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In this work, we study the optimal discretization error of stochastic in-
tegrals, in the context of the hedging error in a multidimensional Itô model
when the discrete rebalancing dates are stopping times. We investigate the
convergence, in an almost sure sense, of the renormalized quadratic variation
of the hedging error, for which we exhibit an asymptotic lower bound for a
large class of stopping time strategies. Moreover, we make explicit a strategy
which asymptotically attains this lower bound a.s. Remarkably, the results
hold under great generality on the payoff and the model. Our analysis relies
on new results enabling us to control a.s. processes, stochastic integrals and
related increments.

1. Introduction. The problem. We aim at finding a finite sequence of optimal
stopping times T n = {τn

0 = 0 < τn
1 < · · · < τn

i < · · · < τn
Nn

T
= T } which minimizes

the quadratic variation of the discretization error of the stochastic integral

Zn
s =

∫ s

0
Dxu(t, St ) · dSt − ∑

τn
i−1≤s

Dxu
(
τn
i−1, Sτn

i−1

) · (Sτn
i ∧s − Sτn

i−1
),

which interpretation is the hedging error [1] of the discrete Delta-hedging strat-
egy of a European option with underlying asset S (multidimensional Itô process),
maturity T > 0, price function u (for the ease of presentation, here u depends
only on S) and payoff g(ST ). The times (τn

i )1≤i≤Nn
T

read as rebalancing dates (or
trading dates), and their number Nn

T is a random variable which is finite a.s. The
exponent n refers to a control parameter introduced later on; see Section 2. The a.s.
minimization of Zn

T is hopeless since after a suitable renormalization, it is known
that it weakly converges to a mixture of Gaussian random variables (see [1, 13, 18,
19] when trading dates are deterministic and under some mild assumptions on the
model and payoff; see [9] for stopping times under stronger assumptions). Hence
it is more appropriate to investigate the a.s. minimization of the quadratic varia-
tion 〈Zn〉T which, owing to the Lenglart inequality (resp., the Burkholder–Davis–
Gundy inequality), allows the control of the distribution (resp., the Lp-moments,
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p > 0) of supt≤T |Zn
t | under martingale measure. To avoid trivial lower bounds by

letting Nn
T → +∞, we reformulate our problem into the a.s. minimization of the

product

Nn
T

〈
Zn〉

T .(1.1)

As emphasized in [8], the resolution of this optimization problem allows the
asymptotic minimization of more general costs of the form C(Nn

T , 〈Zn〉T ), where
the function C :R2 �→ R is increasing in both variables. Our Theorem 3.1 states
that the renormalized error (1.1) has a.s. an asymptotic lower bound over the class
of admissible strategies which consist (roughly speaking2) of deterministic times
and of hitting times of random ellipsoids of the form

τn
0 := 0, τ n

i := inf
{
t ≥ τn

i−1 : (St −Sτn
i−1

) ·Hτn
i−1

(St −Sτn
i−1

) = 1
}∧T ,(1.2)

where (Ht)0≤t≤T is a measurable adapted positive-definite symmetric matrix pro-
cess. It includes the Karandikar scheme [23] for discretization of stochastic inte-
grals. In addition, in Theorems 3.2 and 3.3 we show the existence of a strategy
of the hitting time form attaining the a.s. lower bound. The derivation of a central
limit-type theorem for Zn is left to further research (see [28]), in particular because
the verification of the criteria in [9] is difficult to handle in our general setting.

Literature background. Our work extends the existing literature on discretiza-
tion errors for stochastic integrals with deterministic time mesh, mainly considered
with financial applications. Many works deal with hedging rebalancing at regular
intervals of length �ti = T/n. In [37] and [1], the authors show that E[〈Zn〉T ]
converges to 0 at rate n for payoffs smooth enough [this convergence rate origi-
nates to consider the product (1.1) as a minimization criterion]. However, in [18] it
is proved that the irregularity of the payoff may deteriorate the convergence rate:
it becomes n1/2 for digital call option. This phenomenon has been intensely ana-
lyzed by Geiss and his co-authors using the concept of fractional smoothness (see
[10–12, 15] and references therein): by the choice of rebalancing dates suitably
concentrated at maturity, we recover the rate n.

The first attempt to find optimal strategies with nondeterministic times goes
back to [30]: the authors allow a fixed number n of random rebalancing dates,
which actually solve an optimal multiple-stopping problem. Numerical methods
are required to compute the solution. In [8], Fukasawa performs an asymptotic
analysis for minimizing the product E(Nn

T )E(〈Zn〉T ) (an extension to jump pro-
cesses has been recently done in [34]). Under regularity and integrability assump-
tions (and for a convex payoff on a single asset), Fukasawa derives an asymptotic
lower bound and provides an optimal strategy. His contribution is the closest to our
current work. But there are major differences:

2A precise definition is given in Section 2.
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(1) We focus on a.s. results, which is probably more meaningful for hedging
issues. We are not aware of similar works in this direction.

(2) We allow a quite general model for the asset. It can be a multidimensional
diffusion process (local volatility model); see the discussion in Section A.6. As a
comparison, in [8] the analysis is carried out for a one-dimensional model (mainly
Black–Scholes model).

(3) We also allow a great generality on the payoff. In particular, the payoff can
be discontinuous, and the option can be exotic (Asian, lookback, . . . ) (see Sec-
tion A.6 for examples): for mathematical reasons, this is a major difference in
comparison with [8]. Indeed, in the latter reference, the payoff convexity is needed
to ensure the positivity of the option Gamma (second derivative of price), which is
a crucial property in the analysis. Also, for discontinuous payoff the Lp integra-
bility of the sensitivities (Greeks) up to maturity may be not satisfied (see [16]);
thus, some quantities in the analysis (e.g., the integral of the second moment of the
Gamma of digital call option) may become infinite. In our setting, we circumvent
these issues by only requiring the sensitivities to be finite a.s. up to maturity: actu-
ally, this property is systematically satisfied by payoffs for which the discontinuity
set has a zero-measure (see Section A.6), which includes all the usual situations to
our knowledge.

To achieve such a level of generality and an a.s. analysis, we design efficient tools
to analyze the a.s. control and a.s. convergence of local martingales, of their in-
crements and so forth. All these results represent another important theoretical
contribution of this work. Other applications of these techniques are in prepara-
tion. At last, although the distribution of hitting time of random ellipsoid of the
form (1.2) is not explicit, quite surprisingly we obtain tight estimates on the maxi-
mal increments of supi≤Nn

T
(τn

i −τn
i−1), which may have applications in other areas

(like stochastic simulation).
Outline of the paper. In the following, we present some notation and assump-

tions that will be used throughout the paper. Section 2 is aimed at defining our class
of stopping time strategies and deriving some general theoretical properties in this
class. For that, we establish new key results about a.s. convergence, which fit well
our framework. All these results are not specifically related to financial applica-
tions. The main results about hedging error are stated and proved in Section 3. Nu-
merical experiments are presented in Section 4, with a practical description of the
algorithm to build the optimal sequence of stopping times (actually hitting times)
and a numerical illustration regarding the exchange binary option (in dimension 2).

Notation used throughout the paper.

• We denote by x · y the scalar product between two vectors x and y, and by
|x| = (x · x)1/2 the Euclidean norm of x; the induced norm of a m× d-matrix A

is denoted by |A| := supx∈Rd : |x|=1 |Ax|.
• A∗ stands for the transposition of the matrix A; Id stands for the identity matrix

of size d; the trace of a square matrix A is denoted by Tr(A).
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• Sd(R), Sd+(R) and Sd++(R) are respectively the set of symmetric, symmetric
nonnegative-definite and symmetric positive-definite d × d-matrices with coef-
ficients in R: A ∈ Sd+(R) [resp., Sd++(R)] if and only if x · Ax ≥ 0 (resp., > 0)
for any x ∈ R

d \ {0}.
• For A ∈ Sd(R), �(A) := (λ1(A), . . . , λd(A)) stands for its spectrum (its R-

valued eigenvalues), and we set λmin(A) := min1≤i≤d λi(A).
• For the partial derivatives of a function f : (t, x, y) �→ f (t, x, y), we write

Dtf (t, x, y) = ∂f
∂t

(t, x, y), Dxi
f (t, x, y) = ∂f

∂xi
(t, x, y), D2

xixj
f (t, x, y) =

∂2f
∂xi ∂xj

(t, x, y), D2
xiyj

f (t, x, y) = ∂2f
∂xi ∂yj

(t, x, y) and so forth.
• When convenient, we adopt the short notation ft in place of f (t, St , Yt ) where

f is a given function and (St , Yt )0≤t≤T is a continuous time process (introduced
below).

• For a R
d -valued continuous semimartingale M , 〈M〉t stands for the matrix of

cross-variations (〈Mi,Mj 〉t )1≤i,j≤d .
• The constants of the multidimensional version of the Burkholder–Davis–Gundy

inequalities [25], page 166, are defined as follows: for any p > 0 there exists
cp > 1 such that for any vector M = (M1, . . . ,Md) of continuous local martin-
gales with M0 = 0 and any stopping time θ , we have

c−1
p E

∣∣∣∣∣
d∑

j=1

〈
Mj 〉

θ

∣∣∣∣∣
p

≤ E

(
sup
t≤θ

|Mt |2p
)

≤ cpE

∣∣∣∣∣
d∑

j=1

〈
Mj 〉

θ

∣∣∣∣∣
p

.(1.3)

• For a given sequence of stopping times T n, the last time before t ≤ T is defined
by ϕ(t) = max{τn

j ; τn
j ≤ t}: although dependent on n, we omit to indicate this

dependency to alleviate notation. Furthermore, for a process (ft )0≤t≤T , we write
�ft := ft − fϕ(t−) (omitting again the index n for simplicity); in particular, we
have �fτn

i
= fτn

i
−fτn

i−1
. Besides we set �t = t −ϕ(t−) and �τn

i := τn
i − τn

i−1.

• We shortly write Xn a.s.−→ if the random variables (Xn)n≥0 converge almost
surely as n → ∞. We write Xn a.s.−→ X∞ to additionally indicate that the almost
sure limit is equal to X∞. We shall say that the sequence (Xn)n≥0 is bounded if
supn≥0 |Xn| < +∞, a.s.

• C0 is a a.s. finite nonnegative random variable, which may change from line to
line.

Model. Let T > 0 be a given terminal time (maturity), and let (	,F, (Ft )0≤t≤T ,

P) be a filtered probability space, supporting a d-dimensional Brownian motion
B = (Bi)1≤i≤d defined on [0, T ], where (Ft )0≤t≤T is the P-augmented natural fil-
tration of B and F = FT . This stochastic basis serves as a modeling of the evolu-
tion of d tradable risky assets without dividends, which price processes are denoted
by S = (Si)1≤i≤d . Their dynamics are given by an Itô continuous semimartingale
which solves

St = S0 +
∫ t

0
bs ds +

∫ t

0
σs dBs(1.4)
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with measurable and adapted coefficients b and σ . This is the usual framework
of complete market; see [31]. Assumptions on σ are given below. Furthermore,
for the sake of simplicity we directly assume that the return of the money market
account (rt )t is zero and that b ≡ 0. This simplification is not really a restriction
(see [31] for details): indeed, first we can still re-express prices in the money mar-
ket account numéraire; second, because we deal with a.s. results, we can consider
dynamics under any equivalent probability measure, and we choose the martingale
measure.

From now on, S is a continuous local martingale, and σ satisfies the following
assumption.

(Aσ ) a.s. for any t ∈ [0, T ] σt is nonzero; moreover σ satisfies the continuity
condition: there exist a parameter θσ ∈ (0,1] and a nonnegative a.s. finite random
variable C0 such that

|σt − σs | ≤ C0
(|St − Ss |θσ + |t − s|θσ /2) ∀0 ≤ s, t ≤ T a.s.

The above continuity condition is satisfied if σt := σ(t, St ) for a function σ(·)
which is θσ -Hölder continuous w.r.t. the parabolic distance. For some of our re-
sults, the above assumption is strengthened into the following:

(AEllip.
σ ) Assume (Aσ ) and that σt is elliptic in the sense

0 < λmin
(
σtσ

∗
t

) ∀0 ≤ t ≤ T a.s.

The assumption (AEllip.
σ ) is undemanding, since we do not suppose any uniform

(in ω) lower bound.
We consider an exotic option written on S with payoff g(ST ,YT ) where YT

is a functional of (St )0≤t≤T . In the subsequent asymptotic analysis, we assume
that Y = (Y i)1≤i≤d ′ is a vector of adapted continuous nondecreasing processes.
Examples of such an option are given below: this illustrates that the current set-
ting covers numerous relevant situations beyond the case of simple vanilla options
[with payoff of form g(ST )].

