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Abstract: The Gaussian Graphical Model (GGM) is a popular tool for
incorporating sparsity into joint multivariate distributions. The G-Wishart
distribution, a conjugate prior for precision matrices satisfying general
GGM constraints, has now been in existence for over a decade. However,
due to the lack of a direct sampler, its use has been limited in hierarchical
Bayesian contexts, relegating mixing over the class of GGMs mostly to situ-
ations involving standard Gaussian likelihoods. Recent work has developed
methods that couple model and parameter moves, first through reversible
jump methods and later by direct evaluation of conditional Bayes factors
and subsequent resampling. Further, methods for avoiding prior normal-
izing constant calculations–a serious bottleneck and source of numerical
instability–have been proposed. We review and clarify these developments
and then propose a new methodology for GGM comparison that blends
many recent themes. Theoretical developments and computational timing
experiments reveal an algorithm that has limited computational demands
and dramatically improves on computing times of existing methods. We
conclude by developing a parsimonious multivariate stochastic volatility
model that embeds GGM uncertainty in a larger hierarchical framework.
The method is shown to be capable of adapting to swings in market volatil-
ity, offering improved calibration of predictive distributions.
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1. Introduction

The Gaussian graphical model (GGM) has received widespread consideration
(see Jones et al., 2005) and estimators obeying graphical constraints in stan-
dard Gaussian sampling were proposed as early as Dempster (1972). Initial
incorporation of GGMs in Bayesian estimation has largely focused on decom-
posable graphs (Dawid and Lauritzen, 1993), since prior distributions factorize
into products of Wishart distributions. Roverato (2002) proposes a generalized
extension of the Hyper-Inverse Wishart distribution for covariance matrices Σ
over arbitrary graphs. Atay-Kayis and Massam (2005) turn this into a prior
specified for precision matrices K and outline a Monte Carlo (MC) method
that enables pairwise model comparisons. Following Letac and Massam (2007)
and Rajaratnam et al. (2008), Lenkoski and Dobra (2011) term this distribu-
tion the G-Wishart, and propose computational improvements to direct model
comparison and model search.

A number of samplers for precision matrices under a G-Wishart distribution
have been proposed. These involve either block Gibbs sampling (Piccioni, 2000),
Metropolis-Hastings (MH) moves (Mitsakakis et al., 2011; Dobra and Lenkoski,
2011; Dobra et al., 2011), or rejection sampling (Wang and Carvalho, 2010). Do-
bra et al. (2011) show that the rejection sampler of Wang and Carvalho (2010)
suffers from extremely low acceptance probabilities in even moderate dimen-
sions. Wang and Li (2012) conclusively show that block Gibbs sampling is both
computationally more efficient and exhibits considerably less autocorrelation
than the MH methods.

The block Gibbs sampler provides a Markov chain Monte Carlo (MCMC)
sample. When the likelihood assumes standard Gaussian sampling, determin-
ing posterior expectations of K can technically be performed as in Lenkoski
and Dobra (2011), whereby model probabilities are first directly assessed via
stochastic search, and model averaged samples are then collected using block
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Gibbs over each model. However, when the GGM is specified over latent data
in a hierarchical Bayesian framework, such an approach is no longer valid. This
is due to the use of the matrix K in updating other hyperparameters as well as
its involvement in updating the latent Gaussian factors.

Dobra and Lenkoski (2011) propose a reversible jump MCMC (which for
brevity we refer to as RJ) method (Green, 1995) that simultaneously updates
the GGM and its associatedK, and embed the GGM in a semiparametric Gaus-
sian copula. Dobra et al. (2011) expand the RJ algorithm and show how GGMs
may be used to model dependent random effects in a generalized linear model
context, focusing on lattice data. Wang and Li (2012) utilize conditional prop-
erties of G-Wishart variates that enables model moves through calculation of
a conditional Bayes factor (CBF) (Dickey and Gunel, 1978) and subsequently
update K through direct Gibbs sampling. Wang and Li (2012) also explore the
use of a double MH algorithm (Liang, 2010) to avoid the computationally ex-
pensive and numerically unstable MC approximation of normalizing constants
proposed by Atay-Kayis and Massam (2005).

We continue this departure from RJ and investigate an alternative method for
simultaneously updating the GGM and associated K in hierarchical Bayesian
settings. Our method is built on the framework outlined in Wang and Li (2012),
but uses an alternative representation of the CBF with considerably less com-
putational cost.

Simulation experiments compare our new algorithm to the algorithm of Wang
and Li (2012) (which we refer to as WL). Both methods perform equally well at
determining posterior distributions. However, we show that while the WL ap-
proach is theoretically appealing, it suffers significant computational overhead
on account of many matrix inversions. By contrast, our new approach exhibits a
dramatic improvement in computation time. Further links made to recent work
in Gaussian Markov random fields (Rue, 2001) allow for additional improvement.

We conclude with an example of how GGMs may be embedded in hierarchical
Bayesian models. GGMs have been shown to yield parsimonious joint distribu-
tions useful in financial applications (Carvalho and West, 2007; Rodriguez et al.,
2011; Wang et al., 2011) and we develop a multivariate analogue of a common
stochastic volatility model (Jacquier et al., 1994) that embeds GGM uncertainty.
Our proposal differs from the dynamic linear model context in that we model
an exponential term that represents market volatility. This latent Gaussian fac-
tor requires a strategy for hierarchically estimating the GGM and associated
precision term, which are used to subsequently update the volatility process.
We show that our method is able to obtain sharper posterior distributions than
a commonly employed alternative and remains robust throughout the financial
crash associated with the collapse of Lehman Brothers.

