorem 4.3.1; see also [4], Corollary 5.1.
To complete the picture, let us mention that if βN = N and if W is bounded and
continuous, then the Laplace–Varadhan lemma and the Sanov theorem would yield
to the conclusion that (μN)N verifies a large deviations principle on M1(R

d) at
speed N with rate function R − infM1(R

d ) R where the functional R is defined by

R(μ) := K(μ|η) + 1

2

∫∫
W(x,y) dμ(x)dμ(y)

= −H(μ) + I (μ) + logZV ;
once more, the Boltzmann–Shannon entropy factor H(μ) reappears at this rate.
For an alternative point of view, we refer to [40], [14], Theorem 2.1, [10, 15, 32]
and [33].



2376 D. CHAFAÏ, N. GOZLAN AND P.-A. ZITT

1.3. Equilibrium measure. Our second-main result, expressed in Theorem 1.2
and Corollary 1.3 below is of differential nature. It is based on an instance of
the general Gauss problem in potential theory [26, 35, 54, 55]. It concerns spe-
cial choices of V and W for which I� achieves its minimum 0 for a unique and
explicit μ� ∈ M1(R

d). Recall that the Coulomb interactions correspond to the
choice W(x,y) = k�(x − y) where k� is the Coulomb kernel (opposite in sign to
the Newton kernel) defined on R

d , d ≥ 1, by

k�(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−|x|, if d = 1,

log
1

|x| , if d = 2,

1

|x|d−2 , if d ≥ 3.

(1.4)

This is, up to a multiplicative constant, the fundamental solution1 of the Laplace
equation. In other words, denoting � := ∂2

x1
+ · · · + ∂2

xd
the Laplacian, we have, in

a weak sense, in the space of Schwartz–Sobolev distributions D′(Rd),

−c�k� = δ0 with c :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2
, if d = 1,

1

2π
, if d = 2,

1

d(d − 2)ωd

, if d ≥ 3,

(1.5)

where ωd := πd/2

�(1+d/2)
is the volume of the unit ball of Rd . Our notation is moti-

vated by the fact that −� is a nonnegative operator. The case of Coulomb inter-
actions in dimension d = 2 is known as “logarithmic potential with external field”
and is widely studied in the literature; see [3, 28, 30, 47]. To focus on novelty, we
will not study the Coulomb kernel for d ≤ 2. We refer to [1, 13, 22, 36, 37, 49]
and references therein for the Coulomb case in dimension d = 1, to [3, 4, 28] to
the Coulomb case in dimension d = 2 with support restriction on a line, to [5, 28,
30, 43, 47, 48, 53] for the Coulomb case in dimension d = 2. We also refer to [7]
for the asymptotic analysis in terms of large deviations of Coulomb determinantal
point processes on compact manifolds of arbitrary dimension.

The asymptotic analysis of μN as N → ∞ for Coulomb interactions in dimen-
sion d ≥ 3 motivates our next result, which is stated for the more general Riesz
interactions in dimension d ≥ 1. The Riesz interactions correspond to the choice
W(x,y) = k�α(x − y) where k�α , 0 < α < d , d ≥ 1, is the Riesz kernel defined
on R

d , by

k�α(x) := 1

|x|d−α
.(1.6)

1There are no boundary conditions here, and thus the term “Green function” is not appropriate.



FIRST-ORDER GLOBAL ASYMPTOTICS FOR CONFINED PARTICLES 2377

Up to a multiplicative constant, this is the fundamental solution of a fractional
Laplace equation [which is the true Laplace equation (1.5) when α = 2], namely

−cα�αk�α =F−1(1) = δ0 with cα := πα−(d/2)

4π2

�((d − α)/2)

�(α/2)
,(1.7)

where the Fourier transform F and the fractional Laplacian �α are given by

F(k�α)(ξ) :=
∫
Rd

e2iπξ ·xk�α(x) dx = 1

cα4π2|ξ |α
and

�αf := −4π2F−1(|ξ |αF(f )
)
.

Note that �2 = � while �α is a nonlocal integro-differential operator when α �= 2.
When d ≥ 3 and α = 2 then Riesz interactions coincide with Coulomb interactions
and the constants match. Beware that our notation differs slightly from those of
Landkof [35], page 44. Several aspects of the Gauss problem in the Riesz case are
studied in [20, 54, 55].

In the Riesz case, 0 < α < d , one associates to any probability measure μ on R
d

a function U
μ
α :Rd 	→ [0,+∞] called the potential of μ as follows:

Uμ
α (x) := (k�α ∗ μ)(x) :=

∫
k�α(x − y)dμ(y) ∀x ∈R

d .

We refer to Section 3 for a review of basic definitions from potential theory. In
particular, one defines there a notion of capacity of sets, and a property is said
to hold quasi-everywhere if it holds outside a set of zero capacity. The follow-
ing theorem is essentially the analogue in R

d of a result of Dragnev and Saff on
spheres [20]. The analogue problem on compact subsets, without external field,
was initially studied by Frostman [26]; see also the book of Landkof [35]. A con-
finement (by an external field or by a support constraint) is always needed for such
type of results.

THEOREM 1.2 (Riesz gases). Suppose that W is the Riesz kernel W(x,y) =
k�α(x − y). Then:

(1) The functional I is strictly convex where it is finite.
(2) (H1)–(H4) are satisfied, and Theorem 1.1 applies.
(3) There exists a unique μ� ∈M1(R

d) such that

I (μ�) = inf
μ∈M1(R

d )
I (μ).

(4) If we define (μN)N on a unique probability space [for a sequence βN �
N log(N)], then with probability one,

lim
N→∞μN = μ�.
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If we denote by C� the real number

C� =
∫ (

Uμ�
α + V

)
dμ� = J (μ�) +

∫
V dμ�,

then the following additional properties hold:
(5) The minimizer μ� has compact support, and satisfies

Uμ�
α (x) + V (x) ≥ C� quasi-everywhere,(1.8)

Uμ�
α (x) + V (x) = C� for all x ∈ supp(μ�).(1.9)

(6) If a compactly supported measure μ creates a potential U
μ
α such that, for

some constant C ∈R,

Uμ
α (x) + V (x) = C on supp(μ),(1.10)

Uμ
α + V ≥ C quasi-everywhere,(1.11)

then C = C� and μ = μ�. The same is true under the weaker assumptions

Uμ
α (x) + V (x) ≤ C on supp(μ),(1.12)

Uμ
α + V ≥ C q.e. on supp(μ�).(1.13)

(7) If α ≤ 2, for any measure μ, the following “converse” to (1.12), (1.13)
holds:

sup
supp(μ)

(
Uμ

α + V
) ≥ C�,(1.14)

“ inf
supp(μ�)

”
(
Uμ

α (x) + V (x)
) ≤ C�,(1.15)

where the “inf” means that the infimum is taken quasi-everywhere.

The constant C� is called the “modified Robin constant” (see, e.g., [47]), where
the properties (1.8)–(1.9) and the characterization (1.10)–(1.11) are established for
the logarithmic potential in dimension 2. The minimizer μ� is called the equilib-
rium measure.

COROLLARY 1.3 (Equilibrium of Coulomb gases with radial external fields in
dimension ≥ 3). Suppose that for a fixed real parameter β > 0, and for every
x, y ∈R

d , d ≥ 3,

V (x) = v
(|x|) and W(x,y) = βk�(x − y),

where v is two times differentiable. Denote by dσr the Lebesgue measure on the
sphere of radius r , and let σd be the total mass of dσ1 (i.e., the surface of the unit
sphere of Rd ). Let w(r) = rd−1v′(r), and suppose either that v is convex, or that
w is increasing. Define two radii r0 < R0 by

r0 = inf
{
r > 0;v′(r) > 0

}
and w(R0) = β(d − 2).
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Then the equilibrium measure μ� is supported on the ring {x; |x| ∈ [r0,R0]} and
is absolutely continuous with respect to Lebesgue measure

dμ(r) = M(r)dσr dr where M(r) = w′(r)
β(d − 2)σdrd−1 1[r0,R0](r).

In particular, when v(t) = t2, then μ� is the uniform distribution on the centered
ball of radius (

β
d − 2

2

)1/d

.

The result provided by Corollary 1.3 on Coulomb gases with radial external
fields can be found, for instance, in [38], Proposition 2.13. It follows quickly from
the Gauss averaging principle and the characterization (1.10)–(1.11). For the sake
of completeness, we give a (short) proof in Section 4.3. By using Theorem 1.2
with α = 2 together with Corollary 1.3, we obtain that the empirical measure of a
Coulomb gas with quadratic external field in dimension d ≥ 3 tends almost surely
to the uniform distribution on a ball when N → ∞. This phenomenon is the ana-
logue in arbitrary dimension d ≥ 3 of the well-known result in dimension d = 2
for the logarithmic potential with quadratic radial external field (where the uniform
law on the disc or “circular law” appears as a limit for the complex Ginibre ensem-
ble; see, for instance, [5, 43]). The study of the equilibrium measure for Coulomb
interaction with nonradially symmetric external fields was initiated recently in di-
mension d = 2 by Bleher and Kuijlaars in a beautiful work [8] by using orthogonal
polynomials.

The following proposition shows that in the Riesz case, it is possible to construct
a good confinement potential V so that the equilibrium measure is prescribed in
advance.

COROLLARY 1.4 (Riesz gases: External field for prescribed equilibrium mea-
sure). Let 0 < α < d , d ≥ 1, and W(x,y) := k�α . Let μ� be a probability mea-
sure with a compactly supported density f� ∈ Lp(Rd) for some p > d/α. Define
the confinement potential

V (x) := −Uμ�
α (x) + [|x|2 − R

]
+, x ∈ R

d,

where U
μ�
α is the Riesz potential created by μ� and R > 0 is such that supp(μ�) ⊂

B(0,R). Then the couple of functions (V ,W) satisfy (H1)–(H4), and the functional

μ ∈ M1
(
R

d) 	→ I (μ) :=
∫

V dμ + 1

2

∫∫
k�α(x − y)dμ(x)dμ(y) ∈ R∪ {+∞}

admits μ� as unique minimizer. In particular, the probability μ� is the almost sure
limit of the sequence (μN)N (constructed on the same probability space), as soon
as βN � N log(N).
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1.4. Outline of the article. In the remainder of this introduction (Section 1.5),
we give several comments on our results, their links with different domains, and
possible directions for further research. Section 2 provides the proof of Theo-
rem 1.1 (large deviations principle). Section 4 provides the proof of Theorem 1.2,
Corollaries 1.3 and 1.4. These proofs rely on several concepts and tools from Po-
tential Theory, which we recall synthetically and discuss in Section 3 for the sake
of clarity and completeness.