EXAMPLE 1.1. (1) Asian options: Y
j
t := ∫ t

0 S
j
s ds and g(x, y) :=

(
∑

1≤j≤d πjy
j − K)+, for some weights πj and a given K ∈ R.

(2) Lookback options: Y
j
t := max0≤s≤t S

j
s and g(x, y) := ∑

1≤j≤d(πjy
j −

π ′
j x

j ).

Furthermore, we assume that the price at time t of such an option is given by
u(t, St , Yt ) where u is a C1,3,1([0, T [×R

d ×R
d ′

) function verifying

u(T ,ST ,YT ) = g(ST ,YT ) and
(1.5)

u(t, St , Yt ) = u(0, S0, Y0) +
∫ t

0
Dxu(s, Ss, Ys) · dSs
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for any t ∈ [0, T ]. The above set of conditions is related to probabilistic and analyt-
ical properties. First, although not strictly equivalent, it essentially means that the
pair (S,Y ) forms a Markov process and this originates why the randomness of the
fair price E(g(ST ,YT )|Ft ) at time t only comes from (St , Yt ). Observe that this
Markovian assumption about (S,Y ) is satisfied in the above examples. Second,
the regularity of the price function u is usually obtained by applying PDE results
thanks to Feynman–Kac representations: it is known that the expected regularity
can be achieved under different assumptions on the smoothness of the coefficients
of S and Y , of the payoff g, combined with some appropriate nondegeneracy con-
ditions on (S,Y ). The pictures are multiple, and it is not our current aim to list
all the known related results; we refer to [36] for various Feynman–Kac represen-
tations related to exotic options, and to [32] for regularity results and references
therein. See Section A.6 for extra regularity results. Besides, we assume

(Au) Let A ∈ D := {D2
xj xk

,D3
xj xkxl

,D2
txj

,D2
xj ym

: 1 ≤ j, k, l ≤ d,1 ≤ m ≤ d ′},

P

(
lim
δ→0

sup
0≤t<T

sup
|x−St |≤δ,|y−Yt |≤δ

∣∣Au(t, x, y)
∣∣< +∞

)
= 1.

Observe that the above assumption is really weak: this is a pathwise result, and
we do not require any Lp-integrability of the derivatives of u. In Section A.6, we
provide an extended list of payoffs (continuous or not) of options (vanilla, Asian,
lookback) in log-normal or local volatility models, for which (Au) holds. Even for
the simple option payoff g(ST ) in the simple log-normal model, we have not been
able to exhibit a payoff function g for which (Au) is not satisfied.

2. Class T adm. of strategies and convergence results. In this section, we
define the class of strategies under consideration, and establish some preliminary
almost sure convergence results in connection with this class.

A strategy is a finite sequence of increasing stopping times {τ0 = 0 < τ1 < · · · <
τi < · · · < τNT

= T } (with NT < +∞ a.s.) which stand for the rebalancing dates.
Furthermore, the number of risky assets held on each interval [τi, τi+1) follows the
usual Delta-neutral rule Dxu(τi, Sτi

, Yτi
).

2.1. Assumptions. Now to derive asymptotically optimal results, we consider
a sequence of strategies indexed by the integers n = 0,1, . . . , that is, writing

T n := {τn
0 = 0 < τn

1 < · · · < τn
i < · · ·<τn

Nn
T

}
for n = 0,1, . . . ,

and we define an appropriate asymptotic framework, as the convergence param-
eter n goes to infinity. Let (εn)n≥0 be a sequence of positive deterministic real
numbers converging to 0 as n → ∞; assume that it is a square-summable sequence∑

n≥0

ε2
n < +∞.(2.1)
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On the one hand, the parameter ε
−2ρN
n (for some ρN ≥ 1) upper bounds (up to a

constant) the number of rebalancing dates of the strategy T n, that is:

(AN ) The following nonnegative random variable is a.s. finite:

sup
n≥0

(
ε2ρN
n Nn

T

)
< +∞

for a parameter ρN satisfying 1 ≤ ρN < (1 + θσ
2 ) ∧ 4

3 .

On the other hand, the parameter εn controls the size of variations of S between
two stopping times in T n.

(AS) The following nonnegative random variable is a.s. finite:

sup
n≥0

(
ε−2
n sup

1≤i≤Nn
T

sup
t∈(τn

i−1,τ
n
i ]

|St − Sτn
i−1

|2
)

< +∞.

Observe that assumptions (AN ) and (AS) play complementary (and not equivalent)
roles. We are now ready to define the class of sequence of strategies in which we
are seeking the optimal element.

DEFINITION 2.1. A sequence of strategies T := {T n : n ≥ 0} is admissible
if it fulfills the hypotheses (AN ) and (AS). The set of admissible sequences T is
denoted by T adm..

The above definition depends on the sequence (εn)n≥0, which is fixed from now
on.

REMARK 2.1.

• The larger ρN , the wider the class of strategies under consideration. The choice
ρN = 1 is allowed, but seemingly it rules out deterministic strategies; see the
next remark.

• If ρN > 1, a strategy T n consisting of Nn
T = 1 + �ε−2ρN

n � deterministic times

with mesh size sup1≤i≤Nn
T

�τn
i ≤ Cε

2ρN
n (this includes the cases of uniform and

some nonuniform time grids) forms an admissible sequence of strategies, thanks
to the 1

2
−

-Hölder property of the Dambis–Dubins–Schwarz Brownian motion of
Sj (1 ≤ j ≤ d) (under the additional assumption that σ is uniformly bounded to
safely maintain the time-changes into a fixed compact interval).

• Our setting allows us to consider stopping times satisfying the strong pre-
dictability condition (i.e., τn

i is Fτn
i−1

-measurable); see [21], Chapter 14.
• We show in Proposition 2.4 that the strategy T n of successive hitting times of

ellipsoid of size εn forms a sequence in T adm..
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• In Sections 2.3–2.4, we investigate properties of admissible sequences of strate-
gies. Among others, we show that the mesh size of T n shrinks a.s. to 0, and we
establish tight a.s. upper bounds (see Corollary 2.2): namely for any ρ ∈ (0,2],
there is a a.s. finite random variable Cρ such that sup1≤i≤Nn

T
�τn

i ≤ Cρε
2−ρ
n for

any n ≥ 0.

We require an extra technical condition on the nondecreasing process Y which
is fulfilled in practical cases for an admissible sequence of strategies.

(AY ) The following nonnegative random variable is a.s. finite: for some ρY >

4(ρN − 1)

sup
n≥0

(
ε−ρY
n sup

1≤i≤Nn
T

|�Yτn
i
|
)

< +∞.

EXAMPLE 2.1. Let T := {T n :n ≥ 0} satisfy (AS)–(AN ).

(1) Asian options: applying Corollary 2.2 [item (ii)] with ρ = 2
3 and taking

ρY = 4
3 > 4(ρN − 1) (since ρN < 4

3 ) gives

sup
n≥0

(
ε−ρY
n sup

1≤i≤Nn
T

|�Yτn
i
|
)

≤ sup
0≤t≤T

|St | sup
n≥0

(
ερ−2
n sup

1≤i≤Nn
T

�τn
i

)
< +∞ a.s.

(2) Lookback options: clearly, we have

sup
n≥0

(
ε−1
n sup

1≤i≤Nn
T

|�Yτn
i
|
)

≤ sup
n≥0

(
ε−1
n sup

0≤t≤T

|�St |
)

< +∞ a.s.;

thus (AY ) is satisfied with ρY = 1 provided that ρN < 5/4.

2.2. Fundamental lemmas about almost sure convergence. This subsection is
devoted to the main ingredient (Lemmas 2.1 and 2.2) about almost sure conver-
gence, which is involved in the subsequent asymptotic analysis.

We first recall some usual approaches to establish that a sequence (Un
T )n≥0 con-

verges to 0 in probability or almost surely, as n → ∞: it serves as a preparation for
the comparative discussion we will have regarding our almost sure convergence
results.

• Convergence in probability. It can be handled, for instance, by using the Markov
inequality and showing that the Lp-moment (for some p > 0) of Un

T converges

to 0: for p = 1 and δ > 0, it writes P(|Un
T | ≥ δ) ≤ E|Un

T |
δ

→n→∞ 0. Observe that
this approach requires a bit of integrability of the random variable Un

T .
To achieve the uniform convergence in probability of (Un

t )0≤t≤T to 0,
Lenglart [29] introduced an extra condition: the relation of domination. Namely,
assume that (Un

t )0≤t≤T is a nonnegative continuous adapted process and that it
is dominated by a nondecreasing continuous adapted process (V n

t )0≤t≤T (with
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V n
0 = 0) in the sense E(Un

θ ) ≤ E(V n
θ ) for any stopping time θ ∈ [0, T ]. Then,

for any c1, c2 > 0, we have

P

(
sup
t≤T

Un
t ≥ c1

)
≤ 1

c1
E
(
V n

T ∧ c2
)+ P

(
V n

T ≥ c2
)
.

A standard application consists in taking Un as the square of a continuous local
martingales Mn; then, the convergence in probability of 〈Mn,Mn〉T to 0 implies
the uniform convergence in probability of (Mn

t )0≤t≤T to 0. The converse is also
true, the relation of domination deriving from BDG inequalities. This kind of
result leads to useful tools for establishing the convergence in probability of
triangular arrays of random variables: for instance, see [14], Lemma 9, in the
context of parametric estimation of stochastic processes.

• Almost sure convergence. We may use a Borel–Cantelli type argument, assum-
ing that

∑
n≥0 E|Un

T | < +∞. Fubini–Tonelli’s theorem yields that the series∑
n≥0 |Un

T | converges a.s., and in particular Un
T

a.s.−→ 0. Here again, the inte-
grability of Un

T is required.
Bichteler and Karandikar leveraged this type of series argument to establish

the a.s. convergence of stochastic integrals under various assumptions, with in
view either approximation issues or pathwise stochastic integration; see [2, 22–
24] and references therein.

Our result below (Lemma 2.1) is inspired by the above references, but its condi-
tions of applicability are less stringent, and it allows more flexibility in our frame-
work. We assume a relation of domination, but:

(1) not for all stopping times (as in Lenglart domination);
(2) the processes (Un

t )0≤t≤T are not assumed to be continuous [nor
(
∑

n≥0 Un
t )0≤t≤T ];

(3) the dominating process V n is not assumed to be nondecreasing.

Thus, our assumptions are less demanding, but on the other hand, we do not ob-
tain any uniform convergence result. Moreover, we emphasize that we do not as-
sume any integrability on Un

T . This is crucial, because the typical applications of
Lemma 2.1 are related to Un

T defined as a (possibly stochastic) integral of the
derivatives of u evaluated along the path (St , Yt )0≤t≤T : since usual payoff func-
tions are irregular, it is known that the Lp-moments of related derivatives blow up
as time goes to maturity, and it is hopeless to obtain the required integrability on
Un

T assuming only (Au).
We are now ready for the statement of our a.s. convergence result.

LEMMA 2.1. Let M+
0 be the set of nonnegative measurable processes van-

ishing at t = 0. Let (Un)n≥0 and (V n)n≥0 be two sequences of processes in M+
0 .

Assume that:
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(i) the series
∑

n≥0 V n
t converges for all t ∈ [0, T ], almost surely;

(ii) the above limit is upper bounded by a process V̄ ∈ M+
0 and that V̄ is

continuous a.s.;
(iii) there is a constant c ≥ 0 such that, for every n ∈ N, k ∈ N and t ∈ [0, T ],

we have

E
[
Un

t∧θk

]≤ cE
[
V n

t∧θk

]
with the random time θk := inf{s ∈ [0, T ] : V̄s ≥ k}.3
Then for any t ∈ [0, T ], the series

∑
n≥0 Un

t converges almost surely. As a conse-

quence, Un
t

a.s.−→ 0.

PROOF. First, observe that (θk)k≥0 defines well random times since V̄ is con-
tinuous.

Denote by NV the P-negligible set on which the series (
∑

n≥0 V n
t )0≤t≤T do

not converge, and on which V̄ and then (θk)k≥0 are not defined; observe that for
ω /∈ NV , we have V̄t∧θk

(ω) ≤ k for any t ∈ [0, T ] and k ∈ N. Set V̄ p :=∑p
n=0 V n:

we have V̄ p ≤ V̄ on N c
V ; thus, the localization of V̄ entails that of V̄ p and we have

V̄
p
t∧θk

≤ k for any k,p and t (on N c
V ).

