Electronic Journal of Statistics
Vol. 6 (2012) 2235-2273

ISSN: 1935-7524

DOI: 10.1214/12-EJS744

A dimension reduction based approach

for estimation and variable selection in

partially linear single-index models with
high-dimensional covariates

Jun Zhang

Shenzhen-Hong Kong Joint Research Centre for Applied Statistical Sciences
Shenzhen University
Shenzhen, China
e-mail: zhangjunstat@gmail.com

Tao Wang, Lixing Zhu!

Department of Mathematics
Hong Kong Baptist University
Hong Kong, China
e-mail: 10466029@1ife.hkbu.edu.hk; 1zhu@math.hkbu.edu.hk

and

Hua Liang?!

Department of Biostatistics and Computational Biology
University of Rochester
Rochester, NY 14642, USA
e-madl: hliang@bst.rochester.edu

Abstract: In this paper, we formulate the partially linear single-index
models as bi-index dimension reduction models for the purpose of identify-
ing significant covariates in both the linear part and the single-index part
through only one combined index in a dimension reduction approach. This
is different from all existing dimension reduction methods in the literature,
which in general identify two basis directions in the subspace spanned by
the parameter vectors of interest, rather than the two parameter vectors
themselves. This approach makes the identification and the subsequent es-
timation and variable selection easier than existing methods for multi-index
models. When the number of parameters diverges with the sample size, we
then adopt coordinate-independent sparse estimation procedure to select
significant covariates and estimate the corresponding parameters. The re-
sulting sparse dimension reduction estimators are shown to be consistent
and asymptotically normal with the oracle property. Simulations are con-
ducted to evaluate the performance of the proposed method, and a real
data set is analysed for an illustration.
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1. Introduction

The single index model is an important generalization of the multiple linear re-
gression model with an unknown link function. It has been widely studied and
used to explore the complicated relation between the response and covariates
of interest (Horowitz, 2009), and may reflect the interaction within covariates.
To further effectively combine the interpretability of the multiple linear model
and the flexibility of the single index model, their hybrid, partially linear single
model (PLSIM), has been studied and applied for various complex data gen-
erated from biological and economic studies in the literature (Xia and Hérdle,
2006; Yu and Ruppert, 2002). To the best of our knowledge, the first remarkable
work on PLSIM was done by Carroll et al. (1997), who proposed a backfitting
algorithm to estimate parameters of interest in a more general case; i.e., gener-
alized PLSIM. Yu and Ruppert (2002) argued that the estimators proposed by
Carroll et al. (1997) may be unstable, and suggested the penalized spline estima-
tion procedure. Xia and Hardle (2006) applied the minimum average variance
estimation (MAVE, Xia et al., 2002) to PLSIM and developed an effective al-
gorithm. More recently, Wang et al. (2010) studied estimation in PLSIM with
the additional assumptions imposed on model structure. Liang et al. (2010) pro-
posed a profile least squares (PrLS) estimation procedure. However, when these
methods are applied to deal with the case with diverging number of covariates,
one may encounter some challenges. For example, MAVE may meet the sparse-
ness problem as noted by Cui et al. (2011), and the PrLS estimation procedure
is not easy to implement in high-dimensional settings because this method needs
to minimize a high-dimensional nonlinear objective function. In this paper, we
propose a method for estimation and variable selection in PLSIM when the di-
mensions of the covariates diverge. We integrate dimension reduction principle
with a testing based variable selection approach.

There has been much work on the penalty based variable selection meth-
ods for semiparametric models with a diverging number of covariates. For ex-
ample, Xie and Huang (2009) and Ni et al. (2009) studied variable selection
for partially linear models (PLM), a special case of PLSIM, and established
the selection consistency and the asymptotic normality for their estimators.
They used respectively polynomial splines and smoothing splines to approxi-
mate the nonparametric function. Ravikumar et al. (2009) investigated high-
dimensional nonparametric sparse additive models, developed a new class of
algorithms for estimation and discussed the asymptotic properties of their es-
timators. Meier et al. (2009), Huang et al. (2010), and Li et al. (2012) studied
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variable selection for high-dimensional nonparametric sparse additive models.
Wang and Zhu (2011) derived almost necessary and sufficient conditions for
the estimation consistency of parameter estimators for single-index models in
“large p, small n” paradigms. See Fan and Li (2006) for a review on variable
selection for high-dimensional data. Only Liang et al. (2010) carried out variable
selection in the context of PLSIM using the smoothly clipped absolute deviation
penalty (SCAD, Fan and Li, 2001) to simultaneously select significant covariates
and estimate the corresponding parameters of interest. However, this method is
limited to the case with the fixed dimension of covariates.

