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QUICKEST DETECTION OF A HIDDEN TARGET
AND EXTREMAL SURFACES

BY GORAN PESKIR
University of Manchester

Let Z = (Z);>0 be a regular diffusion process started at 0, let £ be an
independent random variable with a strictly increasing and continuous distri-
bution function F, and let ty = inf{t > 0|Z; = ¢} be the first entry time of Z
at the level £. We show that the quickest detection problem

irrlf[P(r <10) +cE(r —19) 1]

is equivalent to the (three-dimensional) optimal stopping problem

T
supE[Rt —/ c(R,)dt],
T 0

where R = § — [ is the range process of X =2F(Z) — 1 (i.e., the difference
between the running maximum and the running minimum of X ) and ¢(r) =
cr with ¢ > 0. Solving the latter problem we find that the following stopping
time is optimal:

T = inf{t > 0| fu (s, St) < X < g« (I, S},

where the surfaces fi and g4 can be characterised as extremal solutions to a
couple of first-order nonlinear PDEs expressed in terms of the infinitesimal
characteristics of X and c. This is done by extending the arguments associated
with the maximality principle [Ann. Probab. 26 (1998) 1614-1640] to the
three-dimensional setting of the present problem and disclosing the general
structure of the solution that is valid in all particular cases. The key arguments
developed in the proof should be applicable in similar multi-dimensional set-
tings.

1. Introduction. Imagine that you are observing a sample path 7 — Z; of the
continuous process Z started at 0 and that you wish to detect when this sample
path reaches a level £ that is not directly observable. Situations of this type occur
naturally in many applied problems, and there is a whole range of hypotheses that
can be introduced to study various particular aspects of the problem. Assuming
that Z and ¢ are independent, and denoting by 7, the first entry time of Z at ¢, it
was shown recently (see [32]) that the median/quantile rule minimises not only the
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spatial expectation E[(£ — X;)* + ¢(X; — £)™] (dating back to R. J. Boscovich
1711-1787) but also the temporal expectation E[(t; — 7)™ + ¢(t — 7,) "] over all
stopping times 7 of Z where c is a positive constant. Motivated by this develop-
ment, and seeking for further insights and connections, in this paper we study the
“mixed” variational problem

(1.1) iIrlf[P(‘E <1) +cE(x — )],

which appears in the classic formulation of quickest detection due to Shiryaev (see
[34, 35] and [33], Sections 22 and 24 and the references therein). The key differ-
ence between (1.1) and the classic formulation is that the unobservable time 7,
in (1.1) is obtained through the uncertainty in the space domain (as the first entry
time of Z at the unknown level £), while the unobservable time in the classic for-
mulation is obtained through the uncertainty in the time domain (as the unknown
level itself). Unlike the classic formulation, however, we do not assume that the
probabilistic characteristics of Z change following 7, so that there is no learning
about the position of £ through the observation of Z (quickest detection problems
of this kind require a different treatment and will be studied elsewhere). Likewise,
since the underlying loss processes t — 1(t < 74) and t — 1(t — ;)" are not
adapted to the natural filtration generated by Z (or its usual augmentation), we see
that problem (1.1) belongs to the class of “optimal prediction” problem (within op-
timal stopping). Similar optimal prediction problems have been studied in recent
years by many authors (see, e.g., [3, 4, 6-9, 13, 14, 17, 19, 27, 36-39]). It may be
noted in this context that the nonadapted factor 7, in the optimal prediction prob-
lem (1.1) is not revealed at the “end” of time (i.e., it is not measurable with respect
to the o -algebra generated by the process Z).

While the median/quantile rule was derived in [32] for general (continuous)
processes, a closer analysis of the mixed variational problem (1.1) reveals that this
generality can hardly be maintained. For this reason we restrict our attention to
a smaller class of processes and assume that Z = (Z;);>¢ is a one-dimensional
diffusion starting at 0 and solving

(12) dZIZG(Zt)dt‘i_b(Zt)dB[,

where a and b > 0 are continuous functions, and B = (B;);>¢ is a standard Brow-
nian motion. To gain tractability we also assume that the distribution function F
of £ is strictly increasing and twice continuously differentiable. In the first step we
show that problem (1.1) is equivalent to the optimal stopping problem

(1.3) sup E[R, - /r c(R,)dz],
T 0

where R = § — [ is the range process of X =2F(Z) — 1 (i.e., the difference
between the running maximum and the running minimum of X) and c(r) = cr.
This problem is of independent interest and the appearance of the range process
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is novel in this context revealing also that the problem is fully three-dimensional.
Two-dimensional versions of a related problem (when I = 0 and ¢ constant) were
initially studied and solved in important special cases of diffusion processes in
[11, 12] and [23]. The general solution to problems of this kind was derived in
the form of the maximality principle in [28]; see also Section 13 and Chapter V
in [33] and the other references therein. In these two-dimensional problems ¢ was
a function of X, instead. More recent contributions and studies of related problems
include [5, 15, 16, 20, 22, 24-26]; see also [1, 2, 21] and [29] for related results
in optimal control theory. Close three-dimensional relatives of the problem (1.3)
also appear in the recent papers [10] and [40] where the problems were effectively
solved by guessing and finding the optimal stopping boundary in a closed form.
These optimal stopping boundaries are still curves in the state space.

In this paper we show how problem (1.3) can be solved when (i) no closed-
form solution for the candidate stopping boundary is available, and (ii) the optimal
stopping boundaries are no longer curves in the state space. This is done by ex-
tending the arguments associated with the maximality principle [28] to the three-
dimensional setting of the problem (1.3) and disclosing the general structure of the
solution that is valid in all particular cases. In this way we find that that the optimal
stopping boundary consists of two surfaces which can be characterised as extremal
solutions to a couple of first-order nonlinear PDEs. More precisely, replacing c(r)
in problem (1.3) above with a more general function c(i, x, s) specified below, we
show that the following stopping time is optimal:

(1.4) T*:inf{tsz*(ltsst)fxtfg*(ltsst)},

where the surfaces f, and g, can be characterised as the minimal and maximal
solutions to

of . (@XD(f, )L (f.9)

s 3 V= ) LG 5) = LO)]
‘ fs) g | L(y) — L(i)
x [1 - G DG, ” ]
08 ;o _ @/l )L (s 5)
(1 6) os ’ C(l,g(l,S),S)[L(S)—L(g(l,S))]

s 9c . L(s)—L(y) :|
1 —(,y,8)—————d
X[ +/;,<,~,s> 25" 2oy @

staying strictly above/below the lower/upper diagonal in the state space, respec-
tively (Theorem 1). In these equations o is the diffusion coefficient and L is the
scale function of X. They can be expressed explicitly in terms of a, b and F. Re-
calling that problems (1.1) and (1.3) are equivalent, we see that this also yields the
solution to the initial problem (1.1). A plain comparison with the median/quantile
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rule from [32] shows that the structure of problem (1.1) is inherently more com-
plicated and the optimal stopping time 7, may be viewed as a nonlinear me-
dian/quantile rule. The optimal surfaces f, and g, combined with the excursions
of X away from I and S exhibit interesting dynamics (not present in the two-
dimensional setting) which we describe in fuller detail as we progress below.
This dynamics may be combined with Lagrange multipliers to tackle the con-
strained variant of the problem (1.1) where the probability error of early stopping
is bounded from above (we do not pursue this in the present paper). It is also eas-
ily seen that swapping the order of T and 7, in (1.1) leads to optimal stopping at
the diagonal and thus corresponds to the linear median/quantile rule. The key ar-
guments developed in the proof rely heavily upon the extremal properties of the
optimal surfaces and should be applicable in similar multi-dimensional settings.

2. Quickest detection of a hidden target. In this section we will first for-
mulate the quickest detection of a hidden target problem and then show that this
problem is equivalent to an optimal stopping problem for the range process. The
latter problem will be studied in the next section.

Let Z = (Z;);>0 be a one-dimensional diffusion process starting at 0 and solv-
ing
2.1 dZ;,=a(Z;)dt + b(Z;)dBy,

where a and b > 0 are continuous functions, and B = (B;);>0 is a standard Brow-
nian motion. To meet a sufficient condition used in the proof of Theorem 1 below
we will also assume that b is (locally) Lipschitz. Let £ be an independent random
variable with values in R, and let

(2.2) T =inf{t > 0|Z; = ¢}

be the first entry time of Z at the level £. We consider the quickest detection prob-
lem

(2.3) Vi=inf[P(t <7) + cE(r — )],

where the infimum is taken over all stopping times 7 of Z [i.e., with respect to
the natural filtration (.7-",2)20 generated by Z], and ¢ > 0 is a given and fixed
constant (note that whenever we say a stopping time throughout we always mean
a finite valued stopping time). Note that P(t < ty) represents the probability of
early stopping and E(t — ;)" represents the expectation of late stopping when
a stopping time t of Z is being applied. Our task therefore is to minimise the
weighted sum of both errors over all stopping times t of Z. Note that £ and 7, are
not observable. Set

(2.4) 17= inf Z, and S?= sup Z

O<s<t 0<s<t

for ¢t > 0, and let F denote the distribution function of £.