Moreover, for any n and k, the relation of domination writes

E

[ p∑
n=0

Un
t∧θk

]
≤ cE

[ p∑
n=0

V n
t∧θk

]
= cE

[
V̄

p
t∧θk

]≤ ck.(2.2)

From Fatou’s lemma, we get E[∑n≥0 Un
t∧θk

] < +∞: in particular, for any k ∈ N,
there is a P-negligible set Nk,t , such that

∑
n≥0 Un

t∧θk
(ω) converges for all ω /∈

Nk,t . The set Nt =⋃k∈NNk,t ∪NV is P-negligible, and it follows that for ω /∈Nt ,
the series

∑
n≥0 Un

t∧θk
(ω) converges for all k ∈ N. For ω /∈ Nt , we have θk(ω) =

+∞ as soon as k > V̄T (ω); thus by taking such k, we complete the convergence
of
∑

n≥0 Un
t on N c

t . �

Observe that in our argumentation, we do not assume that the nonnegative ran-
dom variables Un

t and V n
t have a finite expectation (and in some examples, it is

false, especially at t = T ). However, note that in (2.2) we prove that Un
t∧θk

and
V n

t∧θk
have a finite expectation: in other words, (θk)k≥0 serves as a common local-

ization for Un and V n. In addition, Lemma 2.1 is general and thorough since we do
not assume any adaptedness or regularity properties of the processes Un and V n.
We provide a simpler version that can be customized for our further applications:

LEMMA 2.2. Let C+
0 be the set of nonnegative continuous adapted processes,

vanishing at t = 0. Let (Un)n≥0 and (V n)n≥0 be two sequences of processes in C+
0 .

Replace the two first items of Lemma 2.1 by:

3With the usual convention inf∅ = +∞.
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(i′) t �→ V n
t is a nondecreasing function on [0, T ], almost surely;

(ii′) the series
∑

n≥0 V n
T converges almost surely;

(iii′) there is a constant c ≥ 0 such that, for every n ∈ N, k ∈ N and t ∈ [0, T ],
we have

E
[
Un

t∧θk

]≤ cE
[
V n

t∧θk

]
(2.3)

with the stopping time θk := inf{s ∈ [0, T ] : V̄s ≥ k} setting V̄t =∑n≥0 V n
t .

Then, the conclusion of Lemma 2.1 still holds.

PROOF. We just have to prove that items (i′) + (ii′) entails items (i) + (ii) of
Lemma 2.1 for Un and V n in C+

0 ⊂M+
0 . Since V n is nondecreasing, the a.s. con-

vergence of
∑

n≥0 V n
T implies that of

∑
n≥0 V n

t . Moreover
∑

n≥0 sup0≤t≤T V n
t =∑

n≥0 V n
T < +∞ a.s. Therefore, a.s. the series associated with V n is normally con-

vergent on [0, T ] and V̄ :=∑n≥0 V n ∈ C+
0 : items (i) + (ii) are satisfied. Observe

θk is a stopping time since V̄ is continuous and adapted. �

We apply Lemma 2.2 to derive a simple criterion for the convergence of contin-
uous local martingales.

COROLLARY 2.1. Let p > 0, and let {(Mn
t )0≤t≤T :n ≥ 0} be a sequence of

scalar continuous local martingales vanishing at zero. Then∑
n≥0

〈
Mn〉p/2

T

a.s.−→ ⇐⇒ ∑
n≥0

sup
0≤t≤T

∣∣Mn
t

∣∣p a.s.−→ .

PROOF. We first prove the implication ⇒. Set Un
t := sup0≤s≤t |Mn

s |p and

V n
t := 〈Mn〉p/2

t , and let us check the conditions of Lemma 2.2: (i′) V n is nonde-
creasing and (ii′)∑n≥0 V n

T converges a.s. The relation of domination (2.3) follows
from the BDG inequalities [see the RHS of (1.3)] and we are done. The implica-
tion ⇐ is proved similarly, using the LHS of (1.3) regarding the BDG inequalities.

�

2.3. Controls of �τn and of the martingales increments. Being inspired by the
scaling property of Brownian motion, we might intuitively guess that a sequence
of strategy (T n)n≥0 satisfying (AS) yields stopping times increments of magni-
tude equal roughly to ε2

n. Actually, thorough estimates are difficult to derive: for
instance, the exit times of balls by a Brownian motion define unbounded random
variables.

To address these issues, we take advantage of Lemma 2.2 to establish estimates
on the sequence (�τn

i := τn
i − τn

i−1)1≤i≤Nn
T

, which show that we almost recover

the familiar scaling ε2
n.

PROPOSITION 2.1. Assume (Aσ ). Let T be a sequence of strategies satisfying
(AS) and let p ≥ 0. Then:
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(i) The series
∑

n≥0 ε
−(p−2)
n sup1≤i≤Nn

T
(�τn

i )p
a.s.−→.

(ii) Assume moreover that T ∈ T adm.: the series
∑

n≥0 ε
−2(p−1)+2ρN
n ×∑

τn
i−1<T (�τn

i )p
a.s.−→.

The proof is postponed to Appendix A.1. As a consequence of Proposition 2.1,
the mesh size of T n, that is, sup1≤i≤Nn

T
�τn

i , converges a.s. to 0 as n → ∞, with
some explicit rates of convergence: this is the statement below.

COROLLARY 2.2. With the same assumptions and notation as Proposi-
tion 2.1, we have the following estimates, for any ρ > 0:

(i) Under (AS), supn≥0(ε
ρ−1
n sup1≤i≤Nn

T
�τn

i ) < +∞ a.s.

(ii) Under (AS)–(AN ), supn≥0(ε
ρ−2
n sup1≤i≤Nn

T
�τn

i ) < +∞ a.s.

PROOF. Item (i). Clearly, from Proposition 2.1(i), we obtain supn≥0(ε
−(p−2)
n ×

sup1≤i≤Nn
T
(�τn

i )p) < +∞ a.s. for any p ≥ 0 and the result follows by taking
p = 2/ρ.

Item (ii). We proceed similarly by observing that Proposition 2.1(ii) gives

sup
n≥0

(
ε−2(p−1−ρN)
n sup

1≤i≤Nn
T

(
�τn

i

)p) ≤ sup
n≥0

(
ε−2(p−1−ρN )
n

∑
τn
i−1<T

(
�τn

i

)p)

< +∞ a.s. �

We are now in a position to control the a.s. convergence of some stochastic
integrals appearing in our further optimality analysis. The following proposition
and corollary will play a crucial role in the estimations of the error terms appearing
in the main theorems; see Section 3.

PROPOSITION 2.2. Assume (Aσ ). Let T = (T n)n≥0 be a sequence of strate-
gies, ((Mn

t )0≤t≤T )n≥0 be a sequence of R-valued continuous local martingales
such that 〈Mn〉t = ∫ t

0 αn
r dr for a nonnegative measurable adapted αn satisfying

the following inequality: there exists a nonnegative a.s. finite random variable Cα

and a parameter θ ≥ 0 such that

0 ≤ αn
r ≤ Cα

(|�Sr |2θ + |�r|θ ) ∀0 ≤ r < T ,∀n ≥ 0, a.s.

Then, the following convergences hold:

(i) Assume T satisfies (AS) and let p ≥ 2

∑
n≥0

(
ε3−((1+θ)/2)p
n

∑
τn
i−1<T

sup
τn
i−1≤t≤τn

i

∣∣�Mn
t

∣∣p)< +∞ a.s.
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(ii) Assume furthermore that T satisfies (AN ) (i.e., T ∈ T adm.), and let p > 0

∑
n≥0

(
ε2−(1+θ)p+2ρN
n

∑
τn
i−1<T

sup
τn
i−1≤t≤τn

i

∣∣�Mn
t

∣∣p)< +∞ a.s.

The proof is postponed in Appendix A.2. A straightforward consequence of the
aforementioned proposition is given by the following corollary, which proof is left
to the reader.

COROLLARY 2.3. Using the assumptions and notation of Proposition 2.2, we
have the following estimates, for any ρ > 0:

(i) Under (AS), supn≥0(ε
ρ−(1+θ)/2
n sup1≤i≤Nn

T
supτn

i−1≤t≤τn
i
|�Mn

t |) < +∞,
a.s.

(ii) Under (AS)–(AN ), supn≥0(ε
ρ−(1+θ)
n sup1≤i≤Nn

T
supτn

i−1≤t≤τn
i
|�Mn

t |) <

+∞, a.s.

REMARK 2.2. Observe that in the proofs of the Section 2.3 results, we have
not used the knowledge of the upper bound on ρN [stated in (AN )]: it means that
all the related results are true for any admissible sequence of strategies assuming
only ρN ≥ 1.

2.4. Almost sure convergence of weighted discrete quadratic variation.

PROPOSITION 2.3. Assume (Aσ ) and let T be a sequence of strategies sat-
isfying (AS). Let (Ht)0≤t<T be a continuous adapted d × d-matrix process such
that supt∈[0,T ) |Ht | < +∞ a.s., and let (Mt)0≤t≤T be a R

d -valued continuous lo-
cal martingale such that 〈M〉t = ∫ t

0 αr dr with sup0≤t≤T |αt | < +∞ a.s. Then

∑
τn
i−1<T

�M∗
τn
i
Hτn

i−1
�Mτn

i

a.s.−→
∫ T

0
Tr
(
Ht d〈M〉t ).

PROOF. From Itô’s lemma,
∑

τn
i−1<T �M∗

τn
i
Hτn

i−1
�Mτn

i
is equal to

d∑
k,l=1

∑
τn
i−1<T

�Mk
τn
i
H

k,l
τn
i−1

�Ml
τn
i

=
d∑

k,l=1

∫ T

0
H

k,l
ϕ(t)

(
�Mk

t dMl
t + �Ml

t dMk
t + d

〈
Mk,Ml 〉

t

)

=
∫ T

0
�M∗

t

(
Hϕ(t) + H ∗

ϕ(t)

)
dMt +

∫ T

0
Tr
(
Hϕ(t) d〈M〉t ).
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The second term in the above RHS converges a.s. to
∫ T

0 Tr(Ht d〈M〉t ): indeed, the
difference is bounded by C0

∫ T
0 |Ht −Hϕ(t)|dt , and we conclude by an application

of the dominated convergence theorem, invoking the continuity and boundedness
of H and the convergence to 0 of the mesh size of T n; see Corollary 2.2.

Thus it remains to show that the stochastic integral w.r.t. dMt converges
a.s. to 0. Owing to Corollary 2.1, it is enough to study the series of quadratic
variations, that is, to show that

∑
n≥0[

∫ T
0 (�M∗

t (Hϕ(t) + H ∗
ϕ(t))d〈M〉t (Hϕ(t) +

H ∗
ϕ(t))�Mt)]3 a.s.−→, and since α and H are a.s. bounded on [0, T ), it is sufficient

to show

∑
n≥0

[∫ T

0
|�Mt |2 dt

]3
a.s.−→ .(2.4)

Clearly [∫ T
0 |�Mt |2 dt]3 is bounded by

d3T 3 sup
1≤j≤d

sup
1≤i≤Nn

T

sup
τn
i−1≤t≤τn

i

∣∣�M
j
t

∣∣6 ≤ C0ε
2
n

owing to Corollary 2.3 [item (i)] for θ = 0 and ρ = 1
6 . The convergence (2.4) is

proved, and we are done. �

2.5. Verification of the hypothesis on a special family of hitting times. One of
the more appealing results of the paper is that a very large family of hitting times
fulfills the assumptions (AN ) and (AS) with a threshold depending of εn.

PROPOSITION 2.4. Assume (Aσ ). Let (Ht)0≤t<T be a continuous adapted
nonnegative-definite d × d-matrix process, such that a.s.

0 < inf
0≤t<T

λmin(Ht) ≤ sup
0≤t<T

λmax(Ht) < +∞.

The strategy T n given by{
τn

0 := 0,

τ n
i := inf

{
t ≥ τn

i−1 : (St − Sτn
i−1

)∗Hτn
i−1

(St − Sτn
i−1

) > ε2
n

}∧ T ,

defines a sequence of strategies satisfying assumptions (AN ) [with
supn≥0(ε

2
nN

n
T ) < +∞ a.s.] and (AS), that is {T n :n ≥ 0} ∈ T adm..

The proof is postponed to Appendix A.3. Observe that the above sequence of
strategies is admissible even in the most constrained case ρN = 1. As we shall see
later on, the optimal stopping times are given by the hitting times by the process S

of an ellipsoid (corresponding to the case H symmetric).
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3. Main results.

