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Abstract. High-dimensional statistical inference deals with models in
which the the number of parameters p is comparable to or larger than the
sample size n. Since it is usually impossible to obtain consistent proce-
dures unless p/n → 0, a line of recent work has studied models with var-
ious types of low-dimensional structure, including sparse vectors, sparse and
structured matrices, low-rank matrices and combinations thereof. In such set-
tings, a general approach to estimation is to solve a regularized optimization
problem, which combines a loss function measuring how well the model
fits the data with some regularization function that encourages the assumed
structure. This paper provides a unified framework for establishing consis-
tency and convergence rates for such regularized M-estimators under high-
dimensional scaling. We state one main theorem and show how it can be
used to re-derive some existing results, and also to obtain a number of new
results on consistency and convergence rates, in both �2-error and related
norms. Our analysis also identifies two key properties of loss and regulariza-
tion functions, referred to as restricted strong convexity and decomposability,
that ensure corresponding regularized M-estimators have fast convergence
rates and which are optimal in many well-studied cases.

Key words and phrases: High-dimensional statistics, M-estimator, Lasso,
group Lasso, sparsity, �1-regularization, nuclear norm.

1. INTRODUCTION

High-dimensional statistics is concerned with mod-
els in which the ambient dimension of the problem p

may be of the same order as—or substantially larger
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than—the sample size n. On the one hand, its roots are
quite old, dating back to work on random matrix theory
and high-dimensional testing problems (e.g., [24, 42,
54, 75]). On the other hand, the past decade has wit-
nessed a tremendous surge of research activity. Rapid
development of data collection technology is a major
driving force: it allows for more observations to be
collected (larger n) and also for more variables to be
measured (larger p). Examples are ubiquitous through-
out science: astronomical projects such as the Large
Synoptic Survey Telescope (available at www.lsst.org)
produce terabytes of data in a single evening; each
sample is a high-resolution image, with several hun-
dred megapixels, so that p � 108. Financial data is
also of a high-dimensional nature, with hundreds or
thousands of financial instruments being measured and
tracked over time, often at very fine time intervals for
use in high frequency trading. Advances in biotechnol-
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ogy now allow for measurements of thousands of genes
or proteins, and lead to numerous statistical challenges
(e.g., see the paper [6] and references therein). Various
types of imaging technology, among them magnetic
resonance imaging in medicine [40] and hyper-spectral
imaging in ecology [36], also lead to high-dimensional
data sets.

In the regime p � n, it is well known that consistent
estimators cannot be obtained unless additional con-
straints are imposed on the model. Accordingly, there
are now several lines of work within high-dimensional
statistics, all of which are based on imposing some
type of low-dimensional constraint on the model space
and then studying the behavior of different estima-
tors. Examples include linear regression with sparsity
constraints, estimation of structured covariance or in-
verse covariance matrices, graphical model selection,
sparse principal component analysis, low-rank matrix
estimation, matrix decomposition problems and esti-
mation of sparse additive nonparametric models. The
classical technique of regularization has proven fruitful
in all of these contexts. Many well-known estimators
are based on solving a convex optimization problem
formed by the sum of a loss function with a weighted
regularizer; we refer to any such method as a regular-
ized M-estimator. For instance, in application to linear
models, the Lasso or basis pursuit approach [19, 67] is
based on a combination of the least squares loss with
�1-regularization, and so involves solving a quadratic
program. Similar approaches have been applied to gen-
eralized linear models, resulting in more general (non-
quadratic) convex programs with �1-constraints. Sev-
eral types of regularization have been used for esti-
mating matrices, including standard �1-regularization,
a wide range of sparse group-structured regularizers, as
well as regularization based on the nuclear norm (sum
of singular values).

Past Work

Within the framework of high-dimensional statistics,
the goal is to obtain bounds on a given performance
metric that hold with high probability for a finite sam-
ple size, and provide explicit control on the ambient di-
mension p, as well as other structural parameters such
as the sparsity of a vector, degree of a graph or rank
of matrix. Typically, such bounds show that the ambi-
ent dimension and structural parameters can grow as
some function of the sample size n, while still having
the statistical error decrease to zero. The choice of per-
formance metric is application-dependent; some exam-
ples include prediction error, parameter estimation er-
ror and model selection error.

By now, there are a large number of theoretical
results in place for various types of regularized M-
estimators.1 Sparse linear regression has perhaps been
the most active area, and multiple bodies of work can
be differentiated by the error metric under considera-
tion. They include work on exact recovery for noise-
less observations (e.g., [16, 20, 21]), prediction error
consistency (e.g., [11, 25, 72, 79]), consistency of the
parameter estimates in �2 or some other norm (e.g.,
[8, 11, 12, 14, 46, 72, 79]), as well as variable selec-
tion consistency (e.g., [45, 73, 81]). The information-
theoretic limits of sparse linear regression are also
well understood, and �1-based methods are known to
be optimal for �q -ball sparsity [56] and near-optimal
for model selection [74]. For generalized linear mod-
els (GLMs), estimators based on �1-regularized maxi-
mum likelihood have also been studied, including re-
sults on risk consistency [71], consistency in the �2 or
�1-norm [2, 30, 44] and model selection consistency
[9, 59]. Sparsity has also proven useful in applica-
tion to different types of matrix estimation problems,
among them banded and sparse covariance matrices
(e.g., [7, 13, 22]). Another line of work has studied the
problem of estimating Gaussian Markov random fields
or, equivalently, inverse covariance matrices with spar-
sity constraints. Here there are a range of results, in-
cluding convergence rates in Frobenius, operator and
other matrix norms [35, 60, 64, 82], as well as re-
sults on model selection consistency [35, 45, 60]. Moti-
vated by applications in which sparsity arises in a struc-
tured manner, other researchers have proposed differ-
ent types of block-structured regularizers (e.g., [3, 5,
28, 32, 69, 70, 78, 80]), among them the group Lasso
based on �1/�2-regularization. High-dimensional con-
sistency results have been obtained for exact recov-
ery based on noiseless observations [5, 66], conver-
gence rates in the �2-norm (e.g., [5, 27, 39, 47]) as
well as model selection consistency (e.g., [47, 50, 53]).
Problems of low-rank matrix estimation also arise in
numerous applications. Techniques based on nuclear
norm regularization have been studied for different
statistical models, including compressed sensing [37,
62], matrix completion [15, 31, 52, 61], multitask re-
gression [4, 10, 51, 63, 77] and system identification
[23, 38, 51]. Finally, although the primary emphasis of
this paper is on high-dimensional parametric models,
regularization methods have also proven effective for

1Given the extraordinary number of papers that have appeared in
recent years, it must be emphasized that our referencing is neces-
sarily incomplete.
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a class of high-dimensional nonparametric models that
have a sparse additive decomposition (e.g., [33, 34, 43,
58]), and have been shown to achieve minimax-optimal
rates [57].

Our Contributions

As we have noted previously, almost all of these es-
timators can be seen as particular types of regularized
M-estimators, with the choice of loss function, regu-
larizer and statistical assumptions changing according
to the model. This methodological similarity suggests
an intriguing possibility: is there a common set of the-
oretical principles that underlies analysis of all these
estimators? If so, it could be possible to gain a unified
understanding of a large collection of techniques for
high-dimensional estimation and afford some insight
into the literature.

The main contribution of this paper is to provide an
affirmative answer to this question. In particular, we
isolate and highlight two key properties of a regular-
ized M-estimator—namely, a decomposability prop-
erty for the regularizer and a notion of restricted strong
convexity that depends on the interaction between the
regularizer and the loss function. For loss functions and
regularizers satisfying these two conditions, we prove a
general result (Theorem 1) about consistency and con-
vergence rates for the associated estimators. This result
provides a family of bounds indexed by subspaces, and
each bound consists of the sum of approximation error
and estimation error. This general result, when special-
ized to different statistical models, yields in a direct
manner a large number of corollaries, some of them
known and others novel. In concurrent work, a subset
of the current authors has also used this framework to
prove several results on low-rank matrix estimation us-
ing the nuclear norm [51], as well as minimax-optimal
rates for noisy matrix completion [52] and noisy ma-
trix decomposition [1]. Finally, en route to establishing
these corollaries, we also prove some new technical re-
sults that are of independent interest, including guaran-
tees of restricted strong convexity for group-structured
regularization (Proposition 1).

The remainder of this paper is organized as follows.
We begin in Section 2 by formulating the class of
regularized M-estimators that we consider, and then
defining the notions of decomposability and restricted
strong convexity. Section 3 is devoted to the state-
ment of our main result (Theorem 1) and discussion
of its consequences. Subsequent sections are devoted

to corollaries of this main result for different statis-
tical models, including sparse linear regression (Sec-
tion 4) and estimators based on group-structured regu-
larizers (Section 5). A number of technical results are
presented within the appendices in the supplementary
file [49].

2. PROBLEM FORMULATION AND SOME KEY
PROPERTIES

In this section we begin with a precise formulation
of the problem, and then develop some key properties
of the regularizer and loss function.