1.5. Comments, possible extensions and related topics.

1.5.1. Noncompactly supported equilibrium measures. The assumptions made
on the external field V in Theorems 1.1 and 1.2 explain why the equilibrium mea-
sure μ� is compactly supported. If one allows a weaker behavior of V at infinity,
then one may produce equilibrium measures μ� which are not compactly sup-
ported (and may even be heavy tailed). This requires that we adapt some of the
arguments, and one may use compactification as in [28]. This might allow to ex-
tend Corollary 1.4 beyond the compactly supported case.

1.5.2. Equilibrium measure for Riesz interaction with radial external field. To
the knowledge of the authors, the computation of the equilibrium measure for
Riesz interactions with radial external field, beyond the more specific Coulomb
case of Corollary 1.3, is an open problem, due to the lack of the Gauss averaging
principle when α �= 2.

1.5.3. Beyond the Riesz and Coulomb interactions. Theorem 1.2 concerns the
minimization of the Riesz interaction potential with an external field V , and in-
cludes the Coulomb interaction if d ≥ 3. In classical Physics, the problem of min-
imization of the Coulomb interaction energy with an external field is known as
the Gauss variational problem [26, 35, 54, 55]. Beyond the Riesz and Coulomb
potentials, the driving structural idea behind Theorem 1.2 is that if W is of the
form W(x,y) = kD(x − y) where kD is the fundamental solution of an equation
−DkD = δ0 for a local differential operator D such as �α with α = 2, and if V

is super-harmonic for D, that is, DV ≥ 0, then the density of μ� is roughly given
by DV up to support constraints. This can be easily understood formally with La-
grange multipliers. The limiting measure μ� depends on V and W , and is thus
nonuniversal in general.

1.5.4. Second-order asymptotic analysis. The asymptotic analysis of μN −μ�

as N → ∞ is a natural problem, which can be studied on various classes of tests
functions. It is well known that a repulsive interaction may affect dramatically the
speed of convergence, and make it dependent over the regularity of the test func-
tion. In another direction, one may take βN = βN2 and study the low temperature
regime β → ∞ at fixed N . In the Coulomb case, this leads to Fekete points. We
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refer to [12, 48, 49] for the analysis of the second order when both β → ∞ and
N → ∞. In the one-dimensional case, another type of local universality inside the
limiting support is available in [27].

1.5.5. Edge behavior. Suppose that V is radially symmetric and that μ� is
supported in the centered ball of radius r , like in Corollary 1.3. Then one may
ask if the radius of the particle system max1≤k≤n |xk| converges to the edge r of
the limiting support as N → ∞. This is not provided by the weak convergence
of μN . The next question is the fluctuation. In the two-dimensional Coulomb case,
a universality result is available for a class of external fields in [17].

1.5.6. Topology. It is known that the weak topology can be upgraded to a
Wasserstein topology in the classical Sanov theorem for empirical measures of
i.i.d. sequences (see [52]), provided that tails are strong exponentially integrable.
It is then quite natural to ask about such an upgrade for Theorem 1.1.

1.5.7. Connection to random matrices. Our initial inspiration came when
writing the survey [11], from the role played by the logarithmic potential in
the analysis of the Ginibre ensemble. When d = 2, βN = N2, V (x) = |x|2 and
W(x,y) = βk�(x − y) = β log 1

|x−y| with β = 2, then PN is the law of the (com-
plex) eigenvalues of the complex Ginibre ensemble

dPN(x) = Z−1
N e−N

∑N
i=1 |xi |2 ∏

i<j

|xi − xj |2 dx

(here R
2 ≡ C and PN is the law of the eigenvalues of a random N × N matrix

with i.i.d. complex Gaussian entries of covariance 1
2N

I2). For a nonquadratic V ,
we may see PN as the law of the spectrum of random normal matrices such as the
ones studied in [2]. On the other hand, in the case where d = 1 and V (x) = |x|2
and W(x,y) = β log 1

|x−y| with β > 0, then

dPN(x) = Z−1
N e−N

∑N
i=1 |xi |2 ∏

i<j

|xi − xj |β dx.

This is known as the β-Ensemble in Random Matrix Theory. For β = 1, we recover
the law of the eigenvalues of the Gaussian orthogonal ensemble (GOE) of random
symmetric matrices, while for β = 2, we recover the law of the eigenvalues of the
Gaussian Unitary Ensemble (GUE) of random Hermitian matrices. It is worthwhile
to notice that − log | · | is the Coulomb potential in dimension d = 2, and not in
dimension d = 1. For this reason, we may interpret the eigenvalues of GOE/GUE
as being a system of charged particles in dimension d = 2, experiencing Coulomb
repulsion and an external quadratic field, but constrained to stay on the real axis.
We believe this type of support constraint can be incorporated in our initial model,
at the price of slightly heavier notation and analysis.
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1.5.8. Simulation problem and numerical approximation of the equilibrium
measure. It is natural to ask about the best way to simulate the probability mea-
sure PN . A pure rejection algorithm is too naive. Some exact algorithms are
available in the determinantal case d = 2 and W(x,y) = −2 log |x − y|; see [31],
Algorithm 18 and [50]. One may prefer to use a nonexact algorithm such as a
Hastings–Metropolis algorithm. One may also use an Euler scheme to simulate a
stochastic process for which PN is invariant, or use a Metropolis adjusted Langevin
approach (MALA) [45]. In this context, a very natural way to approximate nu-
merically the equilibrium measure μ� is to use a simulated annealing stochastic
algorithm.

1.5.9. More general energies. The density of PN takes the form
∏N

i=1 f1(xi)×∏
1≤i<j≤N f2(xi, xj ), which comes from the structure of HN . One may study more

general energies with many bodies interactions, of the form, for some prescribed
symmetric Wk : (Rd)k 	→R, 1 ≤ k ≤ K , K ≥ 1,

HN(x1, . . . , xN) =
K∑

k=1

∑
i1<···<ik

N−kWk(xi1, . . . , xik ).

This leads to the following candidate for the asymptotic first-order global energy
functional:

μ 	→
K∑

k=1

2−k
∫

· · ·
∫

Wk(x1, . . . , xk) dμ(x1) · · ·dμ(xk).

1.5.10. Stochastic processes. Under general assumptions on V and W (see,
e.g., [46]), the law PN is the invariant probability measure of a well-defined (the
absence of explosion comes from the assumptions on V and W ) reversible Markov
diffusion process (Xt)t∈R+ with state space

{
x ∈ (

R
d)N :HN(x) < ∞} =

{
x ∈ (

R
d)N :

∑
i<j

W(xi, xj ) < ∞
}
,

solution of the system of Kolmogorov stochastic differential equations

dXt =
√

2
αN

βN

dBt − αN∇HN(Xt) dt,

where (Bt )t≥0 is a standard Brownian motion on (Rd)N and where αN > 0 is an
arbitrary scale parameter (natural choices being αN = 1 and αN = βN ). The law
PN is the equilibrium distribution of a system of N interacting Brownian particles
(X1,t )t≥0, . . . , (XN,t )t≥0 in R

d at inverse temperature βN , with equal individual
“charge” qN := 1/N , subject to a confining potential αNV acting on each particle
and to an interaction potential αNW acting on each pair of particles, and one can
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rewrite the stochastic differential equation above as the system of coupled stochas-
tic differential equations (1 ≤ i ≤ N )

dXi,t =
√

2
αN

βN

dBi,t − qNαN∇V (Xi,t ) − ∑
j �=i

q2
NαN∇1W(Xi,t ,Xj,t ) dt,

where (B
(1)
t )t≥0, . . . , (B

(N)
t )t≥0 are i.i.d. standard Brownian motions on R

d . From
a partial differential equations point of view, the probability measure PN is the
steady state solution of the Fokker–Planck evolution equation ∂t − L = 0 where L

is the elliptic Markov diffusion operator (second-order linear differential operator
without constant term)

L := αN

βN

(� − βN∇HN · ∇),

acting as Lf = αN

βN
(�f − 〈βN∇HN,∇f 〉). This self-adjoint operator in L2(PN)

is the infinitesimal generator of the Markov semigroup (Pt )t≥0, Pt(f )(x) :=
E(f (Xt)|X0 = x). Let us take αN = βN for convenience. In the case where
V (x) = |x|2 and W ≡ 0 (no interaction), then PN is a standard Gaussian law
N (0, IdN) on (Rd)N , and (Xt)t≥0 is an Ornstein–Uhlenbeck Gaussian process;
while in the case where d = 1 and V (x) = |x|2 and W(x,y) = −β log |x − y| of
some fixed parameter β > 0, then PN is the law of the spectrum of a β-Ensemble
of random matrices, and (Xt)t≥0 is a so-called Dyson Brownian motion [3]. If
μN,t is the law of Xt , then EμN,t → EμN weakly as t → ∞. The study of the
dynamic aspects is an interesting problem connected to McKean–Vlasov models
[16, 23, 41, 42, 51].

1.5.11. Calogero–(Moser–)Sutherland–Schrödinger operators. Let us keep
the notation used above. We define UN := βNHN , and we take βN = N2 for sim-
plicity. Let us consider the isometry � : L2(PN) → L2(dx) defined by

�(f )(x) := f (x)

√
dPN(x)

dx
= f (x)e−(1/2)(UN(x)+log(ZN)).

The differential operator S := −�L�−1 is a Schrödinger operator

S := −�L�−1 = −� + Q, Q := 1
4 |∇UN |2 − 1

2�UN

which acts as Sf = −�f + Qf . The operator S is self-adjoint in L2(dx). Being
isometrically conjugated, the operators −L and S have the same spectrum, and
their eigenspaces are isometric. In the case where V (x) = |x|2 and W ≡ 0 (no
interactions), we find that and Q = 1

2(1−V ), and S is a harmonic oscillator. On the
other hand, following [24], Proposition 11.3.1, in the case d = 1 and W(x,y) =
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− log |x − y| (Coulomb interaction), then S is a Calogero–(Moser–)Sutherland–
Schrödinger operator,

S = −� − E0 + 1

4

N∑
i=1

x2
i − 1

2

∑
1≤i<j≤N

1

(xi − xj )2 ,

E0 := N

2
+ N(N − 1)

2
.

More examples are given in [24], Proposition 11.3.2, related to classical ensembles
of random matrices. The study of the spectrum and eigenfunctions of such opera-
tors is a wide subject, connected to Dunkl operators. These models attracted some
attention due to the fact that for several natural choices of the potentials V,W ,
they are exactly solvable (or integrable). We refer to [24], Section 11.3.1, [21],
Section 9.6, [18], Section 2.7 and references therein.