The article is organized as follows. In Section 2 we review the G-Wishart dis-
tribution, establish results necessary for CBF calculations and describe the block
Gibbs sampler. Section 3 conducts two simulation studies showing the compu-
tational advantage gained by our new algorithm. In Section 4 we describe our
multivariate graphical stochastic volatility model and give results over the data
mentioned above. We conclude in Section 5.
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2. The G-Wishart distribution

2.1. Review of basic G-Wishart properties

Suppose that we collect data D = {Z(1), . . . ,Z(n)} such that Z(j) ∼ Np(0,K
−1)

independently for j ∈ {1, . . . , n}, whereK ∈ P, the space of p×p positive definite
matrices. This sample has likelihood

pr(D|K) = (2π)−np/2|K|n/2 exp

(

−
1

2
〈K,U〉

)

,

where 〈A,B〉 = tr(A′B) denotes the trace inner product andU =
∑n

i=1 Z
(i)Z(i)′ .

Further suppose that G = (V,E) is a GGM where V = {1, . . . , p} and
E ⊂ V ×V . We will slightly abuse notation throughout, by writing (i, j) ∈ G to
indicate that the edge (i, j) is in the edge set E. Associated with G is a subspace
PG ⊂ P such that K ∈ PG implies that K ∈ P and Kij = 0 whenever (i, j) 6∈ G.
The G-Wishart distribution (Roverato, 2002; Atay-Kayis and Massam, 2005)
WG(δ,D) assigns prior probability to K ∈ PG as

pr(K|δ,D, G) =
1

IG(δ,D)
|K|(δ−2)/2

(

−
1

2
〈K,D〉

)

1K∈PG
.

The normalizing constant IG is in general not known to have an explicit form,
and Atay-Kayis and Massam (2005) propose an MC approximation for this
factor. Furthermore, the G-Wishart is conjugate and thus pr(K|D, G) = WG(δ+
n,D∗) where D∗ = D +U .

Let Φ be the upper triangular matrix such that Φ′Φ = K, the Cholesky
decomposition. Rue (2001) notes that we may associate with G another graph
F , called the fill-in graph, such that G ⊂ F , Φij = 0 when (i, j) /∈ F and

Φij = −
1

Φii

i−1
∑

l=1

ΦliΦlj (1)

when i < j and (i, j) ∈ F \ G. Rue (2001) outlines a straightforward method
for constructing a graph F from G, which is referred to as a symbolic Cholesky
factorization. As noted by Rue (2001), use of node reordering software, which
aims to reduce F \ G, can lead to additional reduction in computing time. In
what follows, we use the C library AMD (Amestoy et al., 2004) to perform symbolic
Cholesky factorizations and node reorderings.

Roverato (2002) shows that if K ∼ WG(δ,D) then

pr(Φ|δ,D, G) ∝

p
∏

i=1

Φ
δ+νG

i −1
ii exp

(

−
1

2
〈Φ′Φ,D〉

)

, (2)

where νGi is the number of nodes in {i+ 1, . . . , p} that are connected to node i
in G.
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Dobra et al. (2011) and Wang and Li (2012) contain detailed reviews of the
many methods that have been proposed for sampling WG(δ,D) variates. We
briefly outline the block Gibbs sampler, originally discussed by Piccioni (2000).
Let C denote the cliques of G. In the following, we consider a clique to be a
maximally complete subgraph, though Wang and Li (2012) note that this can
be relaxed to any complete subgraph. Piccioni (2000) shows that for any C ∈ C,

KC −KC,V \CK
−1
V \CKV \C,C ∼ W(δ,DC), (3)

where W denotes a standard Wishart variate. The expression (3) thereby gives
the full conditionals of WG(δ,D). The block Gibbs sampler thus cycles through
C, updating each component using (3). Wang and Li (2012) convincingly show
that for posterior inference of WG(δ + n,D∗) the block Gibbs sampler out-
performs all other proposed methods, both in terms of computing time and
mixing. The authors also provide a useful review of the algorithm and indicate
its broad flexibility. Throughout, we use the block Gibbs sampler for updating
the matrix K.

2.2. Conditional Bayes factors

Prior to Wang and Li (2012), model moves between two graphsG andG′ focused
on approximating the ratio

pr(G|D)

pr(G′|D)
=

pr(D|G)

pr(D|G′)
×

pr(G)

pr(G′)
, (4)

first through MC (Atay-Kayis and Massam, 2005; Jones et al., 2005), then a
combination of MC and Laplace approximation (Lenkoski and Dobra, 2011)
and ultimately through RJ (Dobra and Lenkoski, 2011; Dobra et al., 2011).

Suppose that G ⊂ G′ which differ only by the edge e = (i, j) ∈ G′ and that
K ∈ PG. Let K−e = K \ {Kij,Kji,Kjj}. In lieu of (4), Wang and Li (2012)
consider ratios of the form

pr(G|K−e,D)

pr(G′|K−e,D)
=

pr(D,K−e|G)

pr(D,K−e|G′)
×

pr(G)

pr(G′)
(5)

which are related to the conditional Bayes factors (CBFs) of Dickey and Gunel
(1978).

