ON THE STABILITY OF SEQUENTIAL MONTE CARLO METHODS IN HIGH DIMENSIONS

By Alexandros Beskos¹, Dan Crisan² and Ajay Jasra³

National University of Singapore and University College London, Imperial College London, and National University of Singapore

We investigate the stability of a Sequential Monte Carlo (SMC) method applied to the problem of sampling from a target distribution on \mathbb{R}^d for large d. It is well known [Bengtsson, Bickel and Li, In Probability and Statistics: Essays in Honor of David A. Freedman, D. Nolan and T. Speed, eds. (2008) 316-334 IMS; see also Pushing the Limits of Contemporary Statistics (2008) 318-329 IMS, Mon. Weather Rev. (2009) 136 (2009) 4629-4640] that using a single importance sampling step, one produces an approximation for the target that deteriorates as the dimension d increases, unless the number of Monte Carlo samples N increases at an exponential rate in d. We show that this degeneracy can be avoided by introducing a sequence of artificial targets, starting from a "simple" density and moving to the one of interest, using an SMC method to sample from the sequence; see, for example, Chopin [Biometrika 89 (2002) 539-551]; see also [J. R. Stat. Soc. Ser. B Stat. Methodol. 68 (2006) 411–436, Phys. Rev. Lett. 78 (1997) 2690–2693, Stat. Comput. 11 (2001) 125–139]. Using this class of SMC methods with a fixed number of samples, one can produce an approximation for which the effective sample size (ESS) converges to a random variable ε_N as $d \to \infty$ with $1 < \varepsilon_N < N$. The convergence is achieved with a computational cost proportional to Nd^2 . If $\varepsilon_N \ll N$, we can raise its value by introducing a number of resampling steps, say m (where m is independent of d). In this case, the ESS converges to a random variable $\varepsilon_{N,m}$ as $d \to \infty$ and $\lim_{m \to \infty} \varepsilon_{N,m} = N$. Also, we show that the Monte Carlo error for estimating a fixed-dimensional marginal expectation is of order $\frac{1}{\sqrt{N}}$ uniformly in d. The results imply that, in high dimensions, SMC algorithms can efficiently control the variability of the importance sampling weights and estimate fixed-dimensional marginals at a cost which is less than exponential in d and indicate that resampling leads to a reduction in the Monte Carlo error and increase in the ESS. All of our analysis is made under the assumption that the target density is i.i.d.

1. Introduction. Sequential Monte Carlo (SMC) methods can be described as a collection of techniques that approximate a sequence of distributions, known

Received April 2012; revised March 2013.

¹Supported in part by the EPSRC Grant No EP/J01365X/1.

²Supported in part by the EPSRC Grant No EP/H0005500/1.

³Supported in part by a MOE Grant R155000119133 and was employed by Imperial College during part of this project.

MSC2010 subject classifications. Primary 82C80, 60K35; secondary 60F99, 62F15.

Key words and phrases. Sequential Monte Carlo, high dimensions, resampling, functional CLT.

up-to a normalizing constant, of increasing dimension. Typically, the complexity of these distributions is such that one cannot rely upon standard simulation approaches. SMC methods are applied in a wide variety of applications, including engineering, economics and biology; see [28] and Chapter VIII in [20] for an overview. They combine importance sampling and resampling to approximate distributions. The idea is to introduce a sequence of proposal densities and sequentially simulate a collection of N > 1 samples, termed particles, in parallel from these proposals. In most scenarios it is not possible to use the distribution of interest as a proposal. Therefore, one must correct for the discrepancy between proposal and target via importance weights. In almost all cases of practical interest, the variance of these importance weights increases with algorithmic time (e.g., [34]); this can, to some extent, be dealt with via resampling. This consists of sampling with replacement from the current samples using the weights and resetting them to 1/N. The variability of the weights is often measured by the effective sample size [37], and one often resamples when this drops below a threshold (dynamic-resampling).

There are a wide variety of convergence results for SMC methods, most of them concerned with the accuracy of the particle approximation of the distribution of interest as a function of N. A less familiar context, related with this paper, arises in the case when the difference in the dimension of the consecutive densities becomes large. While in filtering there are several studies on the stability of SMC as the time step grows (see, e.g., [19, 21, 25, 26, 30, 35]) they do not consider this latter scenario. In addition, there is a vast literature on the performance of high-dimensional Markov chain Monte Carlo (MCMC) algorithms, for example, [10, 43, 44]; our aim is to obtain a similar analytical understanding about the effect of dimension on SMC methods. The articles [4, 6, 13, 48] have considered some problems in this direction. In [6, 13, 48] the authors show that, for an i.i.d. target, as the dimension of the state grows to infinity then one requires, for some stability properties, a number of particles which grows exponentially in dimension (or "effective dimension" in [48]); the algorithm considered is standard importance sampling. We discuss these results below.

1.1. Contribution of the article. We investigate the stability of an SMC algorithm in high dimensions used to produce a sample from a sequence of probabilities on a common state-space. This problem arises in a wide variety of applications including many encountered in Bayesian statistics. For some Bayesian problems the posterior density can be very "complex," that is, multi-modal and/or with high correlations between certain variables in the target, called "static" inference; see, for example, [33]. A commonly used idea is to introduce a simple distribution, which is more straightforward to sample from, and to interpolate between this distribution and the actual posterior by introducing intermediate distributions from which one samples sequentially. While this problem departs from the standard ones in the SMC literature, it is possible to construct SMC methods to approximate this sequence; see [18, 22, 31, 41]. The methodology investigated here is applied in

many practical contexts: financial modeling [32], regression [46] and approximate Bayesian inference [23]. In addition, high-dimensional problems are of practical importance and are normally more challenging than their low-dimensional counterparts. The question we look at is whether such algorithms, as the dimension d of the distributions increases, are stable in any sense. That is, while d is fixed in practice, we would like identify the computational cost of the algorithm for large d, to ensure that the algorithm is stable. Within the SMC context described here, we quote the following statement made in [13]:

"Unfortunately, for truly high-dimensional systems, we conjecture that the number of intermediate steps would be prohibitively large and render it practically infeasible."

One of the objectives of this article is to investigate the above statement from a theoretical perspective. In the sequel we show that for i.i.d. target densities:

- The SMC algorithm analyzed, with computational cost $\mathcal{O}(Nd^2)$ is stable. Analytically, we prove that ESS converges weakly to a nontrivial random variable ε_N as d grows and the number of particles is kept fixed. In addition, we show that the Monte Carlo error of the estimation of fixed-dimensional marginals, for a fixed number of particles N is of order $1/\sqrt{N}$ uniformly in d. The algorithm can include dynamic resampling at some particular deterministic times. In this case, the algorithm will resample $\mathcal{O}(1)$ times. Our results indicate that estimates will improve when one resamples.
- The dynamically resampling SMC algorithm (with stochastic times and some minor modifications) will, with probability greater than or equal to $1 M/\sqrt{N}$, where M is a positive constant independent of N, also exhibit these properties.
- Our results are proved for $\mathcal{O}(d)$ steps in the algorithm. If one takes $\mathcal{O}(d^{1+\delta})$ steps with any $\delta > 0$, then ESS converges in probability to N and the Monte Carlo error is the same as with i.i.d. sampling. If $-1 < \delta < 0$, then ESS will goto zero (Corollary 5.1). That is, $\mathcal{O}(d)$ steps are a critical order for the stability of the algorithm in our scenario.

Going into more detail, we informally summarize below our main results [throughout the costs of the SMC algorithms are $\mathcal{O}(Nd^2)$ for i.i.d. target densities]:

- Theorem 3.1 shows that, for the algorithm that does not resample, the evolution of the log-weight of a particle stabilizes via convergence to a time-changed Brownian motion, as $d \to \infty$ with N fixed.
- Theorem 3.2 shows, in the context of no resampling, that the ESS converges to a nontrivial random variable as *d* grows with *N* fixed.
- Theorem 3.3 shows, in the context of no resampling, that the Monte Carlo error associated to expectations w.r.t. a fixed-dimensional marginal of the target is $\mathcal{O}(N^{-1/2})$ as $d \to \infty$.
- Theorem 4.1 shows, for the algorithm which resamples at some deterministic times (which are not available in practice), that the ESS converges to a nontrivial random variable as *d* grows with *N* fixed.

- Theorem 4.2 shows, for the SMC algorithm which resamples at deterministic times, that the Monte Carlo error associated to expectations w.r.t. a fixed-dimensional marginal of the target is $\mathcal{O}(N^{-1/2})$ as $d \to \infty$.
- Theorem 4.3 which shows that as $d \to \infty$, a practical algorithm which resamples at stochastic times (and under a modification) inherits the same properties as the algorithm which resamples at deterministic times, with a probability that is lower-bounded by $1 M/\sqrt{N}$, for some $M < \infty$.

Our results show that in high-dimensional problems, one is able to control the variability of the weights; this is a minimum requirement for applying the algorithm. They also establish that one can estimate *fixed*-dimensional marginals even as the dimension *d* increases. The results help to answer the point of [13] quoted above. In the presence of a quadratic cost and increasingly sophisticated hardware (e.g., [36]) SMC methods are applicable, in the static context, in high-dimensions. To support this, [32] presents further empirical evidence of the results presented here. In particular, it is shown there that SMC techniques are algorithmically stable for models of dimension over 1000 with computer simulations that run in just over 1 hour. Hence the SMC techniques analyzed here can certainly be used for high-dimensional *static* problems. The analysis of such methods for time-dependent applications (e.g., filtering) is subject to further research.

When there is no resampling, the proofs of our results rely on martingale array techniques. To show that the algorithm is stable we establish a functional central limit theorem (fCLT) under easily verifiable conditions, for a triangular array of nonhomogeneous Markov chains. This allows one to establish the convergence in distribution of ESS (as d increases). The result also demonstrates the dependence of the algorithm on a mixture of asymptotic variances (in the Markov chain CLT) of the nonhomogeneous kernels.

1.2. Structure of the article. In Section 2 we discuss the SMC algorithm of interest and the class of target distributions we consider. In Section 3 we show that the ESS converges in distribution to a nontrivial random variable as $d \to \infty$ when the algorithm does not resample. We also show that the Monte Carlo error of the estimation of fixed dimensional marginals, for a fixed number of particles N, has an upper bound of the form M/\sqrt{N} , where M is independent of d. We address the issue of resampling in Section 4, where it is shown that as $d \to \infty$ any dynamically resampling SMC algorithm, using the deterministic ESS (the expected ESS with one particle) will resample $\mathcal{O}(1)$ times and also exhibit convergence of the ESS and Monte Carlo error. In addition, any dynamically resampling SMC algorithm, using the empirical ESS (with some modification) will, with high probability, display the same convergence of the ESS and Monte Carlo error. Finally, we conclude in Section 5 with some remarks on $\mathcal{O}(d)$ steps being a critical order and ideas for future work. Proofs are collected in the Appendix.

1.3. *Notation*. Let (E, \mathscr{E}) be a measurable space and $\mathscr{P}(E)$ be the set of probability measures on (E, \mathscr{E}) . For a given function $V : E \mapsto [1, \infty)$ we denote by \mathscr{L}_V the class of functions $f : E \mapsto \mathbb{R}$ for which

$$|f|_V := \sup_{x \in E} \frac{|f(x)|}{V(x)} < +\infty.$$

For two Markov kernels, P and Q on (E, \mathcal{E}) , we define the V-norm

$$|||P - Q|||_V := \sup_{x \in E} \frac{\sup_{|f| \le V} |P(f)(x) - Q(f)(x)|}{V(x)}$$

with $P(f)(x) := \int_E P(x, dy) f(y)$. The notation

$$||P(x,\cdot) - Q(x,\cdot)||_V := \sup_{|f| \le V} |P(f)(x) - Q(f)(x)|$$

is also used. For $\mu \in \mathscr{P}(E)$ and P a Markov kernel on (E,\mathscr{E}) , we adopt the notation $\mu P(f) := \int_E \mu(dx) P(f)(x)$. In addition, $P^n(f)(x) := \int_{E^{n-1}} P(x,dx_1) \times P(x_1,dx_2) \times \cdots \times P(f)(x_{n-1})$. $\mathscr{B}(\mathbb{R})$ is used to denote the class of Borel sets and $\mathcal{C}_b(\mathbb{R})$ the class of bounded continuous $\mathscr{B}(\mathbb{R})$ -measurable functions. Denote $\|f\|_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$. We will also define the \mathbb{L}_ϱ -norm, $\|X\|_\varrho = \mathbb{E}^{1/\varrho} |X|^\varrho$, for $\varrho \geq 1$ and denote by \mathbb{L}_ϱ the space of random variables such that $\|X\|_\varrho < \infty$. For $d \geq 1$, $\mathcal{N}_d(\mu, \Sigma)$ denotes the d-dimensional normal distribution with mean μ and covariance Σ ; when d = 1 the subscript is dropped. For any vector (x_1, \dots, x_p) , we denote by $x_q : s$ the vector (x_q, \dots, x_s) for any $1 \leq q \leq s \leq p$. Throughout M is used to denote a constant whose meaning may change, depending upon the context; any (important) dependencies are written as $M(\cdot)$.

2. Sequential Monte Carlo. We wish to sample from a target distribution with density Π on \mathbb{R}^d with respect to Lebesgue measure, known up to a normalizing constant. We introduce a sequence of "bridging" densities which start from an easy to sample target and evolve toward Π . In particular, we will consider (e.g., [22])

(2.1)
$$\Pi_n(x) \propto \Pi(x)^{\phi_n}, \qquad x \in \mathbb{R}^d$$

for
$$0 < \phi_0 < \dots < \phi_{n-1} < \phi_n < \dots < \phi_p = 1$$
.

The effect of exponentiating with the small constant ϕ_0 is that $\Pi(x)^{\phi_0}$ is much "flatter" than Π . Other choices of bridging densities are possible and are discussed in the sequel.

One can sample from the sequence of densities using an SMC sampler, which is, essentially, a sequential importance resampling (SIR) algorithm or particle filter that can be designed to target the sequence of densities

$$\widetilde{\Pi}_n(x_{1:n}) = \Pi_n(x_n) \prod_{j=1}^{n-1} \frac{\Pi_{j+1}(x_j) K_{j+1}(x_j, x_{j+1})}{\Pi_{j+1}(x_{j+1})}$$

0. Sample X_0^1, \ldots, X_0^N i.i.d. from Υ , and compute the weights for each particle $i \in \{1, \ldots, N\}$

$$w_{0:0}^{i} = \frac{\Gamma_0(x_0^{i})}{\Upsilon(x_0^{i})}.$$

Set n = 1 and l = 0.

1. If $n \le p$, for each i sample $X_n^i \mid X_{n-1}^i = x_{n-1}^i$ from $K_n(x_{n-1}^i, \cdot)$ (i.e., conditionally independently) and calculate the weights

$$w_{l:n}^{i} = \frac{\Gamma_{n}(x_{n-1}^{i})}{\Gamma_{n-1}(x_{n-1}^{i})} w_{l:(n-1)}^{i}.$$

Calculate the effective sample size (ESS)

(2.2)
$$\operatorname{ESS}_{l:n}(N) = \frac{(\sum_{i=1}^{N} w_{l:n}^{i})^{2}}{\sum_{i=1}^{N} (w_{l:n}^{i})^{2}}.$$

If $ESS_{l:n}(N) < a$, resample particles according to their normalised weights

(2.3)
$$\overline{w}_{l:n}^{i} = \frac{w_{l:n}^{i}}{\sum_{j=1}^{N} w_{l:n}^{j}};$$

set l=n and re-initialize the weights by setting $w_{l:n}^i\equiv 1,\, 1\leq i\leq N;$ let $\check{x}_n^1,\ldots,\check{x}_n^N$ now denote the resampled particles and set $(x_n^1,\ldots,x_n^N)=(\check{x}_n^1,\ldots,\check{x}_n^N).$

Set n = n + 1.

Return to the start of step 1.

FIG. 1. The SMC algorithm.

with domain $(\mathbb{R}^d)^n$ of dimension that increases with n = 1, ..., p, and $\{K_n\}$ a sequence of Markov kernels of invariant density $\{\Pi_n\}$. Assuming the weights appearing below are well-defined Radon–Nikodym derivatives, the SMC algorithm we will ultimately explore is the one defined in Figure 1. With no resampling, the algorithm coincides with the annealed importance sampling in [41]. It is remarked that, due to the results of [6, 13, 48], it appears that the cost of the population Monte Carlo method of [17] would increase exponentially with the dimension; instead we will show that the "bridging" SMC sampler framework above will be of smaller cost.

The ESS defined in (2.2) is typically used to quantify the quality of SMC approximations associated to systems of weighted particles. It is a number between 1 and N, and in general the larger the value, the better the approximation. Resampling is often performed when ESS falls below some pre-specified threshold such as a = N/2. The operation of resampling consists of sampling with replacement

from the current set of particles via the normalized weights in (2.3) and resetting the (unnormalized) weights to 1. There are a wide variety of resampling techniques, and we refer the reader to [28] for details; in this article we only consider the multinomial method just described above.

2.1. Framework. We will investigate the stability of the SMC algorithm in Figure 1 as $d \to \infty$. To obtain analytical results we will simplify the structure of the algorithm (similar to the results for MCMC in high dimensions in, e.g., [5, 10, 43, 44]). In particular, we will consider an i.i.d. target

(2.4)
$$\Pi(x) = \prod_{j=1}^{d} \pi(x_j); \qquad \pi(x_j) = \exp\{g(x_j)\}, \qquad x_j \in \mathbb{R},$$

for some $g: \mathbb{R} \to \mathbb{R}$. In such a case all bridging densities are also i.i.d.

$$\Pi_n(x) \propto \prod_{j=1}^d \pi_n(x_j); \qquad \pi_n(x_j) \propto \exp\{\phi_n g(x_j)\}.$$

Note that this assumption is made for mathematical convenience (clearly, in an i.i.d. context one could use standard sampling schemes). Still, such a context allows for a rigorous mathematical treatment; at the same time (and similarly to corresponding extensions of results for MCMC algorithms in high dimensions) one would expect that the analysis we develop in this paper for i.i.d. targets will also be relevant in practice for more general scenarios; see Section 5 for some discussion. A further assumption that will facilitate the mathematical analysis is to apply independent kernels along the different co-ordinates. That is, we will assume

(2.5)
$$K_n(x, dx') = \prod_{j=1}^d k_n(x_j, dx'_j),$$

where each transition kernel $k_n(\cdot, \cdot)$ preserves $\pi_n(x)$; that is, $\pi_n k_n = \pi_n$. Clearly, this also implies that $\Pi_n K_n = \Pi_n$.

The stability of ESS will be investigated as $d \to \infty$: first without resampling and then with resampling. We study the case when one selects cooling constants ϕ_n and p as below:

(2.6)
$$p = d;$$
 $\phi_n (= \phi_{n,d}) = \phi_0 + \frac{n(1 - \phi_0)}{d},$ $0 \le n \le d$

with $0 < \phi_0 < 1$ given and fixed with respect to d. It will be shown that such a selection will indeed provide a "stable" SMC algorithm as $d \to \infty$. Note that $\phi_0 > 0$ as we will be concerned with probability densities on noncompact spaces.

REMARK 2.1. Since $\{\phi_n\}$ will change with d, all elements of our SMC algorithm will also depend on d. We use the double-subscripted notation $k_{n,d}$, $\pi_{n,d}$

when needed to emphasize the dependence of k_n and π_n on d, which ultimately, depend on n, d through $\phi_{n,d}$. Similarly, we will sometimes write $X_n(d)$, or $x_n(d)$, for the Markov chain involved in the specification of the SMC algorithm.

REMARK 2.2. Although the algorithm runs in discrete time, it will be convenient for the presentation of our results that we consider the successive steps of the algorithm as placed on the continuous time interval $[\phi_0, 1]$, incremented by the annealing discrepancy $(1 - \phi_0)/d$. We will use the mapping

$$(2.7) l_d(t) = \left\lfloor d\left(\frac{t - \phi_0}{1 - \phi_0}\right) \right\rfloor$$

to switch between continuous time and discrete time. Related to the above, it will be convenient to consider the continuum of invariant densities and kernels on the whole of the time interval $[\phi_0, 1]$. So, we will set

$$\pi_s(x) \propto \pi(x)^s = \exp\{sg(x)\}, \quad s \in [\phi_0, 1].$$

That is, we will use the convention $\pi_n \equiv \pi_{\phi_n}$ with the subscript on the left running on the set $\{1, 2, ..., d\}$. Accordingly, $k_s(\cdot, \cdot)$, with $s \in (\phi_0, 1]$, will denote the transition kernel preserving π_s .