2344 G. PESKIR

PROPOSITION 1. Problem (2.3) is equivalent to the optimal stopping problem
(25)  Va=sup E[F(S,Z) — F(I#-) - c/ot[F(StZ) — F(If-)]dz],
where the infimum is taken over all stopping times t of Z.

PROOF. Leta stopping time 7 of Z be given and fixed. First, using that £ and Z
are independent, we find that
Pt <t)=1—-P(r>1)
=1-Plr>7,£>0)—P(r >1,£<0)
(2.6) =1-P(S/>¢>0)—P(I7 <£<0)
=1-EF(S?) +EF(I7-)
=1—E[F(S{) - F(17-)].

Second, using a well-known argument (see, e.g., [33], page 450) it follows that

E(T—T@)+=E/(;r1(‘[g 5t)dt=E/0001(rg <l <rt)dt

- /OO E[E(1(ze <010 < 0)|F)]d1
@.7) ’

_ /Ooo E[1(r < 0)E(1(r < )| FZ)]dr

= Efor P(t¢ < t|FF)dt.
Moreover, since £ and Z are independent, we see that
P(ty <t|F?) =P(te <t,€ > O0|FF) +P(te <t,€ <O|FF)
(2.8) =P(S7 > £>0|F%) +P(I7 <t <0|FF)
=F(S/) = F(I7~)

for ¢ > 0. Inserting (2.8) into (2.7) and combining it with (2.6), we find that V| =
1 — V; for any ¢ > 0, and this completes the proof. []

It follows from the previous proof that a stopping time 7 of Z is optimal in (2.3)
if and only if it is optimal in (2.5). To gain tractability when solving the optimal
stopping problem (2.5) we will assume that the distribution function F of £ is
strictly increasing and twice continuously differentiable. Then F(Z) defines a reg-
ular diffusion process with values in (0, 1) and to gain symmetry and extend the
state space to (—1, 1), we will rescale Z differently by setting

(2.9) X =2F(Z)—1.
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Then X is a regular diffusion process starting at 2F (0) — 1 and solving

(2.10) dX; =pn(Xy)dt +o(X;)dBy,
where the drift © and the diffusion coefficient o are given by
1
Q2.11) w(x) = (ZaF/+b2F”)<F_l(x; ))
1

(2.12) o(x) = (2bF’)(F—‘ (x er ))

for x € (—1, 1) as is easily verified by 1t6’s formula. Setting

(2.13) I;= inf X; and S;= sup X;
O<s<t 0<s<t

for t > 0, we see that problem (2.5) is equivalent to the optimal stopping problem

T
(2.14) V =sup E[ST —1; — c/ (S; — It)dt:|,
T 0

where the infimum is taken over all stopping times t of X. Note that V =2V, =
2(1 — V1), and there is a simple one-to-one correspondence between the optimal
stopping times in (2.14) and (2.5) due to (2.9). We will therefore proceed by study-
ing problem (2.14).

For future reference let us note that the infinitesimal generator of X equals

3  o(x) 9*
2.15 Ly = — —
(2.15) Xx=pX)—t—— o3
and the scale function of X is given by
* Yo n@)
2.16 L(x :f ex (—/ 7dz)d
(2.16) @= [ exe(= | e %)

for x € (=1, 1). Throughout we denote p, = inf{t > 0|X; = a} and set p, , =
pa N pp for a < b in (—1, 1). Denoting by P, the probability measure under which
the process X starts at x, it is well known that

L) -LKx) . Lix)—L(a)
(217 Pi(Xp,,=a)= L) —L@ and Py(X,,,=b)= o) - L@)
fora <x <bin (—1, 1). The speed measure of X is given by
dx
(2.18) m(dx) = m
and the Green function of X is given by
Gup(x,y) = (L) —L(y)(L(x) —L(a) ifa<x<y<b

L) — L(a)

(L) = L(x)(L(y) — L(a))
N L(b) — L(a)

(2.19)

ifa<y<x<b.
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If f:(—1,1) — R is a measurable function, then it is well known that

Pa,b b
(2.20) E, fo F(Xp)dt = / FO)Gapr, yIm(dy)

fora <x <bin (—1, 1). This identity holds in the sense that if one of the integrals
exists, so does the other one, and they are equal.

3. Optimal stopping of the range process. It was shown in the previous sec-
tion that the quickest detection problem (2.3) is equivalent to the optimal stopping
problem (2.14). The purpose of this section is to present the solution to the latter
problem in somewhat greater generality. Using the fact that the two problems are
equivalent, this also leads to the solution of the former problem.

Let X = (X;);>0 be a one-dimensional diffusion process solving

(3.1 dX;=upu(X)dt +o(X;)dBy,

where the drift i and the diffusion coefficient o > 0 are continuous functions and
B = (B;)s>0 1s a standard Brownian motion. To meet a sufficient condition used
in the proof below, we will also assume that o is (locally) Lipschitz. We will
further assume that the state space of X equals (—1, 1) as in the previous section;
however, this hypothesis is not essential; see Remark 4 below. By P, we denote the
probability measure under which X starts at x € (—1,1). Fori <x <sin (-1, 1)
we set
3.2) Ii=iA inf X; and S;,=sV sup X;

O<s<t 0<s<t
for + > 0. These transformations enable the three-dimensional Markov process
(I, X, S) to start at (i, x, s) under P,, and we will denote the resulting probability
measure on the canonical space by P; , ;. Thus under P; . ¢ the canonical process
(I, X, S) starts at (i, x, s). The range process R of X is defined by

(33) R[ = S[ - I[

for ¢t > 0. In this section we consider the optimal stopping problem

T

3.4) V(i,x,s) =supE; x s [R, — / c(l;, X;, S,)dt]
T 0

for i <x <s in (—1, 1) where the supremum is taken over all stopping times
of X.

Regarding the cost function ¢ in (3.4) we will assume that (i) i — c(i, x, §)
is decreasing and s +— c(i, x, s) is increasing with ¢(i,x,s) > 0 for i <x <
in (—1,1). These conditions have a natural interpretation in the sense that any
new increase in gain (when X reaches either S or /) is followed by a propor-
tional increase in cost. To gain existence and tractability we will also assume
that (ii) (i, x,s) — c(i, x, s) is continuous, x — c(i, x, s) is (locally) Lipschitz,
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(i,s) — c(i, x,s) is continuously differentiable. To gain monotonicity and joint
continuity we will further assume that (iii) i — %(i ,x,s8)and s — %(z’ ,X,S8) are
increasing and (locally) Lipschitz. Note that conditions (i)—(iii) are satisfied for
c(i,x,s) =c(s —i) > 0 when c is increasing concave and continuously differ-
entiable with ¢’ (locally) Lipschitz. Note also that conditions (i)—(iii) are satis-
fied for c(i, x, s) = ca(s) — c1(i) > 0 when ¢ and ¢, are increasing and continu-
ously differentiable functions. Note finally that conditions (i)—(iii) are satisfied for
c(i,x,s) =c(x) > 0 when c is (locally) Lipschitz (in this case f, and g, below
are no longer surfaces but curves as functions of i and s, respectively).

For any s given and fixed we will refer to d* = {(i, x)|i = x < s} as the lower
diagonal in the state space, and for any i given and fixed we will refer to d; =
{(x,s)|x =5 > i} as the upper diagonal in the state space. We will say that a
function f stays strictly above the lower diagonal d* if f(i,s) > i forall i <s,
and we will say that a function g stays strictly below the upper diagonal d; if
g(i,s) <sforall s >1i.

The main result of the paper may now be stated as follows.