Using properties related to the form (3) Wang and Li (2012) show that

pr(D,K−e|G)

pr(D,K−e|G′)
= H(δ + n, e,K−e,D∗)

IG(δ,D)

IG′(δ,D)
(6)

where, in general

H(d, e,K−e,S) =
I(d, Sjj)

J(d,See, A11)

(

|K0
V \j |

|K1
V \e|

)(d−2)/2

exp

(

−
1

2
〈S,K0 −K1〉

)
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where I(b, c) = c−b/22b/2Γ(b/2),

J(h,B, b) =

(

2π

B22

)1/2

b
(h−1)

2 I(h,B22) exp

(

−
b

2

[

B11 −
B2

12

B22

])

,

such that A = Kee−Ke,V \eK
−1
V \eKV \e,e. The matrix K0 is equal to K except

that K0
jj = Kj,V \jK

−1
V \jKV \j,j and K0

ij = K0
ji = 0. Finally, the matrix K1 is

equal to K except that K1
e = Ke,V \eK

−1
V \eKV \e,e.

By using the CBF in (6), Wang and Li (2012) propose model moves that do
not rely on RJ methods, and after assessing which graph to move to, the param-
eter Kjj , as well as Kij if e is in the accepted graph, are resampled according
to their conditional distributions given K−e. This method is appealing, as it
offers an automatic manner of moving between graphs and does not rely on the
tuning parameters used in the RJ methods of Dobra and Lenkoski (2011) and
Dobra et al. (2011).

While the result has significant theoretical appeal we show that computation
of the factor H(δ + n, e,K−e,D∗) is extremely costly, even in low dimensions.
This is due to the formation of the matrices K0 and K1, which require the
solution of systems involving large matrices, in particular, KV \j and KV \e.

Suppose now that G and G′ differ only by the edge f = (p− 1, p) again with
G ⊂ G′. We consider the CBF

pr(D,Φ−f |G′)

pr(D,Φ−f |G)
,

where Φ−f = Φ \ {Φp−1,p,Φpp}. In Appendix A we show that

pr(D|Φ−f , G′)

pr(D|Φ−f , G)
= N(Φ−f ,D∗)

IG(δ,D)

IG′(δ,D)
, (7)

with, in general

N(Φ−f ,S) = Φp−1,p−1

(

2π

Spp

)1/2

exp

(

1

2
Spp(φ0 − µ)2

)

where µ = Φp−1,p−1Sp−1,p/Spp, and φ0 = −Φ−1
p−1,p−1

∑p−2
l=1 Φlp−1Φlp.

This result originally appeared in an early version of Wang and Li (2012). In
order to update a general edge e, we propose determining a permutation ς of
V such that the nodes of V \ e are reordered to reduce the fill-in of the graph
GV \e and finally, the edge e is placed in the (p− 1, p) position. Equation (7) is
then calculated after permuting K and D∗ according to ς .

The benefit of this method is the reduced computational overhead required
to compute (7). The method requires merely relabeling the matrices K and D∗

and determining the Cholesky decomposition of the permuted version of K.
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2.3. Avoiding normalizing constant calculation

Both (6) and (7) require determination of the prior normalizing constants IG
and IG′ . While the MC method of Atay-Kayis and Massam (2005) enables these
factors to be approximated, the routine can be subject to numerical instability
(Lenkoski and Dobra, 2011; Wang and Li, 2012) and involves significant com-
putational effort.

Wang and Li (2012) propose a method for avoiding the use of the MC ap-
proximation for prior normalizing constants. Their method employs the double
MH algorithm of Liang (2010), which is an extension of the exchange algorithm
developed by Murray et al. (2006).

We briefly review the implementation of the double MH algorithm in Wang
and Li (2012). Suppose that (K, G) is the current state of the MCMC chain
and we propose to move to G′ by adding the edge e to G. The double MH al-
gorithm then forms a copy K̃ of K, resamples K̃ij and K̃jj according to G′. It

then updates K̃ via block Gibbs according to WG′(δ,D). Equation (6) is then
replaced with

H(δ + n, e,K−e,D∗)

H(δ, e, K̃
−e

,D)
(8)

We see that the expression (8) has replaced the prior normalizing constants with
an evaluation of H in the prior, evaluated at K̃ (see Murray et al., 2006; Liang,
2010, for theoretical justifications of this procedure). This is clearly beneficial,
as it avoids the need for involved MC approximation.

We follow this procedure with our revised version of the CBF calculation.
Again suppose that (K, G) is the current state and we propose to move to G′

by adding the edge f = (p − 1, p). We first determine Φ from K. We also run
an iteration of the block Gibbs sampler relative to WG′(δ,D) starting from
K, with the cliques of G ordered in such a manner that the Kf subblock is

updated first. We then extract the matrix Φ̃ from this update. Equation (7) is
then replaced with

N(Φ−f ,D∗)

N(Φ̃
−f

,D)
(9)

The expression (9) requires less computation than (8) as only Cholesky de-
compositions are used.