2.1 A Family of M-Estimators

Let Zn
1 := {Z1, . . . ,Zn} denote n identically dis-

tributed observations with marginal distribution P, and
suppose that we are interested in estimating some pa-
rameter θ of the distribution P. Let L : Rp × Z n → R

be a convex and differentiable loss function that, for a
given set of observations Zn

1 , assigns a cost L(θ;Zn
1 )

to any parameter θ ∈ R
p . Let θ∗ ∈ arg minθ∈Rp L(θ)

be any minimizer of the population risk L(θ) :=
EZn

1
[L(θ;Zn

1 )]. In order to estimate this quantity based
on the data Zn

1 , we solve the convex optimization prob-
lem

θ̂λn ∈ arg min
θ∈Rp

{
L

(
θ;Zn

1
) + λnR(θ)

}
,(1)

where λn > 0 is a user-defined regularization penalty
and R : Rp → R+ is a norm. Note that this setup allows
for the possibility of misspecified models as well.

Our goal is to provide general techniques for de-
riving bounds on the difference between any solution
θ̂λn to the convex program (1) and the unknown vec-
tor θ∗. In this paper we derive bounds on the quantity
‖θ̂λn − θ∗‖, where the error norm ‖ · ‖ is induced by
some inner product 〈·, ·〉 on R

p . Most often, this er-
ror norm will either be the Euclidean �2-norm on vec-
tors or the analogous Frobenius norm for matrices, but
our theory also applies to certain types of weighted
norms. In addition, we provide bounds on the quantity
R(θ̂λn − θ∗), which measures the error in the regular-
izer norm. In the classical setting, the ambient dimen-
sion p stays fixed while the number of observations n

tends to infinity. Under these conditions, there are stan-
dard techniques for proving consistency and asymp-
totic normality for the error θ̂λn − θ∗. In contrast, the
analysis of this paper is all within a high-dimensional
framework, in which the tuple (n,p), as well as other
problem parameters, such as vector sparsity or matrix
rank, etc., are all allowed to tend to infinity. In contrast



HIGH-DIMENSIONAL ANALYSIS OF REGULARIZED M-ESTIMATORS 541

to asymptotic statements, our goal is to obtain explicit
finite sample error bounds that hold with high proba-
bility.

2.2 Decomposability of R
The first ingredient in our analysis is a property of

the regularizer known as decomposability, defined in
terms of a pair of subspaces M ⊆ M of R

p . The role
of the model subspace M is to capture the constraints
specified by the model; for instance, it might be the
subspace of vectors with a particular support (see Ex-
ample 1) or a subspace of low-rank matrices (see Ex-
ample 3). The orthogonal complement of the space M,
namely, the set

M⊥ := {
v ∈ R

p | 〈u, v〉 = 0 for all u ∈ M
}
,(2)

is referred to as the perturbation subspace, represent-
ing deviations away from the model subspace M. In
the ideal case, we have M⊥ = M⊥, but our defini-
tion allows for the possibility that M is strictly larger
than M, so that M⊥ is strictly smaller than M⊥. This
generality is needed for treating the case of low-rank
matrices and nuclear norm, as discussed in Example 3
to follow.

DEFINITION 1. Given a pair of subspaces M ⊆
M, a norm-based regularizer R is decomposable with
respect to (M, M⊥) if

R(θ + γ ) = R(θ) + R(γ )
(3)

for all θ ∈ M and γ ∈ M⊥.

In order to build some intuition, let us consider the
ideal case M = M for the time being, so that the de-
composition (3) holds for all pairs (θ, γ ) ∈ M × M⊥.
For any given pair (θ, γ ) of this form, the vector θ + γ

can be interpreted as a perturbation of the model vec-
tor θ away from the subspace M, and it is desirable
that the regularizer penalize such deviations as much
as possible. By the triangle inequality for a norm,
we always have R(θ + γ ) ≤ R(θ) + R(γ ), so that
the decomposability condition (3) holds if and only
if the triangle inequality is tight for all pairs (θ, γ ) ∈
(M, M⊥). It is exactly in this setting that the regu-
larizer penalizes deviations away from the model sub-
space M as much as possible.

In general, it is not difficult to find subspace pairs
that satisfy the decomposability property. As a trivial
example, any regularizer is decomposable with respect
to M = R

p and its orthogonal complement M⊥ = {0}.
As will be clear in our main theorem, it is of more inter-
est to find subspace pairs in which the model subspace

M is “small,” so that the orthogonal complement M⊥
is “large.” To formalize this intuition, let us define the
projection operator

�M(u) := arg min
v∈M

‖u − v‖(4)

with the projection �M⊥ defined in an analogous man-
ner. To simplify notation, we frequently use the short-
hand uM = �M(u) and uM⊥ = �M⊥(u).

Of interest to us are the action of these projection
operators on the unknown parameter θ∗ ∈ R

p . In the
most desirable setting, the model subspace M can be
chosen such that θ∗

M ≈ θ∗ or, equivalently, such that
θ∗

M⊥ ≈ 0. If this can be achieved with the model sub-
space M remaining relatively small, then our main the-
orem guarantees that it is possible to estimate θ∗ at a
relatively fast rate. The following examples illustrate
suitable choices of the spaces M and M in three con-
crete settings, beginning with the case of sparse vec-
tors.

EXAMPLE 1 (Sparse vectors and �1-norm regular-
ization). Suppose the error norm ‖ · ‖ is the usual �2-
norm and that the model class of interest is the set of
s-sparse vectors in p dimensions. For any particular
subset S ⊆ {1,2, . . . , p} with cardinality s, we define
the model subspace

M(S) := {
θ ∈ R

p | θj = 0 for all j /∈ S
}
.(5)

Here our notation reflects the fact that M depends ex-
plicitly on the chosen subset S. By construction, we
have �M(S)(θ

∗) = θ∗ for any vector θ∗ that is sup-
ported on S.

In this case, we may define M(S) = M(S) and note
that the orthogonal complement with respect to the Eu-
clidean inner product is given by

M⊥(S) = M⊥(S)
(6)

= {
γ ∈ R

p | γj = 0 for all j ∈ S
}
.

This set corresponds to the perturbation subspace, cap-
turing deviations away from the set of vectors with sup-
port S. We claim that for any subset S, the �1-norm
R(θ) = ‖θ‖1 is decomposable with respect to the pair
(M(S), M⊥(S)). Indeed, by construction of the sub-
spaces, any θ ∈ M(S) can be written in the partitioned
form θ = (θS,0Sc), where θS ∈ R

s and 0Sc ∈ R
p−s is

a vector of zeros. Similarly, any vector γ ∈ M⊥(S)

has the partitioned representation (0S, γSc). Putting to-
gether the pieces, we obtain

‖θ + γ ‖1 = ∥∥(θS,0) + (0, γSc)
∥∥

1 = ‖θ‖1 + ‖γ ‖1,

showing that the �1-norm is decomposable as claimed.
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As a follow-up to the previous example, it is also
worth noting that the same argument shows that for a
strictly positive weight vector ω, the weighted �1-norm
‖θ‖ω := ∑p

j=1 ωj |θj | is also decomposable with re-

spect to the pair (M(S), M(S)). For another natural
extension, we now turn to the case of sparsity models
with more structure.

EXAMPLE 2 (Group-structured norms). In many
applications sparsity arises in a more structured fash-
ion, with groups of coefficients likely to be zero (or
nonzero) simultaneously. In order to model this be-
havior, suppose that the index set {1,2, . . . , p} can
be partitioned into a set of NG disjoint groups, say,
G = {G1,G2, . . . ,GNG }. With this setup, for a given
vector 
α = (α1, . . . , αNG ) ∈ [1,∞]NG , the associated
(1, 
α)-group norm takes the form

‖θ‖G,
α :=
NG∑
t=1

‖θGt ‖αt .(7)

For instance, with the choice 
α = (2,2, . . . ,2), we ob-
tain the group �1/�2-norm, corresponding to the reg-
ularizer that underlies the group Lasso [78]. On the
other hand, the choice 
α = (∞, . . . ,∞), corresponding
to a form of block �1/�∞-regularization, has also been
studied in past work [50, 70, 80]. Note that for 
α =
(1,1, . . . ,1), we obtain the standard �1-penalty. Inter-
estingly, our analysis shows that setting 
α ∈ [2,∞]NG

can often lead to superior statistical performance.
We now show that the norm ‖ · ‖G,
α is again de-

composable with respect to appropriately defined sub-
spaces. Indeed, given any subset SG ⊆ {1, . . . ,NG } of
group indices, say, with cardinality sG = |SG |, we can
define the subspace

M(SG ) := {
θ ∈ R

p | θGt = 0 for all t /∈ SG
}

(8)

as well as its orthogonal complement with respect to
the usual Euclidean inner product

M⊥(SG ) = M⊥(SG )
(9)

:= {
θ ∈ R

p | θGt = 0 for all t ∈ SG
}
.