2. Proof of the large deviations principle—Theorem 1.1. The proof of The-
orem 1.1 is split is several steps.

2.1. A standard reduction. To prove Theorem 1.1, we will use the following
standard reduction; see, for instance, [19], Chapter 4.

PROPOSITION 2.1 (Standard reduction). Let (QN)N be a sequence of prob-
ability measures on some Polish space (X , d), (ZN)N and (εN)N two sequences
of positive numbers with εN → 0 and I :X → R ∪ {+∞} be a function bounded
from below.

(1) Suppose that the sequence (QN)N satisfies the following conditions:

(a) The sequence (ZNQN)N is exponentially tight: for all L ≥ 0 there exists a
compact set KL ⊂ X such that

lim sup
N→∞

εN logZNQN(X \ KL) ≤ −L.

(b) For all x ∈ X ,

lim
r→0

lim sup
N→∞

εN logZNQN

(
B(x, r)

) ≤ −I(x),

where B(x, r) := {y ∈X :d(x, y) ≤ r}.
Then the sequence (ZNQN)N satisfies the following large deviation upper bound:
for all Borel set A ⊂ X , it holds

lim sup
N→∞

εN logZNQN(A) ≤ − inf
{
I(μ);μ ∈ clo(A)

}
.(2.1)
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(2) If, in addition, (ZNQN)N satisfies the following large deviation lower
bound: for any Borel set A ⊂ X ,

− inf
{
I(x);x ∈ int(A)

} ≤ lim inf
N→∞ εN logZNQN(A),(2.2)

then (QN)N satisfies the full large deviation principle with speed εN and rate
function I� = I − infx∈X I(x), namely for any Borel set A ⊂ X ,

− inf
{
I�(x);x ∈ int(A)

} ≤ lim inf
N→∞ εN logQN(A)

≤ lim sup
N→∞

εN logQN(A)

≤ − inf
{
I�(x);x ∈ clo(A)

}
.

PROOF. Let us begin by (1). Let δ > 0; by assumption, for any x ∈ X , there is
ηx > 0 such that

lim sup
N→∞

εN logZNQN

(
B(x,ηx)

) ≤ −I(x) + δ.

If F ⊂ X is compact, there is a finite family (xi)1≤i≤m of points of F such that
F ⊂ ⋃m

i=1 B(xi, ηxi
). Therefore,

lim sup
N→∞

εN logZNQN(F) ≤ lim sup
N→∞

εN log

(
N∑

i=1

ZNQN

(
B(xi, ηxi

)
))

= max
1≤i≤m

lim sup
N→∞

εN log
(
ZNQN

(
B(xi, ηxi

)
))

≤ max
1≤i≤m

−I(xi) + δ

≤ − inf
F
I + δ.

Letting δ → 0 yields to (2.1) for A = F compact.
Now if F is an arbitrary closed set, then for all L > 0, since F ∩KL is compact,

it holds

lim sup
N→∞

εN logZNQN(F)

≤ max
(
lim sup
N→∞

εN logZNQN(F ∩ KL), lim sup
N→∞

εN logZNQN

(
Kc

L

))

≤ max
(
− inf

F∩KL

I;−L
)
.

Letting L → ∞ shows that (2.1) is true for arbitrary closed sets F . Since A ⊂
clo(A), the upper bound (2.1) holds for arbitrary Borel sets A.

To prove (2), take A = X in (2.2) and (2.1) to get

lim
N→∞ εN log(ZN) = − infI ∈ R.
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Subtracting this to (2.2) and (2.1) gives the large deviations principle with rate
function I�. �

In our context, X = M1(R
d) is equipped with the Fortet–Mourier distance

(1.3).

2.2. Properties of the rate function. In the following lemma, we prove differ-
ent properties of the rate function I� including those announced in Theorem 1.1,
point (1).

LEMMA 2.2 (Properties of the rate function). Under assumptions (H1)–(H3):

(1) I� is well defined;
(2) I�(μ) < ∞ implies

∫ |V |dμ < ∞ and
∫∫ |W |dμ2 < ∞;

(3) I�(μ) < ∞ for any compactly supported probability μ with a bounded den-
sity with respect to Lebesgue;

(4) I� has is a good rate function (i.e., the levels sets {I� ≤ k} are compact).

PROOF. Let us define ϕ :Rd × R
d → (−∞,+∞] by ϕ(x, y) := 1

2(V (x) +
V (y) + W(x,y)).

(1) Since V is continuous and V (x) → ∞ as |x| → ∞ thanks to (H2), the
function V is bounded from below. Using (H3) it follows that ϕ is bounded from
below. The functional I� is thus well defined with values in [0,∞].

(2) Assume that I (μ) = ∫∫
ϕ dμ2 < ∞. Since V is bounded from below,

[V ]− ∈ L1(μ). From (H3) and the definition of ϕ,

2ϕ(x, y) = V (x) + V (y) + W(x,y) ≥ c + (1 − ε0)
(
V (x) + V (y)

)
.

Therefore

(1 − ε0)
([V ]+(x) + [V ]+(y)

) ≤ 2ϕ(x, y) − c + (1 − ε0)
([V ]−(x) + [V ]−(y)

)
,

so [V ]+ ∈ L1(μ) and
∫ |V |dμ < ∞. Since

c − ε0V (x) − ε0V (y) ≤ W(x,y) ≤ 2ϕ(x, y) − V (x) − V (y),(2.3)

this implies that W ∈ L1(μ2).
(3) It is clearly enough to prove that W is locally Lebesgue integrable on

R
d ×R

d . Let K be a compact of R
d ; according to (H2) and (H3) the function

W is bounded from below on K × K . On the other hand, letting

αK(z) = sup
{
W(x,y); |z − y| ≥ |z|, x, y ∈ K

}
,

we have W(x,y) ≤ αK(x − y), for all x, y ∈ K . Assumption (H1) then easily
implies that (x, y) 	→ αK(x − y) is integrable on K × K .



FIRST-ORDER GLOBAL ASYMPTOTICS FOR CONFINED PARTICLES 2387

(4) According to the monotone convergence theorem,

I = sup
n∈N

In, In(μ) :=
∫∫

min
(
ϕ(x, y);n)dμ(x) dμ(y).

The functions min(ϕ,n) being bounded and continuous, it follows that the
functionals In are continuous for the weak topology; see, for instance, [19],
Lemma 7.3.12. Being a supremum of continuous functions, I is lower semi-
continuous. Set b� = infϕ; we have, for every μ ∈ M1(R

d), L > 0,

I (μ) − b� =
∫∫ (

ϕ(x, y) − b�

)
dμ(x) dμ(y)

≥
∫∫

1|x|>L,|y|>L

(
ϕ(x, y) − b�

)
dμ(x) dμ(y)

≥ (bL − b�)μ
(|x| > L

)2
,

where bL := inf|x|>L,|y|>L ϕ(x, y). According to (H2) and (H3), we see that bL →
+∞ as L → +∞. Therefore, there exists L� > 0 such that bL > b� for every
L > L�. We get then for every real number r ≥ b�,

{
μ ∈ M1

(
R

d) : I (μ) ≤ r
} ⊂

{
μ ∈ M1

(
R

d) :μ
(|x| > L

) ≤
√

r − b�

bL − b�

,L > L�

}
.

Since bL → +∞ as L → +∞, the subset of M1(R
d) on the right-hand side is

tight, and the Prohorov theorem implies then that it is relatively compact for the
topology of M1(R

d). Since I is lower semi-continuous, the set {I ≤ r} is also
closed, which completes the proof. �

2.3. Proof of the upper bound. For all N ≥ 1, one denotes by QN the law of
μN = 1

N

∑N
i=1 δxi

under the probability PN defined by (1.2): QN is an element of

M1(M1(R
d)).

LEMMA 2.3 (Exponential tightness). If βN � N , then under assumptions
(H2)–(H3), the sequence of measures (ZNQN)N is exponentially tight: for all
L ≥ 0 there exists a compact set KL ⊂ M1(R

d) such that

lim sup
N→∞

logZNQN(M1(R
d) \ KL)

βN

≤ −L.(2.4)

PROOF. For any L ≥ 0, let L′ := L−c/2
1−εo

and set KL := {μ ∈ M1(R
d);∫

V dμ ≤ L′}. Since (H2) holds, V (x) → ∞ when |x| → +∞ and V is con-
tinuous. By Prohorov’s theorem on tightness, this implies that KL is compact in
M1(R

d).
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It remains to check (2.4). Let us consider the law νV ∈M1(R
d) defined by

dνV (x) := e−V (x)

CV

dx, CV :=
∫

e−V (x) dx > 0.(2.5)

Using (2.3) to bound W from below, we get

ZNQN

(∫
V dμN > L′

)

=
∫
(Rd )N

1{∫ V dμN>L′} exp
(
−βN

2

∫∫
�=

W dμ2
N − βN

∫
V dμN

)
dx

≤
∫
(Rd )N

1{∫ V dμN>L′}

× exp
(
−βN

2

∫∫
�=
(
c − εo

(
V (x) + V (y)

))
dμ2

N − βN

∫
V dμN

)
dx

=
∫
(Rd )N

1{∫ V dμN>L′}

× exp
(
−βN

2
c
N − 1

N
− βN

(
1 − εo

N − 1

N

)∫
V dμN

)
dx

= CN
V

∫
(Rd )N

1{∫ V dμN>L′}

× exp
(
−βN

2
c
N − 1

N

−
(
βN

(
1 − εo

N − 1

N

)
− N

)∫
V dμN

)
dν⊗N

V (x).

Now, if N is large enough, then βN(1 − εo
N−1
N

) ≥ N , so that

ZNQN

(∫
V dμN > L′

)

≤ CN
V exp

(
−βN

2
c
N − 1

N

)
exp

(
−
(
βN

(
1 − εo

N − 1

N

)
− N

)
L′

)
.

Therefore, when N is large enough, using the fact that βN � N ,

logZNQN(
∫

V dμN > L′)
βN

≤ N logCV

βN

− 1

2
c
N − 1

N
−

((
1 − εo

N − 1

N

)
− N

βN

)
L′

= −1

2
c − (1 − εo)L

′ + oN→∞(1)

= −L + oN→∞(1).
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This implies (2.4) and completes the proof. �

PROPOSITION 2.4 (Upper bound). If βN � N , then under assumptions
(H2)–(H3), for all r ≥ 0, for all μ ∈M1(R

d),

lim
r→0

lim sup
N→+∞

logZNQN(B(μ, r))

βN

≤ −I (μ),

where the ball B(μ, r) is defined for the Fortet–Mourier distance (1.3).