2.4. Algorithms for full posterior determination

In this section we outline the two algorithms we will consider for full posterior de-
termination. Both algorithms create a sequence {(K[1], G[1]), . . . , (K[S], G[S])}

where K[s] ∈ PG[s] . Given the current state (K[s], G[s]) the WL algorithm pro-
ceeds as follows

0. Set K = K [s] and G = G[s]
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1. For each edge e, do:

a. if e /∈ G attempt to update G to G′ = G ∪ e with probability

q(G′|K−e,D)

q(G|K−e,D)
=

pr(G′)H(δ + n, e,K−e, D∗)

pr(G)

if e ∈ G the ratio is flipped. If G is not to be updated, skip to step c.

b. If attempting to update G to G′, sample K̃ as discussed in Section 2.3
and calculate

α = min{1, H−1(δ, e, K̃,D)}

if e ∈ G′, otherwise calculate

α = min{1, H(δ, e, K̃,D)}

and with probability α set G = G′, otherwise leave it unchanged.

c. Resample Kij ,Kjj according to G.

After attempting to update each edge, set G[s+1] = G.
2. Resample K[s+1] using the block Gibbs sampler relative to G[s+1] and the

current state of K.

We see that in one iteration of the WL algorithm, each edge is potentially
updated in the graph. Our new algorithm (which we call CL) also follows this
idea, and proceeds as follows

0. Set K = K[s] and G = G[s]

1. For each edge e, do:

a. Randomly selection a permutation ς of Vp, which places the edge e
in the (p − 1, p) = f position, and likewise permute K, G, D and
D∗. Let Gς denote the permuted version of G and Φ be the Cholesky
decomposition of the permuted version of K. If f /∈ Gς attempt to
update Gς to G′ = Gς ∪ f with probability

q(G′|Φ−f ,D)

q(Gς |Φ−f ,D)
=

pr(G′)N(Φ−f , D∗)

pr(Gς)

if f ∈ Gς the ratio is flipped. If Gς is not to be updated then, skip
to step c.

b. If attempting to update Gς to G′, run the block Gibbs sampler over
the permuted K relative to WG′(δ,D) and form Φ̃−f . Then calculate

α = min{1, N−1(Φ̃
−f

,D)}

if f ∈ G′, otherwise calculate

α = min{1, N(Φ̃
−f

,D)}

and with probability α set Gς = G′, otherwise leave it unchanged.
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c. Resample Φp−1,p,Φpp according to Gς . Then reform K and G by
unpermuting the system.

After attempting to update each edge, set G[s+1] = G.
2. Resample K [s+1] using the block Gibbs sampler relative to G[s+1] and the

current state of K.

As we can see, there is somewhat more bookkeeping involved in the implementa-
tion of the CL algorithm, as the system is constantly being permuted. However,
the reduction in computation time by the use of expression (9) and requiring

only the calculation of the factors N(Φ−f ,D∗) and N(Φ̃
−f

,D) is considerable,
as we show below.

3. Simulation study

In this section we conduct two simulation studies. The first shows, in a relatively
small example, that both the WL and CL algorithms yield correct answers, how-
ever the CL algorithm takes less computing time. The second example shows
how these approaches scale with dimension, both for sparse and dense true un-
derlying graphs.

3.1. First simulation study

We conduct a simulation study that compares the method we have developed
to the WL algorithm. Our example comes directly from Wang and Li (2012).
We consider a situation in which p = 6 and let U = Y Y ′ = nA−1 where
n = 18 and Aii = 1 for i = 1, . . . , 6;Ai,i+1 = Ai+1,i = .5 for i = 1, . . . , 5 and
A16 = A61 = .4. We finally assume the prior K ∼ WG(3, I6). Using exhaustive
MC approximation of the entire graph space, Wang and Li (2012) show that
the posterior probability of each edge is

(pij |A) =

















1 0.969 0.106 0.085 0.113 0.85
0.969 1 0.98 0.098 0.081 0.115
0.106 0.98 1 0.982 0.0098 0.086
0.085 0.098 0.982 1 0.98 0.106
0.113 0.081 0.098 0.98 1 0.97
0.85 0.115 0.086 0.106 0.97 1

















We use this example and compare the CL algorithm to the WL algorithm.
We run two different versions of the CL algorithm: CL simple is a straightfor-
ward implementation that does not reorder nodes when computing Cholesky
decompositions, beyond moving the edge to be updated to the end of the graph,
nor does this compute the fill-in graph F , and therefore relies only on the full
Cholesky decomposition. CL Fill-in, does compute node reorderings and the fill-
in graph F and uses this as guidance when computing Cholesky factorizations.
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Table 1

Comparison of CL and WL algorithms for the six dimensional example

Time (sec) MSE
Mean SD Mean SD

CL Simple 200.5 (5.1) 0.0088 (6e-04)
CL Fill-in 202.1 (5.2) 0.0088 (6e-04)
WL 818.4 (19.2) 0.0349 (0.0025)

Following Wang and Li (2012) we run both the WL and the two CL algo-
rithms as described in Section 2.4 for 60, 000 iterations and discard the first
10, 000 iterations as burn-in. All algorithms were implemented in R, though C++

was used for block-Gibbs updates. The C library AMD of Amestoy et al. (2004)
is called (from R) to perform reorderings.