THEOREM 1. Under the hypotheses on X and c stated above, the optimal
stopping time in problem (3.4) is given by
(3.5) r*:inf{t20|f*(1,,S,) <X Sg*(lz,St)},

where the surfaces f. and g, can be characterised as the minimal and maximal
solutions to

of @2/ (f G, s)L'(f(,s))

a6 3 T G F s LG 9) = LO)]
' £6.9 g L(y) — L(i)
x [1 S AR @2/ DL dy}’
38 ;o @/l )L 5))
(3 7) 8S ’ C(l,g(l,S),S)[L(S)—L(g(l,S))]

s dc . L(s) — L(y) }
1 (v, s)——t 2 g
X[ +/g<i,s) 3s Y ) @2/2ML'(

staying strictly above the lower diagonal d* and strictly below the upper diagonal
d; fori < s in (—1, 1), respectively.

Explicit formulae for the value function V on the continuation sets (3.10)
and (3.11) below are given by (3.25) and (3.32) below for any cost func-
tion c satisfying (1)—(iii) above. Explicit formulae for the value function V on
the continuation set (3.9) below are given by (3.64) and (3.65) below when
c(i,s) =ca(s) —c1(i) > 0 where c| and c; are increasing and continuously dif-
ferentiable functions. Outside these sets the value function V equals s — i for
i <sin (—1,1). The optimal surfaces f. and g, satisfy the additional proper-
ties (3.34)—(3.39).
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PROOF. The optimal stopping problem (3.4) is three-dimensional and the un-
derlying Markov process equals (I, X, S). It is evident from the structure of the
gain function in (3.4) that the excursions of X away from the running maximum S
and the running minimum / play a key role in the analysis of the problem. A pos-
sible way to visualise the dynamics of these excursions is illustrated in Figure 1
below. Each excursion of X at an upper level s is mirror imaged with the excursion
of X at a lower level i and vice versa. When the excursion returns to the upper di-
agonal, the process (X, S) receives an infinitesimal push upwards along the upper
diagonal, and when the excursion returns to the lower diagonal, the process (/, X)
receives an infinitesimal push downwards along the lower diagonal.

An important initial observation is that the process (/, X, S) can never be op-
timally stopped at the upper or lower diagonal. The analogous phenomenon is
known to hold for optimal stopping of the maximum process (see [28], Proposi-
tion 2.1) and the same arguments extend to the present case without major changes.
Before we formalise this in the first step below let us recall that general theory of

s+—>g,(i,s)

So

)

i

v

FIG. 1.  Excursions of X away from the running minimum I and the running maximum S combined
with the dynamics of the optimal stopping surfaces fy and gy: (1) return of X to the lower diagonal
causes I to go down and forces gy« to go up; (ii) return of X to the upper diagonal causes S to go
up and forces fy to go down; (iii) even if X goes above fy it may not be optimal to stop unless
X is below gy; (iv) even if X goes below gy it may not be optimal to stop unless X is above f.
The (movable) dotted vertical line marks the borderline levels iy and so below and above which it is
optimal to stop.
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optimal stopping for Markov processes (see [33], Chapter 1) implies that the con-
tinuation set in the problem (3.4) equals C = {(i, x, s)|V (i, x,s) > s — i} and the
stopping set equals D = {(i, x, s)|V (i, x,s) = s — i}. It means that the first entry
time of (/, X, S) into D is optimal in problem (3.4). To determine the sets C and
D we will begin by formalising the initial observation above.

(1) The upper and lower diagonal d; and d° are always contained in C. For
this, take any (s, s) € d; and consider p;, ,, = inf{t > 0| X; ¢ (I, r,)} under P; 5 ¢
with [, =s — 1/n and r, = s + 1/n for n > 1. Then (2.18)—(2.20) imply that
EissRp,, =s—i+K/nandE; 601””" c(l;, X;, S)dt < K/n? forall n > 1
with some positive constant K (see the proof of Proposition 2.1 in [28] for details).
Taking n > 1 large enough (to exploit the difference in the rates of the bounds) we
see that (i, s, s) belongs to C. In exactly the same way one sees that if (i,7) € d*

then (7, i, s) belongs to C. This establishes the initial claim.

(2) Optimal stopping surfaces. Assume now that the process (I, X, §S) starts at
(i, x, s), and consider the excursion of X away from the running maximum s with
i given and fixed. In view of the fact that it is never optimal to stop at the upper
diagonal d;, and due to the existence of a strictly positive cost which is proportional
to the duration of time in (3.4), we see that it is plausible to expect that there exists
a point g(i, s) (depending on both i and s) at/below which the process X should
be stopped (should i remain constant). In exactly the same way, if we consider
the excursion of X away from the running minimum i with s given and fixed,
we see that it is plausible to expect that there exists a point f (7, s) (depending on
both i and s) at/above which the process X should be stopped (should s remain
constant).

The first complication in this reasoning comes from the fact that neither i nor
s need to remain constant during the excursion of X away from the running max-
imum s or the running minimum i, respectively. We will handle this difficulty
implicitly by noting that if / is to decrease from i downwards, then this will in-
crease the rate of the cost in (3.4) which in turn will move the boundary point
g(i, s) upwards [it means that i — g(i, s) is decreasing], and similarly if § is to
increase from s upwards then this will increase the rate of the cost in (3.4) which
in turn will move the boundary point f (i, s) downwards [it means that s — f (i, s)
is decreasing]. To visualise these movements see Figure 1 above. Changes in ei-
ther / or S therefore contribute to resetting i and s to new levels and starting from
there afresh with the boundary points f (i, s) and g(i, s) adjusted. For these rea-
sons it is not entirely surprising that the first complication will resolve itself after
we describe the structure of the optimal surfaces f and g in fuller detail below.

The second complication comes from the fact that even if X is at/below g(i, s)
and normally (when i would not change) it would be optimal to stop, it may be
that X is still below f (i, s) and therefore the proximity of the lower diagonal d*
may be a valid incentive to continue. This incentive itself is further complicated
by the fact that it may lead to a decrease of i and therefore the rate of the cost
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in (3.4) will also increase (as addressed in the first complication above). Likewise,
even if X is at/above f (i, s) and normally (when s would not change) it would be
optimal to stop, it may be that X is still above g(i, s) and therefore the proximity
of the upper diagonal d; may be a valid incentive to continue. This incentive itself
is further complicated by the fact that it may lead to an increase of s and therefore
the rate of the cost in (3.4) will also increase (as addressed in the first complication
above).

Neither of these complications appear in the optimal stopping of the maximum
process where g depends only on s (see [28] and the references therein), and our
strategy in tackling the problem will be to extend the maximality principle [28]
from the two-dimensional setting of the process (X, S) and the optimal stopping
curves to the three-dimensional setting of the process (I, X, S) and the optimal
stopping surfaces. This will enable us to resolve the second complication using the
existence of the so-called “bad—good” solutions (those hitting the upper or lower
diagonal) which in turn will provide novel insights into the maximality/minimality
principle in the three dimensions as will be seen below.

(3) Free-boundary problem. Previous considerations suggest to seek the solu-
tion to (3.4) as the following stopping time:

(3.8) Ty =1inf{t > 01 f (I, Sp) < X; < g(I;, Sp)},

where the surfaces f and g are to be found. The continuation set C ¢, splits into
(39) Che =1 x, 911 9) > gi.9)),

(3.10) C;g={(i,x,s)|i§x<f(i,s)§g(i,s)},

(3.11) C]Tg={(i,x,s)lf(i,s)5g(i,s)<x§s}

and we have Cy, = =Y FeYCr, C}' - To compute the value function V' and
determine the optimal surfaces f and g, we are led to formulate the free-boundary
problem

(3.12) LxV)(i,x,s)=c(,x,s) for (i, x,s) € Cyq,
(3.13) Vi@, x,8)|x=it+ =0 (normal reflection),
(3.14) VI, x,8)|x=s— =0 (normal reflection),

(3.15) Vi, x,8)x=fG,s)—- =58 — 1 for f(i,s) <g(,s),
(3.16) V@i, x,8) x=gli,s)+ =5 —1 for f(i,s) <g(,s),
(3.17) V)é(i, X, 8)|x=fG,5)- =0 for f(i,s) <g(,s) (smooth fit),
(3.18) Vi, x,5)|x=g(i5)+ =0 for f(i,s) <g(,s) (smooth fit),

where Ly is the infinitesimal generator of X given in (2.15) above. For the ratio-
nale and further details regarding free-boundary problems of this kind, we refer
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to [33], Section 13, and the references therein; we note in addition that the condi-
tions of normal reflection (3.13) and (3.14) date back to [18].