- 2.2. Conditions. We state the conditions under which we derive our results. Throughout, we set $k_{\phi_0} \equiv \pi_{\phi_0}$ and $(E, \mathscr{E}) = (\mathbb{R}, \mathscr{B}(\mathbb{R}))$. We assume that $g(\cdot)$ is an upper bounded function. In addition, we make the following assumptions for the continuum of kernels/densities:
 - (A1) Stability of $\{k_s\}$.
- (1) (One-step minorization). We assume that there exists a set $C \in \mathcal{E}$, a constant $\theta \in (0, 1)$ and some $\nu \in \mathcal{P}(E)$ such that for each $s \in (\phi_0, 1]$ the set C is $(1, \theta, \nu)$ -small with respect to k_s .
- (2) (One-step drift condition). There exists $V: E \mapsto [1, \infty)$ with $\lim_{|x| \to \infty} V(x) = \infty$, constants $\lambda < 1$, $b < \infty$, and $C \in \mathscr{E}$ as specified in (i) such that for any $x \in E$ and $s \in (\phi_0, 1]$,

$$k_s V(x) \le \lambda V(x) + b \mathbb{I}_C(x)$$
.

In addition $\pi_{\phi_0}(V) < \infty$.

- (3) (Level sets). Define $C_c = \{x : V(x) \le c\}$ with V as in (1). Then there exists a $c \in (1, \infty)$ such that for every $s \in (\phi_0, 1)$, C_c is a $(1, \theta, \nu)$ -small set with respect to k_s . In addition, condition (ii) holds for $C = C_c$, and λ , b (possibly depending on c) such that $\lambda + b/(1+c) < 1$.
- (A2) Perturbations of $\{k_s\}$. There exists an $M < \infty$ such that for any $s, t \in (\phi_0, 1]$

$$|||k_s - k_t|||_V \leq M|s - t|.$$

The statement that C is $(1, \theta, \nu)$ -small w.r.t. to k_s means that C is an one-step small set for the Markov kernel, with minorizing distribution ν and parameter $\theta \in (0, 1)$; see, for example, [40].

Assumptions like (A1) are fairly standard in the literature on adaptive MCMC (e.g., [2]). Note though that the context in this paper is different. For adaptive MCMC one typically has that the kernels will eventually converge to some limiting kernel. Conversely, in our set-up, the d bridges (resp., kernels) in between π_0 (resp., k_0) and π_d (resp., k_d) will effectively make up a continuum of densities π_s (resp., kernels k_s), with $s \in [\phi_0, 1]$, as d grows to infinity. The second assumption above differs from standard adaptive MCMC but will be verifiable in real contexts; see [8]. Note that one could maybe relax our assumptions to, for example, sub-geometric drift conditions versus those for geometric ergodicity, at the cost of an increased level of complexity in the proofs. It is also remarked that the assumption that g is upper bounded is only used in Section 4, when controlling the resampling times. The assumptions adopted in this article are certainly not weak, but still are very close to the weakest assumptions adopted in state-of-the-art research on stability of SMC; see [49–51].

3. The algorithm without resampling. We will now consider the case when we omit the resampling steps in the SMC algorithm in Figure 1. Critically, due to the i.i.d. structure of the bridging densities Π_n and the kernels K_n each particle will evolve according to a d-dimensional Markov chain X_n made up of d i.i.d. one-dimensional Markov chains $\{X_{n,j}\}_{n=0}^d$, with j the co-ordinate index, evolving under the kernel k_n . Also, all particles move independently.

We first consider the stability of the terminal ESS, that is,

(3.1)
$$\operatorname{ESS}_{(0,d)}(N) = \frac{\left(\sum_{i=1}^{N} w_d(x_{0:d-1}^i)\right)^2}{\sum_{i=1}^{N} w_d(x_{0:d-1}^i)^2},$$

where, due to the i.i.d. structure and our selection of ϕ_n 's in (2.6), we can rewrite

(3.2)
$$w_d(x_{0:d-1}) = \exp\left\{\frac{(1-\phi_0)}{d} \sum_{i=1}^d \sum_{n=1}^d g(x_{n-1,j})\right\}.$$

It will be shown that under our set-up $ESS_{(0,d)}(N)$ converges in distribution to a nontrivial variable and analytically characterize the limit; in particular we will have $\lim_{d\to\infty} \mathbb{E}[ESS_{(0,d)}(N)] \in (1, N)$.

3.1. Strategy of the proof. To demonstrate that the selection of the cooling sequence ϕ_n in (2.6) will control the ESS we look at the behavior of the sum,

(3.3)
$$\frac{1-\phi_0}{d} \sum_{j=1}^d \sum_{n=1}^d g(x_{n-1,j}),$$

appearing in the expression for the weights, $w_d(x_{0:d-1})$, in (3.2). Due to the nature of the expression for ESS one can re-center, so we can consider the limiting properties of

(3.4)
$$\alpha(d) = \frac{1}{\sqrt{d}} \sum_{j=1}^{d} \overline{W}_{j}(d)$$

differing from (3.3) only in terms of a constant (the same for all particles), where we have defined

(3.5)
$$\overline{W}_j(d) = W_j(d) - \mathbb{E}[W_j(d)]$$

and

(3.6)
$$W_j(d) = \frac{1 - \phi_0}{\sqrt{d}} \sum_{n=1}^d \{ g(x_{n-1,j}) - \pi_{n-1}(g) \}.$$

As mentioned above, the dynamics of the involved random variables correspond to those of d independent scalar nonhomogeneous Markov chains $\{X_{n,j}\}_{n=0}^d \equiv \{X_{n,j}(d)\}_{n=0}^d$ of initial position $X_{0,j} \sim \pi_0$ and evolution according to the transition kernels $\{k_n\}_{1 \leq n \leq d}$. We will proceed as follows. For any fixed d and co-ordinate j, $\{X_{n,j}\}_{n=0}^d$ is a nonhomogeneous Markov chain of total length d+1. Hence, for fixed j, $\{X_{n,j}\}_{d,n}$ constitutes an array of nonhomogeneous Markov chains. We will thus be using the relevant theory to prove a central limit theorem (via a fCLT) for $\overline{W}_j(d)$ as $d \to \infty$. Then, the independency of the $\overline{W}_j(d)$'s over j will essentially provide a central limit theorem for $\alpha(d)$ as $d \to \infty$.

3.2. Results and remarks for ESS. Let $t \in [\phi_0, 1]$, and recall the definition of $l_d(t)$ in (2.7). We define

$$S_t = \frac{1 - \phi_0}{\sqrt{d}} \sum_{n=1}^{l_d(t)} \{ g(X_{n-1,j}) - \pi_{n-1}(g) \}.$$

Note that $S_1 \equiv W_j(d)$. Our fCLT considers the continuous linear interpolation

$$s_d(t) = S_t + \left(d\frac{t - \phi_0}{1 - \phi_0} - l_d(t)\right)[S_{t^+} - S_t],$$

where we have denoted

$$S_{t+} = \frac{1 - \phi_0}{\sqrt{d}} \sum_{n=1}^{l_d(t)+1} \{ g(X_{n-1,j}) - \pi_{n-1}(g) \}.$$

THEOREM 3.1 (fCLT). Assume (A1)(i)–(ii), (A2) and that $g \in \mathcal{L}_{V^r}$ for some $r \in [0, \frac{1}{2})$. Then

$$s_d(t) \Rightarrow \mathcal{W}_{\sigma^2_{\phi_0:t}},$$

where $\{W_t\}$ is a Brownian motion and

(3.7)
$$\sigma_{\phi_0:t}^2 = (1 - \phi_0) \int_{\phi_0}^t \pi_u (\widehat{g}_u^2 - k_u (\widehat{g}_u)^2) du$$

with $\widehat{g}_{u}(\cdot)$ the unique solution of the Poisson equation

$$(3.8) g(x) - \pi_u(g) = \widehat{g}_u(x) - k_u(\widehat{g}_u)(x).$$

In particular, $W_j(d) \Rightarrow \mathcal{N}(0, \sigma_{\star}^2)$ with $\sigma_{\star}^2 = \sigma_{\phi_0:1}^2$.

We will now need the following result on the growth of $W_i(d)$.

LEMMA 3.1. Assume (A1)(i)–(ii), (A2) and that $g \in \mathcal{L}_{V^r}$ for some $r \in [0, \frac{1}{2})$. Then there exists $\delta > 0$ such that

$$\sup_{d} \mathbb{E}[|W_j(d)|^{2+\delta}] < \infty.$$

PROOF. This follows from the decomposition in Theorem A.1 and the following inequality:

$$\mathbb{E}[|W_{j}(d)|^{2+\delta}] \leq \left(\frac{1}{\sqrt{d}}\right)^{2+\delta} M(\delta) \left(\mathbb{E}[|M_{0:d-1}|^{2+\delta}] + \mathbb{E}[|R_{0:d-1}|^{2+\delta}]\right).$$

Applying the growth bounds in Theorem A.1 we get that the remainder term $\mathbb{E}[|R_{0:d-1}|^{2+\delta}]$ is controlled as $\pi_{\phi_0}(V^r) < \infty$ (due to $r \in [0, \frac{1}{2})$). The martingale array term $\mathbb{E}[|M_{0:d-1}|^{2+\delta}]$ is upper bounded by $Md^{(2+\delta)/2}$, which allows us to conclude. \square

One can now obtain the general result.

THEOREM 3.2. Assume (A1)(i)–(ii), (A2). Suppose also that $g \in \mathcal{L}_{V^r}$ for some $r \in [0, \frac{1}{2})$. Then, for any fixed N > 1, $\mathrm{ESS}_{(0,d)}(N)$ converges in distribution to

$$\varepsilon_N := \frac{\left[\sum_{i=1}^N e^{X_i}\right]^2}{\sum_{i=1}^N e^{2X_i}},$$

where $X_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\star}^2)$ for σ_{\star}^2 specified in Theorem 3.1. In particular,

(3.9)
$$\lim_{d \to \infty} \mathbb{E}[\text{ESS}_{(0,d)}(N)] = \mathbb{E}\left[\frac{\left[\sum_{i=1}^{N} e^{X_i}\right]^2}{\sum_{i=1}^{N} e^{2X_i}}\right].$$

PROOF. We will prove that $\alpha(d)$, as defined in (3.4), converges in distribution to $\mathcal{N}(0, \sigma_{\star}^2)$. The argument is standard: it suffices to check that the random

variables $\overline{W}_j(d)$, $j=1,\ldots,d$, satisfy the Lindeberg condition and that their second moments converge; see, for example, an adaptation of Theorem 2 of [47], page 334. To this end, note that $\{\overline{W}_j(d)\}_{d,j}$ form a triangular array of independent variables of zero expectation across each row. Let

$$S_d^2 = \frac{1}{d} \sum_{j=1}^d \mathbb{E}[\overline{W}_j(d)^2] \equiv \mathbb{E}[\overline{W}_1(d)^2],$$

the last equation following from $\overline{W}_j(d)$ being i.i.d. over j. Now, Theorem 3.1 gives that $W_1(d)$ converges in distribution to $\mathcal{N}(0, \sigma_\star^2)$ for $d \to \infty$. Lemma 3.1 implies that (e.g., Theorem 3.5 of [14]) also the first and second moments of $W_1(d)$ converge to 0 and σ_\star^2 , respectively; we thus obtain

$$\lim_{d \to \infty} S_d^2 = \sigma_{\star}^2.$$

We consider also the Lindeberg condition, and for each $\epsilon > 0$ we have

(3.11)
$$\lim_{d \to \infty} \frac{1}{d} \sum_{i=1}^{d} \mathbb{E} \left[\overline{W}_{j}(d)^{2} \mathbb{I}_{|\overline{W}_{j}(d)| \ge \epsilon \sqrt{d}} \right] = 0,$$

a result directly implied again from Lemma 3.1. Therefore, by Theorem 2 of [47], page 334, $\alpha(d)$ converges in distribution to $\mathcal{N}(0, \sigma_{\star}^2)$. In particular we have proved that

$$(\alpha_1(d),\ldots,\alpha_N(d)) \Rightarrow \mathcal{N}_N(0,\sigma_{\star}^2 I_N),$$

where the subscripts denote the indices of the particles. The result now follows directly after noticing that

$$ESS_{(0,d)} = \frac{\left[\sum_{i=1}^{N} e^{\alpha_i(d)}\right]^2}{\sum_{i=1}^{N} e^{2\alpha_i(d)}}$$

and the mapping $(\alpha_1, \alpha_2, \dots, \alpha_N) \mapsto \frac{\left[\sum_{i=1}^N e^{\alpha_i}\right]^2}{\sum_{i=1}^N e^{2\alpha_i}}$ is bounded and continuous. \square

3.3. Monte Carlo error. We have shown that the choice of bridging steps in (2.6) leads to a stabilization of the ESS in high dimensions. The error in the estimation of expectations, which can be of even more practical interest than ESS, is now considered. In particular, we look at expectations associated with finite-dimensional marginals of the target distribution. Recall the definition of the weight of the *i*th particle $w_d(x_{0:d-1}^i)$ from (3.2), for $1 \le i \le N$. In order to consider the Monte Carlo error, we use the result below, which is of some interest in its own right.

PROPOSITION 3.1. Assume (A1)(i)–(ii), (A2), and let $\varphi \in \mathcal{L}_{V^r}$ for $r \in [0, 1]$. Then we have

$$\lim_{d\to\infty} \left| \mathbb{E} \big[\varphi(X_{d,1}) \big] - \pi(\varphi) \right| = 0.$$

PROOF. This follows from Proposition A.1 in the Appendix when choosing time sequences $s(d) \equiv \phi_0$ and $t(d) \equiv 1$. \square

REMARK 3.1. The above result is interesting as it suggests one can run an alternative algorithm that just samples a single inhomogeneous Markov chain, with Markov kernels with invariant measures having annealing parameters on a grid of values and average the values of the function of interest. However, it is not clear how such an algorithm can be validated in practice (i.e., how many steps one should take for a finite time algorithm) and is of interest in the scenario where one fixes d and allows the time-steps to grow; see [49]. In our context, we are concerned with the performance of the estimator that one would use for fixed d (and hence a finite number of steps in practice) from the SMC sampler in high-dimensions; it is not at all clear a priori that this will stabilize with a computational cost $\mathcal{O}(Nd^2)$, and if it does, how the error will behave.

The Monte Carlo error result now follows; recall $\|\cdot\|_{\rho}$ is defined in Section 1.3:

THEOREM 3.3. Assume (A1)(i)–(ii), (A2) with $g \in \mathcal{L}_{V^r}$ for some $r \in [0, \frac{1}{2})$. Then for any $1 \le \varrho < \infty$ there exists a constant $M = M(\varrho) < \infty$ such that for any $N \ge 1$, $\varphi \in \mathcal{C}_b(\mathbb{R})$

$$\begin{split} &\lim_{d\to\infty} \left\| \sum_{i=1}^N \frac{w_d(X_{0:d-1}^i)}{\sum_{l=1}^N w_d(X_{0:d-1}^l)} \varphi\big(X_{d,1}^i\big) - \pi(\varphi) \right\|_{\varrho} \\ &\leq \frac{M(\varrho) \|\varphi\|_{\infty}}{\sqrt{N}} \big[e^{(\sigma_\star^2/2)\varrho(\varrho-1)} + 1 \big]^{1/\varrho}. \end{split}$$

PROOF. Recall that the N particles remain independent. From the definition of the weights in (3.2), we can write $w_d(X_{0:d-1}) = e^{1/\sqrt{d}\sum_{j=1}^d \overline{W}_j(d)}$ for $\overline{W}_j(d)$ being i.i.d. and given in (3.5). Now, we have shown in the proof of Theorem 3.2 that $\frac{1}{\sqrt{d}}\sum_{j=1}^d \overline{W}_j(d) \Rightarrow \mathcal{N}(0,\sigma_\star^2)$, thus

$$(3.12) w_d(X_{0:d-1}) \Rightarrow e^X, X \sim \mathcal{N}(0, \sigma_{\star}^2).$$

Then, from Proposition 3.1, $X_{d,1}$ converges weakly to a random variable $Z \sim \pi$. A simple argument shows that the variables Z, X are independent as Z depends only on the first co-ordinate which will not affect [via $\overline{W}_1(d)$] the limit of $\frac{1}{\sqrt{d}}\sum_{j=1}^d \overline{W}_j(d)$. The above results allow us to conclude (due to the boundedness and continuity of the involved functions) that

(3.13)
$$\lim_{d \to \infty} \left\| \sum_{i=1}^{N} \frac{w_d(X_{0:d-1}^i)}{\sum_{l=1}^{N} w_d(X_{0:d-1}^l)} \varphi(X_{d,1}^i) - \pi(\varphi) \right\|_{\varrho}$$
$$= \left\| \sum_{i=1}^{N} \frac{e^{X_i}}{\sum_{l=1}^{N} e^{X_l}} \varphi(Z_i) - \pi(\varphi) \right\|_{\varrho},$$

where the X_i are i.i.d. $\mathcal{N}(0, \sigma_{\star}^2)$ and independently Z_i are i.i.d. π . Now, the limiting random variable in the \mathbb{L}_{ϱ} -norm on the right-hand side of (3.13) can be written as

(3.14)
$$\frac{A_{N,\varphi}}{e^{\sigma_{\star}^{2}/2}A_{N}} \left[e^{\sigma_{\star}^{2}/2} - A_{N} \right] + e^{-\sigma_{\star}^{2}/2} \left[A_{N,\varphi} - e^{\sigma_{\star}^{2}/2} \pi(\varphi) \right]$$

for $A_{N,\varphi} = \frac{1}{N} \sum_{i=1}^{N} e^{X_i} \varphi(Z_i)$ and $A_N = \frac{1}{N} \sum_{l=1}^{N} e^{X_l}$. Now, using the Marcin-kiewicz–Zygmund inequality (there is a version with $\varrho \in [1, 2)$; see, for example, [21], Chapter 7), the \mathbb{L}_{ϱ} -norm of the first summand in (3.14) is upper-bounded by

$$\frac{\|\varphi\|_{\infty}}{e^{\sigma_{\star}^2/2}} \cdot \frac{M(\varrho)}{\sqrt{N}} \|e^{X_1} - e^{\sigma_{\star}^2/2}\|_{\varrho},$$

where $M(\varrho)$ is a constant that depends upon ϱ only. Then applying the C_p -inequality and doing standard calculation, this is upper-bounded by

$$\frac{M(\varrho)\|\varphi\|_{\infty}}{\sqrt{N}} \left[e^{(\sigma_{\star}^2/2)\varrho(\varrho-1)} + 1 \right]^{1/\varrho}$$

for some finite constant $M(\varrho)$ that only depends upon ϱ . For the \mathbb{L}_{ϱ} -norm of the second summand in (3.14), again after applying the Marcinkiewicz–Zygmund inequality we have the upper-bound

$$e^{-\sigma_{\star}^2/2} \cdot \frac{M(\varrho)}{\sqrt{N}} \|e^{X_1} \varphi(Z_1) - e^{\sigma_{\star}^2/2} \pi(\varphi)\|_{\varrho}.$$

Using the C_p -inequality and standard calculations we have the upper bound

$$\frac{M(\varrho)\|\varphi\|_{\infty}}{\sqrt{N}} \left[e^{(\sigma_{\star}^2/2)\varrho(\varrho-1)} + 1 \right]^{1/\varrho}$$

for some finite constant $M(\varrho)$ that only depends upon ϱ . Thus, we can easily conclude from here. \square

4. Incorporating resampling. We have already shown that, even without resampling, the expected ESS converges as $d \to \infty$ to a nontrivial limit. In practice, this limiting value could sometimes be prohibitively close to 1 depending on the value of σ_{\star}^2 ; related to this notice that the constant at the upper bound for the Monte Carlo error in Theorem 3.3 is an exponential function of σ_{\star}^2 and could be large if σ_{\star}^2 is big. As a result, it makes sense to consider the option of resampling in our analysis in high dimensions. We will see that this will result in smaller bounds for Monte Carlo estimates.

The algorithm carries out d steps as in the case of the algorithm without resampling considered in Section 3, but now resampling occurs at the instances when ESS goes below a specified threshold. For fixed d, the algorithm runs in discrete time. Recalling the analogue between discrete and continuous time we have introduced in Remark 2.2 a statement like "resampling occurred at $t \in [\phi_0, 1]$ " will

literally mean that resampling took place after $l_d(t)$ steps of the algorithm, for the mapping $l_d(t)$ between continuous and discrete instances defined in (2.7); in particular, the resampling times, when considered on the continuous domain, will lie on the grid G_d ,

$$G_d = \{\phi_0 + n(1 - \phi_0)/d; n = 1, \dots, d\}$$

for any fixed d.