We record the total computing time and looked at the mean squared errors
of the posterior inclusion probabilities from these runs compared with the true
values given above. We repeated the entire process 100 times, each time start-
ing both WL and CL from the same random starting point. Table 1 shows the
average computing time in seconds (on a 2.8 GHz desktop computer with 4GB
of RAM running Linux), average MSE and standard deviations across the 100
runs. The first column shows the expected result: even in six dimensions the
WL algorithm takes more than 4 times as long to perform the same number
of iterations as the CL algorithms. This shows the improved efficiency of the
proposed method. Furthermore, we actually see that in this low dimensional
example, the additional work put into forming sparse Cholesky decompositions
is largely unhelpful. Indeed, computing times are slightly higher, due to the
overhead involved in using these additional routines.

We found the results in the third column surprising, but do not draw broad
conclusions from it. It appears that in this example, using 60, 000 iterations, the
CL algorithm approaches the true posterior edge expectation more quickly than
the WL algorithm. Since both algorithms are correct theoretically, we choose
not to emphasize this result. Furthermore, we have determined that by doubling
the number of iterations, both approaches yield essentially the exact posterior
distribution, though again the WL algorithm takes almost 4 times as long to run.

This example was chosen as it appears in Wang and Li (2012) and has an
exact answer. The fact that the CL algorithms are faster than the WL approach
even in 6-dimensions indicates the broader appeal for searching truly high di-
mensional spaces.

3.2. Second simulation study

This study is conducted to determine how the computing time for the CL and
WL algorithms scales as dimension increases. To do this, we consider the fol-
lowing framework. For a fixed dimension p, we first sample a graph G where
the probability of an edge being in the graph is a given θ. We then form a
matrix Φii = 1/i for i ∈ {1, . . . , p} and Φij = −0.5 for those (i, j) ∈ G, i < j.
The matrix Φ is then completed so that K = Φ′Φ ∈ PG. We finally sample
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Fig 1. Timing comparison of WL algorithm (solid line), CL simple (dashed line) and CL
fill-in (dotted line) for varying degrees of sparsity.

D = {Z(1), . . . ,Z(3p)} independently from a Np(0,K
−1). The WL and the two

CL algorithms are then run for 50, 000 iterations using these data.
We consider three scenarios, when θ = .05 (Sparse), θ = .5 (Medium) and

θ = .9 (Dense) and consider p in 5 unit increments from 10 to 150. For each set-
ting of p and θ, the process is repeated 25 times. Computation was performed in
parallel on a 400 core server with 3.2 gHz Xeon chips and 96 GB of RAM, run-
ning Linux. The entire experiment took two weeks to conduct. Figure 1 shows
the average computing time (in seconds) per iteration of the WL and the two
CL algorithms under these settings.

The key feature of these results is that the WL appears to be consistently
4 times as slow as the CL alternatives. It seems reasonable to have a linear
improvement, as all algorithms should technically be O(p3) in computational
complexity. The difference is therefore largely the additional work involved in
computing the CBF in the WL setting.

Further, for dense graphs, there is no discernable difference between the dif-
ferent CL algorithms. However, in the Medium and Sparse cases, we begin to
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see the more involved CL algorithm contributing some additional improvement
over the CL full algorithm. Indeed, in 150 dimensions, in the sparse graphs case,
the CL full method is twice as fast as the CL simple.

The main purpose of this section is to highlight that the CBF calculation in-
volved in the CL algorithm yields the majority of computational improvement
over the WL algorithm and that this improvement holds as dimension increases
and regardless of graph density. Further, when the graphs under consideration
are very sparse, use of the fill-in graph F and node reordering software offer ad-
ditional increase in performance, while the computational overhead is negligible
when the graph is dense.

While the overall trends are the same in the three density scenarios, we note
that that the per-iteration computing time is longest in the Medium density
case. This is because of the block Gibbs sampler which operates on the cliques
C of the graph. Medium sized graphs tend to have more cliques than dense or
sparse graphs. Since this feature is shared by both the WL and CL algorithms,
it does not affect their relative performance.

4. A multivariate graphical stochastic volatility model

Modeling the joint distribution of returns for a large number of assets is an
important component of portfolio allocation and risk management. Carvalho
and West (2007), Rodriguez et al. (2011) and Wang et al. (2011) all show that
the use of GGMs can substantially improve modeling of joint asset returns. In
each of these studies heterogeneity in asset returns was addressed either through
the use of dynamic linear models with variance discounting (Carvalho and West,
2007; Wang et al., 2011) or infinite hidden Markov models (Rodriguez et al.,
2011).

We consider an alternative approach, that models market volatility in a man-
ner analogous to the stochastic volatility models discussed in Jacquier et al.
(1994) which jointly determines the general graphical model along with all other
parameters.

4.1. The stochastic volatility model

Let Y t be the log-returns of p correlated assets. We specify the following hier-
archical model for these returns:

Y t|K, Xt ∼ Np

(

0, [exp(Xt)K]
−1
)

(10)

Xt|α, φ,Xt−1 ∼ N (α + φXt−1, 1)

X1 = 0

(α φ)′ ∼ N2(0, I2)1φ∈(−1,1)

K|G ∼ WG(3, Ip)

pr(G) ∝ 1.
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In the likelihood (10) we see that asset returns are assumed to be mean-zero.
Such an assumption is common in the absence of a detailed forecasting model.
The Xt terms then dictate an overall level of market volatility, while a constant
precision parameter K dictates the degree to which asset returns are correlated.