(4) Nonlinear differential equations. To tackle the free-boundary problem
(3.12)—(3.18), consider the resulting function

Tf.e
(3.19) Vel x.5) =Eics [er,g - [T et x5 dr]

fori < x < s in (=1, 1) upon assuming that E; , ;7 , < oo with candidate sur-
faces f and g to be specified below. Suppose that f(i,s) < s and consider
Pi, fi,s) =1nf{t > 0| X; ¢ (i, f(i,s))} under P; \ ; with i <x < f(i,s) given and
fixed. Applying the strong Markov property of (I, X, S) at p; r(s) and using
(2.17)—(2.20) we find that

Lx)—-L@)
L(f(@,s)) — L)
L(f(,s)) = L(x)
L(f(@i,s)) — L)

fas)
- / c(i,y,8)Gi ris(x,y)m(dy).
1

Vigli,x,s)=(s —1)

(3.20) + Vig(ini,s)

It follows from (3.20) that
Vigl,i,s) =s—1i
L(f(i,s))—L@)

(3.21) + L(fGs) — L) [Vf,g(i,x,s) —(s—1i)

flas)
+ _/ c(i,y,8)Gi fs (x, Y)m(dY)]
l

Dividing and multiplying through by x — f (7, s) we find using (3.17) that
Vo (i e
i f,g(l,?cvs) (s —1)
1 fs) L(f(,s)) — L(x)
1 A%
=L x )
L'(f@,s)) ox
for f(i,s) < g(i,s). Itis easily seen by (2.19) that
L(fG,5) =L@ (/@9
im
21 fGs) L, ) — L(x) Ji

(3.22)

=0
x=f(i,s)—

c(i,y,89)G; ris(x,y)m(dy)
(3.23)

f,s)
= [ ey L) ~ LOImdy).
Combining (3.21)—(3.23) we find that

f.s)
(3.24) Vigli,i,s)=s—i —I—/ c(i,y,$)[L(y) — L(i)]m(dy)
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for f(i,s) < g(i, s). Inserting this back into (3.20) and using (2.19) and (2.20) we
conclude that

. . f(l,.&) .
(625 Vigloxs)=s—i+ [ ey 9[Le) - Loy
X

for x < f(i,s) < g(i, s). Finally, using (3.13) we find that

U i 5y /DS NLSG5))
0i T el f ), OIL(f (. 9) = L))

fG.s) 9
~ [1 _ /l 8_§(i’ v, )[L(y) — L(i)]m(dy)]

for f(i,s) < g(i,s). By (2.18) we see that (3.26) coincides with (3.6) above.
Similarly, suppose that g(i,s) > i and consider pg( y),s = inf{t > 0|X; ¢

(g(i, s),s)} under P; , s with g(i, s) <x < s given and fixed. Applying the strong

Markov property of (1, X, S) at pg; 5),s and using (2.17)—(2.20) we find that

L(s) — L(x)

(s) — L(g(@,s))

L(x)—L(g(i,s))

L(s) — L(g(i,s))

S
[ ey )G s yImdy).
g(i,s)

(3.26)

V '5 ) = —1i
gl x,8)=(s l)L

(3.27) + Vig(i,s,s)

It follows from (3.27) that
Vigli,s,8) =s—1i
L(s) — L(g(i,s))

(3.28) + L&) —L(g(.5) [Vf,g(i,x,s)—(s—i)

N

[0 iy )Gy ar, y)m(dy)].
g(i,s)

Dividing and multiplying through by x — g(i, s) we find using (3.18) that
Vo (i e
- 1.g(,x,8) fs i)
xlglis)  L(x) — L(g(,s))

_ 1 8Vf,g

T L'(g(,s)) ox
for g(i,s) > f(i,s). It is easily seen by (2.19) that

i L)~ LGG.s)

xlglis) L(x) — L(g(i, 5)) Jg(i.s)

N

= 2(i.5) C(i’ Yy, S)[L(S) - L(y)]m(dy)

(3.29)

=0
x=g(i,s)+

(i,x,s)

C(i, Y, S)Gg(i,s),s(x, y)m(dY)
(3.30)
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Combining (3.28)—(3.30) we find that

N
(3.31)  VygG,s,s)=s—i+ . )c(i, ¥ 9)[L(s) = L(y)]m(dy)
g(i,s
for g(i,s) > f(i, s). Inserting this back into (3.27) and using (2.19) and (2.20) we
conclude that
X

(3.32) Vigli,x,8)=5—1i +/ c(i,y,s)[L(x) — L(y)]m(dy)
8

(@,s)

for x > g(i,s) > f(i, s). Finally, using (3.14) we find that

_ (@28, )L (8. 5)
c(i. (i, $).9)L(s) = L(g(i.5))]

59
x [1 _|_/ a—c(i, ¥, $)[L(s) — L(y)]m(dy)}
g

(i,s) 08
for g(i,s) > f(i,s). By (2.18) we see that (3.33) coincides with (3.7) above.

Summarising the preceding considerations we can conclude that to each pair
of the candidate surfaces f and g solving (3.6) and (3.7) there corresponds the
function (3.25) and (3.32) on C; ¢ U C}', g solving the free-boundary problem
(3.12)—(3.18) on C; g U C}f g (this can be verified by direct differentiation) and
admitting the probabilistic representation (3.19) on Cro U C}t p associated with
the stopping time (3.8) when the latter has finite expectation [this will be formally
proved for the surfaces of interest in (3.74) and (3.75) below].

The central question becomes how to select the optimal surfaces f and g
among all admissible candidates solving (3.6) and (3.7). We will answer this
question by invoking the superharmonic characterisation of the value function
(see [33], Chapter 1) for the four-dimensional Markov process (I, X, S, A) where
A = fot c(ls, X5, Ss)ds for t > 0. Fuller details of this argument will become
clearer as we progress below.

2—f(i, s)
(3.33)

(5) The minimal and maximal solution. Motivated by the previous question we
note from (3.25) and (3.32) that f > V/, is increasing and g — V. is decreas-
ing. Recalling also that it is not optimal to stop at the upper or lower diagonal, this
motivates us to select solutions to (3.6) and (3.7) as far as possible from the upper
and lower diagonal, respectively [respecting also the meaning of (3.8) in (3.19) as
well as the meaning of (3.19) itself]. In the former case this means as small as pos-
sible below the upper diagonal, and in the latter case it means as large as possible
above the lower diagonal. We ought to recall, however, that stopping time (3.8)
needs to have finite expectation, and this will put a natural constraint on how small
and large these solutions can be (this is a subtle point in the background of the
argument).

To address the existence and uniqueness of solutions to these equations, de-
note the right-hand side of (3.6) by ®(i, s, f(i, s)) and denote the right-hand side
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of (3.7) by W (i, s, g(i, s)). From general theory of nonlinear differential equations
we know that if the direction fields (i, f) — ®(i,s, f) and (s, g) — V(i,s,g)
are (locally) continuous and (locally) Lipschitz in the second variable, then equa-
tions (3.6) and (3.7) admit (locally) unique solutions. In particular, recalling that
(i,x,s) — c(i, x,s) is continuous we see from the structure of ® and W that
equations (3.6) and (3.7) admit (locally) unique solutions since x > o2(x) and
x — c(i, x, s) are (locally) Lipschitz.

To construct the minimal solution to (3.6) staying strictly above the lower di-
agonal d*, we can proceed as follows; see Figure 2 above. For any i, € (—1, 1)
such thati, | —1 asn — oo leti — f,(i, s) denote the solution to (3.6) such that
Jn(in,s) =1i, for n > 1. Note that each solution i — f (i, s) to (3.6) is singular at
the lower diagonal d* in the sense that f/(i+,s) = +oo for f(i+,s) = i; how-
ever, passing to the equivalent equation for the inverse of i — f (7, s) [upon noting
that each solution i > f (i, s) to (3.6) is strictly increasing] we see that this singu-
larity gets removed; note that the inverse of i = f (i, s) has the derivative equal to
zero at the lower diagonal d*. By the uniqueness of the solution we know that the
two curves i — f,(i,s) and i — f,,(i,s) cannot intersect for n == m, and hence

S s+—>9g(1,,S)

/. -

1 i—>f(i,s,)

v

F1G. 2.  Smooth-fit solutions i — f (i, sg) and s — g(ig, §) to differential equations (3.6) and (3.7)
for fixed sq and iy, respectively. The minimal solution staying strictly above the lower diagonal (bold
f line) and the maximal solution staying strictly below the upper diagonal (bold g line) are sections
of the optimal stopping surfaces, respectively.