3.1. Statements. We now go back to the hedging issue: at time s ∈ [0, T ], the
fair value of the option is u(s, Ss), and the hedging portfolio with discrete rebal-
ancing dates T n is u(0, S0) +∑

τn
i−1≤s Dxu(τn

i−1, Sτn
i−1

) · (Sτn
i ∧s − Sτn

i−1
), which

yields an hedging error equal to

Zn
s := u(s, Ss) −

(
u(0, S0) + ∑

τn
i−1≤s

Dxu
(
τn
i−1, Sτn

i−1

) · (Sτn
i ∧s − Sτn

i−1
)

)

(3.1)
=
∫ s

0
(Dxut − Dxuϕ(t)) · dSt

using (1.5), where the integrand appears as the difference of Delta between τn
i−1

and t ∈]τn
i−1, τ

n
i ] for each 0 ≤ i ≤ Nn

T .
One main result of the paper is a lower bound of the renormalized quadratic

variation of the hedging error Zn: it is partly derived from a smart representation
of

〈
Zn〉

T =
∫ T

0
(Dxut − Dxuϕ(t))

∗ d〈S〉t (Dxut − Dxuϕ(t))(3.2)

as a sum of squared random variables and an application of the Cauchy–Schwarz
inequality. To derive this suitable representation, we apply the Itô formula and
identify the bounded variation term; it is straightforward in dimension one, much
more intricate in a multidimensional setting and this is equivalent to solving the
following matrix equation.

LEMMA 3.1. Let c ∈ Sd(R). Then the equation

2 Tr(x)x + 4x2 = c2(3.3)

admits exactly one solution x(c) ∈ Sd+(R). In addition, x(c) is positive-definite if
and only if c2 is positive-definite. Last, the mapping c �→ x(c) is continuous.

The proof is given in Section A.4. We are now in a position to give an explicit
asymptotic lower bound for Nn

T 〈Zn〉T : this is the contents of the following theo-
rem.

THEOREM 3.1. Assume assumptions (Aσ ), (Au), (AS), (AN ) and (AY ) are in
force. Let X be the solution of (3.3) with c := σ ∗D2

xxuσ . Then

lim inf
n→+∞ Nn

T

〈
Zn〉

T ≥
(∫ T

0
Tr(Xt)dt

)2
a.s.

Let us comment a bit on the above lower bound:
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• First, it is a.s. finite: indeed, supt<T |σ ∗
t D2

xxutσt | < +∞ a.s., and the continuity
of c �→ x(c) imply supt<T |Xt | < +∞ a.s.

• Second, observe that a.s.{∫ T

0
Tr(Xt)dt = 0

}
= {∀t < T :σ ∗

t D2
xxutσt = 0

}
under (AEllip.

σ )= {∀t < T :D2
xxut = 0

}
using at the first equality that Tr(x(c)) > 0 ⇔ x(c) �= 0 ⇔ c �= 0. Then we ob-
tain that except in degenerate situations [where the Gamma matrix D2

xxut is zero

at any time, assuming (AEllip.
σ )], the lower bound in Theorem 3.1 is nonzero.

• As a consequence, we immediately obtain a lower bound for the Lp-criterion:
indeed, using the Fatou lemma and the Cauchy–Schwarz inequality, we derive
(for any p > 0)[

E

(∫ T

0
Tr(Xt)dt

)p]2

≤
[
E

(
lim inf
n→+∞

(
Nn

T

〈
Zn〉

T

)p/2
)]2

≤ lim inf
n→+∞

[
E
(
Nn

T

〈
Zn〉

T

)p/2]2
≤ lim inf

n→+∞E
((

Nn
T

)p)
E
(〈
Zn〉p

T

)
.

For p = 1 we recover the Fukasawa approach [8].

The next theorem tells us that along a suitable sequence T n (the hitting times of
some random ellipsoids) the lower bound of Theorem 3.1 is reached. Let χ(·)
be a smooth function such that 1]−∞,1/2] ≤ χ(·) ≤ 1]−∞,1] and for μ > 0, set
χμ(x) = χ(x/μ).

THEOREM 3.2. Assume assumptions (AEllip.
σ ), (Au), (AS), (AN ) and (AY )

are in force. Let μ > 0, for t ≥ 0 set �t := (σ−1
t )∗Xtσ

−1
t and �

μ
t := �t +

μχμ(λmin(�t))Id .
For a given n ∈ N, define the strategy T n

μ by{
τn

0 := 0,

τ n
i = inf

{
t ≥ τn

i−1 : (St − Sτn
i−1

)∗�μ

τn
i−1

(St − Sτn
i−1

) > ε2
n

}∧ T .
(3.4)

Then, the sequence of strategies Tμ = {T n
μ :n ≥ 0} is admissible, and it is μ-

asymptotically optimal in the following sense:

lim sup
n→+∞

∣∣∣∣Nn
T

〈
Zn〉

T −
(∫ T

0
Tr(Xt)dt

)2∣∣∣∣≤ Cμμ

∫ T

0
χμ

(
λmin(�t)

)
Tr
(
σtσ

∗
t

)
dt,

where the random variable Cμ := ∫ T
0 (4 Tr(Xt) + 3μχμ(λmin(�t))Tr(σtσ

∗
t ))dt is

a.s. finite (locally uniformly w.r.t. μ ≥ 0).
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In particular, on the event {∀t ∈ [0, T ] :λmin(�t) ≥ μ}, Nn
T 〈Zn〉T converges a.s.

to (
∫ T

0 Tr(Xt)dt)2.

Observe that we require the ellipticity condition to hold. The proof is given in
Section 3.3.

We can strengthen the above theorem by allowing μ = 0 under stronger as-
sumptions.

THEOREM 3.3. Assume the assumptions of Theorem 3.2 and additionally that

P

(
inf

t∈[0,T [λmin
(
D2

xxut

)
> 0
)

= 1.(3.5)

Then, the sequence of strategies T0 = {T n(0) : n ≥ 0} defined in (3.4) with μ = 0
is admissible and asymptotically optimal,

lim
n→+∞Nn

T

〈
Zn〉

T =
(∫ T

0
Tr(Xt)dt

)2
a.s.

For the proof, see Section 3.4. The extra assumption (3.5) is satisfied in di-
mension one for call/put option in Black–Scholes model only if the hedging time
horizon is strictly smaller than the option maturity. But it is not satisfied in dig-
ital call/put option. This discussion can be extented to higher multidimensional
situations.

REMARK 3.1. In the one dimensional case, we have

Xt = 1√
6
σ 2

t

∣∣D2
xxut

∣∣, �t = 1√
6

∣∣D2
xxut

∣∣,
and the μ-optimal stopping times read

τn
i = inf

{
t ≥ τn

i−1 : |St − Sτn
i−1

| > εn√
|D2

xxuτn
i−1

|/√6 + μχμ(|D2
xxuτn

i−1
|/√6)

}
∧T .

For |D2
xxut | bounded from below, we can take μ = 0 and the optimal strategy

coincides with that of [8], Theorem C.
The threshold μ �= 0 ensures that the hedging rebalancing occurs often enough,

even if �t �= 0 for some time t : this interpretation is also valid in the multidimen-
sional case.

3.2. Proof of Theorem 3.1. It is split into several steps.
Step 1: Quadratic variation decomposition. We start from the hedging er-

ror (3.1). A natural idea consists in writing a Taylor expansion (regarding the S
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variable only) and showing that the residual terms converge to 0 fast enough as we
could expect,

Zn
s =

∫ s

0

(
D2

xxuϕ(t)�St

) · dSt + Rn
s ,(3.6)

where

Rn
s :=

∫ s

0

(
Dxut − Dxuϕ(t) − D2

xxuϕ(t)�St

) · dSt , s ≤ T .(3.7)

Then passing to quadratic variation, we obtain

〈
Zn〉

T =
∫ T

0
�S∗

t D2
xxuϕ(t) d〈S〉tD2

xxuϕ(t)�St + en
1,T ,

where

en
1,T := 〈Rn〉

T + 2
〈∫ ·

0

(
D2

xxuϕ(t)�St

) · dSt ,R
n·
〉
T

.(3.8)

Now, we wish an expression involving only the Brownian motion for ease of math-
ematical analysis: hence we replace �St by σϕ(t)�Bt and d〈S〉t by σϕ(t)σ

∗
ϕ(t) dt ,

leading to

〈
Zn〉

T =
∫ T

0
�B∗

t

(
σ ∗

ϕ(t)D
2
xxuϕ(t)σϕ(t)

)2
�Bt dt + en

1,T + en
2,T ,

en
2,T :=

∫ T

0
�S∗

t D2
xxuϕ(t)�

(
σtσ

∗
t

)
D2

xxuϕ(t)�St dt

(3.9)

+
∫ T

0
(�St + σϕ(t)�Bt)

∗

× D2
xxuϕ(t)σϕ(t)σ

∗
ϕ(t)D

2
xxuϕ(t)

(∫ t

ϕ(t)
�σr dBr

)
dt.

As mentioned before, we seek a smart representation of the main term of 〈Zn〉T in
the form

∑
τn
i−1<T (�B∗

τn
i
Xτn

i−1
�Bτn

i
)2 plus a stochastic integral, where X is a mea-

surable adapted d × d-matrix process which has to be defined. Instead of directly
giving the solution, let us discuss a bit on the expected properties of X. Applying
Itô’s formula on each interval [τn

i−1, τ
n
i ], we obtain∑

τn
i−1<T

(
�B∗

τn
i
Xτn

i−1
�Bτn

i

)2

=
∫ T

0
�B∗

t

(
2 Tr(Xϕ(t))Xϕ(t) + (Xϕ(t) + X∗

ϕ(t)

)2)
�Bt dt

+ 2
∫ T

0
�B∗

t Xϕ(t)�Bt�B∗
t

(
Xϕ(t) + X∗

ϕ(t)

)
dBt,



1670 E. GOBET AND N. LANDON

with the tentative identification

2 Tr(Xϕ(t))Xϕ(t) + (Xϕ(t) + X∗
ϕ(t)

)2 = (σ ∗
ϕ(t)D

2
xxuϕ(t)σϕ(t)

)2
.(3.10)

Mainly, two reasons prompt us to impose Xϕ(t) ∈ Sd+(R).

• Gathering the previous identities and anticipating a little bit on the following,
the main contribution in Nn

T 〈Zn〉T is

Nn
T

∑
τn
i−1<T

(
�B∗

τn
i
Xτn

i−1
�Bτn

i

)2 ≥
( ∑

τn
i−1<T

∣∣�B∗
τn
i
Xτn

i−1
�Bτn

i

∣∣)2

using the Cauchy–Schwarz inequality. In general the limit of the above lower
bound is not easy to handle because of the absolute values, but if the matrix Xϕ(t)

is nonnegative-definite, we can remove them and conclude using a convergence
result about discrete quadratic variations (Proposition 2.3).

• Once that we have restricted to nonnegative-definite matrices, let us prove that
the solution to (3.10) (whenever it exists) is symmetric. If Tr(Xϕ(t)) = 0, then
Xϕ(t) = 0 (thus symmetric): indeed, Xϕ(t) + X∗

ϕ(t) is symmetric nonnegative-
definite and has a null trace, thus it is the zero-matrix and consequently Xϕ(t) =
−X∗

ϕ(t) = 0 (since both Xϕ(t) and X∗
ϕ(t) are nonnegative-definite). If Tr(Xϕ(t)) >

0, then taking the transposition of (3.10) readily gives Xϕ(t) = X∗
ϕ(t).

From Lemma 3.1, there exists exactly one adapted process X with values in
Sd+(R), solution of the equation 2 Tr(X)X + 4X2 = (σ ∗D2

xxuσ)2. In addition, this
solution is continuous a.s. because C := σ ∗D2

xxuσ is continuous a.s., and the so-
lution X is continuous as a function of C on Sd . Gathering the previous identities,
we have established a nice decomposition of the quadratic variation of the hedging
error 〈

Zn〉
T = ∑

τn
i−1<T

(
�B∗

τn
i
Xτn

i−1
�Bτn

i

)2 + en
1,T + en

2,T + en
3,T ,(3.11)

en
3,T := −4

∫ T

0
�B∗

t Xϕ(t)�Bt�B∗
t Xϕ(t) dBt .(3.12)

Step 2: Lower bound for the renormalized quadratic variation. The Cauchy–
Schwarz inequality yields that Nn

T

∑
τn
i−1<T (�B∗

τn
i
Xτn

i−1
�Bτn

i
)2 is bounded from

below by ( ∑
τn
i−1<T

∣∣�B∗
τn
i
Xτn

i−1
�Bτn

i

∣∣)2

=
( ∑

τn
i−1<T

�B∗
τn
i
Xτn

i−1
�Bτn

i

)2

a.s.−→
(∫ T

0
Tr(Xt)dt

)2

,

using that X is a nonnegative-definite matrix process and applying Proposition 2.3.



ALMOST SURE OPTIMAL HEDGING STRATEGY 1671

Step 3: The renormalized errors ε
−2ρN
n en

1,T , ε
−2ρN
n en

2,T and ε
−2ρN
n en

3,T converge
to 0 a.s. Observe that once these convergences are established, in view of (3.11)
and (AN ) we easily complete the proof of Theorem 3.1.