With these definitions, for any pair of vectors θ ∈
M(SG ) and γ ∈ M⊥(SG ), we have

‖θ + γ ‖G,
α = ∑
t∈SG

‖θGt + 0Gt ‖αt

+ ∑
t /∈SG

‖0Gt + γGt ‖αt(10)

= ‖θ‖G,
α + ‖γ ‖G,
α,

thus verifying the decomposability condition.

In the preceding example, we exploited the fact that
the groups were nonoverlapping in order to establish
the decomposability property. Therefore, some modifi-
cations would be required in order to choose the sub-
spaces appropriately for overlapping group regulariz-
ers proposed in past work [28, 29].

EXAMPLE 3 (Low-rank matrices and nuclear norm).
Now suppose that each parameter 	 ∈ R

p1×p2 is a
matrix; this corresponds to an instance of our general
setup with p = p1p2, as long as we identify the space
R

p1×p2 with R
p1p2 in the usual way. We equip this

space with the inner product 〈〈	,
〉〉 := trace(	
T ),
a choice which yields (as the induced norm) the Frobe-
nius norm

|||	|||F := √〈〈	,	〉〉 =
√√√√√ p1∑

j=1

p2∑
k=1

	2
jk.(11)

In many settings, it is natural to consider estimating
matrices that are low-rank; examples include princi-
pal component analysis, spectral clustering, collabora-
tive filtering and matrix completion. With certain ex-
ceptions, it is computationally expensive to enforce a
rank-constraint in a direct manner, so that a variety of
researchers have studied the nuclear norm, also known
as the trace norm, as a surrogate for a rank constraint.
More precisely, the nuclear norm is given by

|||	|||nuc :=
min{p1,p2}∑

j=1

σj (	),(12)

where {σj (	)} are the singular values of the matrix 	.
The nuclear norm is decomposable with respect to

appropriately chosen subspaces. Let us consider the
class of matrices 	 ∈ R

p1×p2 that have rank r ≤
min{p1,p2}. For any given matrix 	, we let row(	) ⊆
R

p2 and col(	) ⊆ R
p1 denote its row space and col-

umn space, respectively. Let U and V be a given pair of
r-dimensional subspaces U ⊆ R

p1 and V ⊆ R
p2 ; these

subspaces will represent left and right singular vectors
of the target matrix 	∗ to be estimated. For a given
pair (U,V ), we can define the subspaces M(U,V ) and
M⊥(U,V ) of R

p1×p2 given by

M(U,V ) := {
	 ∈ R

p1×p2 | row(	) ⊆ V,
(13a)

col(	) ⊆ U
}

and

M⊥(U,V ) := {
	 ∈ R

p1×p2 | row(	) ⊆ V ⊥,
(13b)

col(	) ⊆ U⊥}
.
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So as to simplify notation, we omit the indices (U,V )

when they are clear from context. Unlike the preceding
examples, in this case, the set M is not2 equal to M.

Finally, we claim that the nuclear norm is decom-
posable with respect to the pair (M, M⊥). By con-
struction, any pair of matrices 	 ∈ M and 
 ∈ M⊥
have orthogonal row and column spaces, which im-
plies the required decomposability condition—namely,
|||	 + 
|||1 = |||	|||1 + |||
|||1.

A line of recent work (e.g., [1, 17, 18, 26, 41, 76])
has studied matrix problems involving the sum of a
low-rank matrix with a sparse matrix, along with the
regularizer formed by a weighted sum of the nuclear
norm and the elementwise �1-norm. By a combination
of Examples 1 and 3, this regularizer also satisfies the
decomposability property with respect to appropriately
defined subspaces.

2.3 A Key Consequence of Decomposability

Thus far, we have specified a class (1) of M-esti-
mators based on regularization, defined the notion
of decomposability for the regularizer and worked
through several illustrative examples. We now turn
to the statistical consequences of decomposability—
more specifically, its implications for the error vector
�̂λn = θ̂λn − θ∗, where θ̂ ∈ R

p is any solution of the
regularized M-estimation procedure (1). For a given
inner product 〈·, ·〉, the dual norm of R is given by

R∗(v) := sup
u∈Rp\{0}

〈u, v〉
R(u)

= sup
R(u)≤1

〈u, v〉.(14)

This notion is best understood by working through
some examples.

Dual of �1-norm. For the �1-norm R(u) = ‖u‖1
previously discussed in Example 1, let us compute its
dual norm with respect to the Euclidean inner product
on R

p . For any vector v ∈ R
p , we have

sup
‖u‖1≤1

〈u, v〉 ≤ sup
‖u‖1≤1

p∑
k=1

|uk||vk|

≤ sup
‖u‖1≤1

( p∑
k=1

|uk|
)

max
k=1,...,p

|vk|

= ‖v‖∞.

2However, as is required by our theory, we do have the in-

clusion M ⊆ M. Indeed, given any 	 ∈ M and 
 ∈ M⊥,
we have 	T 
 = 0 by definition, which implies that 〈〈	,
〉〉 =
trace(	T 
) = 0. Since 
 ∈ M⊥ was arbitrary, we have shown
that 	 is orthogonal to the space M⊥, meaning that it must be-
long to M.

We claim that this upper bound actually holds with
equality. In particular, letting j be any index for which
|vj | achieves the maximum ‖v‖∞ = maxk=1,...,p |vk|,
suppose that we form a vector u ∈ R

p with uj =
sign(vj ) and uk = 0 for all k �= j . With this choice,
we have ‖u‖1 ≤ 1 and, hence,

sup
‖u‖1≤1

〈u, v〉 ≥
p∑

k=1

ukvk = ‖v‖∞,

showing that the dual of the �1-norm is the �∞-norm.

Dual of group norm. Now recall the group norm
from Example 2, specified in terms of a vector 
α ∈
[2,∞]NG . A similar calculation shows that its dual
norm, again with respect to the Euclidean norm on R

p ,
is given by

‖v‖G,
α∗ = max
t=1,...,NG

‖v‖α∗
t

(15)

where
1

αt

+ 1

α∗
t

= 1 are dual exponents.

As special cases of this general duality relation, the
block (1,2) norm that underlies the usual group Lasso
leads to a block (∞,2) norm as the dual, whereas the
block (1,∞) norm leads to a block (∞,1) norm as the
dual.

Dual of nuclear norm. For the nuclear norm, the
dual is defined with respect to the trace inner product
on the space of matrices. For any matrix N ∈ R

p1×p2 ,
it can be shown that

R∗(N) = sup
|||M|||nuc≤1

〈〈M,N〉〉 = |||N |||op

= max
j=1,...,min{p1,p2}

σj (N),

corresponding to the �∞-norm applied to the vector
σ(N) of singular values. In the special case of diag-
onal matrices, this fact reduces to the dual relationship
between the vector �1 and �∞-norms.

The dual norm plays a key role in our general theory,
in particular, by specifying a suitable choice of the reg-
ularization weight λn. We summarize in the following:

LEMMA 1. Suppose that L is a convex and differ-
entiable function, and consider any optimal solution θ̂

to the optimization problem (1) with a strictly positive
regularization parameter satisfying

λn ≥ 2R∗(∇L
(
θ∗;Zn

1
))

.(16)
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FIG. 1. Illustration of the set C(M, M⊥; θ∗) in the special case � = (�1,�2,�3) ∈ R
3 and regularizer R(�) = ‖�‖1, relevant for

sparse vectors (Example 1). This picture shows the case S = {3}, so that the model subspace is M(S) = {� ∈ R
3 | �1 = �2 = 0} and

its orthogonal complement is given by M⊥(S) = {� ∈ R3 | �3 = 0}. (a) In the special case when θ∗
1 = θ∗

2 = 0, so that θ∗ ∈ M, the

set C(M, M⊥; θ∗) is a cone. (b) When θ∗ does not belong to M, the set C(M, M⊥; θ∗) is enlarged in the coordinates (�1,�2) that
span M⊥. It is no longer a cone, but is still a star-shaped set.

Then for any pair (M, M⊥) over which R is decom-
posable, the error �̂ = θ̂λn − θ∗ belongs to the set

C
(

M, M⊥; θ∗)
:= {

� ∈ R
p | R(�M̄⊥)(17)

≤ 3R(�M̄) + 4R
(
θ∗

M⊥
)}

.

We prove this result in the supplementary appen-
dix [49]. It has the following important consequence:
for any decomposable regularizer and an appropriate
choice (16) of regularization parameter, we are guar-
anteed that the error vector �̂ belongs to a very spe-
cific set, depending on the unknown vector θ∗. As
illustrated in Figure 1, the geometry of the set C de-
pends on the relation between θ∗ and the model sub-
space M. When θ∗ ∈ M, then we are guaranteed that
R(θ∗

M⊥) = 0. In this case, the constraint (17) reduces
to R(�M̄⊥) ≤ 3R(�M̄), so that C is a cone, as il-
lustrated in panel (a). In the more general case when
θ∗ /∈ M so that R(θ∗

M⊥) �= 0, the set C is not a cone,
but rather a star-shaped set [panel (b)]. As will be clar-
ified in the sequel, the case θ∗ /∈ M requires a more
delicate treatment.