PROOF. In contrast with the proof of Lemma 2.3, our objective now is to keep
enough empirical terms inside the exponential in order to get I (μ) at the limit.
Introduce ϕ(x, y) = 1

2(W(x, y) + V (x) + V (y)), x, y ∈ R
d . According to (H3), it

holds

ϕ(x, y) ≥ c

2
+ 1 − εo

2

(
V (x) + V (y)

) ∀x, y ∈ R
d,(2.6)

for some c ∈ R and εo ∈ (0,1). Define λN = N2

(1−εo)(N−1)
, and let us bound the

function HN from below using (2.6) at the third line: for all n ∈ N, it holds

βNHN(x) = βN

(
1

2

∫∫
�=

W dμ2
N +

∫
V dμN

)

= βN

(∫∫
�=

ϕ dμ2
N + 1

N

∫
V dμN

)

≥ (βN − λN)

∫∫
�=

ϕ dμ2
N + λN

∫∫
�=

ϕ dμ2
N + βN

N
minV

≥ (βN − λN)

∫∫
�=

ϕ dμ2
N + λN

(N − 1)c

2N
+ N

∫
V dμN + βN

N
minV

≥ (βN − λN)

∫∫
ϕ ∧ ndμ2

N − (βN − λN)
n

N

+ λN

(N − 1)c

2N
+ N

∫
V dμN + βN

N
minV

= (βN − λN)

∫∫
ϕ ∧ ndμ2

N + N

∫
V dμN + o(βN),

since βN � N and λN = O(N).
Denoting by In(ν) = ∫∫

ϕ ∧ndν2, ν ∈ M1(R
d), and using the preceding lower

bound, we see that for every μ ∈ M1(R
d), r ≥ 0 and N � 1, we have

ZNQN

(
B(μ, r)

)
=

∫
(Rd )N

1B(μ,r)(μN) exp
(−βNHN(x)

)
dx
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≤ eo(βN)
∫
(Rd )N

1B(μ,r)(μN) exp
(−(βN − λN)In(μN)

) N∏
i=1

e−V (xi) dx

= CN
V eo(βN)

∫
(Rd )N

1B(μ,r)(μN) exp
(−(βN − λN)In(μN)

)
dνN

V

≤ CN
V eo(βN)e−(βN−λN) infν∈B(μ,r) In(ν),

where the definition of νV is given by (2.5).
Therefore, since βN � N and λN = O(N),

lim sup
N→+∞

logZNQN(B(μ, r))

βN

≤ − inf
ν∈B(μ,r)

In(ν).

Since ϕ ∧ n is bounded continuous, the functional In is continuous for the weak
topology. As a result, it holds

lim
r→0

inf
ν∈B(μ,r)

In(ν) = In(μ).

Finally, the monotone convergence theorem implies that supn≥1 In(μ) = I (μ),
which ends the proof. �

Using this proposition, Lemma 2.3 and the first point of Proposition 2.1, we get
the upper bound of Theorem 1.1, point (2).

2.4. The lower bound and the full LDP. In what follows, we denote by |A| the
Lebesgue measure of a Borel set A ⊂ R

n.

PROPOSITION 2.5 (Lower bound for regular probabilities). Under the as-
sumptions (H1)–(H3), if βN � N log(N), then for every probability measure μ

on R
d supported in a box B = ∏d

i=1[ai, bi], ai, bi ∈ R, with a density h with re-
spect to the Lebesgue measure such that, for some δ > 0, δ ≤ h ≤ δ−1 on B , it
holds

lim inf
N→∞

logZNQN(B(μ, r))

βN

≥ −I (μ) ∀r ≥ 0,

where B(μ, r) is the open ball of radius r centered at μ for the Fortet–Mourier
distance (1.3).

If B is the box
∏d

k=1[ak, bk] in R
d , let l(B) and L(B) be the minimum (resp.,

maximum) edge length

l(B) = min
1≤k≤d

(bk − ak), L(B) = max
1≤k≤d

(bk − ak).

We admit for a moment the following result:
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LEMMA 2.6 (Existence of nice partitions). For all d and all δ > 0 there exists
a constant C(d, δ) such that the following holds. For any box B , any integer n,
and any measure μ with a density h w.r.t. Lebesgue measure, if δ ≤ h ≤ δ−1, then
there exists a partition (B1,B2, . . . ,Bn) of B in n sub-boxes, such that:

(1) B is split in equal parts: for all i, μ(Bi) = 1
n
μ(B);

(2) the edge lengths of the Bi are controlled

1

C(d, δ)n1/d
l(B) ≤ l(Bi) ≤ L(Bi) ≤ C(d, δ)

n1/d
L(B).

PROOF OF PROPOSITION 2.5. For each N we apply Lemma 2.6 to obtain a
partition of B in N boxes BN

1 , . . . ,BN
N . Let dN be the maximum diameter of the

boxes: by the lemma, since μ(B) = 1,
c1

N1/d
≤ l

(
BN

i

)
and dN := max

1≤i≤N
sup

x,y∈BN
i

|x − y| ≤ c2

N1/d
,

where c1 and c2 only depend on B , d and δ.
Note that, for all 1-Lipschitz function f with ‖f ‖∞ ≤ 1, if xi ∈ BN

i for all
i ≤ N , since μ(Bi) = 1/N we have∣∣∣∣∣ 1

N

N∑
i=1

f (xi) −
∫

f dμ

∣∣∣∣∣ ≤
N∑

i=1

∫
BN

i

∣∣f (x) − f (xi)
∣∣dμ(x)

≤ dN.

If N is large enough, dN ≤ r , which implies that{
(x1, . . . , xn) ∈ BN

1 × · · · × BN
N

} ⊂ {
μN ∈ B(μ, r)

}
.

Let us denote by CN
i ⊂ BN

i the box obtained from BN
i by an homothetic transfor-

mation of center the center of BN
i and ratio (say) 1/2. It holds

ZNQN

(
B(μ, r)

) ≥ exp

(
−βN

N

N∑
i=1

max
CN

i

V − βN

N2

∑
i<j

max
CN

i ×CN
j

W

)
N∏

i=1

∣∣CN
i

∣∣.
Since |CN

i | ≥ (l(BN
i )/2)d ≥ c3/N for some absolute constant c3, we have

log
∏N

i=1 |CN
i |

βN

≥ N log(c3)

βN

− N log(N)

βN

−→
N→∞ 0,

and thus we conclude that

lim inf
N→+∞

log (ZNQN(B(μ, r)))

βN

≥ − lim sup
N→∞

1

N

N∑
i=1

max
CN

i

V − lim sup
N→∞

1

N2

∑
i<j

max
CN

i ×CN
j

W.
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For all N , consider the locally constants functions VN :B → R and WN :B ×B →
R defined by

∀x ∈ BN
i VN(x) := max

CN
i

V

and

∀(x, y) ∈ BN
i × BN

j WN(x, y) := max
CN

i ×CN
j

W.

Since μ(BN
i ) = 1/N , it holds

1

N

N∑
i=1

max
CN

i

V =
∫
B

VN(x) dμ(x)

and
1

N2

∑
i<j

max
CN

i ×CN
j

W = 1

2

∫
x �=y

WN(x, y) dμ(x) dμ(y).

The uniform continuity of V on B immediately implies that VN converges uni-
formly to V , and so ∫

VN dμ →
∫

V dμ.

For the same reason WN converges uniformly to W on

(B × B) ∩ {
(x, y) ∈R

d ×R
d; |x − y| ≥ u

}
,

for all u > 0. According to (H2) and (H3), the function W is bounded from below
on B × B . It follows that the functions WN are bounded from below by some con-
stant independent on N . To apply the dominated convergence theorem, it remains
to bound WN from above by some integrable function. Let

αB(u) := sup
|x−y|≥u

W(x, y),

so that W(x,y) ≤ αB(|x − y|). Obviously

max
(x,y)∈BN

i ×BN
j

|x − y| ≤ 2dN + min
(x,y)∈CN

i ×CN
j

|x − y|.

By construction, since i �= j , we have

min
(x,y)∈CN

i ×CN
j

|x − y| ≥ 1

4

(
l
(
BN

i

) + l
(
BN

j

)) ≥ c1

4
N−1/d ≥ c1

4c2
dN.

Therefore, there is an absolute constant c4 such that

min
(x,y)∈CN

i ×CN
j

|x − y| ≥ c4 max
(x,y)∈BN

i ×BN
j

|x − y|.
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Since the function αB is nonincreasing, it holds

max
CN

i ×CN
j

αB

(|x − y|) ≤ min
(x,y)∈BN

i ×BN
j

αB

(
c4|x − y|).

We conclude from this that WN(x, y) ≤ αB(c4|x − y|), x �= y. It follows from as-
sumption (H1) that the function αB(c4|x − y|) is integrable on B ×B with respect
to Lebesgue measure. Since the density of μ with respect to Lebesgue is bounded
from above this function is integrable on B × B with respect to μ2. Applying the
dominated convergence theorem, we conclude that

lim inf
N→∞

log (ZNQN(B(μ, r)))

βN

≥ −
∫

V (x)dμ(x) − 1

2

∫∫
W(x,y) dμ(x)dμ(y)

= −I (μ). �

Let us now prove that “nice” partitions exist.

PROOF OF LEMMA 2.6. The proof is an induction on the dimension d .
Base case. Let d = 1, and suppose that B = [a0, b0]. Since μ has a density, there

exist “quantiles” a0 = q0 < q1 < · · · < qn = b0 such that

∀1 ≤ i ≤ n μ
([qi−1, qi]) = 1

n
μ(B).

In this simple case l(B) = L(B) = b0 − a0 and l(Bi) = L(Bi) = (qi − qi−1). The
boundedness assumption on h implies that

δ(qi − qi−1) ≤ μ
([qi−1, qi]) ≤ 1

δ
(qi − qi−1),

δ(b0 − a0) ≤ μ(B) ≤ 1

δ
(b0 − a0),

and the claim holds for d = 1 with C(1, δ) = 1/δ2.
Induction step. Suppose that the statement holds for a dimension d − 1. Let

B = [a0, b0] × B ′ be a box in dimension d [where B ′ is a (d − 1)-dimensional
box]. Let μ0 be the first marginal of μ (this is a measure on [a0, b0] ⊂ R).

Let b = �n1/d� be the integer part of n1/d , and let b0 = 1/(21/d − 1). If b ≤ b0,
we reason as in the base case, on the one-dimensional measure μ0, to find a parti-
tion of B in n slices of mass μ(B)/n. Since the number of slices is less than the
constant (b0 + 1)d , the edge length is controlled as needed.