While this model is parsimonious, it serves as a useful first departure from
previous studies as it explicitly incorporates notions of stochastic volatility and
can be seen as a multivariate extension of the models outlined in Jacquier et al.
(1994) and elsewhere. For purposes of model identification, we set X1 = 0 as
well as assume that the variance of the Xt is equal to 1. In the conclusions
section we discuss further possible generalizations to this framework.

After collecting a time-series of returns Y (1:T ), we then aim to determine the
posterior distribution

pr(K, G, α, φ,X |Y (1:T ))

where X = (X1, . . . , XT ). Furthermore, we may be interested in the posterior

predictive distribution pr(Y (T+1)|Y (1:T )). The full detail of our MCMC algo-
rithm is outlined in Appendix B, but largely follows the guidelines discussed in
Rue and Held (2005). The posterior predictive distribution of Y (T+1) is easily
formed from these parameters. However, we note in particular that

K|G,X ,Y (1:T ) ∼ WG

(

δ + T,D +

T
∑

t=1

exp(Xt)Y
(t)Y (t)′

)

. (11)

From (11) we see why the developments in Section 2 prove useful. We may up-
date K and G jointly using the CL algorithm discussed in Section 2.4 simply

by setting D∗ = D +
∑T

t=1 exp(Xt)Y
(t)Y (t)′ . This allows us to easily embed a

sparse precision matrix K and mix over the class of GGMs in any hierarchical
Bayesian model that involves a standard Wishart distribution.

In what follows we will compare our methodology to an alternative, discussed
in Carvalho and West (2007) and extended using our methodology. The vari-

ance discounting approach assumes that for the log-returns Y (t+1) the following
evolution model holds

Y (t+1) ∼ Np(0,K
−1
t+1)

Kt+1 ∼ WG(ϑδt, ϑDt),

where,

δt = ϑδt−1 + 1

Dt = ϑDt−1 + Y tY
′
t

for 0 << ϑ < 1 with δ0 = 3 and D0 = Ip. We use this framework and mix over
the graph space, the details of which are provided in Appendix C.

The variance discounting model falls into the category of dynamic linear
models (West and Harrison, 1997) and works by rapidly discounting previous
observations, thereby adapting quickly to swings in market behavior.
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Fig 2. Mean of the squared returns taken over all 20 stocks during the entire time period
from October 31, 2001 to October 23, 2009.

4.2. Description of data

To apply our model and algorithm we randomly chose 20 stocks from the S&P
500. Similar to the analysis of Wang et al. (2011) the stock were chosen at ran-
dom to reduce the possibility of sampling bias in our results. These stocks were:
Aetna Inc. (AET), CA Inc. (CA), Campbell Soup (CPB), CVS Caremark Corp.
(CVS), Family Dollar Stores (FDO), Honeywell Int’l Inc. (HON), Hudson City
Bancorp (HCBK), JDS Uniphase Corp. (JDSU), Johnson Controls (JCI), Mor-
gan Stanley (MS), PPG Industries (PPG), Principal Financial Group (PFG),
Sara Lee Corp. (SLE), Sempra Energy (SRE), Southern Co. (SO), Supervalu
Inc. (SVU), Thermo Fisher Scientific (TMO), Wal-Mart Stores (WMT), Walt
Disney Co. (DIS), Wellpoint Inc. (WLP).

We the collected data from time period between October 31, 2001 to October
23, 2009. Figure 2 shows the mean of the squared returns for the these 20 secu-
rities over the entire dataset. The extreme volatility present in the markets after
the collapse of Lehman brothers in September 2008 is readily evident, showing
that a homoskedasticity assumption is untenable for these data.

4.3. Model validation

In order to compare our stochastic volatility approach to that of variance dis-
counting, we take the perspective verifying distributional forecasts (Gneiting
and Raftery, 2007). This, in part, has to do with the challenging dynamics of
the period that we consider. Previously, Carvalho and West (2007), Rodriguez
et al. (2011) and Wang et al. (2011) were able to consider returns from optimal
portfolios constructed according to variance minimization arguments in order
to verify their methods’ superior performance. However, portfolio optimization
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typically requires an assumption on the (non-zero) mean return level of the as-
sets under consideration.

We feel that typical assumptions (for instance Carvalho and West (2007) use
the previous day’s returns while Rodriguez et al. (2011) use the mean return
level for the previous 50 days) that have been used in the absence of detailed
professional return forecasts are unsuitable for the data collected over the time
period we consider due to the extreme swings in asset value. Furthermore, our
goal is to characterize the entire distribution of the next day’s returns, instead
of forming an investment rule, since such distributional forecasts could be used
to subsequently inform investment decisions.

Let st =
∑20

i=1 Yti be the sum of returns of the 20 assets at time point t
and let F (t) be a given forecast distribution of st. We evaluate the competing
methods using the continuous ranked probability score (CRPS) (see Gneiting
and Raftery, 2007, for additional details of the properties of the CRPS) which
is calculated as

CRPS(F (t), st) = EF (t) |U − st|
2 −

1

2
EF (t) |U − U ′|2 (12)

where U and U ′ are independent random variates sampled according to F (t).
It has frequently been shown in the literature on distributional forecasting

of weather, that using only a small amount of previous data can be beneficial
(Raftery et al., 2005; Gneiting et al., 2005; Thorarinsdottir and Gneiting, 2010).
The variance discounting method naturally embeds these considerations (this
feature is shown quite clearly in our results section). For the stochastic volatility
model we consider manually dropping data that come a given number of days
before the forecast time t+ 1.