Assume that $s \in [\phi_0, 1]$ is a resampling time and $x'_{l_d(s)}, \ldots, x'_{l_d(s)}$ are the (now equally weighted) resampled particles. Due to the i.i.d. assumptions in (2.4) and (2.5), after resampling each of these particles will evolve according to the Markov kernels $k_{l_d(s)+1}, k_{l_d(s)+2}, \ldots$, independently over the d co-ordinates and different particles. The empirical ESS will also evolve as

(4.1)
$$ESS_{(s,u)}(N) = \frac{(\sum_{i=1}^{N} \exp\{1/\sqrt{d} \sum_{j=1}^{d} S_{s:u,j}^{i}\})^{2}}{\sum_{i=1}^{N} \exp\{2/\sqrt{d} \sum_{j=1}^{d} S_{s:u,j}^{i}\}}$$

for $u \in [s, 1]$, where we have defined

(4.2)
$$S_{s:u,j}^{i} = \frac{1 - \phi_0}{\sqrt{d}} \sum_{n=l_d(s)+1}^{l_d(u)} \{g(x_{n-1,j}^{i}) - \pi_{n-1}(g)\},$$

until the next resampling instance t > s, whence the N particles, $x_{l_d(t)}^i = (x_{l_d(t),1}^i, \dots, x_{l_d(t),d}^i)$ will be resampled according to their weights,

$$w_{l_d(t)}(x_{l_d(s):(l_d(t)-1)}^i) = \exp\left\{\frac{1}{\sqrt{d}} \sum_{j=1}^d S_{s:t,j}^i\right\}.$$

Note that we have modified the subscripts of ESS in (4.1), compared to the original definition in (2.2), to now run in continuous time. It should be noted that the dynamics differ from the previous section due to the resampling steps. For instance, $S_{s:u,j}^i$ are no longer independent over i or j, unless one conditions on the resampled particles $x_{ld}^{i,i}(s)$, $1 \le i \le N$.

4.1. Theoretical resampling times. We start by showing that the dynamically resampling SMC algorithm, using a deterministic version of ESS [namely, the expected ESS associated to the limiting $(N \to \infty)$ algorithm] will resample a finite number of times (again as $d \to \infty$) and also exhibit convergence of ESS and of the Monte Carlo error. Subsequently, we show that a dynamically resampling SMC algorithm, using the empirical ESS (with some modification) will, with high probability, display the same convergence properties.

We use the resampling-times construction of [24]: this involves considering the expected value of the importance weight and its square, for a system with a *sin-gle* particle. In particular, the theoretical resampling times are defined as [we set

$$t_0(d) \equiv 0$$

$$(4.3) t_{1}(d) = \inf \left\{ t \in [\phi_{0}, 1] : \frac{\mathbb{E}[\exp\{1/\sqrt{d} \sum_{j=1}^{d} S_{\phi_{0}:t,j}\}]^{2}}{\mathbb{E}[\exp\{2/\sqrt{d} \sum_{j=1}^{d} S_{\phi_{0}:t,j}\}]} < a \right\};$$

$$t_{k}(d) = \inf \left\{ t \in [t_{k-1}(d), 1] : \frac{\mathbb{E}[\exp\{1/\sqrt{d} \sum_{j=1}^{d} S_{t_{k-1}(d):t,j}\}]^{2}}{\mathbb{E}[\exp\{2/\sqrt{d} \sum_{j=1}^{d} S_{t_{k-1}(d):t,j}\}]} < a \right\},$$

$$(4.4) k \ge 2$$

for a constant $a \in (0, 1)$, under the convention that $\inf \emptyset = \infty$, where the expected value is w.r.t. the dynamics of a single particle with each of it's co-ordinates moving in-between resampling instances according to our Markov kernels k_n , but drawn independently from $\pi_{t_k(d)}$, for $k = 0, 1, \ldots$, at the resampling instances. Note that, for most applications in practice, these times cannot be found analytically. We emphasize here that the dynamics of $S_{s:t}$ appearing above do not involve resampling but simply follow the evolution of a single particle with d i.i.d. co-ordinates, each of which starts at $\pi_{t_k(d)}$, $k \ge 0$, and then evolves according to the next kernel in the sequence. Intuitively, following the ideas in [24], one could think of the deterministic times in (4.3)–(4.4) as the limit of the resampling times of the practical SMC algorithm in Figure 1 as the number of particles N increases to infinity.

We will for the moment consider the behavior of the above times in high dimensions. Consider the following instances:

$$(4.5) t_1 = \inf\{t \in [\phi_0, 1] : e^{-\sigma_{\phi_0:t}^2} < a\};$$

$$(4.6) t_k = \inf\{t \in [t_{k-1}, 1] : e^{-\sigma_{t_{k-1}}^2 : t} < a\}, k \ge 2,$$

where for any s < t in $[\phi_0, 1]$,

(4.7)
$$\sigma_{s:t}^2 = \sigma_{\phi_0:t}^2 - \sigma_{\phi_0:s}^2 \equiv (1 - \phi_0) \int_s^t \pi_u (\widehat{g}_u^2 - k_u (\widehat{g}_u)^2) du.$$

Under our standard assumptions (A1)–(A2), and the requirement that $g \in \mathcal{L}_{V^r}$ for some $r \in [0, \frac{1}{2})$, we have that (using Lemma A.1 in the Appendix),

$$\pi_u\big(\widehat{g}_u^2-k_s(\widehat{g}_u)^2\big)\leq M\pi_u\big(V^{2r}\big)\leq M'\pi_{\phi_0}(V)<\infty.$$

Thus we can find a *finite* collection of times that dominate the t_k 's (in the sense that there will be more than them), so also the number of the latter is finite and we can define

(4.8)
$$m^* = \#\{t_k : k \ge 1, t_k \in [\phi_0, 1]\} < \infty.$$

We have the following result.

PROPOSITION 4.1. As $d \to \infty$ we have that $t_k(d) \to t_k$ for any $k \ge 1$.

REMARK 4.1. Note that the time instances $\{t_k\}$ are derived only through the asymptotic variance function $t \mapsto \sigma_{\phi_0:t}^2$; our main objective in the current resampling part of this paper will be to illustrate that investigation of these deterministic times provides essential information about the resampling times of the practical SMC algorithm in Figure 1. These latter stochastic times will coincide with the former (or, rather, a slightly modified version of it) as $d \to \infty$ with a probability that converges to 1 with a rate $\mathcal{O}(N^{-1/2})$.

4.2. Stability under theoretical resampling times. Consider an SMC algorithm similar to the one in Figure 1, but with the difference that resampling occurs at the times $\{t_k(d)\}$ in (4.3)–(4.4); it is assumed that $t_0(d) = \phi_0$. Note that due to Proposition 4.1, the number of these resampling times,

$$m_d^* = \#\{t_k(d) : n \ge 1, t_k(d) \in [\phi_0, 1]\},\$$

will eventually, for big enough d, coincide with m^* in (4.8). We will henceforth assume that d is big enough so that $m_d^* \equiv m^* < \infty$.

We state our result in Theorem 4.1 below, under the convention that $t_{m^*+1}(d) \equiv 1$. The proof can be found in Appendix C.2. It relies on a novel construction of a filtration, which starts with all the information of all particles and co-ordinates up-to and including the last resampling time. Subsequent σ -algebras are generated, for a given particle, by adding each dimension for a given trajectory. This allows one to a use a Martingale CLT approach by taking advantage of the independence of particles and co-ordinates once we condition on their positions at the resampling times.

THEOREM 4.1. Assume (A1)–(A2) and $g \in \mathcal{L}_{V^r}$ with $r \in [0, \frac{1}{2})$. Then, for any fixed N > 1, any $k \in \{1, ..., m^* + 1\}$, times $t_{k-1} < t_k$, and $s_k(d) \in (t_{k-1}(d), t_k(d))$ any sequence converging to a point $s_k \in (t_{k-1}, t_k)$, we have that $ESS_{(t_{k-1}(d), s_k(d))}(N)$ converges in distribution to a random variable

$$\frac{\left[\sum_{i=1}^{N} e^{X_i^k}\right]^2}{\sum_{i=1}^{N} e^{2X_i^k}},$$

where $X_i^k \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{t_{k-1}:s_k}^2)$ and $\sigma_{t_{k-1}:s_k}^2$ as in (4.7). In particular,

$$\lim_{d \to \infty} \mathbb{E} \left[\text{ESS}_{(t_{k-1}(d), s_k(d))}(N) \right] = \mathbb{E} \left[\frac{\left[\sum_{i=1}^{N} e^{X_i^k} \right]^2}{\sum_{i=1}^{N} e^{2X_i^k}} \right].$$

Note that, had the $t_k(d)$'s been analytically available, resampling at these instances would deliver an algorithm of d bridging steps for which the expected ESS would be regularly regenerated. In addition, this latter quantity depends, asymptotically, on the "incremental" variances $\sigma_{\phi_0:t_1}^2$, $\sigma_{t_1:t_2}^2$, ..., $\sigma_{t_{m*}:t}^2$; in contrast, in the

context of Theorem 3.2, the limiting expectation depends on $\sigma_{\phi_0:1}^2 \equiv \sigma_{\star}^2$. We can also consider the Monte Carlo error when estimating expectations w.r.t. a single marginal co-ordinate of our target. Again, the proof is in Appendix C.2.

THEOREM 4.2. Assume (A1)–(A2) with $g \in \mathcal{L}_{V^r}$ for some $r \in [0, \frac{1}{2})$. Then for any $1 \le \varrho < \infty$ there exists a constant $M = M(\varrho) < \infty$ such that for any fixed $N \ge 1$, $\varphi \in \mathcal{C}_b(\mathbb{R})$

$$\begin{split} &\lim_{d \to \infty} \left\| \sum_{i=1}^{N} \frac{w_d(X^i_{l_d(t_{m^*}(d)):(d-1)})}{\sum_{l=1}^{N} w_d(X^l_{l_d(t_{m^*}(d)):(d-1)})} \varphi(X^i_{d,1}) - \pi(\varphi) \right\|_{\varrho} \\ & \leq \frac{M(\varrho) \|\varphi\|_{\infty}}{\sqrt{N}} \left[e^{(\sigma^2_{l_{m^*}:1}/2)\varrho(\varrho-1)} + 1 \right]^{1/\varrho}. \end{split}$$

REMARK 4.2. In comparison to the bound in Theorem 3.3, the bound is smaller with resampling: as $\phi_0 \le t_{m^*}$ the bound in Theorem 4.2 is clearly less than in Theorem 3.3. Whilst these are both upper-bounds on the error, they are based on the same calculations—that is, a CLT and using the Marcinkiewicz–Zygmund inequality.

REMARK 4.3. On inspection, the bound in the above result can be seen as counter-intuitive. Essentially, the bound gets *smaller* as t_{m^*} increases, that is, the closer to the end one resamples. However, this can be explained as follows. As shown in Proposition 3.1, the terminal point, thanks to the ergodicity of the system, is asymptotically drawn from the correct distribution π . Thus, in the limit $d \to \infty$ the particles do not require weighting. Clearly, in finite dimensions, one needs to assign weights to compensate for the finite run time of the algorithm.

We remark that our analysis, in the context of resampling, relies on the fact that N is fixed and $d \to \infty$. If N is allowed to grow as well our analysis must be modified when one resamples. Following closely the proofs in the Appendix, it should be possible by considering bounds (which do not increase with N and d) on quantities of the form

$$\mathbb{E}\left[\sum_{i=1}^{N} \frac{w_{l_d(t_k(d))}(X_{l_d(t_{k-1}(d)):(l_d(t_k(d))-1)}^{i})}{\sum_{l=1}^{N} w_{l_d(t_k(d))}(X_{l_d(t_{k-1}(d)):(l_d(t_k(d))-1)}^{l})}V(X_{l_d(t_k(d))}^{i})\right]$$

to establish results also for large N; we are currently investigating this. However, at least following our arguments, the asymptotics under resampling will only be apparent for N much smaller than d; we believe that is only due to mathematical complexity and does not need to be the case.

4.3. Practical resampling times. We now consider the scenario when one resamples at stochastic times. The approach we adopt is to first consider an algorithm which resamples at deterministic times, which the analysis of Section 4.2 applies to. Then, we will show that the algorithm that resamples at the empirical versions of these times will, with high probability that increases with N, resample precisely at those deterministic times (Theorem 4.3 below).

In the context of the above programme, we will follow closely the proof of [24]. For technical reasons (we give more details on this after the statement of Theorem 4.3 below) we will only consider an SMC algorithm which can only possibly resample at values on the following grid G_{δ} . Let $\delta \in \mathbb{Z}^+$; we define

$$G_{\delta} = \{\phi_0, \phi_0 + (1 - \phi_0)/\delta, \phi_0 + 2(1 - \phi_0)/\delta, \dots, 1\}.$$

We note that, one would like to choose $\delta = d$, but the proof construction we adopt does not appear to be amenable to this scenario, and we fix δ and allow d to grow. Thus we consider the SMC algorithm that attempts to resample only when crossing the instances of the grid G_{δ} . We now define the following *theoretical* resampling times:

$$\begin{split} t_1^{\delta}(d) &= \inf \bigg\{ t \in G_{\delta} \cap [\phi_0, 1] : \frac{\mathbb{E}[\exp\{1/\sqrt{d} \sum_{j=1}^{d} S_{\phi_0:t,j}\}]^2}{\mathbb{E}[\exp\{2/\sqrt{d} \sum_{j=1}^{d} S_{\phi_0:t,j}\}]} < a_1 \bigg\}; \\ t_k^{\delta}(d) &= \inf \bigg\{ t \in G_{\delta} \cap \big[t_{k-1}^{\delta}(d), 1 \big] : \frac{\mathbb{E}[\exp\{1/\sqrt{d} \sum_{j=1}^{d} S_{t_{k-1}^{\delta}(d):t,j}\}]^2}{\mathbb{E}[\exp\{2/\sqrt{d} \sum_{j=1}^{d} S_{t_{k-1}^{\delta}(d):t,j}\}]} < a_k \bigg\}, \end{split}$$

with $k \ge 2$. Let $m_d^*(\delta)$ be the number of times in this sequence. The algorithm which uses these resampling times will resample at deterministic time instances. For example, the first resampling time is the first time $t \in [\phi_0, 1]$ for which

$$\frac{\mathbb{E}[\exp\{1/\sqrt{d}\sum_{j=1}^{d}S_{\phi_0:t,j}\}]^2}{\mathbb{E}[\exp\{2/\sqrt{d}\sum_{j=1}^{d}S_{\phi_0:t,j}\}]}$$

drops below a_1 and also lies in G_δ (recall the expectation is w.r.t. the path of a single particle). We can, for a moment, obtain an understanding of the behavior of these times as $d \to \infty$. Define

$$\begin{split} t_1^{\delta} &= \inf\{t \in G_{\delta} \cap [\phi_0, 1] : e^{-\sigma_{\phi_0:t}^2} < a_1\}; \\ t_k^{\delta} &= \inf\{t \in G_{\delta} \cap [t_{k-1}^{\delta}, 1] : e^{-\sigma_{t_{k-1}^{\delta}:t}^2} < a_k\}, \qquad k \ge 2 \end{split}$$

If $m^*(\delta)$ denotes the number of these times, we have that $m^*(\delta) \leq m^*$ (with m^* now taking into account the choices of different thresholds a_k), but for δ large enough these values will be very close.

PROPOSITION 4.2. As $d \to \infty$ we have that $t_k^{\delta}(d) \to t_k^{\delta}$ for any $k \ge 1$; also $m_d^*(\delta) \to m^*(\delta)$.

PROOF. The proof of $t_1(d) \rightarrow t_1$ in Proposition 4.1 is based on showing uniform convergence of

$$t \mapsto \frac{\mathbb{E}[\exp\{1/\sqrt{d}\sum_{j=1}^{d} S_{\phi_0:t,j}\}]^2}{\mathbb{E}[\exp\{2/\sqrt{d}\sum_{j=1}^{d} S_{\phi_0:t,j}\}]}$$

to $t \mapsto e^{-\sigma_{\phi_0:t}^2}$. Repeating this argument also for subsequent time instances gave that $t_k(d) \to t_k$ for all relevant $k \ge 1$. This uniform convergence result can now be called upon to provide the proof of the current proposition. \square

Also, Theorems 4.1 and 4.2 hold under these modified times on G_{δ} . Again, we shall assume that d is big enough so that $m_d^*(\delta) \equiv m^*(\delta)$.

Main result and interpretation. Our objective will now be to consider the stochastic resampling times $\{T_k = T_k^N(d)\}$ used in practice when executing the algorithm which are now modified to

$$T_{1} = \inf \left\{ t \in G_{\delta} \cap [\phi_{0}, 1] : \frac{1}{N} ESS_{\phi_{0}:t}(N) < a_{1} \right\};$$

$$T_{k} = \inf \left\{ t \in G_{\delta} \cap [T_{k-1}, 1] : \frac{1}{N} ESS_{T_{k-1}:t}(N) < a_{k} \right\}, \qquad k \ge 2$$

for a collection of thresholds (a_k) in (0, 1). We will use the construction in [24]. The results therein determine the behavior of the SMC method for d fixed and increasing number of particles N, as described in the sequel. Define, for a given $v \in (0, 1)$, the following event:

$$\begin{split} \Omega_d^N &= \Omega_d^N \big(\upsilon, \{a_k\}_{1 \leq k \leq m^*(\delta)} \big) \\ &:= \bigg\{ \text{for all } 1 \leq k \leq m^*(\delta), s \in G_d \cap \big(t_{k-1}^\delta(d), t_k^\delta(d) \big] \colon \\ & \bigg| \frac{1}{N} \text{ESS}_{(t_{k-1}^\delta(d), s)}(N) - \text{ESS}_{(t_{k-1}^\delta(d), s)} \bigg| < \upsilon | \text{ESS}_{(t_{k-1}^\delta(d), s)} - a_k | \bigg\}, \end{split}$$

where

$$\mathrm{ESS}_{(t_{k-1}^{\delta}(d),s)} = \frac{\mathbb{E}[\exp\{1/\sqrt{d}\sum_{j=1}^{d}S_{t_{k-1}^{\delta}(d):s,j}\}]^{2}}{\mathbb{E}[\exp\{2/\sqrt{d}\sum_{j=1}^{d}S_{t_{k-1}^{\delta}(d):s,j}\}]}$$

corresponds to the expected ESS over a single particle involved in the definition of $\{t_k^{\delta}(d)\}$. Here $(a_k)_{1 \leq k \leq m^*}$ are a collection of thresholds sampled from some absolutely continuous distribution; this is simply to avoid the degenerate situation when the a_k 's coincide with $\mathrm{ESS}_{(t_{k-1}^{\delta}(d),s)}$ on the grid, that is, for $s \in G_d \cap (t_{k-1}^{\delta}(d),t_k^{\delta}(d)]$ and $1 \leq k \leq m^*(\delta)$. The work in [24], for fixed d, establishes the following:

(1) Within Ω_d^N , if the deterministic resampling criteria tell us to resample, so do the empirical ones. That is,

$$\operatorname{ESS}_{(t_{k-1}^{\delta}(d),s)} > a_{k} \quad \Rightarrow \quad \frac{1}{N} \operatorname{ESS}_{(t_{k-1}^{\delta}(d),s)}(N) > a_{k},$$

$$s \in G_{\delta} \cap \left(t_{k-1}^{\delta}(d), t_{k}^{\delta}(d)\right)$$

and

$$\mathrm{ESS}_{(t_{k-1}^{\delta}(d),s)} < a_k \quad \Rightarrow \quad \frac{1}{N} \mathrm{ESS}_{(t_{k-1}^{\delta}(d),s)}(N) < a_k,$$

$$s \in G_{\delta} \cap (t_{k-1}^{\delta}(d),t_k^{\delta}(d)].$$

(2) A consequence of the above is that (this is Proposition 5.3 of [24])

$$\bigcap_{1 \le k \le m^*(\delta)} \{ T_k = t_k^{\delta}(d) \} \supset \Omega_d^N.$$

(3) Conditionally on $\{a_k\}_{1 \le k \le m^*(\delta)}$, we have that $\mathbb{P}[\Omega \setminus \Omega_d^N] \to 0$ as N grows [24], Theorem 5.4 (d is fixed).