Proof of ε
−2ρN
n en

1,T

a.s.−→ 0. We first state an intermediate result which is proved
in Appendix (Section A.5).

LEMMA 3.2. Assume hypotheses (Aσ ), (Au), (AS), (AN ) and (AY ) are in
force. Then ε

2−4ρN
n 〈Rn〉T a.s.−→ 0 where Rn is defined in (3.7).

Then, starting from (3.8), applying the Cauchy–Schwarz inequality to the cross-
variation and using (Aσ )–(Au)–(AS), we derive

ε−2ρN
n

∣∣en
1,T

∣∣
≤ ε−2ρN

n

〈
Rn〉

T

+ 2
(
ε−2
n

∫ T

0
�S∗

t D2
xxuϕ(t) d〈S〉tD2

xxuϕ(t)�St

)1/2 (
ε2−4ρN
n

〈
Rn〉

T

)1/2

≤ ε2(ρN−1)
n ε2−4ρN

n

〈
Rn〉

T + 2C0
(
ε2−4ρN
n

〈
Rn〉

T

)1/2 a.s.−→ 0.

Proof of ε
−2ρN
n en

2,T

a.s.−→ 0. We analyze separately the two contributions
in (3.9).

(1) First, simple computations using (Aσ )–(Au)–(AS) and Corollary 2.2 di-
rectly give (for any given ρ > 0)

ε−2ρN
n

∣∣∣∣
∫ T

0
�S∗

t D2
xxuϕ(t)�

(
σtσ

∗
t

)
D2

xxuϕ(t)�St dt

∣∣∣∣
≤ C0ε

−2ρN+2
n

(
εθσ
n + ε(θσ /2)(2−ρ)

n

)
.

Since ρN < 1+ θσ /2 and ρ can be taken arbitrarily small, we obtain that the above
upper bound converges a.s. to 0.

(2) Second, we apply twice Corollary 2.3(ii), first taking θ = 0 and second
taking θ = θσ , so that we obtain, for any given ρ > 0, a.s. for any n ≥ 0,

sup
1≤i≤Nn

T

sup
τn
i−1≤t≤τn

i

∣∣�St + σϕ(t)�Bt

∣∣≤ C0ε
1−ρ
n ,(3.13)

sup
1≤i≤Nn

T

sup
τn
i−1≤t≤τn

i

∣∣∣∣
∫ t

ϕ(t)
�σr dBr

∣∣∣∣≤ C0ε
1+θσ −ρ
n ,(3.14)

ε−2ρN
n

∣∣∣∣
∫ T

0
(�St + σϕ(t)�Bt)

∗

× D2
xxuϕ(t)σϕ(t)σ

∗
ϕ(t)D

2
xxuϕ(t)

(∫ t

ϕ(t)
�σr dBr

)
dt

∣∣∣∣
≤ C0ε

2+θσ −2ρN−2ρ
n .
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Owing to ρN < 1 + θσ /2, taking ρ small enough implies the a.s. convergence of
the latter upper bound to 0. As a result, ε

−2ρN
n en

2,T

a.s.−→ 0.

Proof of ε
−2ρN
n en

3,T

a.s.−→ 0. It is a direct consequence of the following lemma.

LEMMA 3.3. Assume (Aσ ). Let T = (T n)n≥0 be an admissible sequence
of strategies, and let (Ht)0≤t<T be a continuous adapted d × d-matrix pro-
cess such that supt∈[0,T ) |Ht | < +∞ a.s. Then for any p > 2

3−2ρN
, the series∑

n≥0 |ε−2ρN
n

∫ T
0 �B∗

t Hϕ(t)�Bt�B∗
t Hϕ(t) dBt |p converges almost surely.

PROOF. Set αn
t := �B∗

t Hϕ(t)�Bt�B∗
t Hϕ(t) and define the scalar continu-

ous local martingale Mn
t := ε

−2ρN
n

∫ t
0 αn

s dBs . In view of Corollary 2.1, it is

enough to check that (〈Mn〉p/2
T )n≥0 defines the terms of an a.s. convergent se-

ries. An application of Corollary 2.3(ii) with ρ = (3−2ρN)p−2
3p

> 0 and θ = 0 gives

sup1≤i≤Nn
T

supτn
i−1≤t≤τn

i
|�Bt | < C0ε

1−ρ
n and therefore

〈
Mn〉p/2

T = ε−2pρN
n

(∫ T

0

∣∣αn
t

∣∣2 dt

)p/2

≤ C0ε
−2pρN
n sup

1≤i≤Nn
T

sup
τn
i−1≤t≤τn

i

|�Bt |3p ≤ C0ε
2
n a.s.

We are finished. �

3.3. Proof of Theorem 3.2. We first check the admissibility of Tμ, by applying

Proposition 2.4. Indeed, owing to (Au) and (AEllip.
σ ), (�t)0≤t<T is a continuous

adapted nonnegative-definite d × d-matrix process with sup0≤t<T |�t | < +∞ a.s.
The same properties clearly hold for (�

μ
t )0≤t<T . In addition, λmin(�

μ
t ) ≥ μ/2 > 0

and sup0≤t<T λmax(�
μ
t ) ≤ μ + sup0≤t<T λmax(�t) < +∞ a.s. Therefore, Tμ is

admissible and in addition supn≥0 ε2
nN

n
T < +∞ a.s. Hence it allows us to re-use

the computations of the proof of Theorem 3.1 in the case ρN = 1.
Now let us show the μ-optimality. Writing Nn

T = 1 +∑1≤i≤Nn
T −1 1, we point

out

ε2
nN

n
T = ε2

n + ∑
1≤i≤Nn

T −1

�S∗
τn
i
�

μ

τn
i−1

�Sτn
i

= ε2
n − �S∗

T �
μ

τn
Nn

T
−1

�ST + ∑
τn
i−1<T

�S∗
τn
i
�

μ

τn
i−1

�Sτn
i

(3.15)

a.s.−→
∫ T

0
Tr
(
�

μ
t σtσ

∗
t

)
dt
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using the convergence of Proposition 2.3. On the other hand, starting from the
decomposition (3.11) of the hedging error quadratic variation, we write〈

Zn〉
T = ∑

1≤i≤Nn
T −1

(
�S∗

τn
i
�

μ

τn
i−1

�Sτn
i

)2 + en
1,T + en

2,T + en
3,T

+ en
4,T + en

5,T + en
6,T ,

en
4,T := ∑

τn
i−1<T

(
�B∗

τn
i
Xτn

i−1
�Bτn

i

)2 − (�S∗
τn
i
�τn

i−1
�Sτn

i

)2
,(3.16)

en
5,T := ∑

τn
i−1<T

(
�S∗

τn
i
�τn

i−1
�Sτn

i

)2 − (�S∗
τn
i
�

μ

τn
i−1

�Sτn
i

)2
,

en
6,T := (�S∗

T �
μ

τn
Nn

T
−1

�ST

)2
.

In view of the definition of the strategy T n
μ , (3.16) becomes

ε−2
n

〈
Zn〉

T = ∑
1≤i≤Nn

T −1

�S∗
τn
i
�

μ

τn
i−1

�Sτn
i

+ ε−2
n

6∑
j=1

en
j,T .(3.17)

Similarly to (3.15), we show that
∑

1≤i≤Nn
T −1 �S∗

τn
i
�

μ

τn
i−1

�Sτn
i

a.s.−→∫ T
0 Tr(�μ

t σtσ
∗
t )dt . Furthermore we have already established (see step 3 of proof of

Theorem 3.1) that ε−2
n en

j,T

a.s.−→ 0 for j = 1,2,3 (remind that we can take ρN = 1);

the case j = 6 is also fulfilled because 0 ≤ en
6,T ≤ ε4

n.
To analyze en

4,T , set DB,i := στn
i−1

�Bτn
i

and DS,i := �Sτn
i

, write Xτn
i−1

=
σ ∗

τn
i−1

�τn
i−1

στn
i−1

and

(
�B∗

τn
i
Xτn

i−1
�Bτn

i

)2 − (�S∗
τn
i
�τn

i−1
�Sτn

i

)2
= (D∗

B,i�τn
i−1

DB,i

)2 − (D∗
S,i�τn

i−1
DS,i

)2
= (D∗

B,i�τn
i−1

DB,i − D∗
S,i�τn

i−1
DS,i

)(
D∗

B,i�τn
i−1

DB,i + D∗
S,i�τn

i−1
DS,i

)
= (DB,i + DS,i)

∗�τn
i−1

(DB,i − DS,i)
(
D∗

B,i�τn
i−1

DB,i + D∗
S,i�τn

i−1
DS,i

)
.

Then we deduce that ε−2
n |en

4,T | is bounded by

ε−2
n Nn

T sup
1≤i≤Nn

T

sup
τn
i−1≤t≤τn

i ]
|�ϕ(t)|2|�St + σϕ(t)�Bt |

∣∣∣∣
∫ t

ϕ(t)
�σs dBs

∣∣∣∣
× (|�St |2 + |σϕ(t)�Bt |2)

≤ C0ε
−2
n ε−2

n ε1−ρ
n ε(1+θσ −ρ)

n ε2(1−ρ)
n = C0ε

θσ /5
n

a.s.−→ 0,
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where we have used (AN ) (with ρN = 1), and estimates (3.13)–(3.14) with ρ =
θσ /5 (which are available for any sequence of admissible strategies). This proves
ε−2
n en

4,T

a.s.−→ 0.
Finally regarding en

5,T , recalling that the matrix �τn
i−1

is nonnegative-definite,

we obtain that |ε−2
n en

5,T | is bounded by

ε−2
n

∑
τn
i−1<T

∣∣�S∗
τn
i
�τn

i−1
�Sτn

i
− �S∗

τn
i
�

μ

τn
i−1

�Sτn
i

∣∣
× (�S∗

τn
i
�τn

i−1
�Sτn

i
+ �S∗

τn
i
�

μ

τn
i−1

�Sτn
i

)
≤ ∑

τn
i−1<T

μχμ

(
λmin(�τn

i−1
)
)|�Sτn

i
|2[2ε−2

n �S∗
τn
i
�

μ

τn
i−1

�Sτn
i

]

≤ 2μ
∑

τn
i−1<T

χμ

(
λmin(�τn

i−1
)
)|�Sτn

i
|2,

where we have used the definition of Tμ at the last inequality. Thus Proposition 2.3
yields

lim sup
n→+∞

∣∣ε−2
n en

5,T

∣∣≤ 2μ

∫ T

0
χμ

(
λmin(�t)

)
Tr
(
σtσ

∗
t

)
dt a.s.

Let us summarize: setting LT := ∫ T
0 Tr(�tσtσ

∗
t )dt = ∫ T

0 Tr(Xt)dt and L
μ
T :=∫ T

0 χμ(λmin(�t))Tr(σtσ
∗
t )dt so that

∫ T
0 Tr(�μ

t σtσ
∗
t )dt = LT + μL

μ
T , we have

shown

ε2
nN

n
T

a.s.−→ LT + μL
μ
T , lim sup

n→+∞
∣∣ε−2

n

〈
Zn〉

T − (LT + μL
μ
T

)∣∣≤ 2μL
μ
T a.s.,

lim sup
n→+∞

∣∣Nn
T

〈
Zn〉

T − (LT )2∣∣
≤ lim sup

n→+∞
∣∣ε−2

n

〈
Zn〉

T − LT

∣∣ lim sup
n→+∞

ε2
nN

n
T + LT lim sup

n→+∞
∣∣ε2

nN
n
T − LT

∣∣
≤ 3μL

μ
T

(
LT + μL

μ
T

)+ LT μL
μ
T = μL

μ
T

(
4LT + 3μL

μ
T

)
a.s.

Theorem 3.2 is proved.

3.4. Proof of Theorem 3.3. Here, arguments are simpler in all steps of the
proof of Section 3.3, so we shall skip details; the admissibility of the strategy
comes readily from the ad hoc assumption (3.5) and Proposition 2.4; the optimality
follows as before from

ε2
nN

n
T = ε2

n + ∑
1≤i≤Nn

T −1

�S∗
τn
i
�τn

i−1
�Sτn

i

a.s.−→
∫ T

0
Tr(Xt)dt,
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and from [setting ēn
6,T := (�S∗

T �τn
Nn

T
−1

�ST )2]

ε−2
n

〈
Zn〉

T = ε−2
n

∑
1≤i≤Nn

T −1

(
�S∗

τn
i
�τn

i−1
�Sτn

i

)2 + ε−2
n

4∑
j=1

en
j,T + ε−2

n ēn
6,T

a.s.−→
∫ T

0
Tr(Xt)dt

with the help of the convergence results already obtained. Theorem 3.3 is proved.