If b > b0, we look for a decomposition of n as a sum of b integers ni , each as
close to n(d−1)/d as possible: the idea is to cut B along the first dimension in b

slices, and to apply the induction hypothesis to cut the slice i in ni parts.
To this end, decompose the integer n in base b

∃α0, α1, . . . , αd ∈ {0, . . . , b − 1}d+1 n =
d∑

k=0

αkb
k.
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The condition b > b0 guarantees that b + 1 < 21/db, which implies that αd = 1.
Therefore,

∃α0, α1, . . . , αd−1 ∈ {0, . . . , b − 1}d n = bd +
d−1∑
k=0

αkb
k.

Writing αk = ∑b
i=1 1{i≤αk} we get

n =
b∑

i=1

(
bd−1 +

d−1∑
k=0

1{i≤αk}bk

)
=

b∑
i=1

ni,

where ni = bd−1 + ∑d−1
k=0 1{i≤αk}bk . From this expression, we get the bound

bd−1 ≤ ni ≤ (bd − 1)/(b − 1). Since k − 1 ≥ k/2 whenever k ≥ 2, using the in-
equalities b ≤ n1/d and b ≥ n1/d − 1 ≥ 1

2n1/d , we get

1

2d−1 n(d−1)/d ≤ ni ≤ 2n(d−1)/d .

Now let us cut B along its first dimension. Recall that μ0 is the first marginal
of μ. By continuity there exist quantiles a0 = q0 < q1 < · · · < qb = b0 such that

∀1 ≤ i ≤ b μ1
([qi−1, qi]) = μ

([qi−1, qi] × B ′) = ni

n
μ(B).

We apply the induction hypothesis separately for each 1 ≤ i ≤ b, to the (d − 1)-di-
mensional box B ′, with the measure

μi(·) = μ
([qi−1, qi] × ·)

and the integer ni to obtain a decomposition B ′ = ⋃ni

j=1 B ′
i,j such that:

(1) the edge lengths B ′
i,j are controlled;

(2) μi(B
′
i,j ) = 1

ni
μi(B

′).

Finally, for all 1 ≤ i ≤ b and all 1 ≤ j ≤ ni , let

Bi,j = [qi−1, qi] × B ′
i,j .

Let us check that the partition B = ⋃
i

⋃
j Bi,j satisfies the requirements. By

definition,

μ(Bi,j ) = μi

(
B ′

i,j

) = 1

ni

μi

(
B ′) = 1

n
μ(B),

so the first requirement is met. To control the edge lengths, first remark that

l(B) = min
(
b0 − a0, l

(
B ′)), L(B) = max

(
b0 − a0,L

(
B ′)),

l(Bi,j ) = min
(
qi − qi−1, l

(
B ′

i,j

))
, L(Bi,j ) = max

(
qi − qi−1,L

(
B ′

i,j

))
.
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By the induction hypothesis, the bounds on ni and the fact that L(B ′) ≤ L(B) we
get

L
(
B ′

i,j

) ≤ C(d − 1, δ)

n
1/(d−1)
i

L
(
B ′)

≤ 2C(d − 1, δ)

n1/d
L(B).

On the other hand, reasoning as in the proof of the base case,

(qi − qi−1)
∣∣B ′∣∣ ≤ 1

δ

ni

n
μ(B),

μ(B) ≤ 1

δ
(b0 − a0)

∣∣B ′∣∣
so

(qi − qi−1) ≤ (b0 − a0)δ
−2 ni

n
≤ L(B)

2δ−2

n1/d
.

Therefore L(Bi,j ) ≤ C(d, δ)n−1/dL(B). The proof of the lower bound on l(Bi,j )

follows the same lines and is omitted. This completes the induction step, and the
lemma is proved. �

COROLLARY 2.7 (Lower bound). Under assumptions (H1)–(H3), if βN �
N log(N), then for all A ⊂ M1(R

d), it holds

lim inf
N→∞

logZNQN(A)

βN

≥ − inf
{
I (η);η ∈ int(A), η � Lebesgue

}
.

PROOF. Let A ⊂ M1(R
d) be a Borel set, and let η ∈ int(A) be absolutely

continuous with respect to Lebesgue with density h and such that I (η) < +∞.
For some sequence (εn)n≥1 converging to 0, let us define, for all n ≥ 1,

ηn := (1 − εn)νn + εnλn,

where dνn(x) = 1
Cn

min(h(x);n)1[−n;n]d (x) dx and dλn(x) = 1
(2n)d

1[−n;n]d (x) dx,
where the normalizing constant Cn → 1, when n → +∞.

According to point (3) of Lemma 2.2, we see that

I (νn) < ∞, I (λn) < ∞,

∫∫
ϕ(x, y) dνn(x) dλn(y) < ∞,

where ϕ(x, y) := 1
2(V (x) + V (y) + W(x,y)) (this function takes its values

in (−∞,+∞] and is bounded from below thanks to (H3); see the proof of
Lemma 2.2). It holds

I (ηn) = (1 − εn)
2I (νn) + 2εn(1 − εn)

∫∫
ϕ(x, y) dνn(x) dλn(y) + ε2

nI (λn).
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Choose εn converging to 0 sufficiently fast so that the last two terms above con-
verge to 0 when n → ∞. According to point (1) of Lemma 2.2, V ∈ L1(μ) and
W ∈ L1(μ2); it follows then easily from the dominated convergence theorem that
I (νn) → I (η) when n → ∞ and that ηn converges to η for the weak topology.

Let r > 0 be such that B(η,2r) ⊂ A; for all n large enough, B(ηn, r) ⊂
B(η,2r) ⊂ A. Since ηn satisfies the assumptions of Proposition 2.5, we conclude
that for n large enough,

lim inf
N→∞

logZNQN(A)

βN

≥ lim inf
N→∞

logZNQN(B(ηn, r))

βN

≥ −I (ηn).

Letting n → ∞ and optimizing over {η ∈ A,η � Lebesgue} gives the conclusion.
�

END OF THE PROOF OF THEOREM 1.1. The properties of I� and the upper
bound in point (2) are already known. The lower bound of point (2) is given by
Corollary 2.7.

To prove point (3), let A ⊂ M1(R
d) be some Borel set and take μ ∈ int(A).

According to assumption (H4), there exists a sequence of absolutely continuous
probability measures νn converging weakly to μ and such that I (νn) → I (μ),
when n → ∞. For all n large enough, νn ∈ A so applying Corollary 2.7, we con-
clude that

lim inf
N→∞

logZNQN(A)

βN

≥ −I (νn).

Letting n → ∞ and then optimizing over μ ∈ int(A) we arrive at

lim inf
N→∞

logZNQN(A)

βN

≥ − inf
{
I (μ);μ ∈ int(A)

}
.

According to point (2) of Proposition 2.1, we conclude that QN obeys the full
LDP. �

2.5. Proof of the almost-sure convergence. Let us establish the last part of
Theorem 1.1. First note that since I� has compact sublevel sets and is bounded
from below, I� attains is infimum, so Imin is not empty. For an arbitrary fixed
real ε > 0, consider the complement of the ε-neighborhood of Imin for the Fortet–
Mourier distance

Aε := (Imin)
c
ε := {

μ ∈ M1 :dFM(μ, Imin) > ε
}
.

Since I is lower semi-continuous, cε := infμ∈Aε I (μ) > 0, thus P(μN ∈ Aε) ≤
exp(−βNcε), by the upper bound of the full large deviation principle. By the first
Borel–Cantelli lemma, it follows that almost surely, limN→∞ dFM(μN, Imin) = 0.
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2.6. Sufficient conditions for (H4). The following proposition gives several
sufficient conditions under which assumption (H4) holds true. Even if some of
these conditions are quite general, it is an open problem to find an even more
general and natural condition. One may possibly find some inspiration in [9].

PROPOSITION 2.8 [Sufficient conditions for (H4)]. Let V :Rd → R and
W :Rd × R

d → (−∞,+∞] be symmetric, finite on R
d × R

d \ {(x, x);x ∈ R
d}

and such that (H2) and (H3) hold true. Assumption (H4) holds in each of the fol-
lowing cases:

(1) W is finite and continuous on R
d ×R

d ;
(2) for all x ∈ R

d , the function y 	→ W(x,y) is super harmonic, that is, W sat-
isfies

W(x,y) ≥ 1

|B(y, r)|
∫
B(y,r)

W(x, z) dz ∀r > 0,

where |B(y, r)| denotes the Lebesgue measure of the ball of center y and radius r ;
(3) the function W is such that W(x + a, y + a) = W(x,y) for all x, y, a ∈ R

d

and the function J defined by

J (μ) =
∫∫

W(x,y) dμ(x)dμ(y)(2.7)

is convex on the set of compactly supported probability measures.

PROOF. Let μ ∈ M1(R
d) be such that I (μ) < ∞. Recall that, according to

point (1) of Lemma 2.2, under assumptions (H2)–(H3), the condition I (μ) < ∞
implies that ∫

|V |dμ < +∞ and
∫∫

|W |dμ2 < +∞.

Moreover, it follows from (H2) and (H3) that W is bounded from below on ev-
ery compact, and so the definition (2.7) of J (μ) makes sense if μ is compactly
supported.

For all R > 0, let us define μR as the normalized restriction of μ to [−R;R]d .
Using the dominated convergence theorem and point (1) of Lemma 2.2, it is
not hard to see that μR converges weakly to μ and that I (μR) → I (μ) when
R → +∞. To regularize μR , we consider μR,ε = Law(XR + εU), ε ≤ 1, where
XR is distributed according to μR and U is uniformly distributed on the Euclidean
unit ball B1 of Rd . It is clear that μR,ε has a density with respect to Lebesgue mea-
sure. Moreover, μR,ε → μR , when ε → 0. Indeed, if f :Rd → R is continuous, it
is bounded on [−R;R]d + B1, and it follows that∫

f dμR,ε = E
[
f (XR + εU)

] →
ε→0

E
[
f (XR)

]
.
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This applies in particular to f = V . Now let us show in each cases that J (μR,ε)

converges to J (μR), when ε goes to 0. Let us write

J (μR,ε) = E
[
W(XR + εU,YR + εV )

]
,

where XR,YR,U,V are independent and such that YR
(d)= XR and V

(d)= U .

(1) If W is finite and continuous on R
d ×R

d , then using the boundedness of W

on ([−R;R]d + B1) × ([−R;R]d + B1), it follows that J (μR,ε) → J (μR) when
ε → 0.