Similar to what is done in Raftery et al. (2005) and Thorarinsdottir and
Gneiting (2010) in the weather context, we isolate the first 700 days as pure
training data, with the sole intention of determining the appropriate length
window. We then consider the last 500 days in this set for which we make pre-
dictions. For each day in this period, we fit our stochastic volatility model using
windows between 30 and 200 days in length, in increments of 10 days. For each
window-length, we form a predictive distribution for st+1 and compare this to
the observed level using the CRPS. We then calculate the mean CRPS over
these 500 days for each window length considered.

Figure 3 shows the mean CRPS for each window length under consideration
over this period. Such U shaped results are common when training lead time,
and we see that using somewhere between 80 to 140 days of data offers the
best predictive performance. For both the stochastic volatility and variance dis-
counting models, we therefore present two results. One set of results uses all
data available before timepoint t + 1 for forming the predictive distribution of
st+1, while the other uses just returns between time t− 120 and t.

After conducting our training exercise, we use the last 1800 days to validate
the performance of our proposed methodologies. We compare the stochastic
volatility model to variance discounting when ϑ = .97 and ϑ = .99. Table 2
shows the mean CRPS of the six methodologies. We see that the stochastic
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Fig 3. Mean CRPS for different length of training period used to form the forecast of st+1.

Table 2

Mean CRPS of predictive distributions taken over the validation period when the models are
fit using all previous data and the last 120 days

All Previous Last 120
Stochastic Volatility 6.27 5.61
Variance Discounting ϑ = .99 6.47 6.45
Variance Discounting ϑ = .97 6.62 6.61

volatility model outperforms the variance discounting approaches in both sit-
uations. However, there is a considerably larger improvement if the forecast
distribution for st+1 is formed using the stochastic volatility model over only
the previous 120 days. The variance discounting approaches, by contrast, are rel-
atively agnostic to the use of a reduced sample to form predictions, since these
models naturally down-weight previous observations. Our general intuition is
that the stochastic volatility model is able to incorporate additional uncertainty
over the variance discounting approach, and the CRPS rewards this.

In addition to the results regarding posterior predictive performance, we
also provide some indication of the posterior inference provided by our stochas-
tic volatility model, shown in Figure 4. The left panel of the Figure 4 shows the
estimate of the Xt when using the entire dataset, thereby giving an indication
the daily estimated latent volatility. Since these factors enter into the precision,
lower levels indicate higher market volatility. We see the obvious increase in
market volatility associated with the market crash of 2009. However, we also
see a smaller, but non-negligible increase in volatility near the beginning of our
dataset. We have determined that this period corresponds exactly to the Amer-
ican invasion of Iraq in 2003.

The right panel of Figure 4 shows the posterior distribution of the autocorre-
lation parameter φ for each day, when the model was fit using only the previous
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Fig 4. The left panel shows the distribution of the latent volatility parameters, showing median
value (black dot) and (.025,.975) posterior interval (gray lines) as well as a simple lowess line
through the medians. The right panel shows the estimate of φ on each day using the previous
120 days of data.

120 days of data. This figure also shows interesting dynamics. In particular,
while φ is typically positive and between .2 and .6, during the recent financial
crisis there appears to have been considerably greater autocorrelation, with φ
hovering near .8 for a period. In our mind, this feature is what led to the use
of a smaller window having considerably better predictive performance for the
stochastic volatility model. By being able to quickly adjust the overall level of
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the parameters, predictive distributions were able to focus more quickly on the
changing dynamics throughout the period under consideration.

5. Conclusions

We have synthesized a number of recent results related to the G-Wishart dis-
tribution. This has allowed for an algorithm that does not rely on RJ methods,
obviates the need for expensive and numerically unstable MC approximation
of prior normalizing constants and does so with minimal computational effort.
The improvement in computation time is sufficient that at each stage of the
algorithm, all edges may be evaluated for inclusion or exclusion in the graphical
model. This algorithm allows the GGM to be embedded in more sophisticated
hierarchical Bayesian models and opens the possibility of replacing standard
Wishart distributions with G-Wishart variates, leveraging the improvement in
predictive performance offered by sparse precision matrices.

The applied example shows the usefulness of this combination. We are able to
sparsely model the interactions in financial assets while simultaneously address-
ing the issues of stochastic volatility prevalent in markets undergoing turbulence,
successfully characterizing the distribution of asset returns during periods of
rapidly fluctuating volatility.

The stochastic volatility model we develop remains parsimonious and several
adjustments could be made. The first such development would be to replace
the univariate term Xt with a multivariate factor that allows the variance of
each asset to follow its own path, while potentially tying the evolution of these
factors together with a separate GGM. Furthermore, employing some form of
the iHMM framework of Rodriguez et al. (2011) could allow for the matrix K

to change throughout the period as well. Such developments will be considered
in future work.

Furthermore, while the evaluation of GGMs outside of the RJ framework
has proven to be a useful development, much work remains computationally.
In particular, the growing prevalence of options of parallel computing, through
multi-chip processors and graphics processing units has yet to be harnessed.
Unfortunately, it is not yet clear how parallel computation can best be used in
the confines of MCMC and further research is necessary to determine how these
resources can best be leveraged in the hierarchical modeling context.