As an effective way to deal with the problem of “curse of dimensionality”,
dimension reduction techniques overcome this problem through identifying the
subspace spanned by a few convex combinations of covariates, which can cap-
ture full information between response and covariates. This subspace is called
central dimension reduction space (CS, Cook, 1998). The focus is therefore on
the convex combinations, rather than the original covariate vector. If the con-
vex combinations are all forms of mean regression functions, this subspace is
called central mean subspace (Cook, 1998). For instance, the multiple linear
model has only one convex combination of covariates to affect response. A rich
list of literature includes Li (1991) for the sliced inverse regression (SIR), Cook
and Weisberg (1991) for sliced average variance estimation (SAVE), Li (1992)
for principal Hessian directions, Li and Wang (2007) for directional regression
(DR), Wang and Xia (2008) for sliced regression, Zhu, Wang, Zhu and Ferré
(2010) for discretization-expectation estimation, and Zhu, Zhu and Feng (2010)
for simple cumulative slicing estimation (CUME). There has also been interest in
investigating dimension reduction with a diverging number of covariates. As the
first attempt in this direction, Zhu et al. (2006) revisited SIR, whereas Zhu and
Zhu (2009b) suggested a weighted partial least squares method to cope with the
highly correlated covariates in semiparametric regressions. It was known that
these dimension reduction methods are usually unable to identify significant co-
variates that sometimes are of most interest, because these methods can identify
only the central subspace or central mean subspace for general cases with more
than one index. More recently, efforts have been made to incorporate dimension
reduction into variable selection procedure. Important results of these efforts
are the least squares approach for general multi-index models by Wu and Li
(2011) with the SCAD penalty, the least squares formulation by Yin and Cook
(2002), and coordinate-independent sparse estimation (CISE) by Chen et al.
(2010), in which the authors introduced a coordinate-independent penalty to a
least squares objective function formulated by Li (2007). The CISE is shown to
produce sparse solution with the oracle property.

In this paper, we first formulate the PLSIM in a dimension reduction frame-
work so that we can identify the direction of the nonzero coefficients. We then
invoke the sufficient dimension reduction principle and incorporate a coordinate-
independent penalty (Chen et al., 2010) to achieve a sparse dimension reduction.
In theory, we justify that our method is capable to correctly identify significant
covariates with probability approaching one. The selection helps us further de-
rive asymptotically normally distributed estimators of the nonzero coefficients.
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There is an interesting feature of the method that is of independent importance
in dimension reduction. Note that in this model, there are two corresponding
parameter vectors in the linear and single-index parts. When we formulate this
model as a bi-index model in a dimension reduction framework that will be seen
below, all existing dimension reduction approaches are to identify a CS (Cook,
1998) spanned by these two vectors. In other words, any basis vector in this
space is a linear combination of them, and then in general, these two parameter
vectors themselves cannot be identified. However, interestingly, we find that the
partially linear single-index model has a particular dimension reduction frame-
work. With it, we can identify the two parameter vectors of interest using only
one basis vector in the CS rather than identifying the entire space. This is very
different from all existing dimension reduction methods in the literature because
for bi-index models we usually have to determine two basis vectors to identify the
CS. This identification plays a key role in our procedure for variable selection.

We conduct Monte Carlo simulation experiments to examine the performance
of the proposed procedures with moderate sample sizes, and compare the per-
formance of the proposed methods based on two popular dimension reduction
procedures: SIR and CUME. Our simulation results advocate our theoretical
findings. The paper is organized as follows. In Section 2, we present the models
and the basic framework. In Section 3, we describe the rationale of the proposed
method, and present the asymptotic results including the selection and estima-
tion consistency and the asymptotic distributions of the estimators. Simulation
studies are reported in Section 4. In Section 5, we illustrate our proposed method
through a real data set. All the technical proofs of the asymptotic results are
postponed to the Appendix.

2. Models and dimension reduction framework

Let Y be the response variable and (X",Z7)" be the vector of covariates in
RP x R? whose relationship with Y following PLSIM can be described as

Y =X"B¢+ g(Z70) + ¢, (2.1)
where (8, 600) is an unknown vector in RP x RY equipped with the Euclidean
norm || - ||z, € is the error with mean zero and finite variance, and g(-) is an

unknown univariate link function. For the sake of identifiability, we assume,
without loss of generality, that 8 is unit and its first component is positive, i.e.,
the parameter space of Oy is © = {0 = (01,02,...,04)7,]|0ll =1,0, > 0,0 €
Rq}. PLSIMs contain two important special cases. When ¢ = 1, model (2.1)
reduces to a partially linear model (PLM), for which there is much work in the
literature, for example, Chen (1988); Engle et al. (1986); Heckman (1986), and
Speckman (1988). Hardle et al. (2000) gave a comprehensive review for PLM.
When 8, = 0, model (2.1) reduces to the single-index model. Ichimura (1993)
proposed a semiparametric least squares estimation and Hérdle et al. (1993)
investigated the asymptotic normality of a kernel smoother based estimation.
Naik and Tsai (2001) investigated the model selection. Wang and Yang (2009)
proposed a regression spline based estimation method.
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Write T = (X7,Z7)" € R~ The dimensions of both B, and 6y, say p,
and g, respectively, may diverge with the sample size n. Note that model (2.1)
can be broadly formulated as a sufficient dimension reduction (SDR) model
(Zhu and Zhu, 2009a)