4. Numerical experiments.

4.1. Algorithm for the optimal stopping times. From the previous section
(Theorem 3.2), the μ-optimal stopping times (μ > 0) are iteratively given by
τn

0 := 0 and

τn
i := inf

{
t ≥ τn

i−1 : (St − Sτn
i−1

)∗�μ

τn
i−1

(St − Sτn
i−1

) ≥ ε2
n

}∧ T ,

where for any t , �
μ
t := �t + μχμ(λmin(�t))Id , �t := (σ−1

t )∗Xtσ
−1
t and Xt

solves (3.3) with ct = σ ∗
t D2

xxutσt . Thus, τn
i is the first hitting time of an ellip-

soid centered at Sτn
i−1

with principal axes equal to the orthogonal eigenvectors of

the symmetric positive-definite matrix �
μ

τn
i−1

(or equivalently those of �τn
i−1

). We

briefly recall (see Section A.4) the main steps to compute the matrix Xτn
i−1

(i ≥ 1)

from which we derive �τn
i−1

and �
μ

τn
i−1

:

(1) Diagonalize the symmetric matrix cτn
i−1

= σ ∗
τn
i−1

D2
xxuτn

i−1
στn

i−1
:= Pτn

i−1
×

Diag(λj (cτn
i−1

) : 1 ≤ j ≤ d)P ∗
τn
i−1

, where Pτn
i−1

is an orthogonal matrix.

(2) Find the zero yτn
i−1

∈ R
+ of the increasing function y �→ (4 + d)y −∑d

j=1

√
y2 + 4λ2

j (cτn
i−1

). This root lies in the interval [0, d|λ(cτn
i−1

)|/√4 + 2d]; see
the proof of Lemma 3.1.

(3) From (A.7), we obtain

Xτn
i−1

= Pτn
i−1

Diag
(−yτn

i−1
+
√

y2
τn
i−1

+ 4λ2
j (cτn

i−1
)

4
: 1 ≤ j ≤ d

)
P ∗

τn
i−1

.

Last, we mention that even if �
μ

τn
i−1

is tractable, the exact simulation of τn
i is in

generally impossible, and approximations are required; see [17] and references
therein.

4.2. Numerical tests. This section is dedicated to an application of Theo-
rem 3.2 to the case of an exchange binary option g(ST ) = 1S1

T ≥S2
T

. This example
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is relevant in our study (and improves the setting of [8]) because this is a simple
bi-dimensional nonconvex function, for which the value function u and its sensi-
tivities are available in the Black–Scholes model

d
(

S1
t

S2
t

)
=
(

σ1S
1
t 0

ρσ2S
2
t

√
1 − ρ2σ2S

2
t

)
d
(

B1
t

B2
t

)
,

where (B1,B2) are two independent Brownian motions. The model parameters
are set to S1

0 = 100, S2
0 = 100, σ1 = 0.3, σ2 = 0.4, ρ = 0.5 and T = 1.

We take εn = 0.05. In our different tests, we have not observed a significant
difference by taking μ = 0 or μ small; hence, we only report the values for μ = 0.
We generate 1000 experiments ω, independently. To compute the hitting times
for each ω, we use a thin uniform time mesh πn̄ = (iT /n̄)0≤i≤n̄ (n̄ = 50,000 in
our tests): we draw S1(ω) and S2(ω) along πn̄ and compute (with the help of
the previous algorithm) the hitting times τn

i (ω) = inf{t ∈ πn̄ ∩]τn
i−1(ω), T ] : [(St −

Sτn
i−1

)∗�μ

τn
i−1

(St − Sτn
i−1

)](ω) ≥ ε2
n} ∧ T ; at the end of the process, we get the num-

ber Nn
T (ω) of discrete times. The mesh πn̄ is also used to compute subsequent

quadratic variations and time integrals.
We compare ω by ω the above strategy with that based on the uniform mesh

πNn
T (ω) and with that based on the so-called fractional mesh4 (T [1 − (1 −

i/Nn
T (ω))2])1≤i≤Nn

T (ω): this comparison looks quite fair from a practitioner point
of view since he is allowed to rebalance the hedging portfolio the same number
of times. The use of the optimal stochastic grid is slightly more demanding since
it requires the computations of more Greeks than only the Delta (because of the
matrix �μ); however, these sensitivities are widely available in any trading sys-
tem, which makes this higher complexity likely negligible in view of the benefit of
optimal times.

We define βstochastic(ω), βuniform(ω), βfractional(ω) where we compute β·(ω) :=
Nn

T 〈Zn〉T
(
∫ T

0 Tr(Xt )dt)2 (ω) according to each of these three strategies: in view of Theo-

rem 3.2, this ratio is asymptotically greater than 1 and adimensional; moreover,
the closer to 1 the ratio, the better the strategy.

Results. Figure 1 displays, for each ω, the couples(
βstochastic(ω),βuniform(ω)

)
and

(
βstochastic(ω),βfractional(ω)

)
.

Most of the times, the points are above the diagonal, showing that the μ-optimal
strategy lessens the quadratic variation ω-wise (remind that the strategies have
got the same number of discrete times Nn

T ), compared to the quadratic variation
worked out over the deterministic time mesh. In addition, βstochastic is concen-

4According to [12], the fractional smoothness of g(ST ) is 1
2 ; thus, when Nn

T (ω) is deterministic,
this choice of fractional mesh yields that E(〈Zn〉T ) is of order 1 w.r.t. the inverse of the number of
times, instead of order 1

2 with the uniform mesh.
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FIG. 1. “×,” “+” and the blue line correspond respectively to “(βstochastic, βuniform),”
“(βstochastic, βfractional)” and the identity function.

trated around 1, which means a convergence of Nn
T 〈Zn〉T toward the lower bound

(
∫ T

0 Tr(Xt)dt)2.
Figure 2 displays 〈Zn〉T as a function of Nn

T for the three strategies and for
different ω: here again, we observe that the μ-optimal strategy outperforms deter-
ministic strategies.

FIG. 2. “×,” “+” and correspond respectively to “〈Zn〉T ,uniform,” “〈Zn〉T ,fractional” and
“〈Zn〉T ,stochastic.”
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APPENDIX

A.1. Proof of Proposition 2.1. Let us prove (i), assuming only (AS). For
p = 0, this is trivial.

Now consider the case p > 0. Since σt is nonzero for any t and continuous,
CE := inft∈[0,T ](

∑d
j=1 ej · σtσ

∗
t ej ) > 0 a.s., where ej is the j th element of the

canonical basis in R
d . Therefore, a.s. for any 0 ≤ s ≤ t ≤ T we have

0 ≤ t − s ≤ C−1
E

∫ t

s

(
d∑

j=1

ej · σrσ
∗
r ej

)
dr = C−1

E

d∑
j=1

[〈
Sj 〉

t − 〈Sj 〉
s

]
(A.1)

= C−1
E

d∑
j=1

[(
S

j
t − Sj

s

)2 − 2
∫ t

s

(
Sj

r − Sj
s

)
dSj

r

]
,

applying the Itô formula at the last equality. Take s = τn
i−1, t = τn

i and use (AS)

�τn
i ≤ C−1

E

(
C0ε

2
n + 2

d∑
j=1

∣∣∣∣
∫ τn

i

τn
i−1

�Sj
r dSj

r

∣∣∣∣
)

(A.2)

≤ C−1
E

(
C0ε

2
n + 4

d∑
j=1

sup
0≤t≤T

∣∣∣∣
∫ t

0
�Sj

r dSj
r

∣∣∣∣
)
.

Now for j = 1, . . . , d , set M
j,n
t := ε

2/p−1
n

∫ t
0 �S

j
r dS

j
r (recalling that p > 0). Then

∑
n≥0

〈
Mj,n〉p/2

T =∑
n≥0

ε2−p
n

(∫ T

0

∣∣�S
j
t

∣∣2 d
〈
Sj 〉

t

)p/2

≤ C0
∑
n≥0

ε2
n < +∞ a.s.

Thus owing to Corollary 2.1 the terms (sup0≤t≤T |Mj,n
t |p)n≥0 define an a.s. con-

vergent series. Combining this with (A.2), we finally derive∑
n≥0

[
ε2/p−1
n sup

1≤i≤Nn
T

∣∣�τn
i

∣∣]p

≤ C0

(∑
n≥0

[
ε2/p−1
n ε2

n

]p +
d∑

j=1

∑
n≥0

sup
0≤t≤T

∣∣Mj,n
t

∣∣p)< +∞ a.s.

It remains to justify (ii). For p = 0, the result directly follows from (AN ) and
the inequality (2.1). Now take p > 0, and set

Un
t := ε−2(p−1)+2ρN

n

∑
τn
i−1<t

∣∣∣∣∣
d∑

j=1

�
〈
Sj 〉

τn
i ∧t

∣∣∣∣∣
p

,

V n
t := ε−2(p−1)+2ρN

n

∑
τn
i−1<t

sup
s∈(τn

i−1,τ
n
i ∧t]

|�Ss |2p.
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If
∑

n≥0 Un
T

a.s.−→, (A.1) immediately yields that
∑

n≥0 ε
−2(p−1)+2ρN
n ×∑

τn
i−1<T (�τn

i )p
a.s.−→. Thus, it is sufficient to show

∑
n≥0 Un

t

a.s.−→, for any t ∈
[0, T ], and this is achieved by an application of Lemma 2.2. The sequences of
processes (Un)n≥0 and (V n)n≥0 are in C+

0 . Then V n is nondecreasing, and using
(AS)–(AN )∑

n≥0

V n
T ≤ C0

∑
n≥0

ε−2(p−1)+2ρN
n ε2p

n Nn
T ≤ C0

∑
n≥0

ε2
n < +∞ a.s.

Then we deduce that items (i′) and (ii′) of Lemma 2.2 are fulfilled. It remains to
check the relation of domination [item (iii′)]. Let k ∈ N. On the set {τn

i−1 < t ∧ θk},
from the multidimensional BDG inequality in a conditional version, we have

E

(∣∣∣∣∣
d∑

j=1

�
〈
Sj 〉

τn
i ∧t∧θk

∣∣∣∣∣
p∣∣∣Fτn

i−1

)
≤ cpE

(
sup

τn
i−1<s≤τn

i ∧t∧θk

|�Ss |2p
∣∣Fτn

i−1

)
.(A.3)

Then, it follows

E
[
Un

t∧θk

]= ε−2(p−1)+2ρN
n

+∞∑
i=1

E

(
1τn

i−1<t∧θk
E

[∣∣∣∣∣
d∑

j=1

�〈S〉τn
i ∧t∧θk

∣∣∣∣∣
p∣∣∣Fτn

i−1

])

≤ cpE
[
V n

t∧θk

]
.

The proof is complete.

A.2. Proof of Proposition 2.2. Let p > 0. Let δ be the parameter standing for
1
2 under (AS) and 1 under (AS)–(AN ). Set

Un
t := ε−2δ((p(θ+1)/2)−2(1−δ))+2+2ρN(2δ−1)

n

∑
τn
i−1<t

sup
τn
i−1≤s≤τn

i ∧t

∣∣�Mn
t

∣∣p,

V n
t := ε−2δ((p(θ+1)/2)−2(1−δ))+2+2ρN(2δ−1)

n

∑
τn
i−1<t

∣∣∣∣
∫ τn

i ∧t

τ n
i−1

αn
r dr

∣∣∣∣
p/2

.

Observe that the announced result reads as
∑

n≥0 Un
T

a.s.−→. To prove this conver-

gence, it is enough to establish that
∑

n≥0 V n
T

a.s.−→. Indeed, following the argu-
ments of the proof of Proposition 2.1(ii), we can apply Lemma 2.2 since (Un)n≥0

and (V n)n≥0 are two sequences of continuous adapted processes and:

(i′) V n is nondecreasing on [0, T ] a.s.;
(iii′) the domination is satisfied thanks to the BDG inequalities, similarly

to (A.3).
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Now to prove (ii′), that is,
∑

n≥0 V n
T

a.s.−→, write∑
n≥0

V n
T ≤∑

n≥0

ε−2δ((p(θ+1)/2)−2(1−δ))+2+2ρN(2δ−1)
n

× ∑
τn
i−1<T

∣∣C0
(
ε2θ
n + (�τn

i

)θ )
�τn

i

∣∣p/2 a.s.