The above results provide the interpretation that, with a probability that increases to 1 with N, the theoretical resampling times $\{t_k^{\delta}(d)\}$ will coincide with the practical $\{T_k = T_k^{\delta,N}(d)\}$, for any fixed dimension d.

Our own contribution involves looking at the stability of these results as the dimension grows, $d \to \infty$.

THEOREM 4.3. Assume (A1)–(A2) and that $g \in \mathcal{L}_{V^r}$, with $r \in [0, \frac{1}{2})$. Conditionally on almost every realization of the random threshold parameters $\{a_k\}$, there exists an $M = M(\delta, \phi_0) < \infty$ such that for any $1 \le N < \infty$, we have

$$\lim_{d\to\infty} \mathbb{P}\big[\Omega\setminus\Omega_d^N\big] \leq \frac{M}{\sqrt{N}}.$$

Thus, investigation of the times $\{t_k^{\delta}\}$ involving only the asymptotic variance function $\sigma_{s:t}^2$ can provide an understanding for the number and location of resampling times of the practical algorithm that uses the empirical ESS. This is because, with high probability, that depends on the number of particles (uniformly in d) the practical resampling times will coincide with $\{t_k(d)\}$.

The proof in Appendix C.3 focuses on point (3) above. It is based on controlling the probability that all empirical ESS's at the instances of the grid are close enough to the corresponding expected ESS's (i.e., closer than the distance of the expected ESS from the relevant threshold). This should also explain the use of the grid G_{δ} : not doing that, and comparing empirical and expected ESS's on *all* d steps of the sampler would give bounds in the proof of Theorem 4.3 that would depend on d

and would be difficult to control as $d \to \infty$. However, in practice our results so far establish that the expected and empirical ESS can only change by $\mathcal{O}(1/d)$ at each of the d steps; thus considering a finite grid already provides important insights for the empirical resampling times.

- **5. Discussion and extensions.** We now discuss the general context of our results, provide some extra results and look at potential generalizations.
- 5.1. On the number of bridging steps. Our analysis has relied on using $\mathcal{O}(d)$ bridging steps. An important question is what happens when one has more or less time steps. We restrict our discussion to the case where one does not resample, but one can easily extend the results to the resampling scenario. Suppose one takes $|d^{1+\delta}|$ steps, for some real $\delta > -1$ and annealing sequence

$$\phi_n = \phi_0 + \frac{n(1-\phi_0)}{\lfloor d^{1+\delta} \rfloor}, \qquad n \in \{0, \dots, \lfloor d^{1+\delta} \rfloor\}.$$

We are to consider the weak convergence of the centered log-weights, which are now equal to

$$\frac{\sqrt{d}}{|d^{1+\delta}|^{1/2}}\alpha_i(d),$$

where we have defined

$$\alpha_i(d) = \frac{1}{\sqrt{d}} \sum_{i=1}^d \overline{W}_j(d); \qquad \overline{W}_j(d) = W_j(d) - \mathbb{E}[W_j(d)]$$

with $i \in \{1, ..., N\}$ and

$$W_{j}(d) = \frac{1 - \phi_{0}}{\lfloor d^{1+\delta} \rfloor^{1/2}} \sum_{n=1}^{\lfloor d^{1+\delta} \rfloor} \{ g(x_{n-1,j}) - \pi_{n-1}(g) \}.$$

One can follow the arguments of Theorem 3.2 to deduce that, under our conditions,

(5.1)
$$\alpha_i(d) \Rightarrow \mathcal{N}(0, \sigma_{\star}^2).$$

This observation can the be used to provide the following result.

COROLLARY 5.1. Assume (A1)(i)–(ii), (A2) and that $g \in \mathcal{L}_{V^r}$ for some $r \in [0, \frac{1}{2})$. Then, for any fixed N > 1:

- if $\delta > 0$, then $\mathrm{ESS}_{(0, \lfloor d^{1+\delta} \rfloor)}(N) \to_{\mathbb{P}} N$;
- *if* $-1 < \delta < 0$, then $ESS_{(0, |d^{1+\delta}|)}(N) \to_{\mathbb{P}} 1$.

PROOF. Following (5.1), if $\delta > 0$, then we have that $\frac{\sqrt{d}}{\lfloor d^{1+\delta}\rfloor^{1/2}}\alpha_i(d) \to_{\mathbb{P}} 0$. All particles are independent, so the proof of the ESS convergence follows easily.

For the case when $-1 < \delta < 0$ we work as follows. We consider the maximum $M(d) = \max\{\alpha_i(d); 1 \le i \le d\}$. Let $\bar{\alpha}_{(1)}(d) \le \bar{\alpha}_{(2)}(d) \le \cdots \le \bar{\alpha}_{(N)}(d)$ denote the ordering of the variables $\alpha_1(d) - M(d), \alpha_2(d) - M(d), \ldots, \alpha_N(d) - M(d)$. We have that (setting for notational convenience $f_d := \frac{\sqrt{d}}{|d^{1+\delta}|^{1/2}}$)

(5.2)
$$\text{ESS}_{(0,\lfloor d^{1+\delta}\rfloor)}(N) = \frac{(\sum_{i=1}^{N} e^{\alpha_i(d)f_d})^2}{\sum_{i=1}^{N} e^{2\alpha_i(d)f_d}} \equiv \frac{(1 + \sum_{i=1}^{N-1} e^{\bar{\alpha}_{(i)}(d)f_d})^2}{1 + \sum_{i=1}^{N-1} e^{2\bar{\alpha}_{(i)}(d)f_d}}.$$

Due to the continuity of the involved mappings, the fact that $(\alpha_1(d),\ldots,\alpha_N(d))\Rightarrow \mathcal{N}(0,\sigma_\star^2I_N)$ implies the weak limit $(\bar{\alpha}_{(1)}(d),\ldots,\bar{\alpha}_{(N-1)}(d))\Rightarrow (\bar{\alpha}_{(1)},\ldots,\bar{\alpha}_{(N-1)})$ as $d\to\infty$ with the latter variables denoting the ordering $\bar{\alpha}_{(1)}\leq\bar{\alpha}_{(2)}\leq\cdots\leq\bar{\alpha}_{(N)}\equiv 0$ of $\alpha_1-M,\alpha_2-M,\ldots,\alpha_N-M$ where the α_i 's are i.i.d. from $\mathcal{N}(0,\sigma_\star^2)$, and M is their maximum. Since $(\bar{\alpha}_{(1)}(d),\ldots,\bar{\alpha}_{(N-1)}(d))$ and their weak limit take a.s. negative values, we have that $(\bar{\alpha}_{(1)}(d)f_d,\ldots,\bar{\alpha}_{(N-1)}(d)f_d)\Rightarrow (-\infty,\ldots,-\infty)$ which [continuing from (5.2)] implies the stated result. \square

For the stable scenario, with $\delta > 0$, we also have the following.

COROLLARY 5.2. Assume (A1)(i)–(ii), (A2) with $g \in \mathcal{L}_{V^r}$ for some $r \in [0, \frac{1}{2})$. Then for any $1 \le \varrho < \infty$, $N \ge 1$, $\varphi \in \mathcal{C}_b(\mathbb{R})$, $\delta > 0$,

$$\begin{split} &\lim_{d \to \infty} \left\| \sum_{i=1}^{N} \frac{w_d(X_{0: \lfloor d^{1+\delta} \rfloor - 1}^i)}{\sum_{l=1}^{N} w_d(X_{0: \lfloor d^{1+\delta} \rfloor - 1}^l)} \varphi(X_{\lfloor d^{1+\delta} \rfloor, 1}^i) - \pi(\varphi) \right\|_{\varrho} \\ &= \left\| \frac{1}{N} \sum_{i=1}^{N} \varphi(Z_i) - \pi(\varphi) \right\|_{\varrho}, \end{split}$$

where $Z_i \stackrel{i.i.d.}{\sim} \pi$.

PROOF. This follows from the proof of Theorem 3.3 and Corollary 5.1. \Box

Thus a number of steps of $\mathcal{O}(d)$ is a critical regime: less than this, will lead to the algorithm collapsing w.r.t. the ESS and more steps is "too much" effort as one obtains very favorable results.

5.2. Full-dimensional kernels. An important open problem is investigation of the stability properties of SMC, as $d \to \infty$, when one uses full-dimensional kernels $K_n(x,dx')$, instead of product of univariate kernels. We still consider here an i.i.d. target and no resampling. Consider the Markov kernel $P_n(x,dx')$ with invariant density Π_n corresponding to RWM with proposal $X_{pr} = x + \sqrt{h}Z$ with

step-size $h = l^2/d$, l > 0, and $Z \sim \mathcal{N}_d(0, I_d)$, so that $X' = x_{pr}$ with probability $a(x, x_{pr}) = 1 \land \{\Pi_n(x_{pr})/\Pi_n(x)\}$; otherwise X' = x. The particular scaling of h was found [5, 43, 44] to provide algorithms that do not degenerate with d. We consider the SMC method in Figure 1 with $K_n = (P_n)^d$ for RWM so that at each instance n we synthesize d steps from $P_n(x, dx')$. We conjecture that this choice for $K_n(x, dx')$ will be stable as $d \to \infty$. Some of the steps at the investigation of the asymptotic properties of the ESS when using product kernels are: (i) the independency over the d co-ordinates; (ii) each co-ordinate is making $\mathcal{O}(1)$ -steps in it's state space with some ergodicity properties. As explained in [5, 43, 44], convolution of d steps for RWM provides, asymptotically, independency between the co-ordinates, with each co-ordinate making d steps of size 1/d along the path (over the time period [0, 1]) of the following limiting scalar SDE:

(5.3)
$$dY_n(t) = \frac{a_n(l)l}{2} (\log \pi_n)'(Y_n(t)) dt + \sqrt{a_n(l)l} dW_t$$

with $a_n(l) = \lim_{d\to\infty} \mathbb{E}[a(X, X_{pr})] \in (0, 1)$; the expectation is in stationarity, $X \sim \Pi_n$. We conjecture here that the weak limit of the centered log-weights

(5.4)
$$\frac{1}{\sqrt{d}} \sum_{j=1}^{d} \sum_{n=1}^{d} \left\{ g(x_{n-1,j}) - \pi_n(g) \right\} / \sqrt{d}$$

would remain unchanged if the dynamics of the Markov chain with kernels $K_n = (P_n)^d$ are replaced with those of a Markov chain with

$$K_n^*(x, dx') = \prod_{j=1}^d k_n^*(x_j, dx'_j); \qquad k_n^*(x_j, dx'_j) = \mathbb{P}[Y_n(1) \in dx'_j \mid Y_n(0) = x_j].$$

With these dynamics, we are in the context of Section 3, and under the assumptions stated there, we can prove weak convergence of (5.4) to $\mathcal{N}(0, \sigma_{\star}^2)$ for σ_{\star}^2 now involving the continuum $k_s^*(x_i, dx_i')$ of the SDE transition densities.

Thus the technical challenge is proving that

$$\frac{1}{d} \sum_{n,j=1}^{d} \left\{ g(x_{n-1,j}) - g(y_{n-1,j}(1)) \right\} \Rightarrow 0.$$

This requires *coupling* the probability measures $\Pi_0 K_1 \cdots K_n$ and $\Pi_0 K_1^* \cdots K_n^*$ determining the dynamics of the time-inhomogeneous d-dimensional Markov chains $\{x_0, x_1, \ldots, x_d\}$ and $\{y_0(1), y_1(1), \ldots, y_d(1)\}$, respectively. This is a nontrivial task that goes beyond the aforementioned MCMC literature where limiting results are based on convergence of generators and do not require strong path-wise convergence. Under our conjecture, the SMC method based on full-dimensional RWM kernels, with stabilize at a total cost of $\mathcal{O}(Nd^3)$. A similar conjecture for MALA (Metropolis-adjusted Langevin algorithm) will involve stability of the SMC method at a reduced cost of $\mathcal{O}(Nd^{7/3})$ as for MALA one has to synthesize $\mathcal{O}(d^{1/3})$ steps of size $\mathcal{O}(d^{-1/3})$ to obtain the diffusion limit; see [44].

5.3. Beyond i.i.d. targets. In the MCMC literature first attempts to move beyond i.i.d. targets looked at restricted cases, for example, [5, 15, 16]. The most recent contributions look at targets defined as changes of measure from Gaussian laws ([11, 38, 42]) containing a large family of practically relevant models; see, for example, [12]. We discuss an extension of our results in this direction. As in [38, 42] we consider a target distribution on an infinite-dimensional separable Hilbert space \mathcal{H} determined via the change of measure

$$\{d\Pi/d\Pi_0\}(x) \propto \exp\{-\Psi(x)\}, \quad x \in \mathcal{H},$$

for $\Psi: \mathcal{H} \mapsto \mathbb{R}$ and $\Pi_0 = \mathcal{N}(0, \mathcal{C})$ a Gaussian law on \mathcal{H} . Let $\{e_j\}_{j \in \mathbb{N}}$ be the orthonormal base of \mathcal{H} made of eigenvectors of \mathcal{C} with eigenvalues $\{\lambda_j^2\}_{n \in \mathbb{N}}$. Π_0 can be expressed in terms of it's *Karhunen–Loève* expansion,

$$\Pi_0 \stackrel{\text{law}}{=} \sum_{j=1}^{\infty} \lambda_j \xi_j e_j, \qquad \xi_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1).$$

In practice, one must consider some *d*-dimensional approximation, and a standard generic approach for this is to truncate the basis expansion; that is, to work with the *d*-dimensional target

$$\Pi(x) \propto \exp\left\{-\Psi_d(x) - \frac{1}{2}\langle x, C_d^{-1} x \rangle\right\}, \qquad x \in \mathbb{R}^d;$$

$$C_d = \operatorname{diag}\{\lambda_1^2, \dots, \lambda_d^2\}, \qquad \Psi_d(x) = \Psi\left(\sum_{i=1}^d x_j e_j\right).$$

One can use the algorithm in Figure 1 with bridging densities $\Pi_n(x) \propto \{\Pi(x)\}^{\phi_n}$, where $\phi_n = \phi_0 + n(1 - \phi_0)/d$, and kernels $K_n = (P_n)^d$, with P_n corresponding to a RWM with target Π_n and proposal $X_{pr} = X + \sqrt{hC_d}Z$, with $h = l^2/d$ and $Z \sim \mathcal{N}_d(0, I_d)$. Again, we do not consider resampling. Our conjecture is that the SMC method will be stable as $d \to \infty$, for fixed number of particles N, at a cost of $\mathcal{O}(Nd^3)$. Mattingly, Pillai and Stuart [38] show that the above choice of step-size h provides a nondegenerate MCMC algorithm as $d \to \infty$. The centered log-weights will now be

$$\frac{1 - \phi_0}{d} \sum_{n=1}^{d} \left(-\Psi_d(x_{n-1}) + \mathbb{E}[\Psi_d(x_{n-1})] - \frac{1}{2} \langle x_{n-1}, C_d^{-1} x_{n-1} \rangle + \frac{1}{2} \mathbb{E}[\langle x_{n-1}, C_d^{-1} x_{n-1} \rangle] \right)$$

with $X_n \mid X_{n-1} = x_{n-1} \sim K_n(x_{n-1}, \cdot)$. We conjecture that starting from a *d*-variate version of the Poisson equation (a generalization of the univariate version for the

results proven in this paper) one should aim at showing

$$\frac{1}{d} \sum_{n=1}^{d} \left\{ \Psi_d(x_{n-1}) - \mathbb{E} \left[\Psi_d(x_{n-1}) \right] \right\} \Rightarrow 0,$$

$$\frac{1}{d} \sum_{n=1}^{d} \left\{ -\frac{1}{2} \langle x_{n-1}, C_d^{-1} x_{n-1} \rangle + \frac{1}{2} \mathbb{E} [\langle x_{n-1}, C_d^{-1} x_{n-1} \rangle] \right\} \Rightarrow \mathcal{N}(0, \sigma_{\star}^2)$$

for some σ_{\star}^2 . For the first limit, one should consider a Poisson equation associated to the functional $x \mapsto \Psi_d(x)$, for the Markov chain with dynamics K_n . For the second limit, the d-variate Poisson equation should apply upon the functional $x \mapsto \langle x, C_d^{-1} x \rangle / \sqrt{d}$. Both these functionals seem to stabilize as $d \to \infty$. The asymptotic variance σ_{\star}^2 is expected to involve an integral over the transition density of the limiting \mathcal{H} -valued SDEs.

5.4. Further remarks. An important application of SMC samplers is the estimation of the normalizing constant of Π . This is a nontrivial extension of the work in this article, but we have obtained the stability in high-dimensions of the relative \mathbb{L}_2 -error of the SMC estimate at a $\mathcal{O}(Nd^2)$ cost with stronger assumptions than in this article; we refer the reader to [9].

Recall we have used the annealing sequence (2.6). However, one can also consider a general differentiable, increasing Lipschitz function $\phi(s)$, $s \in [0, 1]$ with $\phi(0) = \phi_0 \ge 0$, $\phi(1) = 1$, and use the construction $\phi_{n,d} = \phi(n/d)$; this is also considered in [9]. The asymptotic results generalized to the choice of $\phi_{n,d}$ here would involve the variances

$$\sigma_{s:t}^{2,\phi} = \int_{s}^{t} \pi_{\phi(u)} (\widehat{g}_{\phi(u)}^{2} - k_{\phi(u)} (\widehat{g}_{\phi(u)})^{2}) \left[\frac{d\phi(u)}{du} \right] d\phi(u), \qquad 0 \le s < t \le 1.$$

So, for example, the bound in Theorem 3.3 becomes

$$M(\varrho) \|\varphi\|_{\infty} / \sqrt{N} \left[\exp \left\{ \sigma_{\phi_0;1}^{2,\phi} \varrho(\varrho - 1)/2 \right\} + 1 \right]^{1/\varrho}.$$

In theory, one could use this quantity to choose between SMC algorithms with different annealing schemes; see [9] for some discussion.

Using the analysis in this article one could consider a comparison between MCMC and SMC. It is certainly the case that for the i.i.d. setup in this paper one could just use the terminal kernel K_d preserving Π to construct an MCMC algorithm which, since it will correspond to d separate MCMC methods along each co-ordinate, would be more efficient (i.e., with regards to computational cost) than the SMC sampler studied here. However, there are a wide variety of practical contexts where one would prefer to use SMC, for instance: multimodal situations (e.g., [22]), some sequential inference problems (e.g., [18]), approximate Bayesian computation [23] or when one wants to use consistent adaptive algorithms with little user input [32]. In many of these scenarios the aspect of dimensionality can be a driving reason why the simulation problem is challenging. We

mention that our analysis has been extended to sequential inference under some strong assumptions [9], but in the main, the approach in this article focuses on a very simple model which is potentially not relevant for comparisons between MCMC and SMC. In the context of the above scenarios, such a comparison would be very interesting and it is an important direction of future research.

APPENDIX A: TECHNICAL RESULTS

In this appendix we provide some technical results that will be used in the proofs that follow. The results in Lemma A.1 are fairly standard within the context of the analysis of nonhomogeneous Markov chains with drift conditions (e.g., [27]). The decomposition in Theorem A.1 will be used repeatedly in the proofs.

For a starting index $n_0 = n_0(d)$ we denote here by $\{X_n(d); n_0 \le n \le d\}$ the nonhomogeneous scalar Markov chain evolving via

$$\mathbb{P}[X_n(d) \in dy \mid X_{n-1}(d) = x] = k_{n,d}(x, dy), \quad n_0 < n \le d,$$

with the kernels $k_{n,d}$ preserving $\pi_{n,d}$. All variables $X_n(d)$ take values in the homogeneous measurable space $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. For simplicity, we will often omit indexing the above quantities with d.

Given the Markov kernel k_s with invariant distribution π_s (here, $s \in [\phi_0, 1]$), and some function φ , we consider the Poisson equation

$$\varphi(x) - \pi_s(\varphi) = f(x) - k_s(f)(x);$$

under (A1) there is a unique solution $f(\cdot)$ (see, e.g., [40]), which can be expressed via the infinite series $f(x) = \sum_{l \geq 0} [k_s^l - \pi_s](\varphi)(x)$. We use the notation $f = \mathcal{P}(\varphi, k_s, \pi_s)$ to define the solution of such an equation.

We will sometimes use the notation $\mathbb{E}_{X_{n_0}}[\cdot] \equiv \mathbb{E}[\cdot|X_{n_0}].$

LEMMA A.1. Assume (A1)–(A2). Then the following results hold:

(i) Let $\varphi \in \mathcal{L}_{V^r}$ for some $r \in [0, 1]$ and set $\widehat{\varphi} = \mathcal{P}(\varphi, k_s, \pi_s)$. Then, there exists M = M(r) such that

$$|\widehat{\varphi}(x)| \leq M |\varphi|_{V^r} V(x)^r$$
.