2.4 Restricted Strong Convexity

We now turn to an important requirement of the loss
function and its interaction with the statistical model.
Recall that �̂ = θ̂λn − θ∗ is the difference between an
optimal solution θ̂λn and the true parameter, and con-
sider the loss difference3 L(θ̂λn) − L(θ∗). In the clas-

3To simplify notation, we frequently write L(θ) as shorthand for
L(θ;Zn

1 ) when the underlying data Zn
1 is clear from context.

sical setting, under fairly mild conditions, one expects
that the loss difference should converge to zero as the
sample size n increases. It is important to note, how-
ever, that such convergence on its own is not sufficient
to guarantee that θ̂λn and θ∗ are close or, equivalently,
that �̂ is small. Rather, the closeness depends on the
curvature of the loss function, as illustrated in Figure 2.
In a desirable setting [panel (a)], the loss function is
sharply curved around its optimum θ̂λn , so that having
a small loss difference |L(θ∗) − L(θ̂λn)| translates to a
small error �̂ = θ̂λn −θ∗. Panel (b) illustrates a less de-
sirable setting, in which the loss function is relatively
flat, so that the loss difference can be small while the
error �̂ is relatively large.

The standard way to ensure that a function is “not
too flat” is via the notion of strong convexity. Since
L is differentiable by assumption, we may perform a
first-order Taylor series expansion at θ∗ and in some
direction �; the error in this Taylor series is given by

δL
(
�,θ∗) := L

(
θ∗ + �

) − L
(
θ∗)

(18)
− 〈∇L

(
θ∗)

,�
〉
.

One way in which to enforce that L is strongly convex
is to require the existence of some positive constant
κ > 0 such that δL(�, θ∗) ≥ κ‖�‖2 for all � ∈ R

p

in a neighborhood of θ∗. When the loss function is
twice differentiable, strong convexity amounts to lower
bound on the eigenvalues of the Hessian ∇2L(θ), hold-
ing uniformly for all θ in a neighborhood of θ∗.

Under classical “fixed p, large n” scaling, the loss
function will be strongly convex under mild conditions.
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FIG. 2. Role of curvature in distinguishing parameters. (a) Loss function has high curvature around �̂. A small excess loss
dL = |L(θ̂λn

) − L(θ∗)| guarantees that the parameter error �̂ = θ̂λn
− θ∗ is also small. (b) A less desirable setting, in which the loss

function has relatively low curvature around the optimum.

For instance, suppose that population risk L is strongly
convex or, equivalently, that the Hessian ∇2L(θ) is
strictly positive definite in a neighborhood of θ∗. As
a concrete example, when the loss function L is de-
fined based on negative log likelihood of a statistical
model, then the Hessian ∇2L(θ) corresponds to the
Fisher information matrix, a quantity which arises nat-
urally in asymptotic statistics. If the dimension p is
fixed while the sample size n goes to infinity, standard
arguments can be used to show that (under mild reg-
ularity conditions) the random Hessian ∇2L(θ) con-
verges to ∇2L(θ) uniformly for all θ in an open neigh-
borhood of θ∗. In contrast, whenever the pair (n,p)

both increase in such a way that p > n, the situation
is drastically different: the Hessian matrix ∇2L(θ) is
often singular. As a concrete example, consider linear
regression based on samples Zi = (yi, xi) ∈ R × R

p ,
for i = 1,2, . . . , n. Using the least squares loss L(θ) =
1

2n
‖y − Xθ‖2

2, the p × p Hessian matrix ∇2L(θ) =
1
n
XT X has rank at most n, meaning that the loss cannot

be strongly convex when p > n. Consequently, it im-
possible to guarantee global strong convexity, so that
we need to restrict the set of directions � in which we
require a curvature condition.

Ultimately, the only direction of interest is given by
the error vector �̂ = θ̂λn − θ∗. Recall that Lemma 1
guarantees that, for suitable choices of the regulariza-
tion parameter λn, this error vector must belong to
the set C(M, M⊥; θ∗), as previously defined (17).
Consequently, it suffices to ensure that the function is
strongly convex over this set, as formalized in the fol-
lowing:

DEFINITION 2. The loss function satisfies a re-
stricted strong convexity (RSC) condition with curva-

ture κL > 0 and tolerance function τL if

δL
(
�,θ∗) ≥ κL‖�‖2 − τ 2

L
(
θ∗)

(19)
for all � ∈ C

(
M, M⊥; θ∗)

.

In the simplest of cases—in particular, when θ∗ ∈
M—there are many statistical models for which this
RSC condition holds with tolerance τL(θ∗) = 0. In the
more general setting, it can hold only with a nonzero
tolerance term, as illustrated in Figure 3(b). As our
proofs will clarify, we in fact require only the lower
bound (19) to hold for the intersection of C with a lo-
cal ball {‖�‖ ≤ R} of some radius centered at zero.
As will be clarified later, this restriction is not neces-
sary for the least squares loss, but is essential for more
general loss functions, such as those that arise in gen-
eralized linear models.

We will see in the sequel that for many loss func-
tions, it is possible to prove that with high probabil-
ity the first-order Taylor series error satisfies a lower
bound of the form

δL
(
�,θ∗) ≥ κ1‖�‖2 − κ2g(n,p)R2(�)

(20)
for all ‖�‖ ≤ 1,

where κ1, κ2 are positive constants and g(n,p) is a
function of the sample size n and ambient dimen-
sion p, decreasing in the sample size. For instance, in
the case of �1-regularization, for covariates with suit-
ably controlled tails, this type of bound holds for the
least squares loss with the function g(n,p) = logp

n
; see

equation (31) to follow. For generalized linear models
and the �1-norm, a similar type of bound is given in
equation (43). We also provide a bound of this form for
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FIG. 3. (a) Illustration of a generic loss function in the high-dimensional p > n setting: it is curved in certain directions, but completely flat
in others. (b) When θ∗ /∈ M, the set C(M, M⊥; θ∗) contains a ball centered at the origin, which necessitates a tolerance term τL(θ∗) > 0
in the definition of restricted strong convexity.

the least-squares loss group-structured norms in equa-
tion (46), with a different choice of the function g de-
pending on the group structure.

A bound of the form (20) implies a form of restricted
strong convexity as long as R(�) is not “too large”
relative to ‖�‖. In order to formalize this notion, we
define a quantity that relates the error norm and the
regularizer:

DEFINITION 3 (Subspace compatibility constant).
For any subspace M of R

p , the subspace compatibility
constant with respect to the pair (R,‖ · ‖) is given by

�(M) := sup
u∈M\{0}

R(u)

‖u‖ .(21)

This quantity reflects the degree of compatibility be-
tween the regularizer and the error norm over the sub-
space M. In alternative terms, it is the Lipschitz con-
stant of the regularizer with respect to the error norm,
restricted to the subspace M. As a simple example, if
M is a s-dimensional coordinate subspace, with regu-
larizer R(u) = ‖u‖1 and error norm ‖u‖ = ‖u‖2, then
we have �(M) = √

s.
This compatibility constant appears explicitly in the

bounds of our main theorem and also arises in estab-
lishing restricted strong convexity. Let us now illus-
trate how it can be used to show that the condition
(20) implies a form of restricted strong convexity. To
be concrete, let us suppose that θ∗ belongs to a sub-
space M; in this case, membership of � in the set
C(M, M⊥; θ∗) implies that R(�M̄⊥) ≤ 3R(�M̄).
Consequently, by the triangle inequality and the defi-

nition (21), we have

R(�) ≤ R(�M̄⊥) + R(�M̄) ≤ 4R(�M̄)

≤ 4�(M)‖�‖.
Therefore, whenever a bound of the form (20) holds
and θ∗ ∈ M, we are guaranteed that

δL
(
�,θ∗) ≥ {

κ1 − 16κ2�
2(M)g(n,p)

}‖�‖2

for all ‖�‖ ≤ 1.

Consequently, as long as the sample size is large
enough that 16κ2�

2(M)g(n,p) < κ1
2 , the restricted

strong convexity condition will hold with κL = κ1
2 and

τL(θ∗) = 0. We make use of arguments of this flavor
throughout this paper.

3. BOUNDS FOR GENERAL M-ESTIMATORS

We are now ready to state a general result that pro-
vides bounds and hence convergence rates for the er-
ror ‖θ̂λn − θ∗‖, where θ̂λn is any optimal solution of
the convex program (1). Although it may appear some-
what abstract at first sight, this result has a number
of concrete and useful consequences for specific mod-
els. In particular, we recover as an immediate corol-
lary the best known results about estimation in sparse
linear models with general designs [8, 46], as well as
a number of new results, including minimax-optimal
rates for estimation under �q -sparsity constraints and
estimation of block-structured sparse matrices. In re-
sults that we report elsewhere, we also apply these
theorems to establishing results for sparse general-
ized linear models [48], estimation of low-rank matri-
ces [51, 52], matrix decomposition problems [1] and
sparse nonparametric regression models [57].
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Let us recall our running assumptions on the struc-
ture of the convex program (1).