QUICKEST DETECTION OF A HIDDEN TARGET 2355

we see that (f;),>1 is increasing. It follows therefore that f, :=lim,_ o f, €x-
ists. Passing to an integral equation equivalent to (3.6) (or its inverse), it is easily
verified that i — f,(i, s) solves (3.6) whenever strictly larger than —1. This f,
represents the minimal solution to (3.6) staying strictly above the lower diagonal.
Since i — c¢(i, x, s) is decreasing we see from (3.6) that

i fu(i,s)and i — f,(i, s) are strictly increasing
with fo(—1+,5)=—1

fori < s in (—1,1) and n > 1. Note further that the increase of s — %(i,x, s)
combined with the increase of s — c(i, x, s) implies that s — ®(i, s, f) is de-
creasing. Recalling that (3.6) is being solved forwards, this shows that

(3.34)

(3.35) s+ fu(i,s)and s — fi(i, s) are decreasing

fori <sin(—1,1) and n > 1; see Figure 3 below. Moreover, since s %(i, X,S)
is (locally) Lipschitz we see that s — ® (i, s, f) is (locally) Lipschitz from where
we can easily deduce using Gronwall’s inequality that

(3.36) (i,8) = fu(i,s) and (i, s) — fi(i, s) are continuous

for i <s in (—1,1) and n > 1. To simplify the notation we will use the same
symbol f below to denote the minimal solution f, unless stated otherwise.

A

A

s+—>g.(i,s)

i+—>f(1,s)

i

v

FIG. 3. Movement and shape of sections i & fx(i,s) and s — g« (i, s) of the optimal surfaces fy
and g« as the running maximum s increases and the running minimum i decreases, respectively.
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To construct the maximal solution to (3.7) staying strictly below the upper di-
agonal d;, we can proceed similarly; see Figure 2 above. For any s, € (—1, 1)
such that s, 1 1 as n — oo let s — g, (i, s) denote the solution to (3.7) such that
gn(i, sp,) = s, for n > 1. Note that each solution s — g(i, s) to (3.7) is singular at
the upper diagonal d; in the sense that g/ (i, s—) = 400 for g(i, s—) = s; however,
passing to the equivalent equation for the inverse of s — g(i, s) [upon noting that
each solution s — g(i, s) to (3.7) is strictly increasing], we see that this singular-
ity gets removed; note that the inverse of s > g(i, s) has the derivative equal to
zero at the upper diagonal d;. By the uniqueness of the solution we know that the
two curves s — g,(i,s) and s — g,,(i, s) cannot intersect for n # m, and hence
we see that (g,),>1 is decreasing. It follows therefore that g, := lim,_, g, €x-
ists. Passing to an integral equation equivalent to (3.7) (or its inverse) it is easily
verified that s — g, (i, s) solves (3.7) whenever strictly smaller than 1. This g,
represents the maximal solution to (3.7) staying strictly below the upper diagonal.
Since s — c(i, x, s) is increasing we see from (3.7) that

(3.37) s> gu(i,s) and s — g, (i, s) are strictly increasing with g, (i, 1—) = 1

fori <s in (—1,1) and n > 1. Note further that the increase of i %(i, X,S)
combined with the decrease of i — c(i, x, s) implies that i — W(i,s, f) is in-
creasing. Recalling that (3.7) is being solved backwards, this shows that

(3.38) i— gn(i,s)and i — g.(i, s) are decreasing

fori <s in (—1,1) and n > 1; see Figure 3 above. Moreover, since i > %(i, s)
is (locally) Lipschitz we see that i — W(i, s, f) is (locally) Lipschitz from where
we can easily deduce using Gronwall’s inequality that

(3.39) (i,s)— gy(i,s) and (i, s) — g«(i, s) are continuous

for i <s in (—1,1) and n > 1. To simplify the notation we will use the same
symbol g below to denote the maximal solution g, unless stated otherwise.

With the minimal and maximal solution f and g we can associate the stopping
time (3.8) and the resulting function (3.19). Doing the same thing with f, and g,
[noting that the stopping time (3.8) has finite expectation], the arguments above
show that (3.25) and (3.32) hold for f, and g, for n > 1. Passing in these ex-
pressions to the limit as n — oo, we see that (3.25) and (3.32) remain valid for
the minimal and maximal solution f and g. The claims of the past two sentences
will be formally verified in (3.74) and (3.75) below. This establishes closed-form
expressions for V¢, in terms of f and g on Cj{ g and Cie

(6) Computing Vi, on C % 2 This calculation is technically more complicated,

and we will derive closed-form expressions for Vy . in terms of f and g on C % p
when c(i, s) = ca(s) — c1(i) > 0 where ¢ and c; are increasing and continuously
differentiable functions. Note that the latter decomposition is fulfilled in the setting
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in Section 2 above. Note also that these closed-form expressions are not needed to
derive the optimality of f and g as it will be shown in the rest of the proof below.

We begin by noting that V. needs to satisfy (3.12)—~(3.14) on C% o> See Re-
mark 2 below. Recalling that a particular solution to Lx H =1 is given by

(3.40) Hw = [ 26— L()]may).
it follows from (3.12) that
(3.41) V(i,x,s)=A(,s)L(x) 4+ B(i,s) + (c2(s) — c1(i)) H (x)

for some unknown functions A and B to be found. By (3.13) and (3.14) we find
that

(3.42) AL, )LG)+ Bl(i,s) — ¢} (i)Y H (i) =0,
(3.43) AL, s)L(s) 4 BL(i,s) + c5(s)H(s) = 0.

Differentiating (3.42) with respect to s and (3.43) with respect to i (upon assuming
that A and B are twice continuously differentiable) it follows by subtracting the
resulting identities that A} (i, s) = 0 and hence B/, (i, s) = 0 too. This implies that

(3.44) A(i,s) =a1(i) +ax(s) and B(i,s)=b1(i) + ba(s)

for some a; and b; to be found when i = 1, 2. Inserting this back into (3.41)—(3.43)
we obtain

V(i x,s)=(a1() + ax(s))L(x)

(3.45)

+ b1(i) 4+ ba(s) + (c2(s) — c1()) H (x),
(3.46) | ()L(i) + b, (i) — ¢{()YH (i) =0,
(3.47) ay(s)L(s) + b5(s) + ch(s)H(s) =0

for f(i,s) > g(i,s).
To determine a; and b; for i = 1,2 recall that Vy, is known at C ]7 g and C}f g

so that it is also known at the boundary between C(}, ¢ and C , and the boundary

between C(} g and C }r 2 This serves as a basic motivation for the introduction of
the following functions. Given (i, s) such that f (i, s) > g(i, s) there exist unique
i(s) <iand s(i) > s such that

(3.48) fi(s),s)=g(i(s),s) and f(i,s0())=g(i,s@)).

The existence of i(s) and s(i) follows from the facts that i — f(i,s) and s —
g(i, s) are strictly increasing and s — f(i,s) and i — g(i, s) are strictly decreas-
ing; see Figure 3 above. More formally, the functions can be defined as follows:

(3'49) l(S): (f(vs)_g(7s))_](0) and S(l):(f(l,) _g(l9 ))_](O)
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for f(i,s) > g(i,s). [Recall from (3.34) and (3.37) that f(—14,s) = —1 and
g(—14,s5) < 1 as well as that f(i,1—) > —1 and g(i,1—) =1 for —1 <i <
s < 1.] Geometrically, moving from i down to i(s) (with s fixed) corresponds to
moving along the first coordinate from any (7, x, s) in C% o to the closest point at
the boundary between C% g and C; ¢ if x < f(i(s), s) and to the closest point at
the boundary between C?c’ g and C;{ ¢ if x > f(i(s), s). Similarly, moving from s
up to s(i) (with i fixed) corresponds to moving along the third coordinate from
any (i, x,s) in C% g to the closest point at the boundary between C% p and C}f g if
x > g(i,s(i)) and to the closest point at the boundary between C(}, g and CZ g if
x < g(,s(@)).

Since (i(s),x,s) with x < f(i(s),s) belongs to the boundary of C;g, we
know that V¢, (i(s),x,s) is given by (3.25) above. Writing the integral from x
to f(i(s), s) in this expression as the integral from 0 to f(i(s), s) minus the inte-
gral from O to x, it is easily seen that (3.25) reads as follows:

V(i(s),x,s)=s—i(s)

f(i(s),s)
(3.50) + [ca(s) —c1 (i(s))][H(x) - L(x)/0 m(dy)

f3(s),s)
+ [ L(y)m(dw}
0

for x < f(i(s), s). Comparing (3.50) with (3.45), we can conclude that
Fi(s).s)
G5 ai©) +as) =—[a6) —al@)] [ nd.

f(s),s)
(3.52) bi(i(s)) +ba(s) =5 —i(s) + [ca(s) —c1(i(5))] /(; L(y)m(dy).