(2) If W is super harmonic, then Wε(x, y) := EU,V [W(x + εU,y + εV )] ≤
W(x,y) for all x, y. Moreover, it follows from the continuity of W outside the
diagonal that, for all x �= y, Wε(x, y) → W(x,y) when ε → 0. Since I (μ) < +∞,
μ does not have atoms, and so the diagonal is of measure 0 for μ2. It follows from
the dominated convergence theorem that J (μR,ε) → J (μR) as ε → 0.

(3) Denoting by μx
R the law of XR + x, we see that μR,ε = EU [μεU

R ]. There-
fore, the convexity of J yields to

J (μR,ε) ≤ EU

[
J
(
μεU

R

)]
= EU

[∫∫
W(x + εU,y + εU)dμR(x) dμR(y)

]
= J (μR),

where the last equality comes from the property W(x + a, y + a) = W(x,y). On
the other hand, Fatou’s lemma implies that lim infε→0 J (μR,ε) ≥ J (μR). There-
fore J (μR,ε) → J (μR), when ε goes to 0.

We conclude from the above discussion that for any δ > 0, it is possible to choose
R sufficiently large and then ε sufficiently small so that dFM(μR,ε,μ) ≤ δ and
|I (μR,ε) − I (μ)| ≤ δ. This completes the proof. �

3. Tools from potential theory. In this section, we recall results from poten-
tial theory that will prove useful when we discuss the proof of Theorem 1.2 and
Corollary 1.3. There are many textbooks on potential theory, with different point
of views; our main source is [35], where the Riesz case is well-developed.

In this section, and unless otherwise stated, we set kα := k�α and we take
W(x,y) := kα(x − y), 0 < α < d , d ≥ 1. We denote, respectively, by M1 ⊂
M∞ ⊂ M+ ⊂ M± the sets of probability measures, of positive measures inte-
grating kα(·)1|·|>1, of positive measures, and of signed measures on R

d .

3.1. Potentials and interaction energy. We benefit from the constant sign of
the Riesz kernel: kα ≥ 0, contrary to the Coulomb kernel in dimension d = 2 and
its logarithm. Following [35], page 58, the potential of μ ∈ M+ is the function
U

μ
α :Rd → [0,∞] defined for every x ∈ R

d by

Uμ
α (x) :=

∫
W(x,y) dμ(y) =

∫
kα(x − y)dμ(y).(3.1)



FIRST-ORDER GLOBAL ASYMPTOTICS FOR CONFINED PARTICLES 2399

Note that U
μ
α (x) = ∞ if μ has a Dirac mass at point x. By using the Fubini

theorem, for every μ ∈ M+, we have U
μ
α < ∞ Lebesgue almost everywhere if

and only if μ ∈ M∞. This explains actually the condition 0 < α < d taken in
the Riesz potential, which is related to polar coordinates (dx = rd−1 dr dσd ). In
fact if μ ∈ M∞, then U

μ
α is a locally Lebesgue integrable function. Moreover, as

Schwartz distributions, we have U
μ
α = kα ∗ μ and, with the notation of (1.7),

−cα�αUμ
α = (−cα�αkα) ∗ μ = μ.

The interaction energy is the quadratic functional Jα :M+ 	→ [0,∞] defined by

Jα(μ) :=
∫∫

W(x,y) dμ(x)dμ(y) =
∫

Uμ
α dμ.

Note that Jα(μ) = ∞ if μ has a Dirac mass, and in particular Jα(μN) = ∞.
In the Coulomb case where α = 2, we have c2J2(μ) = − ∫

U
μ
2 �U

μ
2 dx =∫ |∇U

μ
2 |2 dx. The quantity ∇U

μ
2 is the (electric) field generated by the (Coulomb)

potential U
μ
2 , and this explains the term “carré-du-champ” (“square of the field”

in French) used for J2(μ).

LEMMA 3.1 (Positivity and convexity on M+).

• for every μ ∈M+ we have Jα(μ) ≥ 0 with equality if and only if μ = 0;
• Jα :M+ 	→ [0,∞] is strictly convex: for every μ,ν ∈ M+ with μ �= ν, we have

∀t ∈ (0,1) Jα

(
tμ + (1 − t)ν

)
< tJα(μ) + (1 − t)Jα(ν);

• Eα,+ := {μ ∈ M+ :Jα(μ) < ∞} is a convex cone.

We recall that in classical harmonic analysis, a function K :R × R → R is
called a positive definite kernel when

∑n
i=1 xiK(xi, xj )x̄j ≥ 0 for every n ≥ 1

and every x ∈ C
n. If this holds only when x1 + · · · + xn = 0, the kernel is said

to be weakly positive definite. The famous Bochner theorem states that a kernel
is positive definite if and only if it is the Fourier transform of a finite Borel mea-
sure. The famous Schoenberg theorem states for every f :R+ → R+, the kernel
(x, y) 	→ f (|x − y|2) is positive definite on R

d for every d ≥ 1 if and only if f is
the Laplace transform of a finite Borel measure on R+. The famous Bernstein the-
orem states that if f :R→R is continuous and C∞((0,∞)), then f is the Laplace
transform of a finite Borel measure on R+ if and only if f is completely monotone:
(−1)nf (n) ≥ 0 for every n ≥ 0. For all these notions, we refer to [6, 34].

The proof of Lemma 3.1 is short and self-contained. It relies on the fact that
the convexity of the functional is equivalent to the fact that W is a weakly positive
definite kernel, which is typically the case when W is a mixture of shifted Gaussian
kernels, which are the most useful weakly positive definite kernels. For example,
this works if for some arbitrary measurable α,β :R → R and Borel measure η,
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and every x, y ∈ R
d ,

W(x,y) = w
(|x − y|) =

∫ ∞
0

(
e−α2(t)|x−y|2 + β(t)

)
dη(t).

The shift β can be < 0, which allows nonpositive definite kernels such as the
logarithmic kernel (note that the Riesz kernel is positive definite). The method is
used for the logarithmic kernel in [4], Proof of Property 2.1(4), with the following
mixture:

log
1

|x − y| =
∫ ∞

0

1

2t

(
e−|x−y|2/(2t) − e−1/(2t))dt.

This kernel has a sign change and a double singularity near zero and infinity, which
can be circumvented by using a cutoff. Alternatively, one may proceed by regu-
larization and use the Bernstein theorem with the completely monotone function
f (t) = (ε + t)−β , β, ε > 0, and then the Schoenberg theorem; see, for exam-
ple, [39]. For instance, for the logarithmic kernel, the following representation is
used in [30], Chapter 5:

log
1

ε + |x − y| =
∫ ∞

0

(
1

ε + 1 + |x − y| − 1

1 + t

)
dt.

Finally, let us mention that for the Riesz kernel, yet another short proof of
Lemma 3.1, based on the formula kα = ckα/2 ∗ kα/2, can be found in [35], Theo-
rem 1.15, page 79.

PROOF OF LEMMA 3.1. Set β := d − α. We start from the identity

�(1 + α) = c1+α
∫ ∞

0
tαe−ct dt, c > 0, α > −1.

Taking c = |x − y|2 and 1 + α = β/2, we get, for every x, y ∈ R
d ,

kα(x − y) =
∫ ∞

0
f (t)e−t |x−y|2 dt where f (t) := tβ/2−1

�(β/2)
.

Now for every μ ∈ M+ such that Jα(μ) < ∞,

Jα(μ) =
∫ ∞

0
f (t)

(∫∫
e−t |x−y|2 dμ(x) dμ(y)

)
dt.

Expressing the Gaussian kernel as the Fourier transform of a Gaussian kernel, we
get, by writing ei〈x−y,w〉 = ei〈x,w〉e−i〈y,w〉 and using the Fubini theorem,∫∫

e−t |x−y|2 dμ(x) dμ(y)

= (4πt)−d/2
∫∫ (∫

Rd
ei〈x−y,w〉e(1/(4t))|w|2 dw

)
dμ(x) dμ(y)

= (4πt)−d/2
∫
Rd

∣∣∣∣
∫

ei〈x,w〉 dμ(x)

∣∣∣∣2︸ ︷︷ ︸
Kw(μ)

e−(1/(4t))|w|2 dw.
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Now Kw is clearly convex since for every μ,ν ∈ M1(R
d) and every t ∈ (0,1),

tKw(μ) + (1 − t)Kw(ν) − Kw(tμ + (1 − t)ν)

t (1 − t)

= Kw(μ − ν) =
∣∣∣∣
∫

ei〈x,w〉 d(μ − ν)(x)

∣∣∣∣2 ≥ 0.

It follows then that Jα is also convex as a conic combination of convex function.
Let us establish now the strict convexity of Jα . Let us suppose that μ,ν ∈ M1(R

d)

with Jα(μ) < ∞ and Jα(ν) < ∞ and tJα(μ) + (1 − t)Jα(ν) = Jα(tμ + (1 − t)ν)

for some t ∈ (0,1). Then

Jα(μ − ν) = tJα(μ) + (1 − t)Jα(ν) − Jα(tμ + (1 − t)ν)

t (1 − t)
= 0.

Arguing as before, we find

0 = Jα(μ − ν) =
∫ ∞

0
f (t)

[
(4πt)−d/2

∫
Rd

Kw(μ − ν)e−(1/(4t))|w|2 dw

]
dt.

Hence, for every t > 0 (a single t > 0 suffices in what follows),∫
Rd

Kw(μ − ν)e−(1/(4t))|w|2 dw = 0.

Thus, the Fourier transform of μ − ν vanishes almost everywhere, and therefore
μ = ν.

Finally, Eα,+ is clearly a cone, and its convexity comes from the convexity of Jα .
�

Following [35], page 62, for any μ = μ+ − μ− ∈ M± such that μ± ∈ M∞,
we have U

μ±
α < ∞ Lebesgue almost everywhere, and we may define for Lebesgue

almost every x

Uμ
α (x) := Uμ+

α (x) − Uμ−
α (x) ∈ (−∞,+∞).

Following [35], page 77, for every μ = μ+ − μ− ∈ M± such that μ± ∈ M∞ and∫
Uμ+

α dμ− < ∞ and
∫

Uμ−
α dμ+ < ∞,

we may define Jα(μ) ∈ (−∞,+∞] as (thanks to the Fubini theorem)

Jα(μ) :=
∫

Uμ
α dμ =

∫
Uμ+

α dμ+ +
∫

Uμ−
α dμ− −

∫
Uμ+

α dμ− −
∫

Uμ−
α dμ+.