(G1) The regularizer R is a norm and is decom-
posable with respect to the subspace pair (M, M⊥),
where M ⊆ M.

(G2) The loss function L is convex and differen-
tiable, and satisfies restricted strong convexity with
curvature κL and tolerance τL.

The reader should also recall the definition (21) of the
subspace compatibility constant. With this notation, we
can now state the main result of this paper:

THEOREM 1 (Bounds for general models). Un-
der conditions (G1) and (G2), consider the problem
(1) based on a strictly positive regularization constant
λn ≥ 2R∗(∇L(θ∗)). Then any optimal solution θ̂λn to
the convex program (1) satisfies the bound

∥∥θ̂λn − θ∗∥∥2 ≤ 9
λn

2

κL2 �2(M)

(22)

+ λn

κL

{
2τ 2

L
(
θ∗) + 4R

(
θ∗

M⊥
)}

.

REMARKS. Let us consider in more detail some
different features of this result.

(a) It should be noted that Theorem 1 is actually a
deterministic statement about the set of optimizers of
the convex program (1) for a fixed choice of λn. Al-
though the program is convex, it need not be strictly
convex, so that the global optimum might be attained
at more than one point θ̂λn . The stated bound holds
for any of these optima. Probabilistic analysis is re-
quired when Theorem 1 is applied to particular statis-
tical models, and we need to verify that the regularizer
satisfies the condition

λn ≥ 2R∗(∇L
(
θ∗))

(23)

and that the loss satisfies the RSC condition. A chal-
lenge here is that since θ∗ is unknown, it is usually
impossible to compute the right-hand side of the con-
dition (23). Instead, when we derive consequences of
Theorem 1 for different statistical models, we use con-
centration inequalities in order to provide bounds that
hold with high probability over the data.

(b) Second, note that Theorem 1 actually provides a
family of bounds, one for each pair (M, M⊥) of sub-
spaces for which the regularizer is decomposable. Ig-
noring the term involving τL for the moment, for any
given pair, the error bound is the sum of two terms, cor-
responding to estimation error Eerr and approximation

error Eapp, given by, respectively,

Eerr := 9
λn

2

κL2 �2(M) and

(24)

Eapp := 4
λn

κL
R

(
θ∗

M⊥
)
.

As the dimension of the subspace M increases (so that
the dimension of M⊥ decreases), the approximation
error tends to zero. But since M ⊆ M, the estimation
error is increasing at the same time. Thus, in the usual
way, optimal rates are obtained by choosing M and M
so as to balance these two contributions to the error.
We illustrate such choices for various specific models
to follow.

(c) As will be clarified in the sequel, many high-
dimensional statistical models have an unidentifiable
component, and the tolerance term τL reflects the de-
gree of this nonidentifiability.

A large body of past work on sparse linear regres-
sion has focused on the case of exactly sparse regres-
sion models for which the unknown regression vec-
tor θ∗ is s-sparse. For this special case, recall from
Example 1 in Section 2.2 that we can define an s-
dimensional subspace M that contains θ∗. Conse-
quently, the associated set C(M, M⊥; θ∗) is a cone
[see Figure 1(a)], and it is thus possible to establish that
restricted strong convexity (RSC) holds with tolerance
parameter τL(θ∗) = 0. This same reasoning applies to
other statistical models, among them group-sparse re-
gression, in which a small subset of groups are active,
as well as low-rank matrix estimation. The following
corollary provides a simply stated bound that covers
all of these models:

COROLLARY 1. Suppose that, in addition to the
conditions of Theorem 1, the unknown θ∗ belongs to
M and the RSC condition holds over C(M, M, θ∗)
with τL(θ∗) = 0. Then any optimal solution θ̂λn to the
convex program (1) satisfies the bounds

∥∥θ̂λn − θ∗∥∥ ≤ 9
λn

2

κL
�2(M)(25a)

and

R
(
θ̂λn − θ∗) ≤ 12

λn

κL
�2(M).(25b)

Focusing first on the bound (25a), it consists of three
terms, each of which has a natural interpretation. First,
it is inversely proportional to the RSC constant κL,
so that higher curvature guarantees lower error, as is
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to be expected. The error bound grows proportion-
ally with the subspace compatibility constant �(M),
which measures the compatibility between the regu-
larizer R and error norm ‖ · ‖ over the subspace M
(see Definition 3). This term increases with the size of
subspace M, which contains the model subspace M.
Third, the bound also scales linearly with the regular-
ization parameter λn, which must be strictly positive
and satisfy the lower bound (23). The bound (25b) on
the error measured in the regularizer norm is similar,
except that it scales quadratically with the subspace
compatibility constant. As the proof clarifies, this addi-
tional dependence arises since the regularizer over the
subspace M is larger than the norm ‖ · ‖ by a factor of
at most �(M) (see Definition 3).

Obtaining concrete rates using Corollary 1 requires
some work in order to verify the conditions of Theo-
rem 1 and to provide control on the three quantities in
the bounds (25a) and (25b), as illustrated in the exam-
ples to follow.

4. CONVERGENCE RATES FOR SPARSE
REGRESSION

As an illustration, we begin with one of the simplest
statistical models, namely, the standard linear model. It
is based on n observations Zi = (xi, yi) ∈ R

p × R of
covariate-response pairs. Let y ∈ R

n denote a vector of
the responses, and let X ∈ R

n×p be the design matrix,
where xi ∈ R

p is the ith row. This pair is linked via the
linear model

y = Xθ∗ + w,(26)

where θ∗ ∈ R
p is the unknown regression vector and

w ∈ R
n is a noise vector. To begin, we focus on this

simple linear setup and describe extensions to general-
ized models in Section 4.4.

Given the data set Zn
1 = (y,X) ∈ R

n × R
n×p , our

goal is to obtain a “good” estimate θ̂ of the regres-
sion vector θ∗, assessed either in terms of its �2-error
‖θ̂ − θ∗‖2 or its �1-error ‖θ̂ − θ∗‖1. It is worth not-
ing that whenever p > n, the standard linear model
(26) is unidentifiable in a certain sense, since the rect-
angular matrix X ∈ R

n×p has a null space of dimen-
sion at least p − n. Consequently, in order to obtain
an identifiable model—or at the very least, to bound
the degree of nonidentifiability—it is essential to im-
pose additional constraints on the regression vector θ∗.
One natural constraint is some type of sparsity in the
regression vector; for instance, one might assume that
θ∗ has at most s nonzero coefficients, as discussed at

more length in Section 4.2. More generally, one might
assume that although θ∗ is not exactly sparse, it can
be well-approximated by a sparse vector, in which case
one might say that θ∗ is “weakly sparse,” “sparsifiable”
or “compressible.” Section 4.3 is devoted to a more de-
tailed discussion of this weakly sparse case.

A natural M-estimator for this problem is the Lasso
[19, 67], obtained by solving the �1-penalized quadratic
program

θ̂λn ∈ arg min
θ∈Rp

{
1

2n
‖y − Xθ‖2

2 + λn‖θ‖1

}
(27)

for some choice λn > 0 of regularization parameter.
Note that this Lasso estimator is a particular case of
the general M-estimator (1), based on the loss function
and regularization pair L(θ;Zn

1 ) = 1
2n

‖y − Xθ‖2
2 and

R(θ) = ∑p
j=1 |θj | = ‖θ‖1. We now show how Theo-

rem 1 can be specialized to obtain bounds on the error
θ̂λn − θ∗ for the Lasso estimate.

4.1 Restricted Eigenvalues for Sparse Linear
Regression

For the least squares loss function that underlies the
Lasso, the first-order Taylor series expansion from Def-
inition 2 is exact, so that

δL
(
�,θ∗) =

〈
�,

1

n
XT X�

〉
= 1

n
‖X�‖2

2.

Thus, in this special case, the Taylor series error is
independent of θ∗, a fact which allows for substan-
tial theoretical simplification. More precisely, in or-
der to establish restricted strong convexity, it suffices
to establish a lower bound on ‖X�‖2

2/n that holds
uniformly for an appropriately restricted subset of p-
dimensional vectors �.

As previously discussed in Example 1, for any subset
S ⊆ {1,2, . . . , p}, the �1-norm is decomposable with
respect to the subspace M(S) = {θ ∈ R

p | θSc = 0}
and its orthogonal complement. When the unknown re-
gression vector θ∗ ∈ R

p is exactly sparse, it is natural
to choose S equal to the support set of θ∗. By appropri-
ately specializing the definition (17) of C, we are led to
consider the cone

C(S) := {
� ∈ R

p | ‖�Sc‖1 ≤ 3‖�S‖1
}
.(28)

See Figure 1(a) for an illustration of this set in three di-
mensions. With this choice, restricted strong convexity
with respect to the �2-norm is equivalent to requiring
that the design matrix X satisfy the condition

‖Xθ‖2
2

n
≥ κL‖θ‖2

2 for all θ ∈ C(S).(29)
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This lower bound is a type of restricted eigenvalue
(RE) condition and has been studied in past work on
basis pursuit and the Lasso (e.g., [8, 46, 56, 72]). One
could also require that a related condition hold with re-
spect to the �1-norm—viz.