Using (3.46)—(3.47) and (3.51)—(3.52) we can calculate aé(s). First, by (3.47) we
can express a5(s) in terms of b5(s). Second, by (3.52) we can express b} (s) in
terms of b} (i(s)). Third, by (3.46) we can express b} (i(s)) in terms of a](i(s)).
Fourth, by (3.51) we can express ai(i (s)) in terms of aé(s). This closes the loop
and gives an equation for a}(s). A lengthy calculation following these steps and
making use of (3.6) above yields

1
L(s) — L(i(s))

S5 (s),5) . £Gi(s),5) _
(3.53) X [m[l + (i (S))/is [L(y) - L(l(s))]m(dy)]

ay(s) = —

f(s),s)

+14 c§<s)[H<s> w7 o - L(i<s>)]m<dy>ﬂ.
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Similarly, since (i, x, s(i)) with x > g(i, s(i)) belongs to the boundary of CJr
we know that Vi, (i, x, s(i)) is given by (3.32) above. Writing the integral from
g(i, s(i)) to x in this expression as the integral from O to x minus the integral from
0to g(i, s(i)), it is easily seen that (3.32) reads as follows:

V(i,x,s())=s@G)—i

(3.54) + [e2(s(D) — c1(D)]

(i,s(i)) (i,s(i))
x[fux>—lxx>1f nwdy)+34g L(wnwdyﬂ

for x > g(i, s(i)). Comparing (3.54) with (3.45) we can conclude that

8(i,s(i))
(355 a1(i)) +ax(s(@) = —[e2(s (D)) — Cl(i)]/o m(dy),

(i,s(i))
(356 b)) +bas) =5 — i +ea(@) —a@] [ Loy,

Using (3.46)—(3.47) and (3.55)—(3.56) we can calculate a’l(i ). First, by (3.46) we
can express aj (i) in terms of b} (i). Second, by (3.56) we can express b} (i) in
terms of b} (s(i)). Third, by (3.47) we can express b5(s(i)) in terms of a)(s(i)).
Fourth, by (3.55) we can express aé(s(i )) in terms of ai(i ). This closes the loop
and gives an equation for a}(i). A lengthy calculation following these steps and
making use of (3.7) above yields

1
L(s(i)) — LG)
y [gi(i‘,S(i.))[l

gs (i, s(i))

ai (i) = —

()
(3.57) + c'z(s(i))/ [L(s(i)) — L(y)]m(dy)]
g

(i,5())
, g(i,s())
+1+q0ﬁHﬁ%iA MQUD—LUHmwwH.

We can now determine A and B in (3.41) using the closed-form expressions
obtained. First, note that by (3.51) we find that

A, 5)=A(i(s),s)+ i Al (u,s)d
a,s) (i(s), ) /i(s) (u,s)du
=ay(i(s)) +aax(s) + /( )ai(u) du
(3-58) ‘f(z'(s) 5)
e =) [ may)

i
+ [ aiwau
i(s)
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where ai (u) is given by (3.57) above. Note also that by (3.55) we find that
s(i)
A(i,s):A(i,s(i))—/ Al (i, v)dv

s(i)
(3.59) = a1 (i) + ax(s(0)) —/ ab(v) dv

s(

(i,5(0) B
= —[ea(s()) —61(1')]/08 m(dy) —/ as(v)dv,

N

where a;(v) is given by (3.53) above. Second, observe that (3.46) and (3.47) yield
(3.60) by (i) = —d} (L) + ¢} () H (),
(3.61) b’z(s) = —aé(s)L(s) — c/z(s)H(s),

where a (i) and aj(s) are given by (3.57) and (3.53) above. Note that by (3.52) we
find that

B(i,s) = B(i(s),s) + i B (u,s)d
@, s) (i(s),s) /i(s) (u,s)du
(3.62) =b1(i(s))+b2(s)+f:)bq (w) du

F(i(s).9) i
=5 —i(s)+[ca(s) — cl(i(s))]/o L(y)m(dy) + f( )b/l(u) du,

where l/1 (u) 1s given by (3.60) above. Note also that by (3.56) we find that
s(@)
B(i,s):B(i,s(i))—/ B, (i, v)dv
s

s(@)
(3.63) :bl(i)+b2(s(i))—/ b (v) dv

g(i,s(®)

s(@)
—s—i(s) + [ea(s(i)) — 1 )] /O L)m(dy) — f bl (v) dv,

where b/z(v) is given by (3.61) above.

Finally, inserting (3.58), (3.62) and (3.59), (3.63) into (3.41) we, respectively,
obtain the following two closed-form expressions:

f@(s),s)
Viix.s)=s —i(s)+ [ca(s) — c1(i(5))] /O [L(y) — L()]m(dy)
(3.64) + [e2(s) — c1()]H ()

+ /(l )([L(x) — L(w)]ay(u) + ¢} (w)H (u)) du,
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g(i,s@))
V(i,x,8)=s@)—i+[ca(s(@)) — cl(i)]fo [L(y) — L(x)]m(dy)
(3.65) + [c2(s) — c1(D)]H (x)
s(i)
—i—/ ([L(v) = L(x)]as(v) + 5 (v) H (v)) dv

for f(i,s) > g(i,s) where a}(u) and a}(v) are given by (3.57) and (3.53) above.
A formal verification of (3.64) and (3.65) can be easily done by It6’s formula once
we derive the optimality in the next step; see Remark 2 below. Observe that if
f(i,s)=g(,s), then i(s) =i and s(i) = s so that the second integral in both
(3.64) and (3.65) is zero, and these expressions reduce to (3.25) and (3.32), re-
spectively.

(7) Optimality of the minimal and maximal solution. We will begin by disclos-
ing the superharmonic characterisation of the value function in terms of the so-
Iutions to (3.6) and (3.7) staying strictly above/below the lower/upper diagonal,
respectively. For this, let i > f (i, s) be any solution to (3.6) satisfying f (i, s) > i
for all i with f(—14,s) € [—1,1), and let s — g(i, s) be any solution to (3.7)
satisfying g(i, s) < s for all s with g(i, 1—) € (-1, 1]. Consider the function V¢ ,
defined by (3.25) and (3.32) on C;’g U C}L’g, and set Vyo(i,x,s) =s —ion Dy,
which denotes the complement of C . Then the same arguments as in (3.35) and
(3.38) above show that s — f(i,s) and i +— g(i, s) are decreasing. This implies
that after starting in the set C; , U C;-f ¢ Y Dr.g, the process (I, X, S) remains in the

same set for the rest of time (i.e., it never enters the set C ?-’ g). Fix any point (i, x, §)
such that f(i,s) < g(i,s) with i < x <s. Note that (7, x, s) belongs to C;g U
Cj[ ¢ Y Dy,g, and consider the motion of (/, X, §) under P; , ;. Recall that Vy ¢

solves the free boundary problem (3.12)—(3.18) on C U CJr Due to the “triple-
deck” structure of V¢, we can apply the change- of—varlable formula with local
time on surfaces [30] which in view of (3.17) and (3.18) (note that these conditions
can fail for the second derivatives) reduces to standard Itd’s formula and gives

Vf,g(lt» Xt, St)

tovVv a9V
(3.66) =vf,g(i,x,s)+/ f’g<ls,xs,ss>d1s+/ S0, X 5 dX,

+/ fg(lv,xs,S)ds +2/ L2 (I, X, S0 d(X, X),
= Vi x,5) + /O a(xoﬁus, X;, S;)dB,

t
4 /O Lx V7o) (s, Xy, Sy) ds.
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where we also use (3.13) and (3.14) to conclude that the integrals with respect to
dlIg and d Sy are equal to zero. The process M = (M;);>o defined by

(3.67) M, = /G(X) fg(IS,XS,Ss)dB

is a continuous local martingale. Introducing the increasing process P = (P;);>0
by setting

aen)  p=| Lo, Xe SOV (s, S0) < Xs < g(Us, X)) ds
0

and using the fact that the set of all s for which Xj is either f(/s, Sy) or g(Ig, S) is
of Lebesgue measure zero, we see by (3.12) that (3.66) can be rewritten as follows:

t
(3.69) vf,g(lt,xf,so—fo ey, Xy So)ds = Vi o(isx,5) + My — Py,

From this representation we see that the process

t
Vil X8) = [ et X, 80 ds

is a local supermartingale for ¢ > 0.