First, consider the case (AS) and set D
(q)
n := sup1≤i≤Nn

T
(�τn

i )q for q ≥ 0: Propo-

sition 2.1(i) yields D(q) :=∑n≥0 ε
−(q−2)
n D

(q)
n < +∞ a.s. Using p ≥ 2, it readily

follows that∑
n≥0

V n
T ≤∑

n≥0

ε−(p(θ+1)/2−3)
n C

p/2
0

∑
τn
i−1<T

(
ε2θ
n + (�τn

i

)θ )p/2(
�τn

i

)p/2−1
�τn

i

≤∑
n≥0

ε−(p(θ+1)/2−3)
n C

p/2
0 2p/2−1T

(
εpθ
n D(p/2−1)

n + D((θ+1)p/2−1)
n

)

≤ C
p/2
0 2p/2−1T

((
sup
n≥0

εn

)pθ/2
D(p/2−1) +D((θ+1)p/2−1)

)
< +∞ a.s.

Second for the case (AS)–(AN ), setting D
(q)
n := ∑

τn
i−1<T (�τn

i )q for q ≥ 0, we

have D(q) := ∑
n≥0 ε

−2(q−1)+2ρN
n D

(q)
n < +∞ a.s., thanks to Proposition 2.1(ii).

Then we easily deduce (for any p > 0)∑
n≥0

V n
T ≤ C

p/2
0 2(p/2−1)+

∑
n≥0

ε−2(p(θ+1)/2−1)+2ρN
n

× ∑
τn
i−1<T

(
εpθ
n

(
�τn

i

)p/2 + (�τn
i

)(θ+1)p/2)

= C
p/2
0 2(p/2−1)+(D(p/2) +D((θ+1)p/2))< +∞ a.s.

A.3. Proof of Proposition 2.4. It is standard to check that T n is a sequence of
increasing stopping times; we skip details. Let us justify that the size of T n is a.s.
finite, for any n ≥ 0. For a given n ≥ 0, define the event N n := {Nn

T = +∞}.
For ω ∈ N n, the infinite sequence (τn

i (ω))i≥0 converges, because increasing
and bounded by T . Thus, on N n ∩ ES with ES = {(St )0≤t≤T continuous and
sup0≤t<T λmax(Ht) < +∞}, we have

0 < εn = (Sτn
i

− Sτn
i−1

)∗Hτn
i−1

(Sτn
i

− Sτn
i−1

)

≤ sup
0≤t<T

λmax(Ht)|Sτn
i

− Sτn
i−1

|2 →
i→+∞ 0,

which is impossible. Thus, N n ⊂ Ec
S and P(N n) = 0 since S is a.s. continuous

and sup0≤t<T λmax(Ht) is a.s. finite.
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Besides, we have CH := inf0≤t<T λmin(Ht) > 0 a.s., and we immediately get

ε−2
n sup

1≤i≤Nn
T

sup
t∈(τn

i−1,τ
n
i ]

|�St |2 ≤ C−1
H ε−2

n sup
1≤i≤Nn

T

sup
t∈(τn

i−1,τ
n
i ]
(
�S∗

t Hτn
i−1

�St

)≤ C−1
H ,

which validates the assumption (AS).
Then, writing Nn

T = 1 +∑1≤i≤Nn
T −1 1, we point out (for n large enough so that

εn ≤ 1)

ε2ρN
n Nn

T ≤ ε2
nN

n
T

≤ ε2
n + ∑

1≤i≤Nn
T −1

�S∗
τn
i
Hτn

i−1
�Sτn

i
≤ ε2

n + ∑
τn
i−1<T

�S∗
τn
i
Hτn

i−1
�Sτn

i
;

using moreover from Proposition 2.3, we know that under the assumption (AS)
only,

∑
τn
i−1<T

�S∗
τn
i
Hτn

i−1
�Sτn

i

a.s.−→
∫ T

0
Tr
(
Ht d〈S〉t )< +∞.

This validates the assumption (AN ).

REMARK A.1. The structure of hitting times of ellipsoids with size εn has
a specific feature compared to general admissible strategies: the assumption (AS)
entails the assumption (AN ).

A.4. Proof of Lemma 3.1. We split the proof into several steps. Let

h :

⎧⎪⎪⎨
⎪⎪⎩
R

d ×R+ →R,

(λ, y) �→ (4 + d)y −
d∑

i=1

√
y2 + 4λ2

i .

Assume for a while that:

(�) (a) for any λ ∈ R
d , there exists a unique nonnegative root yλ satisfying

h(λ, yλ) = 0;
(b) y0 = 0; λ �= 0 ⇒ yλ > 0;
(c) the mapping λ �→ yλ is continuous.

Necessary conditions on the spectrum of x(c). Let Diag denote the set of d × d

diagonal matrices. Take c ∈ Sd(R) and let x(c) ∈ Sd+(R) be a solution (whenever
it exists) to (3.3). Then by the spectral theorem, x(c) is diagonalizable: there exists
an orthogonal matrix px(c) such that p∗

x(c)x(c)px(c) ∈ Diag. Equation (3.3) is stable
by unitary transformation

2 Tr
(
p∗

x(c)x(c)px(c)

)
p∗

x(c)x(c)px(c) + 4
(
p∗

x(c)x(c)px(c)

)2
(A.4)

= p∗
x(c)c

2px(c) ∈ Diag .
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The diagonal elements of p∗
x(c)c

2px(c) must be the eigenvalues of c2, that is the

square of the eigenvalues of c [which is in Sd(R)]. Identifying the diagonal ele-
ments from (A.4) gives a relation between the spectra of c and x(c),

2 Tr
(
x(c)

)
λi

(
x(c)

)+ 4λi

(
x(c)

)2 = λi(c)
2, 1 ≤ i ≤ d.

Thus, the nonnegative eigenvalues of x(c) must satisfy λi(x(c)) = (−Tr(x(c)) +√
Tr(x(c))2 + 4λi(c)2)/4. By summing over i = 1, . . . , d , we obtain an implicit

equation for Tr(x(c)), which is h(λ(c),Tr(x(c))) = 0. By (�), there is a unique
solution and

Tr
(
x(c)

)= yλ(c).(A.5)

Thus, we have proved that the eigenvalues of x(c) must be

λi

(
x(c)

)= −yλ(c) +
√

y2
λ(c) + 4λi(c)2

4
.(A.6)

Existence/uniqueness of solution to (3.3). Take c ∈ Sd(R). Starting from (3.3),
owing to (A.5) x(c) must solve(

2x(c) + 1
2yλ(c)Id

)2 = 1
4y2

λ(c)Id + c2.

The matrix c2 + 1
4y2

λ(c)Id is symmetric nonnegative-definite, and thus it has a
unique square-root (symmetric nonnegative-definite matrix) [20], Theorem 7.2.6,
page 405, and we obtain

x(c) := −yλ(c)

4
Id + 1

2

(y2
λ(c)

4
Id + c2

)1/2

.(A.7)

The uniqueness is proved. It is now easy to check that x(c) given in (A.7)
solves (3.3), using the implicit equation satisfied by Tr(x(c)). Last, λmin(c

2) > 0
if and only if λmin(x(c)) > 0 [owing to (A.6)].

Continuity. From Hoffman and Wielandt’s theorem [20], page 368, the function
c �→ λ(c) is continuous on Sd(R) into R

d . Hence, combined with (�)(c), we obtain
the continuity of c �→ yλ(c) on Sd(R) into R.

Then, the continuity of x(·) at c0 = 0 easily follows since as c → 0, yλ(c) →
y0 = 0 and λ(x(c)) → 0 [using (A.6)]: thus x(c) → 0 = x0. For c0 �= 0, we invoke
the property that c �→ c1/2 is locally lipschitz (and even analytic) on Sd++(R) into

Sd++(R) ([35], Lemma 5.2.1 page 131): we use this with
y2
λ(c)

4 Id +c2 ∈ Sd++(R) for
c close enough to c0 (using yλ(c) > 0 for c �= 0). In view of (A.7), the continuity of
x(·) at c0 �= 0 follows.

Proof of (�). h is continuous on R
d × [0,∞[ into R. Moreover:

• h(λ,0) = −2
∑d

i=1 |λi | ≤ 0 and limy→+∞ h(λ, y) = +∞;
• h is continuously differentiable on R

d×]0,∞[;
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• Dyh(λ, y) = 4 + d − ∑
1≤j≤d

y√
y2+4λ2

i

≥ 4, implying that y �→ h(λ, y) is

(strictly) increasing.

Then, there is a unique yλ ∈ R+ such that h(λ, yλ) = 0. We point out at first glance,
λ �= 0 ⇔ yλ > 0. The continuity of y· is proved on R

d∗ on the one hand, and at 0 on
the other hand.

• On R
d∗× ]0,+∞[ :Dyh(λ, y) exists and is nonzero: then by the implicit function

theorem, there exists an open set U ⊂ R
d∗ containing λ and an open set V ⊂

]0,+∞[ containing yλ such that y is continuously differentiable from U to V .
This proves the continuously differentiability of y· in R

d∗ .
• At λ = 0 :h((|λ|)1≤i≤d, y) ≤ h(λ, y) and y ≥ d|λ|√

4+2d
⇔ h((|λ|)1≤i≤d, y) ≥ 0. It

implies 0 ≤ yλ ≤ d|λ|√
4+2d

and lim|λ|→0 yλ = 0.

That completes the continuity of λ �→ yλ on R
d and by the previous discussion,

the proof of the lemma. �

A.5. Proof of Lemma 3.2. We have 〈Rn〉T = ∫ T
0 |σ ∗

t (Dxut − Dxuϕ(t) −
D2

xxuϕ(t)�St )|2 dt : to prove the result, we aim at performing a Taylor expan-
sion using (Au), that is, derivatives of u are a.s. finite in a small tube around
(t, St , Yt )0≤t≤T . Because of this local assumption, a careful treatment is required,
which we now detail. In view of (Au), there exists 	D such that P(	D) = 1 and
for every ω ∈ 	D there is δ(ω) > 0 such that

|Au|δ(ω) := sup
0≤t<T

sup
|x−St (ω)|≤δ(ω),|y−Yt (ω)|≤δ(ω)

∣∣Au(t, x, y)
∣∣< +∞

for any A ∈D := {D2
xj xk

,D3
xj xkxl

,D2
txj

,D2
xj ym

: 1 ≤ j, k, l ≤ d,1 ≤ m ≤ d ′}.
Since sup1≤i≤Nn

T
�τn

i

a.s.−→ 0 and (St , Yt )0≤t≤T are a.s. continuous on the com-
pact interval [0, T ], there exists 	C with P(	C) = 1 such that for every ω ∈ 	C ,
there is p(ω) ∈ N such that ∀n ≥ p(ω),(

sup
0≤s,t≤T ,|t−s|≤sup1≤i≤Nn

T
�τn

i

|St − Ss | ∨ |Yt − Ys |
)
(ω) ≤ δ(ω).

Hence for ω ∈ 	D ∩ 	C , let n ≥ p(ω), i ∈ {1, . . . ,Nn
T } and t ∈ [τn

i−1, τ
n
i ], and

write

Dxu(t, St , Yt ) − Dxu
(
τn
i−1, Sτn

i−1
, Yτn

i−1

)− D2
xxu
(
τn
i−1, Sτn

i−1
, Yτn

i−1

)
�St

= [Dxu(t, St , Yt ) − Dxu
(
τn
i−1, St , Yt

)]
+ [Dxu

(
τn
i−1, St , Yt

)− Dxu
(
τn
i−1, St , Yτn

i−1

)]
+ [Dxu

(
τn
i−1, St , Yτn

i−1

)− Dxu
(
τn
i−1, Sτn

i−1
, Yτn

i−1

)
− D2

xxu
(
τn
i−1, Sτn

i−1
, Yτn

i−1

)
�St

]
.
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Now apply Taylor’s theorem to the terms above, by observing that the involved
derivatives of u are locally bounded by the (a.s. finite) random variable Cu :=
maxA∈D |Au|δ ,∣∣Dxu(t, St , Yt ) − Dxu

(
τn
i−1, Sτn

i−1
, Yτn

i−1

)− D2
xxu
(
τn
i−1, Sτn

i−1
, Yτn

i−1

)
�St

∣∣
≤ √

dCu

((
t − τn

i

)+ √
d ′|Yt − Yτn

i−1
| + d

2
|�St |2

)
.

Plugging this estimate into 〈Rn〉T and using that Y is nondecreasing, we derive
that a.s. for n large enough,

ε2−4ρN
n

〈
Rn〉

T

≤ 3dC2
u sup

0≤t≤T

|σt |2ε2−4ρN
n

∑
τn
i−1<T

((
�τn

i

)3 + d ′|�Yτn
i
|2�τn

i

+ d2

4
�τn

i sup
τn
i−1≤t≤τn

i

|�St |4
)
.