‖Xθ‖2
2

n
≥ κL

′ ‖θ‖2
1

|S| for all θ ∈ C(S).(30)

This type of �1-based RE condition is less restrictive
than the corresponding �2-version (29). We refer the
reader to the paper by van de Geer and Bühlmann [72]
for an extensive discussion of different types of re-
stricted eigenvalue or compatibility conditions.

It is natural to ask whether there are many matrices
that satisfy these types of RE conditions. If X has i.i.d.
entries following a sub-Gaussian distribution (includ-
ing Gaussian and Bernoulli variables as special cases),
then known results in random matrix theory imply that
the restricted isometry property [14] holds with high
probability, which in turn implies that the RE condi-
tion holds [8, 72]. Since statistical applications involve
design matrices with substantial dependency, it is nat-
ural to ask whether an RE condition also holds for
more general random designs. This question was ad-
dressed by Raskutti et al. [55, 56], who showed that
if the design matrix X ∈ Rn×p is formed by indepen-
dently sampling each row Xi ∼ N(0,�), referred to as
the �-Gaussian ensemble, then there are strictly posi-
tive constants (κ1, κ2), depending only on the positive
definite matrix �, such that

‖Xθ‖2
2

n
≥ κ1‖θ‖2

2 − κ2
logp

n
‖θ‖2

1
(31)

for all θ ∈ R
p

with probability greater than 1 − c1 exp(−c2n). The
bound (31) has an important consequence: it guaran-
tees that the RE property (29) holds4 with κL = κ1

2 > 0
as long as n > 64(κ2/κ1)s logp. Therefore, not only
do there exist matrices satisfying the RE property (29),
but any matrix sampled from a �-Gaussian ensemble
will satisfy it with high probability. Related analysis by
Rudelson and Zhou [65] extends these types of guaran-
tees to the case of sub-Gaussian designs, also allowing
for substantial dependencies among the covariates.

4To see this fact, note that for any θ ∈ C(S), we have
‖θ‖1 ≤ 4‖θS‖1 ≤ 4

√
s‖θS‖2. Given the lower bound (31),

for any θ ∈ C(S), we have the lower bound ‖Xθ‖2√
n

≥ {κ1 −
4κ2

√
s logp

n }‖θ‖2 ≥ κ1
2 ‖θ‖2, where final inequality follows as long

as n > 64(κ2/κ1)2s logp.

4.2 Lasso Estimates with Exact Sparsity

We now show how Corollary 1 can be used to derive
convergence rates for the error of the Lasso estimate
when the unknown regression vector θ∗ is s-sparse.
In order to state these results, we require some addi-
tional notation. Using Xj ∈ R

n to denote the j th col-
umn of X, we say that X is column-normalized if

‖Xj‖2√
n

≤ 1 for all j = 1,2, . . . , p.(32)

Here we have set the upper bound to one in order to
simplify notation. This particular choice entails no loss
of generality, since we can always rescale the linear
model appropriately (including the observation noise
variance) so that it holds.

In addition, we assume that the noise vector w ∈
R

n is zero-mean and has sub-Gaussian tails, meaning
that there is a constant σ > 0 such that for any fixed
‖v‖2 = 1,

P
[∣∣〈v,w〉∣∣ ≥ t

] ≤ 2 exp
(
− δ2

2σ 2

)
for all δ > 0.(33)

For instance, this condition holds when the noise vector
w has i.i.d. N(0,1) entries or consists of independent
bounded random variables. Under these conditions, we
recover as a corollary of Theorem 1 the following re-
sult:

COROLLARY 2. Consider an s-sparse instance of
the linear regression model (26) such that X satisfies
the RE condition (29) and the column normalization
condition (32). Given the Lasso program (27) with reg-

ularization parameter λn = 4σ

√
logp

n
, then with prob-

ability at least 1 − c1 exp(−c2nλn
2), any optimal solu-

tion θ̂λn satisfies the bounds

∥∥θ̂λn − θ∗∥∥2
2 ≤ 64σ 2

κL2

s logp

n
and

(34) ∥∥θ̂λn − θ∗∥∥
1 ≤ 24σ

κL
s

√
logp

n
.

Although error bounds of this form are known from
past work (e.g., [8, 14, 46]), our proof illuminates the
underlying structure that leads to the different terms in
the bound—in particular, see equations (25a) and (25b)
in the statement of Corollary 1.

PROOF OF COROLLARY 2. We first note that the
RE condition (30) implies that RSC holds with re-
spect to the subspace M(S). As discussed in Exam-
ple 1, the �1-norm is decomposable with respect to
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M(S) and its orthogonal complement, so that we may
set M(S) = M(S). Since any vector θ ∈ M(S) has
at most s nonzero entries, the subspace compatibility
constant is given by �(M(S)) = supθ∈M(S)\{0}

‖θ‖1‖θ‖2
=√

s.
The final step is to compute an appropriate choice

of the regularization parameter. The gradient of the
quadratic loss is given by ∇L(θ; (y,X)) = 1

n
XT w,

whereas the dual norm of the �1-norm is the �∞-norm.
Consequently, we need to specify a choice of λn > 0
such that

λn ≥ 2R∗(∇L
(
θ∗)) = 2

∥∥∥∥1

n
XT w

∥∥∥∥∞
with high probability. Using the column normalization
(32) and sub-Gaussian (33) conditions, for each j =
1, . . . , p, we have the tail bound P[|〈Xj,w〉/n| ≥ t] ≤
2 exp(− nt2

2σ 2 ). Consequently, by union bound, we con-

clude that P[‖XT w/n‖∞ ≥ t] ≤ 2 exp(− nt2

2σ 2 + logp).

Setting t2 = 4σ 2 logp
n

, we see that the choice of λn

given in the statement is valid with probability at least
1 − c1 exp(−c2nλn

2). Consequently, the claims (34)
follow from the bounds (25a) and (25b) in Corollary 1.

�
4.3 Lasso Estimates with Weakly Sparse Models

We now consider regression models for which θ∗ is
not exactly sparse, but rather can be approximated well
by a sparse vector. One way in which to formalize this
notion is by considering the �q “ball” of radius Rq ,
given by

Bq(Rq) :=
{
θ ∈ R

p
∣∣∣ p∑

i=1

|θi |q ≤ Rq

}
where q ∈ [0,1] is fixed.

In the special case q = 0, this set corresponds to an
exact sparsity constraint—that is, θ∗ ∈ B0(R0) if and
only if θ∗ has at most R0 nonzero entries. More gen-
erally, for q ∈ (0,1], the set Bq(Rq) enforces a certain
decay rate on the ordered absolute values of θ∗.

In the case of weakly sparse vectors, the constraint
set C takes the form

C
(

M, M; θ∗)
(35)

= {
� ∈ R

p | ‖�Sc‖1 ≤ 3‖�S‖1 + 4
∥∥θ∗

Sc

∥∥
1

}
.

In contrast to the case of exact sparsity, the set C is
no longer a cone, but rather contains a ball centered
at the origin—compare panels (a) and (b) of Figure 1.

As a consequence, it is never possible to ensure that
‖Xθ‖2/

√
n is uniformly bounded from below for all

vectors θ in the set (35), and so a strictly positive toler-
ance term τL(θ∗) > 0 is required. The random matrix
result (31), stated in the previous section, allows us to
establish a form of RSC that is appropriate for the set-
ting of �q -ball sparsity. We summarize our conclusions
in the following:

COROLLARY 3. Suppose that X satisfies the RE
condition (31) as well as the column normalization
condition (32), the noise w is sub-Gaussian (33) and
θ∗ belongs to Bq(Rq) for a radius Rq such that√

Rq(
logp

n
)1/2−q/4 ≤ 1. Then if we solve the Lasso

with regularization parameter λn = 4σ

√
logp

n
, there

are universal positive constants (c0, c1, c2) such that
any optimal solution θ̂λn satisfies

∥∥θ̂λn − θ∗∥∥2
2 ≤ c0Rq

(
σ 2

κ2
1

logp

n

)1−q/2

(36)

with probability at least 1 − c1 exp(−c2nλn
2).

REMARKS. Note that this corollary is a strict gen-
eralization of Corollary 2, to which it reduces when
q = 0. More generally, the parameter q ∈ [0,1] con-
trols the relative “sparsifiability” of θ∗, with larger val-
ues corresponding to lesser sparsity. Naturally then, the
rate slows down as q increases from 0 toward 1. In
fact, Raskutti et al. [56] show that the rates (36) are
minimax-optimal over the �q -balls—implying that not
only are the consequences of Theorem 1 sharp for the
Lasso, but, more generally, no algorithm can achieve
faster rates.