Let T be any stopping time of X. Choose a localisation sequence (0;),>1 of
bounded stopping times for M. From (3.25) and (3.32) we see that V¢ ¢ (i, x,s) >
s —1i for all (i,x,s) € Cro U Cf ¢ YUDrg. Recalling that the process (1, X, S)
remains in the latter set, we can conclude from (3.69) using the optional sampling
theorem that

TAG,
Ei,x,s |:Sr/\a,, - Ir/\an - /(; c(ly, X5, Ss)dt:|

TAOy
(370) =< Ei,x,s[vf,g(lr/\a,,7 X'L'/\O'nv S‘[/\U,,) - /(; C(Is, Xs, Ss) dti|

= Vf,g(ia X,s)+ Ei,x,s(Mr/\on) = Vf,g(i» X, s)
for all (i, x,s) e C;;, U C;fg UDy, and all n > 1. Letting n — oo and using the
monotone convergence theorem we find that
T
(3.71) Ei,x,s |:Sr o / c(ly, X, Sv)dt] =< Vf,g(i’ X,S)
forall (i, x,s) € C. e }r ¢YDrg Taking first the supremum over all T and then
the infimum over all f and g, we conclude that
(3.72) V(i,x,s) < ifanf,g(i, x,8) =V o (i,x,5)
p 7g
for all (i,x,s) e C, 7g Y C}“ g Y Dy, where f; denotes the minimal solution to

(3.6) staying strictly above the lower diagonal, and g, denotes the maximal solu-
tion to (3.7) staying strictly below the upper diagonal. Recalling that f +— Vg,
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is increasing and g — Vy, is decreasing when f < g, we see that the infi-
mum in (3.72) is attained over any sequence of solutions f, and g, to (3.6)
and (3.7) such that f,, | fx and g, 1 g« as n — oo. Since f, and g, are solu-
tions themselves to which (3.71) applies, we see that (3.72) holds for all (i, x, s)
in the set C; 2 Y CJJE ¢, Y Djf.g. which is the increasing union of the sets

Cy. g Y ct 20 Y D g, for n = 1. From these considerations and (3.72) in partic-
ular, it follows that the only possible candidates for the optimal stopping boundary
are the minimal and maximal solution f, and g.. Note that (3.70) also implies that

T
(3.73) Ei,x,s[vf,guf,xf,st)— /O c(ls,Xs,Ss)dt]svf,g(i,x,s>

showing that the function (i, x,s,a) — Vjy,(i,x,s) — a is superharmonic for
the Markov process (I, X, S, A) on the set C;g U C;Eg U Dy, where A; =
fé c(Is, X, Sg)ds for t > 0. Recalling that f +— Vy, is increasing and g — Vi,
is decreasing when f < g, and that Vy (i, x,s) > s —i for all (i, x,s) € C;’g U
C}L’ ¢ YDy, we see that selecting the minimal solution f; staying strictly above
the lower diagonal and the maximal solution g, staying strictly below the upper
diagonal is equivalent to invoking the superharmonic characterisation of the value
function (according to which the value function is the smallest superharmonic
function which dominates the gain function). For more details on the latter charac-
terisation in a general setting we refer to [33], Chapter 1; see also Remark 3 below.

To prove that f, and g, are optimal on C. fug uct feg U Dy, ., consider the
stopping time 7, o, defined in (3.8) where i — fn (i, s) is the solution to (3.6) such
that f,(i,,s) =i, and s — g, (i, s) is the solution to (3.7) such that g, (i, s,) = s,
for some i, | —1 and s, 1 1 as n — oo. Consider the function Vi, o de-
fined by (3.25) and (3.32) on C;n,gn U C;‘;.gn’ and set Vg, o (i,x,5) =s — i for
(i,x,s) € Dy, ¢, and n > 1. Recall that Vi, , solves the free-boundary problem
(3.12)-(3.18) on C}, . ucjfg for n > 1. Fix any (i, x,s) in C, . uc}g
Dy, ¢, and note that this (i, x, 5) belongsto C , U C UDy, o, since f, < fi
and g, < g, forevery n > 1. The same arguments as above yleld the formula (3.66)
with f, and g, in place of f and g for n > 1. Since o and 9Vy, ,,/0x are
bounded on C U Cf g, e see that (Mipzs, 0)t=0 defined by (3.67) with
fn and g, in place of f and g is a martingale under P; , ;. The latter conclusion
follows from the fact that 7y, o, < p;, 5, With E; x 50i,.5, < 00 implying also that
Eix.s foff""g" c(Is, X5, Sg) dt < oo for n > 1. Since the process P defined by (3.68)
with f, and g, in place of f and g satisfies P, , =0, it follows from (3.69)
using (3.15) and (3.16) that

. Tfmgn
(3.74) Vian @ x,8) =Ej x5 [Sffn.gn Iy, — /0

foralli <x <s such that f,(i,s) < g,(i,s) with n > 1. Letting n — oo in (3.74),
noting that ty, o, 1 7f, . (since [—1, 1] is compact), and using the monotone

c(ls, X, S) dr}
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convergence theorem (recalling that S, , — I, . is bounded by 2 and therefore
integrable) we find that

Tf*vg*
(3.75) Vf*,g* (i, x,8) =Ejxs |:Srf*.g* - I‘[f*’g* - '/0 c(Iy, Xs, Ss)dt:|

for all i < x <s such that f,(i,s) < g«(i,s). This shows that we have equal-
ity in (3.72) and completes the proof of the optimality of 7y, ., on the set
Cf 2 UC}_ o UDy, .-

To prove the optimality of ¢, ., on the set o)) Fogs , that is, when f. (i, s) >
g« (i, s) for some (i, s) given and fixed, one could attempt to apply similar argu-
ments to those in (3.70) above. For this, however, we would need to know that
Vig(i,x,s) > s —inotonly for f(i,s) < g(i,s) as follows from the closed-form
expressions (3.25) and (3.32) above but also for f(i,s) > g(i, s). A closer inspec-
tion of the latter case indicates that this verification may be problematic if it is
to follow from similar closed-form expressions. Indeed, even in the special case
of c(i,s) = ca(s) — c1(i), we see from (3.64) and (3.65) that the conclusion is
unclear since a/1 (1) and aé(v) appearing there could also (at least in principle)
take negative values as well; see (3.53) and (3.57) above. To overcome this dif-
ficulty we will exploit the extremal properties of the candidate surfaces f, and
g« in an essential way (in many ways this can be seen as a key argument in the
proof showing the full power of the method). For this, take any point (ig, xg, So)
in the state space such that f,(ig, so) > g«(io, so) with ip < xo < so and fix any
do € (ig V g«(io, 0), S0 A f«(i0, 50)) \ {x0}. Choose solutions i — f;(i, sg) and
s +— gq(io, s) to (3.6) and (3.7) such that f;(ig, so) = do and g4 (io, so) = do, re-
spectively. Note that this is possible since dy lies strictly between ig and f; (i, o)
in the first case and strictly between g (ig, so) and sg in the second case. Note
also that i — f4(i, so) must hit the lower diagonal and s — g4(ip, s) must hit the
upper diagonal since i — fi (7, s9) and s — g.(ig, s) are the minimal and maxi-
mal solutions staying strictly above/below the lower/upper diagonal, respectively.
Moreover, by the construction of f; and gz we see that (ig, xo, So) belongs to
either C]? 2 if xg < dp or C};{ 2 if xo > dop, and after starting at (ig, xo, So) the
process (I, X, §) remains in either C fr0a OF C ) 2d respectively, before hitting
Dy, ¢,. Considering the stopping time 7, o, deﬁned in (3.8) we therefore see that
the same arguments as those leading to (3.74) also show that

V1,24 (05 X0, S0)
(3.76)

Tfa 84
= Eipyroso [Sffd,gd - /0 e(ly, Xy, Ss)dr},
where Vg, o, 18 given by either (3.25) or (3.32), respectively. From the latter

closed-form expressions we see that Vy, ¢, (io, X0, s0) > So — ip and from (3.76)
it therefore follows that (ig, xo, o) belongs to the continuation set C. Combining
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this conclusion with the description of the stopping set D outside CY Furg derived
above, we see that C = C?c*, g UC , UC }; 2 This proves the optimality of t,
in (3.5) and completes the proof. [J

We conclude this section with a few remarks on the preceding result and proof.