(ii) Let φ_s , $\varphi_t \in \mathcal{L}_{V^r}$ for some $r \in [0, 1]$, and consider $\widehat{\varphi}_s = \mathcal{P}(\varphi_s, k_s, \pi_s)$ and $\widehat{\varphi}_t = \mathcal{P}(\varphi_t, k_t, \pi_t)$. Then there exists M = M(r) such that

$$\left|\widehat{\varphi}_t(x) - \widehat{\varphi}_s(x)\right| \le M\left(\left|\varphi_t - \varphi_s\right|_{V^r} + \left|\varphi_t\right|_{V^r} \|k_s - k_t\|_{V^r}\right) V(x)^r.$$

(iii) For any $r \in (0, 1]$ and $0 \le n_0 \le n$,

$$\mathbb{E}\big[V(X_n)^r \mid X_{n_0}\big] \le \lambda^{(n-n_0)r} V^r(X_{n_0}) + \frac{1-\lambda^{r(n-n_0)}}{1-\lambda^r} b^r \le M V^r(X_{n_0}).$$

PROOF. (i) We proceed using the geometric ergodicity of k_s ,

$$\begin{aligned} \left|\widehat{\varphi}(x)\right| &= \left|\sum_{l\geq 0} \left[k_s^l - \pi_s\right](\varphi)(x)\right| \leq |\varphi|_{V^r} \sum_{l\geq 0} \left\|\left[k_s^l - \pi_s\right](x)\right\|_{V^r} \\ &\leq M|\varphi|_{V^r} \left[\sum_{l> 0} \rho^l\right] V(x)^r \end{aligned}$$

for some $\rho \in (0, 1)$ and M > 0 not depending on s via (A1); it is now straightforward to conclude.

(ii) Via the Poisson equation we have $\widehat{\varphi}_t(x) - \widehat{\varphi}_s(x) = A(x) + B(x)$ where

(A.1)
$$A(x) = \sum_{l \ge 0} [k_t^l - \pi_t] (\varphi_t)(x) - \sum_{l \ge 0} [k_s^l - \pi_s] (\varphi_t)(x);$$
$$B(x) = \sum_{l \ge 0} [k_s^l - \pi_s] (\varphi_t - \varphi_s)(x).$$

We start with B(x). For each summand we have

$$\begin{aligned} \left| \left[k_{s}^{l} - \pi_{s} \right] (\varphi_{t} - \varphi_{s})(x) \right| &= |\varphi_{t} - \varphi_{s}|_{V^{r}} \left| \left[k_{s}^{l} - \pi_{s} \right] \left(\frac{\varphi_{t} - \varphi_{s}}{|\varphi_{t} - \varphi_{s}|_{V^{r}}} \right) (x) \right| \\ &\leq |\varphi_{t} - \varphi_{s}|_{V^{r}} \left\| k_{s}^{l} - \pi_{s} \right\|_{V^{r}} \leq M |\varphi_{t} - \varphi_{s}|_{V^{r}} \rho^{l} V(x)^{r}, \end{aligned}$$

where M > 0 and $\rho \in (0, 1)$ depending only on r due to (A1). Hence, summing over l, there exist a M > 0 such that for any $x \in E$,

$$B(x) \leq M|\varphi_t - \varphi_s|_{V^r} V(x)^r.$$

Returning to A(x) in (A.1), one can use Lemma C2 of [1] to show that this is equal to

$$\sum_{l\geq 0} \left[\sum_{i=0}^{l-1} \left[k_t^i - \pi_t \right] \left[k_t - k_s \right] \left[k_s^{l-i-1} - \pi_s \right] (\varphi_t)(x) - \left[\pi_t - \pi_s \right] \left(\left[k_s^l - \pi_s \right] (\varphi_t) \right) \right].$$

Using identical manipulations to [1], it follows that

$$\sum_{l>0} \left| \sum_{i=0}^{l-1} \left[k_t^i - \pi_t \right] \left[k_t - k_s \right] \left[k_s^{l-i-1} - \pi_s \right] (\varphi_t)(x) \right| \le M |\varphi_t|_{V^r} |||k_s - k_t|||_{V^r} V(x)^r$$

and, for some constant M = M(r) > 0,

$$\left| \sum_{n \geq 0} [\pi_t - \pi_s] ([k_s^n - \pi_s](\varphi_t)) \right| \leq M |\varphi_t|_{V^r} |||k_s - k_t|||_{V^r} V(x)^r.$$

(iii) We will use the drift condition in (A1). Using Jensen's inequality (since $r \le 1$) we obtain $k_n(V^r)(X_{n-1}) \le \lambda^r V^r(X_{n-1}) + b^r$ for the constants b, λ appearing in the drift condition. Using this inequality and conditional expectations,

$$\mathbb{E}[V^{r}(X_{n}) \mid X_{n_{0}}] = \mathbb{E}[k_{n}(V^{r}(X_{n-1})) \mid X_{n_{0}}] \leq \lambda^{r} \mathbb{E}[V^{r}(X_{n-1}) \mid X_{n_{0}}] + b^{r}.$$

Applying this iteratively gives the required result. \Box

THEOREM A.1 (Decomposition). Assume (A1)(i)–(ii), (A2). Consider the collection of functions $\{\varphi_s\}_{s\in[\phi_0,1]}$ with $\varphi_s\in\mathcal{L}_{V^r}$ for some $r\in[0,1)$ and such that:

- (i) $\sup_{s} |\varphi_{s}|_{V^{r}} < \infty$;
- (ii) $|\varphi_t \varphi_s|_{V^r} \leq M|t s|$.

Set $\varphi_n(=\varphi_{n,d}) := \varphi_{\{s=\varphi_n(d)\}}$ and consider the solution to the Poisson equation $\widehat{\varphi}_n = \mathcal{P}(\varphi_n, k_n, \pi_n)$. Then for $n_0 \le n_1 \le n_2$ we can write

$$\sum_{n=n}^{n_2} \{ \varphi_n(X_n) - \pi_n(\varphi_n) \} = M_{n_1:n_2} + R_{n_1:n_2}$$

for the martingale term

$$M_{n_1:n_2} = \sum_{n=n_1+1}^{n_2} \{\widehat{\varphi}_n(X_n) - k_n(\widehat{\varphi}_n)(X_{n-1})\}$$

such that for any p > 1 *with* $rp \le 1$

$$\mathbb{E}[|M_{n_1:n_2}|^p \mid X_{n_0}] \le Md^{(p/2)\vee 1}V^{rp}(X_{n_0})$$

and a residual term $R_{n_1:n_2}$ such that for any p > 0 with $rp \le 1$

$$\mathbb{E}[|R_{n_1:n_2}|^p \mid X_{n_0}] \leq MV^{rp}(X_{n_0}).$$

PROOF. Using the Poisson equation $\varphi_n(\cdot) - \pi_n(\varphi_n) = \widehat{\varphi}_n(\cdot) - k_n(\widehat{\varphi}_n)(\cdot)$, simple addition and subtraction of the appropriate terms gives that

$$\sum_{n=n_1}^{N_2} \{ \varphi_n(X_n) - \pi_n(\varphi_n) \} = M_{n_1:n_2} + D_{n_1:n_2} - E_{n_1:n_2} + T_{n_1:n_2},$$

$$D_{n_1:n_2} = \sum_{n=n_1+1}^{n_2} [\widehat{\varphi}_n(X_{n-1}) - \widehat{\varphi}_{n-1}(X_{n-1})],$$
(A.2)
$$E_{n_1:n_2} = \sum_{n=n_1+1}^{n_2} [\varphi_n(X_{n-1}) - \varphi_{n-1}(X_{n-1})],$$

$$T_{n_1:n_2} = \widehat{\varphi}_{n_1}(X_{n_1}) - \widehat{\varphi}_{n_2}(X_{n_2}) - \pi_{n_1}(\varphi_{n_1}) + \varphi_{n_2}(X_{n_2}).$$

Now, using Lemma A.1(i), (iii) and the uniform bound in assumption (i) we get directly that

(A.3)
$$\mathbb{E}[|T_{n_1:n_2}|^p \mid X_{n_0}] \le MV^{rp}(X_{n_0}).$$

Also, Lemma A.1(i) together with assumption (i) imply that

$$|(\varphi_n - \varphi_{n-1})(X_{n-1})| \le |\varphi_n - \varphi_{n-1}|_{V^r} V^r(X_{n-1}) \le M \frac{1}{d} V^r(X_{n-1}).$$

Thus calling again upon Lemma A.1(iii), one obtains that

(A.4)
$$\mathbb{E}[|E_{n_1:n_2}|^p \mid X_{n_0}] \leq MV^{rp}(X_{n_0}).$$

Consider now $D_{n_1:n_2}$. Using first Lemma A.1(ii), then conditions (i)–(ii) and (A2), one yields

$$\left|\widehat{\varphi}_n(X_{n-1}) - \widehat{\varphi}_{n-1}(X_{n-1})\right| \le M \frac{1}{d} V(X_{n-1})^r.$$

Thus using also Lemma A.1(iii) we obtain directly that

(A.5)
$$\mathbb{E}[|D_{n_1:n_2}|^p \mid X_0] \le MV(X_{n_0})^{rp}.$$

The bounds (A.3), (A.4) and (A.5) prove the stated result for the growth of $\mathbb{E}[|R_{n_1:n_2}|^p]$.

Now consider the martingale term $M_{n_1:n_2}$. One can use a modification of the Burkholder–Davis–Gundy inequality (e.g., [47], pages 499–500) which states that for any p > 1,

(A.6)
$$\mathbb{E}[|M_{n_1:n_2}|^p \mid X_{n_0}]$$

$$\leq M(p)d^{(p/2)\vee 1-1} \sum_{n=n_1+1}^{n_2} \mathbb{E}[|\widehat{\varphi}_n(X_n) - k_n(\widehat{\varphi}_n)(X_{n-1})|^p \mid X_{n_0}];$$

see [3] for the proof. Using Lemma A.1(i) we obtain that

$$\left|\widehat{\varphi}_n(X_n) - k_n(\widehat{\varphi}_n)(X_{n-1})\right| \le M |\varphi_n|_{V^r} \left(V^r(X_n) + k_n(V^r)(X_{n-1})\right).$$

Using this bound, Jensen's inequality giving $(k_n(V^r)(X_{n-1}))^p \le k_n(V^{rp})(X_{n-1})$, the fact that $rp \le 1$ and Lemma A.1(iii), we continue from (A.6) to obtain the stated bound for $M_{n_1:n_2}$. \square

PROPOSITION A.1. Let $\varphi \in \mathcal{L}_{V^r}$ with $r \in [0, 1]$. Consider two sequences of times $\{s(d)\}_d$, $\{t(d)\}_d$ in $[\phi_0, 1]$ such that s(d) < t(d) and $s(d) \to s$, $t(d) \to t$ with s < t. If we also have that $\sup_d \mathbb{E}[V^r(X_{l_d(s(d))})] < \infty$, then

$$\mathbb{E}_{X_{l,t(s(d))}} [\varphi(X_{l,t(t(d))})] \to \pi_t(\varphi) \qquad \text{in } \mathbb{L}_1.$$

PROOF. Recall that $\pi_u(x) \propto \exp\{ug(x)\}\$ for $u \in [\phi_0, 1]$. We define, for $c \in (0, \frac{1}{2})$,

$$n_d = l_d(t(d)) - l_d(s(d)); \qquad m_d = \lfloor \{l_d(t_d) - l_d(s_d)\}^c \rfloor;$$

$$u_d = l_d(s(d)) + n_d - m_d.$$

Note that from the definition of $l_d(\cdot)$ we have $n_d = \mathcal{O}(d)$, whereas $m_d = \mathcal{O}(d^c)$. We have that

$$\begin{split} \big| \mathbb{E}_{X_{l_d(s(d))}} \big[\varphi(X_{l_d(t(d))}) \big] - \pi_t(\varphi) \big| \\ (A.7) \qquad & \leq \big| \mathbb{E}_{X_{l_d(s(d))}} \big[\varphi(X_{l_d(t(d))}) - k_{u_d}^{m_d}(\varphi)(X_{u_d}) \big] \big| \\ & + \big| \mathbb{E}_{X_{l_d(s(d))}} \big[k_{u_d}^{m_d}(\varphi)(X_{u_d}) \big] - \pi_{u_d}(\varphi) \big| + \big| \pi_{u_d}(\varphi) - \pi_t(\varphi) \big|. \end{split}$$

Now, the last term on the RHS of (A.7) goes to zero as $d \to \infty$: this is via dominated convergence after noticing that

$$\pi_{u_d}(\varphi) = \frac{\int \varphi(x) e^{(\phi_0 + (u_d/d)(1 - \phi_0))g(x)} dx}{\int e^{(\phi_0 + (u_d/d)(1 - \phi_0))g(x)} dx}$$

with the integrand of the term, for instance, in the numerator converging almost everywhere (w.r.t. Lebesque) to $\varphi(x)e^{tg(x)}$ [simply notice that $\lim u_d/d = \lim\{l_d(t(s))/d\} = (t-\phi_0)/(1-\phi_0)$] and being bounded in absolute value (due to the assumption of g being upper bounded) by the integrable function $MV^r(x)e^{\phi_0g(x)}$. Also, the second term on the RHS of (A.7) goes to zero in \mathbb{L}_1 , due the uniform in drift condition in (A1); to see this, note that [working as in the proof of Lemma A.1(i)] condition (A1) gives $\|k_s^l - \pi_s\|_{V^r} \leq M\rho^l V(x)^r$ for any $s \in (\phi_0, 1]$, so we also have that $|k_{u_d}^{m_d}(\varphi)(X_{u_d}) - \pi_{u_d}(\varphi)| \leq M\rho^{m_d}V(X_{u_d})^r$. Taking expectations and using Lemma A.1(iii) we obtain that

$$\left|\mathbb{E}_{X_{l,l}(s(d))}\left[k_{u_d}^{m_d}(\varphi)(X_{u_d})\right] - \pi_{u_d}(\varphi)\right| \leq M\rho^{m_d}V(X_{l_d(s(d))})^r,$$

which vanishes in \mathbb{L}_1 as $d \to \infty$ due to the assumption $\sup_d \mathbb{E}[V^r(X_{l_d(s(d))})] < \infty$. We now focus on the first term on the RHS of (A.7). The following decomposition holds, as intermediate terms in the sum below cancel out, for $u_d \ge 1$:

$$\begin{split} \mathbb{E}_{X_{l_d(s(d))}} \big[\varphi(X_{l_d(t(d))}) - k_{u_d}^{m_d}(\varphi)(X_{u_d}) \big] \\ = \mathbb{E}_{X_{l_d(s(d))}} \Bigg[\sum_{j=0}^{m_d-1} \big\{ k_{(u_d+1):\, (l_d(t(d))-j)} k_{u_d}^j(\varphi)(X_{u_d}) \\ \\ - k_{(u_d+1):\, (l_d(t(d))-(j+1))} k_{u_d}^{j+1}(\varphi)(X_{u_d}) \big\} \Bigg], \end{split}$$

where we use the notation $k_{i:j}(\varphi)(x) = \int k_i(x, dx_1) \times \cdots \times k_j(\varphi)(x_{j-i+1}), i \leq j$. Each of the summands is equal to

$$k_{u_d+1:l_d(t(d))-(j+1)}[k_{l_d(t(d))-j}-k_{u_d}](k_{u_d}^j(\varphi))(X_{u_d}),$$

which is bounded in absolute value by

$$M|\varphi|_{V^r}k_{u_d+1:l_d(t(d))-(j+1)}(V^r)(X_{u_d})||k_{l_d(t(d))-j}-k_{u_d}||_{V^r}.$$

Now, from Lemma A.1(iii),

$$k_{u_d+1:l_d(t(d))-(j+1)}(V^r)(X_{u_d}) \leq MV^r(X_{u_d}).$$

Also, from condition (A2), there exists an M > 0 such that

$$|||k_{l_d(t(d))-j} - k_{u_d}|||_{V^r} \le M \frac{(1-\phi_0)}{d} (l_d(t(d)) - j - u_d) \equiv M \frac{(1-\phi_0)}{d} (m_d - j).$$

Thus, using again Lemma A.1(iii) we are left with

$$\left| \mathbb{E}_{X_{l_d(s(d))}} \left[\varphi(X_{l_d(t(d))}) - k_{u_d}^{m_d}(\varphi)(X_{u_d}) \right] \right| \leq M V^r(X_{l_d(s(d))}) \sum_{j=0}^{m_d-1} \frac{m_d - j}{d}.$$

As $\sup_d \mathbb{E}[V^r(X_{l_d(s(d))})] < \infty$, since $m_d = \mathcal{O}(d^c)$ with $c \in (0, \frac{1}{2})$ we can easily conclude. \square

APPENDIX B: PROOFS FOR SECTION 3

There are related results to Theorem 3.1 (see, e.g., [39, 52]); however, in our case, the proofs will be based on assumptions commonly made in the MCMC and SMC literature, which will be easily verifiable. The general framework will involve constructing a Martingale difference array (an approach also followed in the above mentioned papers).

PROPOSITION B.1. Assume (A1)(i)–(ii), (A2) and $g \in \mathcal{L}_{V^r}$ with $r \in [0, \frac{1}{2})$. The family of functions $\{\varphi_s\}_{s \in [\phi_0, 1]}$ specified as

$$\varphi_s(x) = k_s(\widehat{g}_s^2)(x) - \{k_s(\widehat{g}_s)(x)\}^2, \qquad \widehat{g}_s = \mathcal{P}(g, k_s, \pi_s),$$

satisfies conditions (i) and (ii) of Theorem A.1 for $\bar{r} = 2r \in [0, 1)$.

PROOF. Lemma A.1(i) gives that $|\widehat{g}_s(x)| \leq M|g|_{V^r}V^r(x)$. Thus, due to the presence of quadratic functions in the definition of $\varphi_s(\cdot)$ we get directly that $|\varphi_s(x)| \leq MV^{\bar{r}}(x)$ so condition (i) in Theorem A.1 is satisfied. We move on to condition (ii) of the theorem. Let us first deal with

$$\left\{k_t(\widehat{g}_t)(x)\right\}^2 - \left\{k_s(\widehat{g}_s)(x)\right\}^2,$$

which is equal to

$$\begin{aligned} \left\{ k_t(\widehat{g}_t)(x) - k_s(\widehat{g}_t)(x) \right\} \left\{ k_t(\widehat{g}_t)(x) + k_s(\widehat{g}_t)(x) \right\} \\ + \left\{ k_s(\widehat{g}_t - \widehat{g}_s)(x) \right\} \left\{ k_s(\widehat{g}_t + \widehat{g}_s)(x) \right\}. \end{aligned}$$

The terms with the additions are bounded in absolute value by $MV^{r}(x)$, whereas

$$|k_t(\widehat{g}_t)(x) - k_s(\widehat{g}_t)(x)| \le M|t - s|V(x)^r,$$

$$|k_s(\widehat{g}_t - \widehat{g}_s)(x)| \le M|t - s|V(x)^r,$$

the first inequality following from assumption (A2) and the second from Lemma A.1(ii). Thus we have proved

$$\left|\left\{k_t(\widehat{g}_t)(x)\right\}^2 - \left\{k_s(\widehat{g}_s)(x)\right\}^2\right| \le M|t - s|V(x)^{\bar{r}}$$

for $\bar{r} = 2r \in (0, 1)$. We move on to the second term at the expression for φ_s and work as follows:

$$k_t(\widehat{g}_t^2)(x) - k_s(\widehat{g}_s^2)(x) = k_t(\widehat{g}_t^2)(x) - k_s(\widehat{g}_t^2)(x) + k_s(\widehat{g}_t^2)(x) - k_s(\widehat{g}_s^2)(x).$$

The first difference is controlled, from assumption (A2), by $M|t - s|V(x)^{\bar{r}}$, whereas for the second difference we use Cauchy–Schwarz to obtain

$$|k_{s}(\widehat{g}_{t}^{2})(x) - k_{s}(\widehat{g}_{s}^{2})(x)| \leq \{k_{s}(\widehat{g}_{t} - \widehat{g}_{s})^{2}(x)\}^{1/2} \{k_{s}(\widehat{g}_{t} + \widehat{g}_{s})^{2}(x)\}^{1/2}$$

$$< M|t - s|V(x)^{\overline{r}},$$

where, for the second inequality, we have used Lemma A.1(ii). The proof is now complete. \Box

PROOF OF THEOREM 3.1. We adopt the decomposition as in Theorem A.1. Set \widehat{g}_s to be a solution to the Poisson equation (with π_s , k_s) and $\widehat{g}_{n-1,d} = \widehat{g}_{\{s=\phi_{n-1}\}}$. The decomposition is then

$$\sum_{n=1}^{l_d(t)} \left\{ g(X_{n-1}(d)) - \pi_{n-1,d}(g) \right\} = M_{0:l_d(t)-1} + R_{0:l_d(t)-1},$$

where

$$M_{0:l_d(t)-1} = \sum_{n=1}^{l_d(t)-1} \{\widehat{g}_{n,d}(X_n(d)) - k_{n,d}(\widehat{g}_{n,d})(X_{n-1}(d))\}.$$

It is clear, via Theorem A.1, that $R_{0:l_d(t)-1}/\sqrt{d}$ goes to zero in \mathbb{L}_1 and hence we need consider the Martingale array term only.