PROOF OF COROLLARY 3. Since the loss function
L is quadratic, the proof of Corollary 2 shows that the

stated choice λn = 4
√

σ 2 logp
n

is valid with probability

at least 1 − c exp(−c′nλn
2). Let us now show that the

RSC condition holds. We do so via condition (31) ap-
plied to equation (35). For a threshold η > 0 to be cho-
sen, define the thresholded subset

Sη := {
j ∈ {1,2, . . . , p} | ∣∣θ∗

j

∣∣ > η
}
.(37)

Now recall the subspaces M(Sη) and M⊥(Sη) previ-
ously defined in equations (5) and (6) of Example 1,
where we set S = Sη. The following lemma, proved in
the supplement [49], provides sufficient conditions for
restricted strong convexity with respect to these sub-
space pairs:
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LEMMA 2. Suppose that the conditions of
Corollary 3 hold and n > 9κ2|Sη| logp. Then
with the choice η = λn

κ1
, the RSC condition holds

over C(M(Sη), M⊥(Sη), θ
∗) with κL = κ1/4 and

τ 2
L = 8κ2

logp
n

‖θ∗
Sc

η
‖2

1.

Consequently, we may apply Theorem 1 with
κL = κ1/4 and τ 2

L(θ∗) = 8κ2
logp

n
‖θ∗

Sc
η
‖2

1 to conclude

that ∥∥θ̂λn − θ∗∥∥2
2

≤ 144
λn

2

κ2
1

|Sη|(38)

+ 4λn

κ1

{
16κ2

logp

n

∥∥θ∗
Sc

η

∥∥2
1 + 4

∥∥θ∗
Sc

η

∥∥
1

}
,

where we have used the fact that �2(Sη) = |Sη|, as
noted in the proof of Corollary 2.

It remains to upper bound the cardinality of Sη in
terms of the threshold η and �q -ball radius Rq . Note
that we have

Rq ≥
p∑

j=1

∣∣θ∗
j

∣∣q ≥ ∑
j∈Sη

∣∣θ∗
i

∣∣q ≥ ηq |Sη|,(39)

hence, |Sη| ≤ η−qRq for any η > 0. Next we upper
bound the approximation error ‖θ∗

Sc
η
‖1, using the fact

that θ∗ ∈ Bq(Rq). Letting Sc
η denote the complemen-

tary set Sη \ {1,2, . . . , p}, we have∥∥θ∗
Sc

η

∥∥
1 = ∑

j∈Sc
η

∣∣θ∗
j

∣∣ = ∑
j∈Sc

η

∣∣θ∗
j

∣∣q ∣∣θ∗
j

∣∣1−q

(40)
≤ Rqη

1−q .

Setting η = λn/κ1 and then substituting the bounds
(39) and (40) into the bound (38) yields

∥∥θ̂λn − θ∗∥∥2
2 ≤ 160

(
λn

2

κ2
1

)1−q/2

Rq

+ 64κ2

{(
λn

2

κ2
1

)1−q/2

Rq

}2 (logp)/n

λn/κ1
.

For any fixed noise variance, our choice of regulariza-
tion parameter ensures that the ratio (logp)/n

λn/κ1
is of order

one, so that the claim follows. �
4.4 Extensions to Generalized Linear Models

In this section we briefly outline extensions of the
preceding results to the family of generalized linear
models (GLM). Suppose that conditioned on a vector

x ∈ R
p of covariates, a response variable y ∈ Y has the

distribution

Pθ∗(y | x) ∝ exp
{
y〈θ∗, x〉 − �(〈θ∗, x〉)

c(σ )

}
.(41)

Here the quantity c(σ ) is a fixed and known scale
parameter, and the function � : R → R is the link
function, also known. The family (41) includes many
well-known classes of regression models as special
cases, including ordinary linear regression [obtained
with Y = R, �(t) = t2/2 and c(σ ) = σ 2] and logis-
tic regression [obtained with Y = {0,1}, c(σ ) = 1 and
�(t) = log(1 + exp(t))].

Given samples Zi = (xi, yi) ∈ R
p × Y , the goal is to

estimate the unknown vector θ∗ ∈ R
p . Under a sparsity

assumption on θ∗, a natural estimator is based on mini-
mizing the (negative) log likelihood, combined with an
�1-regularization term. This combination leads to the
convex program

θ̂λn ∈ arg min
θ∈Rp

{
1

n

n∑
i=1

{−yi〈θ, xi〉 + �
(〈θ, xi〉)}︸ ︷︷ ︸

L(θ;Zn
1 )

(42)

+ λn‖θ‖1

}
.

In order to extend the error bounds from the previ-
ous section, a key ingredient is to establish that this
GLM-based loss function satisfies a form of restricted
strong convexity. Along these lines, Negahban et al.
[48] proved the following result: suppose that the co-
variate vectors xi are zero-mean with covariance ma-
trix � � 0 and are drawn i.i.d. from a distribution with
sub-Gaussian tails [see equation (33)]. Then there are
constants κ1, κ2 such that the first-order Taylor series
error for the GLM-based loss (42) satisfies the lower
bound

δL
(
�,θ∗) ≥ κ1‖�‖2

2 − κ2
logp

n
‖�‖2

1
(43)

for all ‖�‖2 ≤ 1.

As discussed following Definition 2, this type of lower
bound implies that L satisfies a form of RSC, as long
as the sample size scales as n = �(s logp), where s

is the target sparsity. Consequently, this lower bound
(43) allows us to recover analogous bounds on the error
‖θ̂λn − θ∗‖2 of the GLM-based estimator (42).
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5. CONVERGENCE RATES FOR
GROUP-STRUCTURED NORMS

The preceding two sections addressed M-estimators
based on �1-regularization, the simplest type of decom-
posable regularizer. We now turn to some extensions of
our results to more complex regularizers that are also
decomposable. Various researchers have proposed ex-
tensions of the Lasso based on regularizers that have
more structure than the �1-norm (e.g., [5, 44, 70, 78,
80]). Such regularizers allow one to impose different
types of block-sparsity constraints, in which groups
of parameters are assumed to be active (or inactive)
simultaneously. These norms arise in the context of
multivariate regression, where the goal is to predict a
multivariate output in R

m on the basis of a set of p co-
variates. Here it is appropriate to assume that groups
of covariates are useful for predicting the different el-
ements of the m-dimensional output vector. We refer
the reader to the papers [5, 44, 70, 78, 80] for fur-
ther discussion of and motivation for the use of block-
structured norms.

Given a collection G = {G1, . . . ,GNG } of groups, re-
call from Example 2 in Section 2.2 the definition of
the group norm ‖ · ‖G,
α . In full generality, this group
norm is based on a weight vector 
α = (α1, . . . , αNG ) ∈
[2,∞]NG , one for each group. For simplicity, here we
consider the case when αt = α for all t = 1,2, . . . ,NG ,
and we use ‖ · ‖G,α to denote the associated group
norm. As a natural extension of the Lasso, we consider
the block Lasso estimator

θ̂ ∈ arg min
θ∈Rp

{
1

n
‖y − Xθ‖2

2 + λn‖θ‖G,
α
}
,(44)

where λn > 0 is a user-defined regularization parame-
ter. Different choices of the parameter α yield different
estimators, and in this section we consider the range
α ∈ [2,∞]. This range covers the two most commonly
applied choices, α = 2, often referred to as the group
Lasso, as well as the choice α = +∞.

5.1 Restricted Strong Convexity for Group Sparsity

As a parallel to our analysis of ordinary sparse re-
gression, our first step is to provide a condition suffi-
cient to guarantee restricted strong convexity for the
group-sparse setting. More specifically, we state the
natural extension of condition (31) to the block-sparse
setting and prove that it holds with high probability for
the class of �-Gaussian random designs. Recall from
Theorem 1 that the dual norm of the regularizer plays

a central role. As discussed previously, for the block-
(1, α)-regularizer, the associated dual norm is a block-
(∞, α∗) norm, where (α,α∗) are conjugate exponents
satisfying 1

α
+ 1

α∗ = 1.
Letting ε ∼ N(0, Ip×p) be a standard normal vec-

tor, we consider the following condition. Suppose that
there are strictly positive constants (κ1, κ2) such that,
for all � ∈ R

p , we have

‖X�‖2
2

n
≥ κ1‖�‖2

2 − κ2ρG
2(

α∗)‖�‖2
1,α,(45)

where ρG (α∗) := E[maxt=1,2,...,NG
‖εGt ‖α∗√

n
]. To under-

stand this condition, first consider the special case of
NG = p groups, each of size one, so that the group-
sparse norm reduces to the ordinary �1-norm, and its
dual is the �∞-norm. Using α = 2 for concreteness, we

have ρG (2) = E[‖ε‖∞]/√n ≤
√

3 logp
n

for all p ≥ 10,
using standard bounds on Gaussian maxima. There-
fore, condition (45) reduces to the earlier condition
(31) in this special case.