More generally, for every μ1,μ2 ∈ M± such that μ1±,μ2± ∈ M∞ and∫
Uμ1±

α dμ2∓ < ∞,
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we may define Jα(μ1,μ2) ∈ (−∞,+∞] by

Jα(μ1,μ2) :=
∫

Uμ1
α dμ2

=
∫

Uμ1+
α dμ2+ +

∫
Uμ1−

α dμ2− −
∫

Uμ1+
α dμ2− −

∫
Uμ1−

α dμ2+.

Following [35], page 78, since kα is symmetric, then the reciprocity law holds,

Jα(μ1,μ2) = Jα(μ2,μ1), i.e.,
∫

Uμ1
α dμ2 =

∫
Uμ2

α dμ1.

Let Eα be the set of elements of M± for which Jα makes sense and is finite. As
pointed out by Landkof [35] in his preface, a very nice idea going back to Cartan
consists of seeing Jα as a Hilbert structure on Eα . This idea is simply captured by
the following lemma, which is the analogue of Lemma 3.1 for signed measures of
finite energy.

LEMMA 3.2 [Properties of (Eα, Jα)].

• Jα is lower semi-continuous on Eα for the vague topology (i.e., with respect to
continuous functions with compact support);

• Eα is a vector space and (μ1,μ2) 	→ Jα(μ1,μ2) defines a scalar product on Eα .

In particular for every μ ∈ Eα , we have Jα(μ) = Jα(μ,μ) ≥ 0 with equality if
and only if μ = 0; and moreover, Jα :Eα 	→ (−∞,∞) is strictly convex: for every
μ,ν ∈ Eα with μ �= ν,

∀t ∈ (0,1)
tJα(μ) + (1 − t)Jα(ν) − Jα(tμ + (1 − t)ν)

t (1 − t)
= Jα(μ − ν) > 0.

PROOF. The lower semi-continuity for the vague convergence follows from
the fact that kα ≥ 0; see [35], page 78. The vector space nature of Eα is immediate
from its definition. The bilinearity of (μ1,μ2) 	→ Jα(μ1,μ2) is immediate. By
reasoning as in the proof of Lemma 3.1, we get Jα(μ,μ) ≥ 0 for every μ ∈ Eα ,
with equality if and only if μ = 0. �

Following [35], Theorems 1.18 and 1.19, page 90, for this pre-Hilbertian topol-
ogy, it can be shown that Eα,+ is complete while Eα is not complete if α > 1, and
that Jα is not continuous for the vague topology.

3.2. Capacity and “approximately/quasi-everywhere.” The notion of capacity
is central in Potential Theory. We just need basic facts on zero-capacity sets. Once
more we follow the presentation of Landkof [35], Chapter II.1, to which we refer
for additional details, references and proofs.

For any compact set K , consider the minimization problem

Wα(K) = inf
{
Jα(ν);ν ∈ M1 ∩ Eα, supp(ν) ⊂ K

}
.
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The boundedness of K implies that Wα(K) ∈ (0,∞]. Its inverse Cα(K) is called
the capacity of the compact set K . The capacity of K is zero if and only if there is
no measure of finite energy supported in K .

On general sets on can define an “inner capacity” and an “outer capacity” by

Cα(A) = sup
{
Cα(K),K ⊂ A,K compact

}
,

�Cα(A) = inf
{
Cα(O),A ⊂ O,O open

}
.

It can be shown (see [35], Theorem 2.8) that if A is a Borel set, these two quan-
tities coincide—A is said to be “capacitable” and the common value is called the
capacity of A.

A property P(x) is said to hold “approximately everywhere” if the set A of x

such that P(x) is false, has zero inner capacity, and “quasi-everywhere” if it has
zero outer capacity. For many “reasonable” P(x), the set A is Borel, and the two
notions coincide. The following result [35], Theorems 2.1 and 2.2, shows that, for
such “reasonable” properties, “quasi-everywhere” means “ν-almost surely, for all
measures ν of finite energy.”

THEOREM 3.3 (Zero capacity Borel sets). A Borel set A has zero capac-
ity if and only if, for any measure ν of finite energy, ν(A) = 0. In particular, if
Cα(A) > 0, A has a positive inner capacity, and there exists a compact K ⊂ A

and a probability measure ν of finite energy such that supp(ν) ⊂ K .

3.3. The Gauss averaging principle. In the classical Coulombian case (α = 2),
we will need the following result, known as Gauss’s averaging principle. In R

d ,
for all r > 0, let σr be the surface measure on the sphere ∂B(0, r); its total mass is
σdrd−1 where σd is the surface of the unit sphere.

THEOREM 3.4 (Gauss’s averaging principle). In R
d ,

1

rd−1σd

∫
∂B(0,r)

1

|x − y|d−2 dσr(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

rd−2 , if |x| < r ,

1

|x|d−2 , if |x| > r .

This result can be found in [29], Lemma 1.6.1, page 21.

4. Proof of the properties of the minimizing measure. The proof of Theo-
rem 1.2 is decomposed in two steps. We begin by proving the existence, unique-
ness and the support properties of μ� in Section 4.1. The characterization of μ� is
proved in Section 4.2.

Recall that, for a probability measure μ, we have defined

I (μ) = 1

2
Jα(μ) +

∫
V dμ.
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In this section we consider the following minimization problem:

P : inf
{
I (μ),μ ∈ M1

}
.(4.1)

4.1. Existence, uniqueness and compactness of the support. The existence of
a minimizer for P is clear since we have already seen that I has compact level
sets.

Since I (μ) < ∞ implies that μ ∈ Eα and
∫

V dμ < ∞, the problem P is equiv-
alent to

Pα : inf
{
I (μ),μ ∈ M1 ∩ Eα such that V ∈ L1(μ)

}
(4.2)

in that they have the same values and the same minimizers. Let us call p the com-
mon value.

Suppose μ and ν are two measures in M1 ∩ Eα such that V ∈ L1(μ) ∩ L1(ν).
Let ψ : t ∈ [0,1] 	→ [0,∞) by

ψ(t) := I
(
(1 − t)μ + tν

)
(4.3)

= 1

2
Jα

(
(1 − t)μ + tν

) + (1 − t)

∫
V dμ + t

∫
V dν.

By Lemma 3.2, ψ is strictly convex if μ �= ν. If μ and ν minimize I , then they are
in M1 ∩ Eα , so ψ is well defined, and since ψ(0) = I (μ) = I (ν) = ψ(1), μ must
be equal to ν. Therefore the minimizer μ� is unique.

Let us now prove that μ� has compact support. This result also holds in dimen-
sion 2 with the logarithmic potential; see [47], Theorem 1.3, page 27. To this end,
let us define, for any compact K , a new minimization problem,

PK : inf
{
I (μ),μ ∈ M1 ∩ Eα, supp(μ) ⊂ K

}
,

and let pK be the value of PK .

LEMMA 4.1 (Reduction to restricted optimization problem). Let K be a com-
pact set, and suppose that V (x) ≥ 2p + 3 when x /∈ K , where p is the common
value of P , Pα [defined by (4.1) and (4.2)]. Then the problems P and PK are
equivalent: their values p and pK are equal, the minimizer exists and is the same.
In particular, the minimizer μ� of the original problem P satisfies supp(μ�) ⊂ K .

PROOF. Suppose μ is such that I (μ) ≤ p+1. We will prove that, if μ(K) < 1,
we can find a μK , supported in K such that I (μK) < I (μ). This clearly implies
that the two values pK and p coincide. Since we know that the minimizer μ� of
the original problem exists, this also proves that it must be supported in K .

Let us now construct μK as the renormalized restriction of μ to K . First, remark
that μ(K) cannot be zero, since

p + 1 ≥ I (μ) ≥ (
1 − μ(K)

)
(2p + 3).
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Therefore we can define

μK(A) = 1

μ(K)
μ(K ∩ A).

Since by assumption μ(K) < 1, we may similarly define μKc . The measure μ is
the convex combination

μ = μ(K)μK + (
1 − μ(K)

)
μKc.

The positivity of V , W and the choice of K imply that

I (μ) = 1

2
Jα(μ) + μ(K)

∫
V dμK + (

1 − μ(K)
) ∫

V dμKc

≥ 1

2
μ(K)2Jα(μK) + μ(K)2

∫
V dμK + (

1 − μ(K)
)
(2p + 3),

since Jα(μKc) and the interaction energy Jα(μK,μKc) are both nonnegative.
Therefore

I (μ) ≥ μ(K)2I (μK) + (
1 − μ(K)

)
(2p + 3).

Assume that I (μK) ≥ I (μ). Then

I (μ)
(
1 − μ(K)2) ≥ (

1 − μ(K)
)
(2p + 3).

Using the fact that I (μ) ≤ p + 1, and dividing by 1 − μ(K), we get

2(p + 1) ≥ (p + 1)
(
1 + μ(K)

) ≥ 2p + 3,

a contradiction. Therefore I (μK) < I (μ), and the proof is complete. �

4.2. A criterion of optimality. In this section we prove the items (5), (6) and (7)
of Theorem 1.2. The corresponding result in dimension 2 for the logarithmic po-
tential can be found in [47], Theorem 3.3, page 44. We adapt it, using fully the
pre-Hilbertian structure rather than the principle of domination when it is possible.

PROOF OF ITEM (5) OF THEOREM 1.2. We already know that μ� has compact
support. The first step is to show that μ� satisfies (1.8) and (1.9). Let μ = μ�, and
let ν be in ν ∈ M1 ∩ Eα such that V ∈ L1(ν). Recall the function ψ from (4.3),

ψ(t) = I
(
(1 − t)μ� + tν

)
.

Since Jα is quadratic we get

ψ(t) =
∫

V dμ� + t

∫
V d(ν − μ�) + 1

2
Jα

(
μ� + t (ν − μ�)

)
=

∫
V dμ� + t

∫
V d(ν − μ�)

+ 1

2

(
Jα(μ�) + t2Jα(ν − μ�) + 2tJα(μ�, ν − μ�)

)
.
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Therefore,

ψ ′(t) =
∫

V d(ν − μ�) + tJα(ν − μ�) + Jα(μ�, ν − μ�).(4.4)

Since μ� minimizes I , ψ ′(0+) must be nonnegative:

0 ≤
∫

V d(ν − μ�) + Jα(μ�, ν − μ�)

≤
∫

V dν + Jα(μ�, ν) −
(∫

V dμ� + Jα(μ�)

)

≤
∫ (

V + Uμ�
α

)
dν − C�.

Therefore,

∀ν ∈ M1 ∩ Eα

∫ (
V + Uμ�

α − C�

)
dν ≥ 0.(4.5)

Since this holds for all ν, V + U
μ�
α is greater than C� quasi-everywhere. Indeed,

let A = {x,V (x)+U
μ�
α (x) < C�}. Since V +U

μ�
α is measurable this is a Borel set.