REMARK 1. To describe the nature of the optimal stopping time Ty, o,
from (3.5), assume that the process (I, X, S) starts at (0,0,0). Then due to
g+(0,0) <0 < fi(0,0) we see that it is not optimal to stop at once so that ¢ — I;
and ¢ — S; will gradually start to decrease and increase whenever ¢ — X; re-
turns to the lower and upper diagonal, respectively. Due to (3.34)—(3.35) and
(3.37)—(3.38) we see that t — fi.(I;, S;) is decreasing and f +— g.(l;, S;) is in-
creasing. Since I; | —1 and/or S; 1 1 as t 1 oo we see from (3.34) and (3.37) that
the two sample paths # — fi.(I;, ;) and t — g4 (I;, S;) will meet at some random
time which coincides with the first exit time of (/, X, S) from the set C (])»*, 2 de-
fined in (3.9). This can only happen either through the lower diagonal (when X is
equal to ) or through the upper diagonal (when X is equal to §). In the former
case the process (/, X, S) enters the set C jZ* 2 defined in (3.10) and in the latter

case the process (I, X, S) enters the set C}' defined in (3.11). After entering

either C; =~ or CT _ the process (I, X, S) remains in the same set until the first
hitting of X to either f (1, §) from below or g(Z, §) from above happens, respec-
tively. This moment defines the optimal stopping time 7, ,,. Note that from the
optimality derived in the proof of Theorem 1 [recall (3.74) and (3.75) in particular]
we see that 74, ¢, has finite expectation (since otherwise the value function would
be equal to —oo and as such 7y, ,, could not be optimal). Note that the analogous
description of T, o also holds for any starting point (i, x, s) of (/, X, S) in the
state space. After starting in C%’ 2 the process (7, X, S) enters either C Fuge OF
C }“ g, to remain in the same set until 7y, ., happens. The latter fact also holds if

(I, X, S) starts in either C . 2. OF ct Frgs directly. To visualise these movements,
see Figure 1 above and note that ip and so mark the borderline levels between
CY Fogs and C, fogs uct Fogs 3S described above.

REMARK 2. Although we do not make use of this fact in the proof of the
optimality above, we note that in addition to the closed-form expressions (3.25)
and (3.32) on Crg and ij 2 respectively, the probabilistic representation (3.19)

itself can also be used to define the function V¢, on O 7. when the stopping time
Tf¢ from (3.8) has finite expectation, and the resulting function will solve the
free boundary problem (3.12)—(3.18) on C,, for the surfaces f and g constructed
in the proof above (those hitting the lower/upper diagonal at a single point and
the minimal/maximal solutions staying above/below the lower/upper diagonal).
Indeed, due to the monotonicity properties of f and g derived above, we see that
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after starting in C% @ the process (I, X, S) enters either the set C; g Of the set
C}“ through the boundary f = g to stay in the same set until 74 ¢ happens. This

shows that defining the function V¢ by (3.19) on C?» p corresponds to solving the
Dirichlet problem stochastically where the value at the boundary f = g is set to be
either (3.25) at the lower diagonal or (3.32) at the upper diagonal, respectively. For
standard arguments how this can be done including how the required smoothness
of Vi, on C% g can be derived; see, for example, [33], Sections 7.1-7.3.

REMARK 3. In addition to the facts used in the proof above it is also useful to
know that the superharmonic characterisation of the value function represents the
“dual problem” to the primal problem (3.4). For more details on the meaning of
this claim including connections to the Legendre transform, see [31].

REMARK 4. A closer look into the proof above indicates that the arguments
developed and/or used should be applicable in more general settings of the optimal
stopping problem (3.4) and its relatives. As stated above it is not essential that the
state space of the diffusion process X equals (—1, 1), and the result and methodol-
ogy of Theorem 1 should be valid for more general state spaces (including R and
R in particular). In this case we may need to take the supremum in (3.4) over all
stopping times such that the expectation of the integral is finite, and although the
stopping time T, o, may not belong to this class in some particular examples [so
that the right-hand side of (3.4) may not even be well-defined], this stopping time
should be approximately optimal in the sense that the approximate stopping times
T#,.¢, yield the value (3.4) in the limit as n — oo. These extensions also include
various boundary behaviour of the process X at the endpoints of the state space
(e.g., 0 when the state space equals R;). We leave precise formulations of these
statements and proofs as informal conjectures open for future developments. We
emphasise that these questions are best studied through examples, and each partic-
ular example may have specifics which are difficult to cover by any meta-theorem
in advance. Omitting further details we briefly turn to some examples.

4. Examples. Combining the results of Proposition 1 and Theorem 1 we ob-
tain the solution to the quickest detection problem (2.3). We illustrate various spe-
cial cases of this correspondence through one particular example.

EXAMPLE 1. Assume that the observed process Z is a standard Brownian
motion B starting at 0, suppose that £ is a standard normal random variable inde-
pendent from B, and consider the quickest detection problem (2.3) where ¢ > 0 is
a given and fixed constant. By the result of Proposition 1 we know that this prob-
lem is equivalent to the optimal stopping problem (2.14) where X =2F(Z) — 1
solves (2.10) with u and o given by (2.11) and (2.12). From (2.1) we see that
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a=0and b =1 so that

+1 +1
@.1) u(x)z—cb‘l(x2 )w(@‘l(xz ))

4.2) o (x) :2g0(<I>_l<x ;r 1))

for x € (—1, 1) where ®(y) = (1/+/27) ffoo =712 dz is the standard normal dis-

tribution function and ¢(y) = (1/+/2mw)e™” ?/2 is the standard normal density func-
tion for y € R. It is easily verified using (2.16) that the scale function of X can be
taken as

e[l ()

for x € (—1, 1). By Theorem 1 we know that the following stopping time is opti-
mal:

4.4) T*Zinf{l‘imf*(lz,st) <X Sg*(lz,St)},
where the surfaces f, and g, are the minimal and maximal solutions to

g—{(i,S)

45y = 2@+ 1D/2) exp(1/2ASTH(S G 5) + 1D/2))
c(s — i) 7 exp(1/2(071((y + 1)/2)2) dy

[ /f @.9) [P exp(1/2(@~H((z + 1 /2)H) dz ]
x|14+c dy|,
i 202D ((y + 1)/2) exp(1/2(@~1((y + 1)/2))2)

0
a—f(i,w

_ 202(@ 7' (g 5) + 1)/2)) exp(1/2( 1 (g, 5) + 1)/2))%)
c(s =) fyr.5 €XP(1/2(271((y + 1)/2))*) dy

s 5y exp(1/2(@~1((z + 1)/2))?) dz
X |:1 —I—c/ T — B dy}
gG,s) 20°(@7((y + 1D /2)) exp(1/2(P~ ((y + 1)/2))%)

staying strictly above the lower diagonal d° and strictly below the upper diago-
nal d; fori < s in (—1, 1), respectively. Equations (4.5) and (4.6) are singular at
the lower and upper diagonal. Passing to the inverse equations di/df and ds/dg
these singularities get removed, and one can determine the minimal and maximal
solution by approximating them with the solutions which hit the lower and upper
diagonal, respectively (as explained in the proof above). The results of these calcu-
lations are illustrated in Figures 1-3. Similar qualitative behaviour of the optimal
surfaces can also be observed in other examples of diffusions and hidden levels.

(4.6)




2368 G. PESKIR

The list of examples can be continued by considering various diffusion pro-
cesses Z and hidden targets £. This leads to a classification of the laws of £ against
the laws of Z (through the drift and diffusion coefficient) in terms of the opti-
mal surfaces derived in Theorem 1. This classification can be used for calibration
against observed performance (where either of the two laws is taken initially to be
known, e.g.).

Apart from the problems where the optimal stopping boundaries are surfaces,
this also includes problems where the optimal stopping boundaries are curves. We
illustrate this briefly through one-known example from stochastic analysis.

EXAMPLE 2. Taking X to be a standard Brownian motion B and setting
c(r) = c, itis easily seen that the minimal and maximal solutions to (2.6) and (2.7)
are given by

, . , 1

4.7) fl,s)=i+— and g@,s)=s— —.

2c 2c
From (3.48) we see that i(s) =5 — % ands(i) =i+ % Since f] =0 we see from
(3.53) that aé(s) = —c. Inserting this into (3.65) we find that V (0, 0, 0) = %; note
that unboundedness of B presents no difficulty since the optimal stopping time
has finite expectation. This shows that for any stopping time t of B (with finite
expectation) we have

3
4.8) E(S; —I;) <cEt+ —.
4c
Taking the infimum over all ¢ > 0 we obtain the result of [10],

(4.9) E(S; — I) < v/3VEr.

One can extract similar other inequalities/information from the proof above.
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