Writing

$$\xi_{n,d} = \widehat{g}_{n,d}(X_n(d)) - k_{n,d}(\widehat{g}_{n,d})(X_{n-1}(d))$$

one observes that $\{\xi_{n,d}, \mathcal{F}_{n,d}\}_{n=1}^{d-1}$, with $\mathcal{F}_{n,d}$ denoting the filtration generated by $\{X_n(d)\}$, is a square-integrable Martingale difference array with zero mean. In order to prove the fCLT, one can use Theorem 5.1 of [7] which gives the following sufficient conditions for proving Theorem 3.1:

- (a) For every $\epsilon > 0$, $I_{\epsilon,d} := \frac{1}{d} \sum_{n=1}^d \mathbb{E}[\xi_{n,d}^2 \mathbb{I}_{|\xi_{n,d}| \ge \epsilon \sqrt{(d)}} \mid \mathscr{F}_{n-1,d}] \to 0$ in probability.
- (b) For any $t \in [\phi_0, 1]$, $I_d(t) := \frac{1}{d} \sum_{n=1}^{l_d(t)} \mathbb{E}[\xi_{n,d}^2 \mid \mathscr{F}_{n-1,d}]$ converges in probability to the quantity $\sigma_{\phi_0:t}^2/(1-\phi_0)^2$.

We proceed by proving these two statements.

We prove (a) first. Recall that $r \in [0, \frac{1}{2})$, so we can choose $\delta > 0$ so that $r(2 + \delta) \le 1$. In the first line below, one can use simple calculations and in the second line Lemma A.1(i) and the drift condition with $r(2 + \delta) \le 1$, to obtain

$$|\xi_{n,d}|^{2+\delta} \le M(\delta) (|\widehat{g}_{n,d}(X_n(d))|^{2+\delta} + |k_{n,d}(\widehat{g}_{n,d})(X_{n-1}(d))|^{2+\delta})$$

$$\le M(\delta) (V(X_n(d)) + V(X_{n-1}(d))).$$

Thus, using Lemma A.1(iii) we get: $\sup_{n,d} \mathbb{E}[|\xi_{n,d}|^{2+\delta}] < \infty$. A straightforward application of Hölder's inequality, then followed by Markov's inequality, now gives that

$$\mathbb{E}[I_{\epsilon,d}] \leq \frac{1}{d} \sum_{n=1}^{d} (\mathbb{E}[|\xi_{n,d}|^{2+\delta}])^{2/(2+\delta)} (\mathbb{P}[|\xi_{n,d}| \geq \epsilon \sqrt{d}])^{\delta/(2+\delta)}$$
$$\leq M d^{-(1/2)(\delta/(2+\delta))}.$$

Thus, we have proved (a).

For (b), we can rewrite

(B.1)
$$I_d(t) = \frac{1}{d} \sum_{n=1}^{l_d(t)} \left[k_{n,d} (\widehat{g}_{n,d}^2) (X_{n-1}(d)) - \left\{ k_{n,d} (\widehat{g}_{n,d}) (X_{n-1}(d)) \right\}^2 \right].$$

We will be calling upon Theorem A.1 to prove convergence of the above quantity to an asymptotic variance. Note that, via Proposition B.1, the mappings

$$\varphi_s := k_s(\widehat{g}_s^2) - \{k_s(\widehat{g}_s)\}^2$$

satisfy conditions (i)–(ii) of Theorem A.1. We define $\varphi_{n,d} = \varphi_{\{s = \phi_n(d)\}}$ and rewrite $I_d(t)$ as

$$I_d(t) = \frac{1}{d} \sum_{n=0}^{l_d(t)-1} \varphi_{n+1,d}(X_n(d)).$$

We also define

$$J_d(t) = \frac{1}{d} \sum_{n=0}^{l_d(t)-1} \varphi_{n,d}(X_n(d)).$$

Due to condition (ii) of Theorem A.1, we have that $I_d(t) - J_d(t) \to 0$ in \mathbb{L}_1 . Applying Theorem A.1 one can deduce that

$$\lim_{d \to \infty} \left\{ J_d(t) - \frac{1}{d} \sum_{n=0}^{l_d(t)-1} \pi_{n,d}(\varphi_{n,d}) \right\} = 0 \quad \text{in } \mathbb{L}_1.$$

Now, $s \mapsto \pi_s(\varphi_s)$ is continuous as a mapping on $[\phi_0, 1]$, so from standard calculus we get that $\frac{1-\phi_0}{d}\sum_{n=0}^{l_d(t)-1}\pi_{n,d}(\varphi_{n,d}) \to \int_{\phi_0}^t\pi_s(\varphi_s)\,ds$. Combining the results, we

have proven that

$$I_d(t) \to (1 - \phi_0)^{-1} \int_{\phi_0}^t \pi_s(\varphi_s) \, ds \equiv \sigma_{\phi_0 : t}^2 / (1 - \phi_0)^2 \quad \text{in } \mathbb{L}_1.$$

Note that by Corollary 3.1 of Theorem 3.2 of [29] we also have an CLT for S_1 . \square

APPENDIX C: PROOFS FOR SECTION 4

C.1. Results for Proposition 4.1. We will first require a proposition summarizing convergence results, with emphasis on uniform convergence w.r.t. the time index.

PROPOSITION C.1. Assume (A1)–(A2). Let s(d) be a sequence on $[\phi_0, 1]$ such that $s(d) \to s$. Consider the random variable $S_{s(d):t,j}$ as defined in (4.2) having it's distribution determined by a single particle, with it's jth co-ordinate sampled from $\pi_{l_d(s(d))}$ at step $l_d(s(d))$ and then propagated according to the appropriate Markov kernels $\{k_n\}$; all d co-ordinates are i.i.d. We then have:

- (i) $\sup_{t \in [s(d), 1]} \mathbb{E}[|S_{s(d):t,i}|]/\sqrt{d} \to 0$,
- (ii) $\sup_{t \in [s(d),1]} |\mathbb{E}[S_{s(d):t,j}^2] \sigma_{s:t}^2| \to 0$,
- (iii) $\sup_{t \in [s(d),1]} |\mathbb{E}[S_{s(d):t,j}]| \to 0$,
- (iv) $\sup_{d\geq 1, s\in[s(d),t]} \mathbb{E}[S_{s(d):t}^{2+\epsilon}] < \infty$, for some $\epsilon > 0$.

PROOF. For simplicity, we will omit reference to the co-ordinate index j. Applying the decomposition of Theorem A.1 for $\varphi_s \equiv g$ and $n_0 = l_d(s(d))$ gives that

$$S_{s(d):t} = \frac{(1 - \phi_0)}{\sqrt{d}} (M_{l_d(s(d)):(l_d(t) - 1)} + R_{l_d(s(d)):(l_d(t) - 1)})$$

with (choosing $p = 2 + \epsilon$ for $\epsilon > 0$ so that rp < 1)

$$\mathbb{E}[|M_{l_d(s(d)):(l_d(t)-1)}|^{2+\epsilon}] \le Md^{1+(\epsilon/2)}\mathbb{E}[V(X_{l_d(s(d))})] \le M'd^{1+(\epsilon/2)}\pi_0(V)$$

and (choosing $p = 2 + \epsilon$ for $\epsilon > 0$ so that rp < 1)

$$\mathbb{E}[|R_{l_d(s(d)): (l_d(t)-1)}|^{2+\epsilon}] \le M \mathbb{E}[V(X_{l_d(s(d))})] \le M' \pi_0(V).$$

Notice that in both cases, the right-most inequality is due to the fact that for any $s \in [\phi_0, 1]$ we have that

$$\pi_s(V) \le \pi_0(V) \cdot \frac{\int \exp\{\phi_0(g(x) - g_{\max})\} dx}{\int \exp\{g(x) - g_{\max}\} dx},$$

where $g_{\text{max}} = \sup g < \infty$. Returning to the two main inequalities, one now needs to notice that the bounds are *uniform* in s, t, d, thus statements (i) and (iv) of

the proposition follow directly from the above estimates; statement (iii) also follows directly after taking under consideration that $\mathbb{E}[M_{l_d(s(d)):(l_d(t)-1)}] = 0$. It remains to prove (ii). The residual term $R_{l_d(s(d)):(l_d(t)-1)}/\sqrt{d}$ vanishes in the limit in $\mathbb{L}_{2+\epsilon}$ -norm, thus it will not affect the final result, that is,

$$\sup_{t \in [s(d),1]} \left| \mathbb{E}[S_{s(d):t}^2] - \frac{(1-\phi_0)^2}{d} \mathbb{E}[M_{d,l_d(s(d)):(l_d(t)-1)}^2] \right| \to 0.$$

Now, straightforward analytical calculations yield

$$\frac{1}{d}\mathbb{E}[M_{d,l_d(s(d)):(l_d(t)-1)}^2] = \frac{1}{d}\sum_{n=l_d(s(d))}^{l_d(t)-1}\mathbb{E}[\{\widehat{g}_n(X_n) - k_n(\widehat{g}_n)(X_{n-1})\}^2]$$

$$= \mathbb{E}\left[\frac{1}{d}\sum_{n=l_d(s(d))-1}^{l_d(t)-2}\varphi_{n+1}(X_n)\right],$$

where we have set

$$\varphi_s = k_s(\widehat{g}_s^2) - \{k_s(\widehat{g}_s)\}^2; \qquad \varphi_n = \varphi_{\{s = \phi_n\}}.$$

Since $|\varphi_{n+1} - \varphi_n|_{V^{2r}} \le M \frac{1}{d}$ from Proposition B.1, we also have

$$\sup_{t \in [s(d),1]} \left| \mathbb{E} \left[\frac{1}{d} \sum_{n=l_d(s(d))-1}^{l_d(t)-2} \varphi_{n+1}(X_n) \right] - \mathbb{E} \left[\frac{1}{d} \sum_{n=l_d(s(d))-1}^{l_d(t)-2} \varphi_n(X_n) \right] \right| \to 0.$$

Now, Theorem A.1 and Proposition B.1 imply that

$$\sup_{t \in [s(d),1]} \mathbb{E} \left| \frac{1}{d} \sum_{n=l_d(s(d))-1}^{l_d(t)-2} \{ \varphi_n(X_n) - \pi_n(\varphi_n) \} \right| \to 0.$$

Finally, due to the continuity of $s \mapsto \pi_s(\varphi_s)$, it is a standard result from Riemann integration (see, e.g., Theorem 6.8 of [45]) that

$$\sup_{t \in [s(d),1]} \left| \frac{1 - \phi_0}{d} \sum_{n=l_d(s(d))-1}^{l_d(t)-2} \pi_n(\varphi_n) - \int_s^t \pi_u(\varphi_u) \, du \right| \to 0$$

and we conclude. \square

PROOF OF PROPOSITION 4.1. For some sequence s(d) in $[\phi_0, 1]$ such that $s(d) \to s$, we will consider the function in $t \in [s(d), 1]$

$$f_d(s(d),t) := \frac{\mathbb{E}^2[\exp\{1/\sqrt{d}\sum_{j=1}^d S_{s(d):t,j}\}]}{\mathbb{E}[\exp\{2/\sqrt{d}\sum_{j=1}^d S_{s(d):t,j}\}]} = \left(\frac{\mathbb{E}^2[\exp\{1/\sqrt{d}S_{s(d):t,1}\}]}{\mathbb{E}[\exp\{2/\sqrt{d}S_{s(d):t,1}\}]}\right)^d,$$

the second result following due to the independence over j. In the rest of the proof we will omit reference to the co-ordinate index 1. Due to the ratio in the definition of $f_d(s(d), t)$, we can clearly re-write

$$f_d(s(d), t) = \left(\frac{\mathbb{E}^2[\exp\{1/\sqrt{dS_{s(d):t}}\}]}{\mathbb{E}[\exp\{2/\sqrt{dS_{s(d):t}}\}]}\right)^d$$

for $\overline{S}_{s(d):t} = S_{s(d):t} - \mathbb{E}[S_{s(d):t}]$. We will use the notation " $h_d(t) \to_t h(t)$ " to denote convergence, as $d \to \infty$, uniformly for all t in [s(d), 1], that is, $\sup_{t \in [s(d),t]} |h_d(t) - h_t| \to 0$. We will aim at proving, using the results in Proposition C.1, that

(C.1)
$$f_d(s(d), t) \to_t e^{-\sigma_{s:t}^2},$$

or, equivalently, that $\sup_{t\in[s(d),1]}|f_d(s(d),t)-e^{-\sigma_{s:t}^2}|\to 0$, under the convention that $\sigma_{s:t}^2\equiv 0$ for $t\leq s$. Once we have obtained this, the required result will follow directly by induction. To see that, note that for proving that $t_1(d)\to t_1$ we will use the established result for $s(d)\equiv \phi_0$: uniform convergence of $f_d(\phi_0,t)$ to $e^{-\sigma_{\phi_0:t}^2}$ together with the fact that $e^{-\sigma_{\phi_0:t}^2}$ is decreasing in t will give directly that the hitting time of the threshold a for $f_d(\phi_0,t)$ will converge to that of $e^{-\sigma_{\phi_0:t}^2}$. Now, assuming we have proved that $t_n(d)\to t_n$, we will then use the established uniform convergence result for $s(d)=t_n(d)$ to obtain directly that $t_{n+1}(d)\to t_{n+1}$.

We will now establish (C.1). Note that we have, by construction: $\mathbb{E}[\overline{S}_{s(d):t}] = 0$. We use directly Taylor expansions to obtain for any fixed $t \in [s(d), 1]$,

(C.2)
$$e^{(2/\sqrt{d})\overline{S}_{s(d):t}} = 1 + \frac{2}{\sqrt{d}}\overline{S}_{s(d):t} + \frac{2}{d}\overline{S}_{s(d):t}^{2}e^{2\zeta_{d,t}};$$

(C.3)
$$e^{(1/\sqrt{d})\overline{S}_{s(d):t}} = 1 + \frac{1}{\sqrt{d}}\overline{S}_{s(d):t} + \frac{1}{2d}\overline{S}_{s(d):t}^{2}e^{\zeta'_{d,t}},$$

where $\zeta_{d,t}, \zeta_{d,t}' \in [\frac{1}{\sqrt{d}}\overline{S}_{s(d):t} \wedge 0, \frac{1}{\sqrt{d}}\overline{S}_{s(d):t} \vee 0]$. Note here that since g is upper bounded and $\sup_{n,d} \mathbb{E}[|g(X_{n,1}(d))|] < \infty$, we have that $\frac{1}{\sqrt{d}}\overline{S}_{s(d):t}$ is upper bounded. Thus, we obtain directly that

$$|\xi_{d,t} \leq M, \qquad \zeta'_{d,t} \leq M; \qquad |\zeta_{d,t}| + |\zeta'_{d,t}| \leq M \left| \frac{1}{\sqrt{d}} \overline{S}_{s(d):t} \right|.$$

Taking expectations in (C.2),

$$\mathbb{E}\left[e^{(2/\sqrt{d})\overline{S}_{s(d):t}}\right] = 1 + \frac{2}{d}\mathbb{E}\left[\overline{S}_{s(d):t}^{2}e^{2\zeta_{d,t}}\right].$$

Now consider the term

$$a_d(t) := \mathbb{E}\left[\overline{S}_{s(d):t}^2 e^{2\zeta_{d,t}}\right] = \mathbb{E}\left[\overline{S}_{s(d):t}^2\right] + \mathbb{E}\left[\overline{S}_{s(d):t}^2 (e^{2\zeta_{d,t}} - 1)\right].$$

Using Hölder's inequality and the fact that $\mathbb{E}[|e^{2\zeta_{d,t}}-1|^q] \leq M(q)\mathbb{E}[|\zeta_{d,t}|]$ for any $q \geq 1$, via the Lipschitz continuity of $x \mapsto |e^{2x}-1|^q$ on $(-\infty, M]$, we obtain that for $\epsilon > 0$ as in Proposition C.1(iii),

$$\begin{aligned} |\mathbb{E}\left[\overline{S}_{s(d):t}^{2}(e^{2\zeta_{d,t}}-1)\right]| &\leq \mathbb{E}^{2/(2+\epsilon)}\left[\overline{S}_{s(d):t}^{2+\epsilon}\right]\mathbb{E}^{\epsilon/(2+\epsilon)}\left[|e^{2\zeta_{d,t}}-1|^{(2+\epsilon)/\epsilon}\right] \\ &\leq M\mathbb{E}^{\epsilon/(2+\epsilon)}\left[|\zeta_{d,t}|\right] \to_{t} 0, \end{aligned}$$

the last limit following from Proposition C.1(i). Thus, using also Proposition C.1(ii)–(iii), we have proven that $a_d(t) \rightarrow_t \sigma_{s+t}^2$. Note now that

$$\left| \left(1 + \frac{2}{d} a_d(t) \right)^d - \left(1 + \frac{2\sigma_{s:t}^2}{d} \right)^d \right| \le M |a_d(t) - \sigma_{s:t}^2|;$$

$$\left(1 + \frac{2\sigma_{s:t}^2}{d} \right)^d \to {}_t e^{2\sigma_{s:t}^2},$$

the first result following from the derivative of $x \mapsto (1 + \frac{2x}{d})^d$ being bounded for $x \in [0, M]$. Thus we have proven that $(\mathbb{E}[e^{(2/\sqrt{d})\overline{S}_{s(d):t}}])^d \to_t e^{2\sigma_{s:t}^2}$. Using similar manipulations and the Taylor expansion (C.3) we obtain that

$$\left(\mathbb{E}^{2}\left[e^{(1/\sqrt{d})\overline{S}_{s(d):t}}\right]\right)^{d} \to_{t} e^{\sigma_{s:t}^{2}}.$$

Taking the ratio, the uniform convergence result in (C.1) is proved. \square

C.2. Results for Theorems 4.1 and 4.2. To prove Theorems 4.1 and 4.2, we will first require some technical lemmas. Here the equally weighted d-dimensional resampled [at the deterministic time instances $t_k(d)$] particles are written with a prime notation; so $X_{l_d(t_k(d)),j}^{\prime,i}$ will denote the jth co-ordinate of the ith particle, immediately *after* the resampling procedure at $t_k(d)$.

PROPOSITION C.2. Assume (A1)(i)–(ii), and let $k \in \{1, ..., m^*\}$. Then, there exists an $M(k) < \infty$ such that for any $N \ge 1$, $d \ge 1$, $i \in \{1, ..., N\}$, $j \in \{1, ..., d\}$,

$$\mathbb{E}\big[V\big(X_{l_d(t_k(d)),j}^{\prime,i}\big)\big] \leq M(k)N^k.$$

PROOF. We will use an inductive proof on the resampling times (assumed to be deterministic). It is first remarked [using Lemma A.1(iii)] that for every $k \in \{1, ..., m^*\}$,

(C.4)
$$\mathbb{E}[V(X_{l_d(t_k(d)),j}^i) \mid \mathscr{F}_{t_{k-1}(d)}^{\prime,N}] \leq MV(x_{l_d(t_{k-1}(d)),j}^{\prime,i}),$$

where $\mathscr{F}_{t_{k-1}(d)}^{\prime,N}$ is the filtration generated by the particle system up to and including the (k-1)th resampling time, and $M < \infty$ does not depend upon $t_k(d)$, $t_{k-1}(d)$ or indeed d.