To prove the a.s. convergence of the upper bound to 0, we separately analyze each
of the three contributions:

• ε
2−4ρN
n

∑
τn
i−1<T (�τn

i )3 ≤ ε
2−4ρN
n Nn

T sup1≤i≤Nn
T
(�τn

i )3 ≤ C0ε
4−3ρN
n

a.s.−→ 0 by

Corollary 2.2(ii) with ρ = 4
3 − ρN > 0; see (AN ).

• Combining (AY ) and Corollary 2.2(ii) with ρ = ρY

2 − 2(ρN − 1) > 0, we easily
obtain

ε2−4ρN
n

∑
τn
i−1<T

|�Yτn
i
|2�τn

i ≤
d ′∑

j=1

(
Y

j
T − Y

j
0

)
ε2−4ρN
n sup

1≤i≤Nn
T

∣∣�Y
j

τn
i

∣∣ sup
1≤i≤Nn

T

�τn
i

≤ √
d ′|YT − Y0|C0ε

2−4ρN
n ερY

n ε2−ρ
n

≤ C0ε
ρY /2−2(ρN−1)
n

a.s.−→ 0.

• Using (AS), ε
2−4ρN
n

∑
τn
i−1<T �τn

i supτn
i−1≤t≤τn

i
|�St |4 ≤ C0ε

6−4ρN
n T

a.s.−→ 0

since ρN < 3
2 .

All these convergences lead to the results.

A.6. Assumption (Au). We show that assumption (Au) is satisfied in most
usual situations, even if the payoff g is not smooth. Actually, we have not been
able to exhibit an example of g for which (Au) does not hold. The following dis-
cussion should convince the reader that finding a counter-example is far from being
straightforward, but we conjecture that it is possible.
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Vanilla option in Black–Scholes model. For pedagogic reasons, we start with
the one-dimensional log-normal model dSt = σSt dBt (σ > 0). Consider first the
Call option with strike K > 0: for t < T we have Dxu(t, x) = N (

log(x/K)

σ
√

T −t
+

1
2σ

√
T − t) ∈ [0,1] where N (·) is the c.d.f. of the standard Gaussian law. The

second derivative writes

D2
xxu(t, x) = 1

σx
√

2π(T − t)
exp
(
−1

2

[
log(x/K)

σ
√

T − t
+ 1

2
σ
√

T − t

]2)
;

thus bounding the exponential term by 1, we have for any given t0 < T

limδ→0 sup0≤t≤t0
sup|x−St |≤δ |D2

xxu(t, x)| ≤ 1
σ inf0≤t≤T St

√
2π(T −t0)

< +∞. It shows

that an a.s. finite bound on the second derivative is available provided that the time
to maturity does not vanish. For the third derivative, this is similar: indeed using
supy∈R ey2/4|∂y(e

−y2/2)| = supy∈R |y|e−y2/4 = √
2e−1/2 ≤ 1, we deduce

∣∣D3
xxxu(t, x)

∣∣≤ 1 + σ
√

T

x2
√

2πσ 2(T − t)
exp
(
−1

4

[
log(x/K)

σ
√

T − t
+ 1

2
σ
√

T − t

]2)
,

and as before limδ→0 sup0≤t≤t0
sup|x−St |≤δ |D3

xxxu(t, x)| < +∞ for any given
t0 < T .

The next step consists in deriving a.s. upper bounds on derivatives for arbi-
trary small time to maturity. We take advantage of the property P(ST �= K) = 1,
which implies (by a.s. continuity of S) that for P-a.e. ω there exists t0(ω) ∈ [0, T [
such that inft0(ω)≤t≤T |St (ω) − K| ≥ |ST (ω) − K|/2 := 2δ0(ω) > 0. Then, for
t ∈ [t0(ω), T ] and δ ≤ δ0 ∧ [2−1 inf0≤t≤T St ], we have inf|x−St |≤δ | log(x/K)| ≥
infu>0 : |u−1|≥δ0/K | log(u)| := c(ω) > 0 and inf|x−St |≤δ x ≥ St/2: therefore using

the inequality −(α + β)2 ≤ −α2

2 + β2, we obtain, for t ∈ [t0(ω), T [

sup
|x−St |≤δ

∣∣D2
xxu(t, x)

∣∣≤ 2

σSt

√
2π(T − t)

exp
(
− c2(ω)

4σ 2(T − t)
+ 1

8
σ 2T

)
.

Observe that c(ω) > 0 implies that the above upper bound converges to 0 as t → T :
thus, we have completed the proof of limδ→0 sup0≤t<T sup|x−St |≤δ |D2

xxu(t, x)| <
+∞ a.s. For the third derivative, similarly we obtain for t ∈ [t0(ω), T [ and δ ≤
δ0(ω) ∧ [2−1 inf0≤t≤T St (ω)]

sup
|x−St |≤δ

∣∣D3
xxxu(t, x)

∣∣≤ 4(1 + σ
√

T )

S2
t

√
2πσ 2(T − t)

exp
(
− c2(ω)

8σ 2(T − t)
+ 1

16
σ 2T

)
,

and we conclude as for the second derivative. To derive the property for D2
txu, we

use the relation D2
txu = −1

2σ 2x2D3
xxxu − σ 2xD2

xxu. Finally, (Au) is proved for
the call option (and thus for the put option).

The same argumentation can be applied for the digital call option which pay-
off is of the form g(x) = 1x≥K : indeed, the derivatives of u blow up only at the
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discontinuity point K which has null probability for the law of ST . (Au) holds for
digital options.

Vanilla option in general local volatility model. The previous arguments are
based on the explicit Black–Scholes formula for call and digital call options, but
we can generalize them to more general models and payoffs and handle derivatives
at any order. Denote by Xj = log(Sj ) (1 ≤ j ≤ d) the log-asset price in a diffu-
sion model, and assume that dXt = bX(t,Xt)dt + σX(t,Xt)dBt for coefficients
bX and σX of class C∞

b ([0, T ] × R
d) (bounded with bounded derivatives). The

price function in the log-variables is then v(t, x) := u(t, exp(x1), . . . , exp(xd)) =
E(g(ST )|Sj

t = exp(xj ),1 ≤ j ≤ d) := E(G(XT )|Xt = x). We first consider the
simple case of C∞-payoff G with exponentially bounded derivatives: for any
k ≥ 0, there is a constant CG

k ≥ 0 such that |Dk
xG(x)| ≤ CG

k exp(CG
k |x|) for

x ∈ R
d . In this case, a direct differentiation of E(G(XT )|Xt = x) using the smooth

flow x �→ X
t,x
T [26] shows the differentiability of v w.r.t. the space variable with

derivatives bounded on compact subsets of [0, T ] × R
d ; in addition the time

smoothness is obtained using Itô’s formula; these arguments are standard and we
skip details. (Au) is proved for these smooth payoffs.

Now we tackle the case of discontinuous payoffs of the form G(x) = 1x∈Dϕ(x)

for a closed set D ⊂ R
d and a C∞-function ϕ with exponentially bounded deriva-

tives: observe that by combining the analysis for smooth payoffs and that for dis-
continuous ones will allow to cover a quite large class of g satisfying (Au) (such
as call/put, digital call/put, exchange call, digital exchange call and so on). We as-
sume that a uniform ellipticity assumption is satisfied: inf0≤t≤T ,x∈Rd inf|ξ |=1 ξ ·
[σX(σX)∗](t, x)ξ > 0. In this setting, v(t, x) = ∫

Rd 1z∈Dp(t, x, T , z)ϕ(z) dz

where p is the transition density function of X, which is smooth and satisfies
to Aronson-type estimates ([7], Theorem 8, page 263): for any i ≥ 0 and any dif-
ferentiation index α, there exists a constant Ci,α = Ci,α(T , bX,σX) > 0 such that∣∣Di,α

tx p(t, x, T , z)
∣∣≤ Ci,α(T − t)−(d+2i+|α|)/2 exp

(−|x − z|2/[Ci,α(T − t)
])

for any 0 ≤ t < T , x ∈ R
d , z ∈ R

d . From the integral representation of v, it readily
follows that∣∣Di,α

tx v(t, x)
∣∣

≤ Ci,α(T − t)−(2i+|α|)/2
∫
Rd

C
ϕ
0 eC

ϕ
0 |z|(T − t)−d/2e−|x−z|2/[Ci,α(T −t)] dz

≤ Ci,α(T − t)−(2i+|α|)/2C
ϕ
0 eC

ϕ
0 |x|

∫
Rd

eC
ϕ
0

√
T |w|e−|w|2/Ci,α dw,

which proves locally uniform bounds on derivatives provided that the time to ma-
turity remains bounded away from 0. To handle the case t → T , we additionally
assume that the boundary ∂D of D is Lebesgue-negligible (thus including usual sit-
uations but excluding Cantor like sets; see [5], page 114): thus for P-a.e. ω, the dis-
tance to the boundary (a closed set) is positive, that is, δ0(ω) := 1

4d(XT (ω), ∂D) >
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0, and there exists t0(ω) ∈ [0, T [ such that inft0(ω)≤t≤T d(Xt(ω), ∂D) ≥ 3δ0(ω)

[we recall that the distance function x �→ d(x, ∂D) is Lipschitz continuous]. Now,
let ω be given as above; by the smooth version of the Urysohn lemma [6],
page 90, Chapter IV, there exists a smooth function ξ (depending on ω) such
that 1x∈D,δ0≤d(x,∂D) ≤ ξ(x) ≤ 1x∈D . Decompose the price function into two parts
v = v1 + v2 with

v1(t, x) :=
∫
Rd

1z∈Dp(t, x, T , z)ϕ(z)ξ(z) dz,

v2(t, x) =
∫
D

p(t, x, T , z)ϕ(z)
(
1 − ξ(z)

)
dz.

We easily handle the derivatives of v1 using the first case of smooth functions since
1Dϕξ = ϕξ ∈ C∞ with exponentially bounded derivatives. Regarding v2, observe
that we integrate over the z such that z ∈ D and d(z, ∂D) < δ0; for such z, for
t ∈ [t0, T [ and |x − Xt | ≤ δ ≤ δ0, we have |x − z| ≥ d(Xt , ∂D) − |x − Xt | −
d(z, ∂D) ≥ δ0 and thus

sup
|x−Xt |≤δ

∣∣Di,α
tx v2(t, x)

∣∣
≤ sup

|x−Xt |≤δ

∫
D

C
ϕ
0 eC

ϕ
0 |z|Ci,α(T − t)−(d+2i+|α|)/2e−|x−z|2/[2Ci,α(T −t)]

× e−δ2
0/[2Ci,α(T −t)] dz

≤ Ci,α(T − t)−(2i+|α|)/2e−δ2
0/[2Ci,α(T −t)]Cϕ

0 eC
ϕ
0 (|Xt |+δ0)

×
∫
Rd

eC
ϕ
0

√
T |w|e−|w|2/[2Ci,α] dw.

The above upper bound converges to 0 as t → T , and the proof of (Au) is complete.
Interestingly, we can weaken the ellipticity assumption into a hypoellipticity

assumption: indeed, our analysis essentially relies on transition density estimates
in small time and away from the diagonal. These estimates are available in the
hypoelliptic homogeneous diffusion case ([27], Corollary 3.25) and in the inho-
mogeneous case [3], Assumption (1.10).

Asian option in general local volatility model. The payoff is of the form
g(ST , IT ) where IT = ∫ T

0 St dt and S is a one-dimensional homogeneous diffusion
dSt = σ(St )dBt . The analysis is reduced to the previous case of vanilla option by
considering the 2-dimensional diffusion (St , It )0≤t≤T : it is not elliptic but hypoel-
liptic [27] provided that σ is smooth and that σ(x) > 0 for x ∈ I where I ⊂ R is
given by P(∀t ∈ [0, T ] :Xt ∈ I ) = 1 (in usual cases, I =]0,+∞[). It includes the
Black–Scholes model and any model with local volatility bounded away from 0
and smooth. We skip details.

Lookback option in Black–Scholes model. The payoff is of the form ST −
m ∧ min0≤t≤T St or M ∨ max0≤t≤T St − ST for lookback call or put, (M ∨
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max0≤t≤T St − K)+ or (K − m ∧ min0≤t≤T St )+ for call on maximum or on min-
imum, (ST − λm ∧ min0≤t≤T St )+ (with λ > 1) or (λM ∨ max0≤t≤T St − ST )+
(with λ < 1) for partial lookback call or put. In all these cases, Black–Scholes-
type formulas are available in closed forms [4]. Then it is straightforward to check
that (Au) is satisfied, and this is essentially based on the property that under the as-
sumption of nonzero volatility, the joint law (ST ,max0≤t≤T St ,min0≤t≤T St ) has
a density (derived from [33], Exercise 3.15), implying that the events on which the
derivatives may blow up (such as {ST = min0≤t≤T St }, . . .) have zero probability.
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