Let us consider a more general setting, say, with
α = 2 and NG groups each of size m, so that p = NG m.
For this choice of groups and norm, we have

ρG (2) = E

[
max

t=1,...,NG

‖εGt ‖2√
n

]
,

where each sub-vector wGt is a standard Gaussian
vector with m elements. Since E[‖εGt ‖2] ≤ √

m, tail

bounds for χ2-variates yield ρG (2) ≤
√

m
n

+
√

3 logNG
n

,
so that the condition (45) is equivalent to

‖X�‖2
2

n
≥ κ1‖�‖2

2

− κ2

[√
m

n
+

√
3 logNG

n

]2

‖�‖G,2
2(46)

for all � ∈ R
p.

Thus far, we have seen the form that condition (45)
takes for different choices of the groups and parame-
ter α. It is natural to ask whether there are any matrices
that satisfy the condition (45). As shown in the follow-
ing result, the answer is affirmative—more strongly,
almost every matrix satisfied from the �-Gaussian en-
semble will satisfy this condition with high proba-
bility. [Here we recall that for a nondegenerate co-
variance matrix, a random design matrix X ∈ R

n×p

is drawn from the �-Gaussian ensemble if each row
xi ∼ N(0,�), i.i.d. for i = 1,2, . . . , n.]
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PROPOSITION 1. For a design matrix X ∈ R
n×p

from the �-ensemble, there are constants (κ1, κ2) de-
pending only on � such that condition (45) holds with
probability greater than 1 − c1 exp(−c2n).

We provide the proof of this result in the supple-
ment [49]. This condition can be used to show that ap-
propriate forms of RSC hold, for both the cases of ex-
actly group-sparse and weakly sparse vectors. As with
�1-regularization, these RSC conditions are milder
than analogous group-based RIP conditions (e.g., [5,
27, 66]), which require that all submatrices up to a cer-
tain size are close to isometries.

5.2 Convergence Rates

Apart from RSC, we impose one additional condi-
tion on the design matrix. For a given group G of
size m, let us view the matrix XG ∈ R

n×m as an op-
erator from �m

α → �n
2 and define the associated oper-

ator norm |||XG|||α→2 := max‖θ‖α=1 ‖XGθ‖2. We then
require that

|||XGt |||α→2√
n

≤ 1 for all t = 1,2, . . . ,NG .(47)

Note that this is a natural generalization of the column
normalization condition (32), to which it reduces when
we have NG = p groups, each of size one. As before,
we may assume without loss of generality, rescaling X

and the noise as necessary, that condition (47) holds
with constant one. Finally, we define the maximum
group size m = maxt=1,...,NG |Gt |. With this notation,
we have the following novel result:

COROLLARY 4. Suppose that the noise w is sub-
Gaussian (33), and the design matrix X satisfies con-
dition (45) and the block normalization condition (47).
If we solve the group Lasso with

λn ≥ 2σ

{
m1−1/α

√
n

+
√

logNG
n

}
,(48)

then with probability at least 1 − 2/NG 2, for any group
subset SG ⊆ {1,2, . . . ,NG } with cardinality |SG | = sG ,
any optimal solution θ̂λn satisfies

∥∥θ̂λn − θ∗∥∥2
2 ≤ 4λn

2

κL2 sG + 4λn

κL

∑
t /∈SG

∥∥θ∗
Gt

∥∥
α.(49)

REMARKS. Since the result applies to any α ∈
[2,∞], we can observe how the choices of different
group-sparse norms affect the convergence rates. So
as to simplify this discussion, let us assume that the

groups are all of equal size m, so that p = mNG is the
ambient dimension of the problem.

Case α = 2: The case α = 2 corresponds to the
block (1,2) norm, and the resulting estimator is fre-
quently referred to as the group Lasso. For this case, we
can set the regularization parameter as λn = 2σ {

√
m
n

+√
logNG

n
}. If we assume, moreover, that θ∗ is exactly

group-sparse, say, supported on a group subset SG ⊆
{1,2, . . . ,NG } of cardinality sG , then the bound (49)
takes the form∥∥θ̂ − θ∗∥∥2

2 � sG m

n
+ sG logNG

n
.(50)

Similar bounds were derived in independent work by
Lounici et al. [39] and Huang and Zhang [27] for this
special case of exact block sparsity. The analysis here
shows how the different terms arise, in particular, via
the noise magnitude measured in the dual norm of the
block regularizer.

In the more general setting of weak block sparsity,
Corollary 4 yields a number of novel results. For in-
stance, for a given set of groups G , we can consider the
block sparse analog of the �q -“ball”—namely, the set

Bq(Rq; G,2) :=
{
θ ∈ R

p
∣∣∣ NG∑

t=1

‖θGt ‖q
2 ≤ Rq

}
.

In this case, if we optimize the choice of S in the bound
(49) so as to trade off the estimation and approximation
errors, then we obtain

∥∥θ̂ − θ∗∥∥2
2 � Rq

(
m

n
+ logNG

n

)1−q/2

,

which is a novel result. This result is a generalization
of our earlier Corollary 3, to which it reduces when we
have NG = p groups each of size m = 1.

Case α = +∞: Now consider the case of �1/�∞-
regularization, as suggested in past work [70]. In this
case, Corollary 4 implies that ‖θ̂ − θ∗‖2

2 � sm2

n
+

s logNG
n

. Similar to the case α = 2, this bound consists
of an estimation term and a search term. The estimation
term sm2

n
is larger by a factor of m, which corresponds

to the amount by which an �∞-ball in m dimensions is
larger than the corresponding �2-ball.

We provide the proof of Corollary 4 in the supple-
mentary appendix [49]. It is based on verifying the con-
ditions of Theorem 1: more precisely, we use Propo-
sition 1 in order to establish RSC, and we provide a
lemma that shows that the regularization choice (48) is
valid in the context of Theorem 1.
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6. DISCUSSION

In this paper we have presented a unified frame-
work for deriving error bounds and convergence rates
for a class of regularized M-estimators. The theory is
high-dimensional and nonasymptotic in nature, mean-
ing that it yields explicit bounds that hold with high
probability for finite sample sizes and reveals the de-
pendence on dimension and other structural parameters
of the model. Two properties of the M-estimator play
a central role in our framework. We isolated the no-
tion of a regularizer being decomposable with respect
to a pair of subspaces and showed how it constrains the
error vector—meaning the difference between any so-
lution and the nominal parameter—to lie within a very
specific set. This fact is significant, because it allows
for a fruitful notion of restricted strong convexity to be
developed for the loss function. Since the usual form of
strong convexity cannot hold under high-dimensional
scaling, this interaction between the decomposable reg-
ularizer and the loss function is essential.

Our main result (Theorem 1) provides a determin-
istic bound on the error for a broad class of regular-
ized M-estimators. By specializing this result to differ-
ent statistical models, we derived various explicit con-
vergence rates for different estimators, including some
known results and a range of novel results. We derived
convergence rates for sparse linear models, both under
exact and approximate sparsity assumptions, and these
results have been shown to be minimax optimal [56].
In the case of sparse group regularization, we estab-
lished a novel upper bound of the oracle type, with a
separation between the approximation and estimation
error terms. For matrix estimation, the framework de-
scribed here has been used to derive bounds on the
Frobenius error that are known to be minimax-optimal,
both for multitask regression and autoregressive esti-
mation [51], as well as the matrix completion prob-
lem [52]. In recent work [1], this framework has also
been applied to obtain minimax-optimal rates for noisy
matrix decomposition, which involves using a combi-
nation of the nuclear norm and elementwise �1-norm.
Finally, as shown in the paper [48], these results may be
applied to derive convergence rates for generalized lin-
ear models. Doing so requires leveraging that restricted
strong convexity can also be shown to hold for these
models, as stated in the bound (43).

There are a variety of interesting open questions as-
sociated with our work. In this paper, for simplicity of
exposition, we have specified the regularization param-
eter in terms of the dual norm R∗ of the regularizer.

In many cases, this choice leads to optimal conver-
gence rates, including linear regression over �q -balls
(Corollary 3) for sufficiently small radii, and various
instances of low-rank matrix regression. In other cases,
some refinements of our convergence rates are possi-
ble; for instance, for the special case of linear sparsity
regression (i.e., an exactly sparse vector, with a con-
stant fraction of nonzero elements), our rates can be
sharpened by a more careful analysis of the noise term,
which allows for a slightly smaller choice of the reg-
ularization parameter. Similarly, there are other non-
parametric settings in which a more delicate choice of
the regularization parameter is required [34, 57]. Last,
we suspect that there are many other statistical mod-
els, not discussed in this paper, for which this frame-
work can yield useful results. Some examples include
different types of hierarchical regularizers and/or over-
lapping group regularizers [28, 29], as well as meth-
ods using combinations of decomposable regularizers,
such as the fused Lasso [68].
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