At the first resampling time, we have (averaging over the resampling index) that

$$\mathbb{E}[V(X_{l_d(t_1(d)),j}^{\prime,i}) \mid \mathscr{F}_{t_1(d)}^N] = \sum_{i=1}^N \overline{w}_{l_d(t_1(d))} (x_{l_d(t_0(d)):l_d(t_1(d))-1}^i) V(x_{l_d(t_1(d)),j}^i),$$

where $\mathscr{F}^N_{t_1(d)}$ is the filtration generated by the particle system up to the 1st resampling time (but excluding resampling), and $\overline{w}_{l_d(t_1(d))}(x^i_{l_d(t_0(d)):l_d(t_1(d))-1})$ is the normalized importance weight. Now, clearly (due to normalized weights be bounded by 1)

$$\mathbb{E}[V(X_{l_d(t_1(d)),j}^{\prime,i}) \mid \mathscr{F}_{t_1(d)}^N] \leq \sum_{i=1}^N V(x_{l_d(t_1(d)),j}^i)$$

and, via (C.4), $\mathbb{E}[V(X_{l_d(t_1(d),j}'^{i,i})] \leq NM$ which gives the result for the first resampling time.

Using induction, if we assume that the result holds at the (k-1)th time we resample $(k \ge 2)$, it follows that (for $\mathscr{F}^N_{t_k(d)}$ being the filtration generated by the particle system up-to the kth resampling time, but excluding resampling)

$$\mathbb{E}[V(X_{l_d(t_k(d)),j}^{\prime,i}) \mid \mathscr{F}_{t_k(d)}^N] = \sum_{i=1}^N \overline{w}_{l_d(t_k(d))} (x_{l_d(t_{k-1}(d)):l_d(t_k(d))-1}^i) V(x_{l_d(t_k(d)),j}^i)$$

$$\leq \sum_{i=1}^N V(x_{l_d(t_k(d)),j}^i).$$

Thus, via (C.4) and the exchangeability of the particle and dimension index, we obtain that

$$\mathbb{E}[V(X_{l_d(t_k(d),j)}^{\prime,i})] \le NM\mathbb{E}[V(X_{l_d(t_{k-1}(d),j)}^{\prime,i})].$$

The proof now follows directly. \Box

PROPOSITION C.3. Assume (A1)(i)–(ii), (A2). Let $\varphi \in \mathcal{L}_{V^r}$, $r \in [0, \frac{1}{2})$. Then for any fixed N, any $k \in \{1, ..., m^*\}$ and any $i \in \{1, ..., N\}$ we have

$$\frac{1}{d} \sum_{i=1}^{d} \varphi(X'_{l_d(t_k(d)),j}) \to \pi_{t_k}(\varphi) \quad \text{in } \mathbb{L}_1.$$

PROOF. We distinct between two cases: k = 1 and k > 1. When k = 1, due to the boundedness of the normalized weights and the exchangeability of the particle indices we have that

(C.5)
$$\mathbb{E} \left| \frac{1}{d} \sum_{i=1}^{d} \varphi \left(X_{l_d(t_1(d)),j}^{\prime,i} \right) - \pi_{t_1}(\varphi) \right| \leq N \mathbb{E} \left| \frac{1}{d} \sum_{i=1}^{d} \varphi \left(X_{l_d(t_1(d)),j}^{i} \right) - \pi_{t_1}(\varphi) \right|.$$

Adding and subtracting the term $\mathbb{E}[\varphi(X^i_{l_d(t_1(d)),j})]$ we obtain that the expectation on the RHS of the above equation is bounded by

(C.6)
$$\mathbb{E}\left|\frac{1}{d}\sum_{i=1}^{d}\varphi(X_{l_{d}(t_{1}(d)),j}^{i})-\mathbb{E}[\varphi(X_{l_{d}(t_{1}(d)),j}^{i})]\right|+|\mathbb{E}[\varphi(X_{l_{d}(t_{1}(d)),j}^{i})]-\pi_{t_{1}}(\varphi)|.$$

For the first term, due to the independency across dimension, considering second moments we get the upper bound

$$\frac{1}{\sqrt{d}} \mathbb{E}^{1/2} [(\varphi(X_{l_d(t_1(d)),j}^i) - \mathbb{E}[\varphi(X_{l_d(t_1(d)),j}^i)])^2].$$

As $\varphi \in \mathcal{L}_{V^r}$ with $r \leq 1/2$ the argument of the expectation is upper-bounded by $MV(X^i_{l_d(t_1(d)),j})$ whose expectation is controlled via Lemma A.1(iii). Thus the above quantity is $\mathcal{O}(d^{-1/2})$. For the second term in (C.6) we can use directly Proposition A.1 [for time sequences required there selected as $s(d) \equiv \phi_0$ and $t(d) \equiv t_1(d)$] to show also that this term will vanish in the limit $d \to \infty$.

The general case with k > 1 is similar, but requires some additional arguments as resampling eliminates the i.i.d. property. Again, integrating out the resampling index as in (C.5) we are left with the quantity

$$\mathbb{E}\left|\frac{1}{d}\sum_{i=1}^{d}\varphi(X_{l_d(t_k(d)),j}^i)-\pi_{t_k}(\varphi)\right|.$$

Adding and subtracting $\frac{1}{d}\sum_{j=1}^{d}\mathbb{E}_{X_{l_d(l_{k-1}(d)),j}^{i,i}}[\varphi(X_{l_d(t_k(d)),j}^i)]$ within the expectation, the above quantity is upper bounded by

(C.7)
$$\mathbb{E} \left| \frac{1}{d} \sum_{j=1}^{d} \varphi(X_{l_{d}(t_{k}(d)), j}^{i}) - \frac{1}{d} \sum_{j=1}^{d} \mathbb{E}_{X_{l_{d}(t_{k-1}(d)), j}^{i, i}} [\varphi(X_{l_{d}(t_{k}(d)), j}^{i})] \right|$$

$$+ \mathbb{E} \left| \frac{1}{d} \sum_{j=1}^{d} \mathbb{E}_{X_{l_{d}(t_{k-1}(d)), j}^{i, i}} [\varphi(X_{l_{d}(t_{k}(d)), j}^{i})] - \pi_{t_{k}}(\varphi) \right|.$$

For the first of these two terms, due to *conditional* independency across dimension and exchangeability in the dimensionality index j, looking at the second moment we obtain the upper bound

$$\frac{1}{\sqrt{d}} \mathbb{E}^{1/2} [(\varphi(X^{i}_{l_d(t_k(d)),j}) - \mathbb{E}_{X^{\prime,i}_{l_d(t_{k-1}(d)),j}} [\varphi(X^{i}_{l_d(t_k(d)),j})])^2].$$

Since $|\varphi(x)| \leq MV^r(x)$ with $r \leq \frac{1}{2}$, the variable in the expectation above is upper bounded by $M(V(X'^{,i}_{l_d(t_k(d)),j}) + V(X'^{,i}_{l_d(t_{k-1}(d)),j}))$ which due to Proposition C.2 is bounded in expectation by some M(N,k). Thus, the first term in (C.7) is $\mathcal{O}(d^{-1/2})$. The second term in (C.7) now, due to exchangeability over j, is upper bounded by $\mathbb{E}|\mathbb{E}_{X'^{,i}_{l_d(t_{k-1}(d)),j}}[\varphi(X^i_{l_d(t_k(d)),j})] - \pi_{t_k}(\varphi)|$, which again due to Proposition A.1 vanishes in the limit $d \to \infty$. \square

For the Markov chain $X_{n,j}^i$ considered on the instances $n_1 \le n \le n_2$ we will henceforth use the notation $\mathbb{E}_{\pi_s}[g(X_{n,j}^i)]$ to specify that we impose the initial distribution $X_{n_1,j}^i \sim \pi_s$.

PROPOSITION C.4. Assume (A1)–(A2) and that $g \in \mathcal{L}_{V^r}$ with $r \in [0, \frac{1}{2})$. For $k \in \{1, ..., m^*\}$, $i \in \{1, ..., N\}$ and a sequence $s_k(d)$ with $s_k(d) > t_{k-1}(d)$ and $s_k(d) \to s_k > t_{k-1}$, we define

$$E_{i,j} = \sum_{n} \{ \mathbb{E}_{X_{l_d}^{i,i}(t_{k-1}(d)),j} [g(X_{n,j}^i)] - \mathbb{E}_{\pi_{t_{k-1}}} [g(X_{n,j}^i)] \}, \qquad 1 \le j \le d,$$

for subscript n in the range $l_d(t_{k-1}(d)) \le n \le l_d(s_k(d)) - 1$. Then we have that

$$\frac{1}{d} \sum_{i=1}^{d} E_{i,j} \to 0 \qquad in \, \mathbb{L}_1.$$

PROOF. We will make use of the Poisson equation and employ the decomposition (A.2) used in the proof of Theorem A.1. In particular, a straightforward calculation gives that

$$R_{i,j} = \sum_{n=n_1+1}^{n_2} \{ (\mathbb{E}_{X_{n_1,j}} - \mathbb{E}_{\pi_{t_{k-1}}}) [\widehat{g}_n(X_{n-1,j}^i) - \widehat{g}_{n-1}(X_{n-1,j}^i)] \}$$

$$+ (\mathbb{E}_{X_{n_1,j}} - \mathbb{E}_{\pi_{t_{k-1}}}) [g(X_{n_2,j}) - \widehat{g}_{n_2}(X_{n_2,j})]$$

$$+ \widehat{g}_{n_1}(X_{n_1,j}) - \pi_{t_{k-1}}(\widehat{g}_{n_1}),$$

where $\widehat{g}_n = \mathcal{P}(g, k_n, \pi_n)$, and we have set

$$n_1 = l_d(t_{k-1}(d));$$
 $n_2 = l_d(s_k(d)) - 1;$ $X_{n_1,j} \equiv X'^{i,i}_{l_d(t_{k-1}(d)),j}.$

It is remarked that the martingale term in the original expansion (A.2) has expectation 0, so is not involved in our manipulations. We will first deal with the sum in the first line of (C.8), that is, (when taking into account the averaging over j) with

$$A_d := \frac{1}{d} \sum_{i=1}^d \sum_{n=n_1+1}^{n_2} [\delta_{X_{n_1,j}} - \pi_{t_{k-1}}] ((k_{n_1+1:n})[\widehat{g}_n - \widehat{g}_{n-1}]).$$

Now each summand in the above double sum is upper bounded by

$$\frac{M}{d} \| [\delta_{X_{n_1,j}} - \pi_{t_{k-1}}](k_{n_1+1:n}) \|_{V^r}.$$

To bound this V^r -norm one can apply Theorem 8 of [27]; here, under (A1)–(A2) we have that either

(C.9)
$$\|[\delta_{X_{n_1,i}} - \pi_{t_{k-1}}](k_{n_1+1:n})\|_{V^r} \le M\rho^{n-n_1}V(X_{n_1,j})^r + M'\zeta^{n-n_1}$$

for some $\rho, \zeta \in (0, 1), 0 < M, M' < \infty$, when $B_{j-1,n}$ (of that paper) is 1. Or, if $B_{j-1,n} > 1$, one has the bound

$$\|[\delta_{X_{n_1,j}} - \pi_{t_{k-1}}](k_{n_1+1:n})\|_{V^r} \le M\rho^{\lfloor j^*(n-n_1)\rfloor} V(X_{n_1,j})^r + M'\zeta^{\lfloor j^*(n-n_1)\rfloor}$$

with j^* as the final equation of [27], page 1650. (Note that this follows from a uniform in time drift condition which follows from Proposition 4 of [27] [via (A1)].) By summing up first over n and then over j (and dividing with d), using also Proposition C.3 along the way to control $\sum_j V(X_{n_1,j})^r/d$, we have that

$$A_d \to 0$$
 in \mathbb{L}_1 .

A similar use of the bound in (C.9) and Proposition C.3 can give directly that the second term in (C.8) will vanish in the limit when summing up over j and dividing with d. Finally, for the last term in (C.8): Proposition C.3 is not directly applicable here as one has to address the fact that the function \widehat{g}_{n_1} depends on d. Using Lemma A.1(ii), one can replace $\widehat{g}_{n_1} \equiv \widehat{g}_{l_d(t_{k-1}(d))}$ by $\widehat{g}_{t_{k-1}}$ and then apply Proposition C.3 and the fact that $t_{k-1}(d) \to t_{k-1}$ to show that the remainder term goes to zero in \mathbb{L}_1 (when averaging over j). The proof is now complete. \square

PROOF OF THEOREM 4.1. Recall the definition of the ESS,

$$ESS_{(t_{k-1}(d),s_k(d))}(N) = \frac{(\sum_{i=1}^{N} e^{(1-\phi_0)a^i(d)})^2}{\sum_{i=1}^{N} e^{2(1-\phi_0)a^i(d)}},$$

where we have defined

$$a^{i}(d) = \frac{1}{d} \sum_{i=1}^{d} \{\overline{G}_{i,j} + E_{i,j}\}$$

with

$$\begin{split} \overline{G}_{i,j} &= \sum_{n} \{ g(X_{n,j}^{i}) - \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{i,i}} [g(X_{n,j}^{i})] \}; \\ E_{i,j} &= \sum_{n} \{ \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{i,i}} [g(X_{n,j}^{i})] - \mathbb{E}_{\pi_{t_{k-1}}} [g(X_{n,j}^{i})] \} \end{split}$$

for subscript n in the range $l_d(t_{k-1}(d)) \le n \le l_d(s_k(d)) - 1$. From Proposition C.4 we get directly that $\sum_{j=1}^d E_{i,j}/d \to 0$ (in \mathbb{L}_1). Thus, we are left with $\overline{G}_{i,j}$ which corresponds to a martingale under the filtration we define below. In the below proof, we consider the weak convergence for a single particle. However, it possible to prove a multivariate CLT for all the particles using the Cramer–Wold device. This calculation is very similar to that given below and is hence omitted.

Consider some chosen particle i, with $1 \le i \le N$. For any $d \ge 1$ we define the filtration $\mathcal{G}_{0,d} \subseteq \mathcal{G}_{1,d} \subseteq \cdots \subseteq \mathcal{G}_{d,d}$ as follows

(C.10)
$$\mathcal{G}_{0,d} = \sigma(X'_{l_d(t_{k-1}(d)),j}^{l,l}, 1 \le j \le d, 1 \le l \le N);$$

$$\mathcal{G}_{j,d} = \mathcal{G}_{j-1,d} \vee \sigma(X^i_{n,j}, l_d(t_{k-1}(d)) \le n \le l_d(s_k(d)) - 1), \qquad j \ge 1.$$

That is, σ -algebra $\mathcal{G}_{0,d}$ contains the information about *all* particles, along *all* d coordinates until (and including) the resampling step; then the rest of the filtration is built up by adding information for the subsequent trajectory of the various coordinates. Critically, conditionally on $\mathcal{G}_{0,d}$ these trajectories are independent. One can now easily check that

$$\beta_j^i(d) = \frac{1}{d} \sum_{k=1}^j \overline{G}_{i,k}, \qquad 1 \le j \le d,$$

is a martingale w.r.t. the filtration in (C.10). Now, to apply the CLT for triangular martingale arrays, we will show that for every $i \in \{1, ..., N\}$:

(a) that in \mathbb{L}_1 ,

$$\lim_{d \to \infty} \frac{1}{d^2} \sum_{j=1}^{d} \mathbb{E}[\overline{G}_{i,j}^2 \mid \mathcal{G}_{j-1,d}] = \sigma_{t_{k-1}:s_k}^2;$$

(b) for any $\epsilon > 0$, that in \mathbb{L}_1 ,

$$\lim_{d\to\infty} \frac{1}{d^2} \sum_{j=1}^d \mathbb{E}\left[\overline{G}_{i,j}^2 \mathbb{I}_{|\overline{G}_{i,j}| \ge \epsilon d} \mid \mathcal{G}_{j-1,d}\right] = 0.$$

This will allow us to show that $(1 - \phi_0)a^i(d)$ will converge weakly to the appropriate normal random variable. Notice, that due to the conditional independency mentioned above and the definition of the filtration in (C.10) we in fact have that

$$\begin{split} \mathbb{E}\big[\overline{G}_{i,j}^2 \mid \mathcal{G}_{j-1,d}\big] &\equiv \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{\prime,i}}\big[\overline{G}_{i,j}^2\big]; \\ \mathbb{E}\big[\overline{G}_{i,j}^2 \mathbb{I}_{\mid \overline{G}_{i,j}\mid \geq \epsilon d} \mid \mathcal{G}_{j-1,d}\big] &\equiv \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{\prime,i}}\big[\overline{G}_{i,j}^2 \mathbb{I}_{\mid \overline{G}_{i,j}\mid \geq \epsilon d}\big]. \end{split}$$

We make the following definition:

$$G_{i,j} = \sum_{n} \{g(X_{n,j}^{i}) - \pi_{n}(g)\} \equiv M_{n_{1}:n_{2},i,j} + R_{n_{1}:n_{2},i,j},$$

[for convenience we have set $n_1 = l_d(t_{k-1}(d))$ and $n_2 = l_d(s_k(d)) - 1$] with the terms $M_{n_1:n_2,i,j}$ and $R_{n_1:n_2,i,j}$ defined as in Theorem A.1 with the extra subscripts indicating the number of particle and the co-ordinate. Notice that $\overline{G}_{i,j} = G_{i,j} - \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{(i)}}[G_{i,j}]$.

We start with (a). We first use the fact that

$$\frac{1}{d^2} \sum_{j=1}^d \mathbb{E}_{X_{l_d(l_{k-1}(d)),j}^{\prime,i}} [\overline{G}_{i,j}^2] - \frac{1}{d^2} \sum_{j=1}^d \mathbb{E}_{X_{l_d(l_{k-1}(d)),j}^{\prime,i}} [G_{i,j}^2] \to 0 \quad \text{in } \mathbb{L}_1.$$

To see that, simply note that the above difference is equal to

$$\begin{split} &\frac{1}{d^2} \sum_{j=1}^d \mathbb{E}^2_{X'_{l_d(t_{k-1}(d)),j}}[G_{i,j}] \\ &\equiv \frac{1}{d^2} \sum_{j=1}^d \mathbb{E}^2_{X'_{l_d(t_{k-1}(d)),j}}[R_{i,j}] \leq \frac{1}{d^2} \sum_{j=1}^d V(X'_{l_d(t_{k-1}(d)),j})^{2r}, \end{split}$$

where we first used the fact that $M_{n_1:n_2,i,j}$ is a martingale (thus, of zero expectation) and then Theorem A.1 to obtain the bound; the bounding term vanishes due to Proposition C.2. We then have that

$$\frac{1}{d^2} \sum_{j=1}^{d} \mathbb{E}_{X'_{ld}(i_{k-1}(d)),j} [G_{i,j}^2]
= \frac{1}{d^2} \sum_{j=1}^{d} \mathbb{E}_{X'_{ld}(i_{k-1}(d)),j} [M_{i,j}^2 + R_{i,j}^2 + 2M_{i,j}R_{i,j}]
= \frac{1}{d^2} \sum_{j=1}^{d} \mathbb{E}_{X'_{ld}(i_{k-1}(d)),j} [M_{i,j}^2] + \mathcal{O}(d^{-1/2}).$$

To yield the $\mathcal{O}(d^{-1/2})$ one can use the bound

$$\mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{\prime,i}} \left[R_{i,j}^2 \right] \le MV \big(X_{l_d(t_{k-1}(d)),j}^{\prime,i} \big)^{2r}$$

from Theorem A.1, and then (using Cauchy-Schwarz and Theorem A.1),

$$\begin{split} & \left| \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{\prime,i}}[M_{i,j}R_{i,j}] \right| \\ & \leq \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{\prime,i}}^{1/2}[M_{i,j}^2] \cdot \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{\prime,i}}^{1/2}[R_{i,j}^2] \leq M\sqrt{d}V \big(X_{l_d(t_{k-1}(d)),j}^{\prime,i}\big)^{2r}. \end{split}$$

One then only needs to make use of Proposition C.2 to get (C.11). Now, using the analytical definition of $M_{i,j}$ from Theorem A.1 we have

$$\frac{1}{d^{2}} \sum_{j=1}^{d} \mathbb{E}_{X_{l_{d}(i_{k-1}(d)),j}^{i,i}} [M_{i,j}^{2}]
(C.12) = \frac{1}{d^{2}} \sum_{j=1}^{d} \sum_{n=n_{1}+1}^{n_{2}} \{\mathbb{E}_{X_{l_{d}(i_{k-1}(d)),j}^{i,i}} [\widehat{g}_{n}^{2}(X_{n,j}^{i}) - k_{n}^{2}(\widehat{g}_{n})(X_{n-1,j}^{i})] \}
= \frac{1}{d^{2}} \sum_{j=1}^{d} \sum_{n=n_{1}}^{n_{2}-1} \mathbb{E}_{X_{l_{d}(i_{k-1}(d)),j}^{i,i}} [\varphi_{n+1}(X_{n,j}^{i})] =: A_{d},$$

where

$$\varphi_n = k_n(\widehat{g}_n^2) - [k_n(\widehat{g}_n)]^2; \qquad \widehat{g}_n = \mathcal{P}(g, k_n, \pi_n).$$