Acknowledgments

Both authors gratefully acknowledge partial support from the German Science
Foundation (DFG), research grant GRK 1653. Alex Lenkoski’s work is also
funded by Statistics for Innovation (sfi)2, one of the 14 Norwegian Centers for
Research-based Innovation. We thank Thordis Thorarinsdottir, Tilmann Gneit-
ing, the editor, associate editor and anonymous referee for their helpful sugges-
tions.



Hierarchical GGMs 2327

Appendix A: Determination of CBF for using Φ−f

Consider
pr(D,Φ−f |G′)

pr(D,Φ−f |G)

we note that

pr(D,Φ−f |G′) =

∫

Φp−1,p

∫

Φpp

pr(D,Φ|G′)dΦf

and

pr(D,Φ−f |G) =

∫

Φpp

pr(D,Φ|G)dΦpp

up to common terms we thus have that

pr(D,Φ−f |G′) ∝
Φp−1,p−1

IG′(δ,D)

∫

Φp−1,p

exp

(

−
1

2
D∗

p,p(Φp−1,p + µ)2
)

dΦp−1,p

recognizing the integral as the kernel of a normal distribution, this yields

pr(D,Φ−f |G′) ∝
Φp−1,p−1

IG′(δ,D)

(

2π

D∗
pp

)1/2

.

Further, again up to common terms

pr(D,Φ−f |G) ∝
1

IG(δ,D)
exp

(

−
1

2
D∗

p,p(Φ0 + µ)2
)

and thus
pr(D,Φ−f |G′)

pr(D,Φ−f |G)
= N(Φ−f , D∗)

IG(δ,D)

IG′(δ,D)

Appendix B: Posterior determination of the stochastic volatility
model

We outline the posterior determination of

(α, φ,X ,K, G)|Y (1:T )

which is broken into three steps

Step 1: Update (K,G)

Conditional on X have that

K ∼ WG(δ + T,D +
∑

exp(Xt)Y tY
′
Y )

and therefore we update (K, G) as a block using the CL algorithm discussed in
Section 2.4
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Step 2: Update α,φ

Let V be the (T − 1) × 2 matrix with 1 in the first column of each row and
Xr in the second column of row r. Finally let X−1 be the length T − 1 vector
formed by dropping X1 from X. Then

(α φ)′ ∼ N (β,Ω−1)

where

Ω = V ′V + I2

and

β = Ω−1(V X−1)

Then the pair α, φ are updated by sampling from this distribution given the
current state of X. If |φ| > 1, the proposal is rejected. In practice, this never
occurred in the course of our study.

Step 3: Updating X

Updating the latent factors X constitutes the most challenging step in the
algorithm. We largely follow the method outlined in Rue and Held (2005), pages
167-168.

Remember that for identification purposes we assume X1 = 0. Then note
that

Xj|Xj−1, Xj+1, φ, α ∼ N(α+ φXj−1 + φXj+1, 1/(1 + 2φ2)).

when j ∈ {1, . . . , T } while

XT |XT−1, φ, α ∼ N(α+ φXj−1, 1/(1 + φ2))

and thus in general we write

Xj |X−j , φ, α ∼ N(µj , κ
−1
j )

and letting rj = 〈K,Y jY
′
j〉 we have that

pr(rj |Xj) ∝ exp

(

−
1

2
exp(Xj)rj +

p

2
Xj

)

= exp(f(Xj , rj)).

Note that

f ′(Xj) =
df(Xj , rj)

dXj
= −

1

2
exp(Xj)rj +

p

2

and

f ′′(Xj) =
d2f(Xj, rj)

dX2
j

= −
1

2
exp(Xj)rj .
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Following Rue and Held (2005), set

b(Xj) = µj + f ′(Xj)− f ′′(Xj)Xj

= µj +
p

2
−

rj
2
exp(Xj) +

rj
2
Xj exp(Xj)

c(Xj) = 1 +
rj
2
exp(Xj)

and sample

X ′
j ∼ N

(

b(Xj)

c(Xj)
,

1

c(Xj)

)

.

The proposal is then accepted with probability min{α, 1} where

α =
pr(rj |X ′

j)pr(X
′
j |µj , κj)pr(Xj |b(X ′

j), c(X
′
j))

pr(rj |Xj)pr(Xj |µj , κj)pr(X ′
j |b(Xj), c(Xj))

.

EachXj is updated in this fashion, in a random order to reduce dependence. We
note that these updates require no pre-specified tuning parameter for proposal
and further lead to between 80% and 90% acceptance probabilities of updates
throughout our study.

Appendix C: Details for mixing over G in the variance discounting
model

First, note that
Kt|Y (1:t) ∼ WG(δt,Dt).

Thus, for a given timepoint we run the CL algorithm for 50, 000 iterations, after
a burn-in of 10, 000 iterations. For each graph G that appears in the output of
the MCMC, a sample Y (t+1)|{Y (1:t), G} is obtained by running the block Gibbs
sampler for 1000 iterations over the distribution WG(ϑδt, ϑDt). For each of the
last 100 matrices K that are returned from this run, a sample

Y (t+1) ∼ Np(0,K
−1)

is drawn and retained. By collecting these samples, the predictive distribution
st+1 is formed.
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