Suppose by contradiction that its capacity is strictly positive. By Proposition 3.3,
there exist a compact set K ⊂ A and a measure ν with finite energy supported in K .
For this measure

∫
V + U

μ�
α dν < C�, which contradicts (4.5). This proves (1.8).

Let us prove (1.9). Suppose V (x)+U
μ�
α (x) > C� for some x ∈ supp(μ�). Since

V + U
μ�
α is lower semi-continuous, we can find a neighborhood U of x, and an

η > 0 such that

∀x ∈ U V (x) + Uμ�
α (x) ≥ C� + η.

Therefore ∫ (
V + Uμ�

α

)
dμ� ≥ (C� + η)μ�(U) +

∫
Rd\U

(
V + Uμ�

α

)
dμ�.

Since V + U
μ�
α ≥ C� quasi-everywhere, and μ� has finite energy, this holds μ�

almost surely, so

C� =
∫

V + Uμ�
α dμ� ≥ C� + ημ�(U).

This is impossible since μ�(U) > 0, by definition of the support. Therefore (1.9)
holds. �

PROOF OF ITEM (6) OF THEOREM 1.2. Let μ ∈ Eα ∩ M1(R
d) be such that

V ∈ L1(ν). It is enough to show that, if (1.12) and (1.13) hold, then μ = μ�. We
argue by contradiction and suppose μ �= μ�. Consider again the function ψ (with
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ν = μ): ψ(t) = I ((1 − t)μ� + tμ), t ∈ [0,1]. According to Lemma 3.1, this func-
tion is strictly convex, therefore ψ ′(1) > ψ ′(0) ≥ 0. The explicit expression of ψ ′
[equation (4.4)] gives

0 < ψ ′(1) =
∫

V d(μ − μ�) + Jα(μ − μ�) + Jα(μ�,μ − μ�)

=
∫

V dμ −
∫

V dμ� + Jα(μ) − Jα(μ,μ�).

Therefore, ∫ (
Uμ

α + V
)
dμ� <

∫ (
Uμ

α + V
)
dμ.(4.6)

On the other hand, integrating (1.12) with respect to μ and (1.13) with respect to
μ� yields ∫ (

Uμ
α + V

)
dμ ≤ C ≤

∫ (
Uμ

α + V
)
dμ�,

which contradicts (4.6) and concludes the proof. �

To prove the last result of Theorem 1.2 we recall the following classical result.

THEOREM 4.2 (Principle of domination). Suppose α ≤ 2. Let μ and ν be two
positive measures in Eα , and c a nonnegative constant. If the inequality

Uμ
α (x) ≤ Uν

α(x) + c

holds μ-almost surely, then it holds for all x ∈ R
d .

PROOF. In the Coulomb case α = 2, [35], Theorem 1.27, page 110, ap-
plies, since Uν

α is positive and super-harmonic. If α < 2, the potential Uν
α is

α-superharmonic, so we can apply [35], Theorem 1.29, page 115 and get the result.
�

PROOF OF ITEM (7) OF THEOREM 1.2. We follow the proof of Theorem 1.3
in [20]. Arguing by contradiction, let us suppose that, for some measure μ, and
some ε > 0,

sup
supp(μ)

(
Uμ

α + V
) ≤ C� − ε.

By (1.9), this implies that

Uμ
α (x) + ε ≤ Uμ�

α (x),

for all x ∈ supp(μ). Let η be the equilibrium (probability) measure of
supp(μ) :Uη

α (x) = Cη on supp(μ), therefore

U
μ+(ε/Cη)η
α ≤ Uμ�

α
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for all x in supp(μ). By the principle of domination this holds at infinity. Since for

any compactly supported μ, U
μ
α (x) ∼ μ(Rd )

|x|d−α at infinity, we get a contradiction

(1 + ε/Cη) ≤ 1.

Similarly, if

“ inf
supp(μ�)

”
(
Uμ

α (x) + V (x)
)
> C�,

then U
μ
α + V ≥ C� + ε q.e. on supp(μ�), so

Uμ
α (x) ≥ Uμ�

α (x) + ε, μ�-a.s.

The same proof as before applies to get a contradiction. �

4.3. Radial external fields in the Coulomb case: Corollary 1.3. For the sake of
completeness, let us finally give a proof of the result mentioned in Corollary 1.3.

Changing V into βV , we can assume without loss of generality that β = 1.
Recall that V is supposed to be radially symmetric and of class C2: there exists

v :R+ →R such that V (x) = v(|x|).
In this case it is thus natural to look for a radially symmetric equilibrium prob-

ability measure. Guided by the results of [47], let us consider an absolutely con-
tinuous probability measure μ, such that supp(μ) = {x ∈ R

d; r0 ≤ |x| ≤ R0} for
some 0 ≤ r0 < R0 and such that dμ = M(r)dσr dr , where M : [r0,R0] → R+ is
assumed to be continuous.

First let us calculate the potential of μ. Using the Gauss’s averaging principle
(Theorem 3.4), it holds

U
μ
2 (x) =

∫∫
M(r)W(x, y) dσr(y) dr

=
∫

M(r)

∫
∂B(0,r)

1

|x − y|d−2 dσr(y) dr

(4.7)

= σd

∫
M(r)rd−1

(
1{|x|>r}
|x|d−2 + 1{|x|≤r}

rd−2

)
dr

= σd

|x|d−2

∫ |x|
0

M(r)rd−1 dr + σd

∫ ∞
|x|

M(r)r dr.

Thus U
μ
2 (x) = u(|x|), for some function u of class C1.

Now, let us consider condition (1.10). It holds if and only if there exists some C

such that u(r) = C − v(r) for all r ∈ [r0,R0]. This is obviously equivalent to the
conditions u′(r) = −v′(r) for all r ∈ [r0,R0] and u(R0) = 1/Rd−2

0 = C − v(R0)

[here we use that σd

∫ R0
0 M(r)rd−1 dr = 1]. Observing that

u′(r) = −σd(d − 2)

rd−1

∫ r

0
M(t)td−1 dt,
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we see that u′ = −v′ on [r0,R0] if and only if u′(R0) = −v′(R0) which amounts
to w(R0) = d − 2 and M(t) = 1

σd(d−2)
ω′(t)
td−1 , for all t ∈ [r0,R0], where we recall

that w(t) = td−1v′(t), t ≥ 0. The condition σd

∫ R0
0 M(r)rd−1 dr = 1 implies that

1
d−2(w(R0) − w(r0)) = 1 and so w(r0) = 0. In the case where w is increasing,
this determines uniquely r0 = 0 and R0 = w−1(d − 2). In the case where v is
supposed to be convex, we see that w is increasing on [a0,∞[ with a0 = inf{t >

0;v′(t) > 0} and w ≤ 0 on [0, a0]. Therefore R0 is uniquely defined and reasoning
on the support of μ easily yields to the conclusion that r0 = a0. In all cases, the
probability μ is uniquely determined and C = 1/Rd−2

0 + v(R0).
It remains to check that this probability μ satisfies also condition (1.11). If r =

|x| ≥ R0, then U
μ
2 (x) + V (x) = 1

rd−2 + v(r) ≥ 1
Rd−2

0
+ v(R0) = C, since it is easy

to check that r 	→ 1
rd−2 + v(r) is increasing on [R0,∞). In the case where v is

convex and r ≤ r0, an integration by parts yields to

U
μ
2 (x) = 1

d − 2

∫ R0

r0

w′(t)
td−2 dt = 1

d − 2

∫ R0

r0

(d − 1)v′(t) + tv′′(t) dt

= v(R0) − v(r0) + 1

Rd−2
0

= C − v(r0) ≥ C − v(r),

since v is nonincreasing on [0, r0]. Therefore, in all cases U
μ
2 (x) + V (x) ≥ C for

every x ∈ R
d , which completes the proof of the characterization of the equilibrium

measure.
Finally, if the external field V is quadratic, that is, if v(r) = r2, then w(r) = 2rd

and so r0 = 0, R0 = ((d − 2)/2)1/d and M(r) = 2d
σd(d−2)

1{|x|≤R0}. In other words,
the equilibrium probability measure is uniform on the ball centered in 0 and of
radius ((d − 2)/2)1/d .

4.4. Prescribed equilibrium measure. In this section we prove Corollary 1.4.
We will need the following elementary lemma.

LEMMA 4.3 (Regularity of Riesz potential). Let 0 < α < d , d ≥ 1, and let μ

be a probability measure with a density f ∈ Lp
loc(R

d) for some p > d/α. Then U
μ
α

is continuous and finite everywhere on R
d .

PROOF. For all n ≥ 1, define

Rn(x) :=
∫

f (y)min
(
n;k�α(x − y)

)
dy

and

Sn(x) := Uμ
α (x) − Rn(x) =

∫
f (y)

[
k�α(x − y) − n

]
+ dy.
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It follows from the dominated convergence theorem that Rn is continuous on R
d .

Let us show that Sn converges to 0 uniformly on compact sets, which will prove
the claim. Let q := p/(p − 1) be the conjugate exponent of p; applying Hölder
inequality yields to

0 ≤ Sn(x) ≤
∫

f (y)
1

|x − y|d−α
1B(x,n−1/(d−α))(y) dy

≤ ‖f ‖p,B(x,1)

(∫ 1

|x − y|q(d−α)
1B(x,n−1/(d−α))(y) dy

)1/q

= ‖f ‖p,B(x,1)εn,

where εn := σ
1/q
d (

∫ n−1/(d−α)

0
1

uq(d−α)−d+1 du)1/q and where σd is the surface of the
unit Euclidean ball. The condition p > d/α is equivalent to q(d − α) − d + 1 < 1
and so εn is finite for all n and εn → 0 as n → ∞. We conclude from this that if
K is a compact set of Rd and K1 = {x ∈ R

d;d(x,K) ≤ 1}, it holds

sup
x∈K

|Sn|(x) ≤ ‖f ‖p,K1εn,

which completes the proof. �

PROOF OF COROLLARY 1.4. Lemma 4.3 above shows that U
μ�
α is continuous

and everywhere finite on R
d . Since μ� is compactly supported, U

μ�
α (x) → 0 as

|x| → ∞. Therefore V (x) → ∞, when |x| → ∞. This proves (H2). The other
assumptions are straightforward. By the very definition of V , it holds

Uμ�
α (x) + V (x) ≥ 0 ∀x ∈ R

d,

with equality on B(0,R) ⊇ supp(μ). According to point (6) of Theorem 1.2, this
proves that μ∗ is the (unique) minimizer of I . The last assertion follows from
point (4) of Theorem 1.2. �
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