Using again the decomposition in Theorem A.1, but now for φ_n as above (which due to Proposition B.1 satisfies the requirements of Theorem A.1), we get that

$$\begin{split} & \left| \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{\prime,i}} \left[\sum_{n=n_1}^{n_2-1} \varphi_{n+1} (X_{n,j}^i) - \pi_n(\varphi_{n+1}) \right] \right| \\ & = \left| \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{\prime,i}} \left[R_{n_1:(n_2-1),i,j}^{\prime,i} \right] \right| \le M V^{2r} (X_{l_d(t_{k-1}(d)),j}^{\prime,i}). \end{split}$$

Thus, continuing from (C.12), and using the above bound and Proposition C.2, we have

(C.13)
$$\left| A_d - \frac{1}{d} \sum_{n=n_1}^{n_2 - 1} \pi_n(\varphi_{n+1}) \right| = \mathcal{O}(d^{-1}).$$

The proof for (a) is completed using to the deterministic limit

$$\frac{1-\phi_0}{d} \sum_{n=n}^{n_2-1} \pi_n(\varphi_{n+1}) \to \int_{t_{k-1}}^{s_k} \pi_u(\widehat{g}_u^2 - k_u(\widehat{g}_u)^2) du.$$

For (b), we choose some δ so that $r(2+\delta) \leq 1$, and obtain the following bound:

$$\begin{split} \mathbb{E}_{X_{l_d(l_{k-1}(d)),j}^{\prime,i}} \big[\overline{G}_{i,j}^{2+\delta} \big] \\ &\leq M \mathbb{E}_{X_{l_d(l_{k-1}(d)),j}^{\prime,i}} \big[G_{i,j}^{2+\delta} \big] \\ &\leq M \mathbb{E}_{X_{l_d(l_{k-1}(d)),j}^{\prime,i}} \big[M_{i,j}^{2+\delta} + R_{i,j}^{2+\delta} \big] \\ &\leq M V \big(X_{l_d(l_{k-1}(d)),j}^{\prime,i} \big)^{r(2+\delta)} d^{1+(\delta/2)}, \end{split}$$

where for the last inequality we used the growth bounds in Theorem A.1. Also using, first, Hölder's inequality, then Markov inequality and finally, the above bound, we find that

$$\begin{split} \mathbb{E}_{X_{l_{d}(t_{k-1}(d)),j}^{\prime,i}} \big[\overline{G}_{i,j}^{2} \mathbb{I}_{|\overline{G}_{i,j}| \geq \epsilon d} \big] \\ & \leq \big(\mathbb{E}_{X_{l_{d}(t_{k-1}(d)),j}^{\prime,i}} \big[\overline{G}_{i,j}^{2+\delta} \big] \big)^{2/(2+\delta)} \cdot \big(\mathbb{P}_{X_{l_{d}(t_{k-1}(d)),j}^{\prime,i}} \big[|\overline{G}_{i,j}|^{2+\delta} \geq (\epsilon d)^{2+\delta} \big] \big)^{\delta/(2+\delta)} \\ & \leq MV \big(X_{l_{d}(t_{k-1}(d)),j}^{\prime,i} \big)^{2r} \, d \cdot \frac{V (X_{l_{d}(t_{k-1}(d)),j}^{\prime,i})^{r\delta} \, d^{\delta/2}}{(\epsilon d)^{\delta}}. \end{split}$$

Thus, we also have

$$\frac{1}{d^2} \sum_{j=1}^d \mathbb{E}_{X_{l_d(t_{k-1}(d)),j}^{\prime,i}} \left[\overline{G}_{i,j}^2 \mathbb{I}_{|\overline{G}_{i,j}| \ge \epsilon d} \right] \le M d^{-\delta/2} \frac{1}{d} \sum_{j=1}^d V \left(X_{l_d(t_{k-1}(d)),j}^{\prime,i} \right)^{r(2+\delta)}.$$

Due to Proposition C.2, this bound proves part (b). \Box

PROOF OF THEOREM 4.2. The proof is similar to that of Theorem 4.1 (as the final resampling time is strictly less than 1) and Theorem 3.3; it is omitted for brevity. \Box

C.3. Stochastic times.

PROOF OF THEOREM 4.3. Our proof will keep d fixed until the point at which we can apply Theorem 4.1. Conditionally on the chosen $\{a_k\}$ we have [we use the convention $t_{m^*(\delta)+1}^{\delta}(d)=1$]

$$\mathbb{P}\left[\Omega \setminus \Omega_d^N\right] \leq \sum_{k=1}^{m^*(\delta)+1} \sum_{s \in G_\delta \cap (t_{k-1}^\delta(d), t_k^\delta(d)]} \mathbb{P}\left[\left|\frac{1}{N} \mathrm{ESS}_{(t_{k-1}^\delta(d), s)}(N) - \mathrm{ESS}_{(t_{k-1}^\delta(d), s)}\right|\right] \\ \geq \upsilon |\mathrm{ESS}_{(t_{k-1}^\delta(d), s)} - a_k|\right].$$

We define

$$\epsilon(d) := \inf_{k \in \{1, 2, \dots, m^*(\delta) + 1\}} \inf_{s \in G_{\delta} \cap (t_{k-1}^{\delta}(d), t_{k}^{\delta}(d)]} |ESS_{(t_{k-1}^{\delta}(d), s)} - a_{k}|.$$

Thus we have

$$\mathbb{P}\left[\Omega \setminus \Omega_d^N\right] \leq \sum_{k=1}^{m^*(\delta)} \sum_{s \in G_\delta \cap (t_{k-1}^\delta(d), t_k^\delta(d)]} \mathbb{P}\left[\left|\frac{1}{N} \mathrm{ESS}_{(t_{k-1}^\delta(d), s)}(N) - \mathrm{ESS}_{(t_{k-1}^\delta(d), s)}\right| \right] \\ \geq \upsilon \epsilon(d).$$

Application of the Markov inequality yields that

$$(C.14) \quad \mathbb{P}[\Omega \setminus \Omega_d^N] \leq \frac{\delta}{\upsilon \epsilon(d)} \max_{k,s} \mathbb{E}\left[\left|\frac{1}{N} \mathrm{ESS}_{(t_{k-1}^{\delta}(d),s)}(N) - \mathrm{ESS}_{(t_{k-1}^{\delta}(d),s)}\right|\right].$$

Note that $\lim_{d\to\infty} \epsilon(d) = \epsilon > 0$ (with probability one); this is due to the uniform convergence of $\mathrm{ESS}_{(t_{k-1}^\delta(d),s)}$ to $\exp\{-\sigma_{t_{k-1}^\delta:s}^2\}$ as $d\to\infty$, see the proof of Proposition 4.1. Thus, it remains to bound the expectation on the RHS of (C.14) (and it's maximum over k,s).

Application of Theorem 4.1 now yields

$$\lim_{d \to \infty} \mathbb{E} \left[\left| \frac{1}{N} \text{ESS}_{(t_{k-1}^{\delta}(d)),s)}(N) - \text{ESS}_{(t_{k-1}^{\delta}(d),s)} \right| \right]$$

$$= \mathbb{E} \left[\left| \frac{1}{N} \text{ESS}_{(t_{k-1}^{\delta},s)}(N) - \text{ESS}_{(t_{k-1}^{\delta},s)} \right| \right],$$

where

$$\mathrm{ESS}_{(t_{k-1}^{\delta},s)}(N) = \frac{(\sum_{j=1}^{N} \exp\{X_{j}^{k}\})^{2}}{\sum_{j=1}^{N} \exp\{2X_{j}^{k}\}}; \qquad \mathrm{ESS}_{(t_{k-1}^{\delta},s)} = \exp\{-\sigma_{t_{k-1}^{\delta}:s}^{2}\}$$

with $X_j^k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_{t_{k-1}^{\delta}:s}^2)$. We set

$$\begin{split} \alpha_j^k &= \exp\{X_j^k\}; \qquad \beta_j^k = \exp\{2X_j^k\}; \\ \alpha^k &= \exp\{\frac{1}{2}\sigma_{t_{k-1}^{\delta}:s}^2\}; \qquad \beta^k = \exp\{2\sigma_{t_{k-1}^{\delta}:s}^2\}. \end{split}$$

Then, we are to bound

$$\mathbb{E}\bigg[\bigg|\frac{((1/N)\sum_{j=1}^N\alpha_j^k)^2}{(1/N)\sum_{j=1}^N\beta_j^k}-\frac{(\alpha^k)^2}{\beta^k}\bigg|\bigg].$$

We have the decomposition

$$\begin{split} &\frac{((1/N)\sum_{j=1}^{N}\alpha_{j}^{k})^{2}}{(1/N)\sum_{j=1}^{N}\beta_{j}^{k}} - \frac{(\alpha^{k})^{2}}{\beta^{k}} \\ &= \left(\frac{((1/N)\sum_{j=1}^{N}\alpha_{j}^{k})^{2}}{\beta^{k}(1/N)\sum_{j=1}^{N}\beta_{j}^{k}}\right) \left[\beta^{k} - \frac{1}{N}\sum_{j=1}^{N}\beta_{j}^{k}\right] + \frac{1}{\beta^{k}} \left[\left(\frac{1}{N}\sum_{j=1}^{N}\alpha_{j}^{k}\right)^{2} - (\alpha^{k})^{2}\right]. \end{split}$$

For the first term of the RHS in the above equation, as ESS divided by N is upper-bounded by 1, we can use the Jensen and the Marcinkiewicz–Zygmund inequalities. For the second term, via the relation $x^2 - y^2 = (x + y)(x - y)$ and Cauchy–Schwartz, one can use the same inequality to conclude that for some finite $M(k, \delta, s)$,

$$\mathbb{E}\left[\left|\frac{1}{N} \mathrm{ESS}_{(t_{k-1}^{\delta},s)}(N) - \mathrm{ESS}_{(t_{k-1}^{\delta},s)}\right|\right] \leq \frac{M(k,\delta,s)}{\sqrt{N}}.$$

Returning to (C.14) we have thus proven that $\lim_{d\to\infty} \mathbb{P}[\Omega \setminus \Omega_d^N] \leq \frac{M(\delta)}{\sqrt{N}}$ as required. \square

Acknowledgments. We thank Pierre Del Moral, Christophe Andrieu, Nicolas Chopin and Adam Johansen for valuable conversations associated to this work. We thank Nikolas Kantas for some useful feedback. We thank the referees and Associate Editor for extremely useful comments that have greatly improved the paper and the Editor (Prof. A. Barbour) for his diligence and patience in assisting us with the submission.

REFERENCES

- [1] ANDRIEU, C., JASRA, A., DOUCET, A. and DEL MORAL, P. (2011). On non-linear Markov chain Monte Carlo. *Bernoulli* 17 987–1014.
- [2] ANDRIEU, C. and MOULINES, É. (2006). On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16 1462–1505. MR2260070
- [3] ATCHADÉ, Y. (2009). A strong law of large numbers for martingale arrays. Technical report, Univ. Michigan.
- [4] BAEHR, C. and PANNEKOUCKE, O. (2010). Some issues and results on the EnKF and particle filters for meteorological models. In *Chaotic Systems* (C. H. Skiadas and I. Dimotikalis, eds.) 27–34. World Sci. Publ., River Edge, NJ. MR2789795
- [5] BÉDARD, M. (2007). Weak convergence of Metropolis algorithms for non-i.i.d. target distributions. *Ann. Appl. Probab.* 17 1222–1244. MR2344305
- [6] BENGTSSON, T., BICKEL, P. and LI, B. (2008). Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. In *Probability and Statistics: Essays in Honor of David A. Freedman* (D. Nolan and T. Speed, eds.) 316–334. IMS, Beachwood, OH. MR2459957
- [7] BERGER, E. (1986). Asymptotic behaviour of a class of stochastic approximation procedures. *Probab. Theory Related Fields* **71** 517–552. MR0833268
- [8] BESKOS, A., CRISAN, D. and JASRA, A. (2011). On the stability of sequential Monte Carlo methods in high-dimensions. Technical report, Imperial College London.
- [9] BESKOS, A., CRISAN, D., JASRA, A. and WHITELEY, N. (2014). Error bounds and normalizing constants for sequential Monte Carlo. *Adv. in Appl. Probab.* To appear.
- [10] BESKOS, A., PILLAI, N., ROBERTS, G., SANZ-SERNA, J.-M. and STUART, A. (2013). Optimal tuning of the hybrid Monte Carlo algorithm. *Bernoulli* 19 1501–1534. MR3129023
- [11] BESKOS, A., ROBERTS, G. and STUART, A. (2009). Optimal scalings for local Metropolis— Hastings chains on nonproduct targets in high dimensions. Ann. Appl. Probab. 19 863–898. MR2537193
- [12] BESKOS, A. and STUART, A. (2007). MCMC methods for sampling function space. In *ICIAM* 07—6th International Congress on Industrial and Applied Mathematics. Zürich.
- [13] BICKEL, P., LI, B. and BENGTSSON, T. (2008). Sharp failure rates for the bootstrap particle filter in high dimensions. In *Pushing the Limits of Contemporary Statistics* (B. Clarke and S. Ghosal, eds.) 318–329. IMS, Beachwood, OH. MR2459233
- [14] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York. MR1700749
- [15] BREYER, L. A., PICCIONI, M. and SCARLATTI, S. (2004). Optimal scaling of MaLa for nonlinear regression. Ann. Appl. Probab. 14 1479–1505. MR2071431
- [16] BREYER, L. A. and ROBERTS, G. O. (2000). From Metropolis to diffusions: Gibbs states and optimal scaling. *Stochastic Process. Appl.* 90 181–206. MR1794535
- [17] CAPPÉ, O., GUILLIN, A., MARIN, J. M. and ROBERT, C. P. (2004). Population Monte Carlo. J. Comput. Graph. Statist. 13 907–929. MR2109057
- [18] CHOPIN, N. (2002). A sequential particle filter method for static models. *Biometrika* 89 539–551. MR1929161
- [19] CHOPIN, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 2385–2411. MR2153989
- [20] CRISAN, D. and ROZOVSKY, B. (2011). The Oxford Handbook of Nonlinear Filtering. Oxford Univ. Press, Oxford.
- [21] DEL MORAL, P. (2004). Feynman–Kac Formulae: Genealogical and Interacting Particle Systems With Applications. Springer, New York. MR2044973
- [22] DEL MORAL, P., DOUCET, A. and JASRA, A. (2006). Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 411–436. MR2278333

- [23] DEL MORAL, P., DOUCET, A. and JASRA, A. (2012). An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22 1009–1020. MR2950081
- [24] DEL MORAL, P., DOUCET, A. and JASRA, A. (2012). On adaptive resampling procedures for sequential Monte Carlo methods. *Bernoulli* 18 252–278.
- [25] DEL MORAL, P., PATRAS, F. and RUBENTHALER, S. (2009). Coalescent tree based functional representations for some Feynman–Kac particle models. Ann. Appl. Probab. 19 778–825.
- [26] DOUC, R. and MOULINES, E. (2008). Limit theorems for weighted samples with applications to sequential Monte Carlo methods. Ann. Statist. 36 2344–2376. MR2458190
- [27] DOUC, R., MOULINES, E. and ROSENTHAL, J. S. (2004). Quantitative bounds on convergence of time-inhomogeneous Markov chains. Ann. Appl. Probab. 14 1643–1665. MR2099647
- [28] DOUCET, A., DE FREITAS, N. and GORDON, N., eds. (2001). Sequential Monte Carlo Methods in Practice. Springer, New York. MR1847783
- [29] HALL, P. and HEYDE, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York. MR0624435
- [30] HEINE, K. and CRISAN, D. (2008). Uniform approximations of discrete-time filters. Adv. in Appl. Probab. 40 979–1001. MR2488529
- [31] JARZYNSKI, C. (1997). Nonequilibrium equality for free energy differences. *Phys. Rev. Lett.* **78** 2690–2693.
- [32] JASRA, A., STEPHENS, D. A., DOUCET, A. and TSAGARIS, T. (2011). Inference for Lévy-driven stochastic volatility models via adaptive sequential Monte Carlo. *Scand. J. Stat.* 38 1–22. MR2760137
- [33] JASRA, A., STEPHENS, D. A. and HOLMES, C. C. (2007). On population-based simulation for static inference. Stat. Comput. 17 263–279. MR2405807
- [34] KONG, A., LIU, J. S. and WONG, W. H. (1994). Sequential imputations and Bayesian missing data problems. *J. Amer. Statist. Assoc.* **89** 278–288.
- [35] KÜNSCH, H. R. (2005). Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Statist. 33 1983–2021. MR2211077
- [36] LEE, A., YAU, C., GILES, M., DOUCET, A. and HOLMES, C. C. (2010). On the utility of graphics cards to perform massively parallel implementation of advanced Monte Carlo methods. J. Comput. Graph. Statist. 19 769–789.
- [37] LIU, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer, New York. MR1842342
- [38] MATTINGLY, J. C., PILLAI, N. S. and STUART, A. M. (2012). Diffusion limits of the random walk Metropolis algorithm in high dimensions. Ann. Appl. Probab. 22 881–930. MR2977981
- [39] MCLEISH, D. L. (1974). Dependent central limit theorems and invariance principles. Ann. Probab. 2 620–628. MR0358933
- [40] MEYN, S. and TWEEDIE, R. L. (2009). Markov chains and Stochastic Stability, 2nd ed. Cambridge Univ. Press, Cambridge. MR2509253
- [41] NEAL, R. M. (2001). Annealed importance sampling. Stat. Comput. 11 125-139. MR1837132
- [42] PILLAI, N. S., STUART, A. M. and THIÉRY, A. H. (2012). Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions. *Ann. Appl. Probab.* 22 2320–2356. MR3024970
- [43] ROBERTS, G. O., GELMAN, A. and GILKS, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7 110–120. MR1428751
- [44] ROBERTS, G. O. and ROSENTHAL, J. S. (1998). Optimal scaling of discrete approximations to Langevin diffusions. *J. R. Stat. Soc. Ser. B Stat. Methodol.* **60** 255–268. MR1625691

- [45] RUDIN, W. (1976). Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, New York. MR0385023
- [46] SCHÄFER, C. and CHOPIN, N. (2013). Sequential Monte Carlo on large binary sampling spaces. Stat. Comput. 23 163–184. MR3016936
- [47] SHIRYAEV, A. N. (1996). Probability, 2nd ed. Springer, New York. MR1368405
- [48] SNYDER, C., BENGTSSON, T., BICKEL, P. and ANDERSON, J. (2009). Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136 4629–4640.
- [49] WHITELEY, N. (2012). Sequential Monte Carlo samplers: Error bounds and insensitivity to initial conditions. Stoch. Anal. Appl. 30 774–798. MR2966098
- [50] WHITELEY, N. (2013). Stability properties of some particle filters. Ann. Appl. Probab. 23 2500–2537. MR3127943
- [51] WHITELEY, N., KANTAS, N. and JASRA, A. (2012). Linear variance bounds for particle approximations of time-homogeneous Feynman–Kac formulae. *Stochastic Process. Appl.* 122 1840–1865. MR2914774
- [52] WITHERS, C. S. (1981). Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete 57 509–534. MR0631374

A. BESKOS
DEPARTMENT OF STATISTICS
AND APPLIED PROBABILITY
NATIONAL UNIVERSITY OF SINGAPORE
6 SCIENCE DRIVE 2
117546, SINGAPORE
SINGAPORE
E-MAIL: staba@nus.edu.sg

DEPARTMENT OF STATISTICAL SCIENCE
UNIVERSITY COLLEGE LONDON
1-19 TORRINGTON PLACE
LONDON WC1E 7HB
UNITED KINGDOM

A. Jasra
Department of Statistics
and Applied Probability
National University of Singapore
6 Science Drive 2
117546, Singapore
Singapore

E-MAIL: staja@nus.edu.sg

URL: http://www.stat.nus.edu.sg/~staja

D. CRISAN
DEPARTMENT OF MATHEMATICS
IMPERIAL COLLEGE LONDON
180 QUEENS GATE, LONDON SW7 2AZ
UNITED KINGDOM

E-MAIL: d.crisan@imperial.ac.uk

URL: http://www2.imperial.ac.uk/~dcrisan/