YILT|S™T, (2.2)

_ Bo 0p, x1
§= ( 0‘1n><1 00 ) ,

where |l indicates independence. That is, conditional on S™T, Y and T are
independent. 3, and 8y can be estimated with the help of SDR principle, whose
major purpose is to seek a minimum CS subspace spanned by the columns of S.
So a SDR method does not provide estimators of 3, and 6y, instead two basis
vectors in the subspace in general which cannot distinguish the covariates of the
respective nonparametric and parametric components. Nevertheless, the two
directions B,/]|Boll2 and Oy in our setting may be identifiable since the central
subspace is two-dimensional and generated by S. More specifically speaking, any
vector in the central subspace is of form (¢1 8, c20,)7. That means that the sub-
vector consisting of the first p,, components is related only to 3, while the sub-
vector consisting of the rest ¢, components is related only to 8y. Consequently,
when we use a SDR method to identify the central subspace, we can use such a
vector with some nonzero components in these two parts to respectively identify
Bo/11Boll2 and 8g. Moreover, such a subspace uniquely exists and contains all
regression information of Y/|T under the mild conditions (Cook, 1996a,b). Hence
we proceed identifying 3,/]|Byll2 and 6y as follows.

As shown by Li (2007), most of the commonly used SDR methods can be
formulated as the following eigen-decomposition problem:

with

ST2ZMETY2h = €,

where ¥ is the covariance matrix of T, A is the eigenvalue and b is the associ-
ated eigenvector, M is a nonnegative definite method-specific symmetric kernel
matrix. See Li (2007) for details on choices of M for various SDR methods.
Let Amax and ug be the largest eigenvalue and the associated eigenvector of
Y2 ME1/2 Note that if Amax iS nonzero, then vy := L2y, € span(S)
under some method-specific conditions on the marginal distribution of T such
as the linearity condition (Li, 1991). This statement implies that there exists a
vector ¢ = (p1,p2)” with 1 and @2 being nonzero such that vy = Sy; that
is, the first p,, elements of vy is proportional to 3, and the last ¢, elements of
vo to Bp. Once vy is obtained, the estimates of the directions 3,/]|B,ll2 and 6y
are obtained. In Appendix A.3, we discuss an identifiability assumption under
which ¢; and @2 can be nonzero. Hence, the first eigenvector obtained by a
dimension reduction method can identify the two directions: 8,/||Byll2 and 6.
Furthermore, selecting significant components of X is equivalent to identifying
nonzero element of 3/ B, ||2- Thus, we achieve variable selection procedure, and
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obtain estimated value of B, by estimating the scalar ||B,||2 and the direction
ﬁo/ Hﬁo”l

Note that all the SDR methods aforementioned involve the whole original
covariates T. As a consequence, if p, — oo and ¢, — 0o, the estimated linear
combination vj T may be difficult to interpret and the significant covariates may
be hard to identify because all insignificant covariates are also included in the
estimated linear combination. To overcome this difficulty, we use the idea of
CISE to penalize vy for obtaining a sparse estimator of vy as follows.

Let {(X;,Z;,Y;);1 < i < n} be a sequence of independent and identically
distributed (i.i.d.) samples from model (2.1). Denote by T and X, the sample
mean and covariance matrix based on (Tq,...,T,,), which is defined similar to
T. Let w,, be the following minimizer; that is,

U, =arg min  Qn(u; G,, E,) subject to uwu =1, (2.3)
wERPn+an)

where G, = 2;1/2/\4”2;1/2 and Qn(u; G, %,) = —u"Guu + pn(Egl/Qu)

with pn(Sn 7/ ?u) = Prtin aT|[E;1/2u](T)|. Any dimension reduction based

kernel matrix can be applied such as SIR or SAVE. In this paper, we choose
M, = L35 m,(Y;)m](Y;), the sample version of the CUME based kernel

matrix (Zhu, Zhu and Feng, 2010), where m,,(Y;) = + > (T ~-TI(Y; <Y,

n
[Z;l/2u](r) is the rth element of 27—11/2% and {o. > 0,r=1,...,p, + qn} are
the penalty parameters. Then, the estimator of vg is defined as o, = X, Y 2&n.
We choose matrix M, because it is easy to implement and avoids selecting
other turning parameters in estimation such as the number of slices in SIR,
SAVE and DR. A theoretical justification of CUME has been provided by Zhu,
Zhu and Feng (2010) even when the dimensions p, and g, diverge with the

sample size.

3. Estimation and main results
3.1. Estimation Procedure for 3, and 0q

We formulate the estimation procedure in following steps.

Step 1. Apply the CUME based kernel matrix for the CISE variable selection
procedure (2.3) to obtain an estimator @, = (o, ;, vy, ;7)7, where ¥, | =
(On1,--- ,f)nﬁpn)T and vy, 11 = (f)n_,anrl, s Unprtan

Step 2. Check the first element of ¥, 17, and define the estimator of 8 as 90 =
sign(On, p,+1)0n, 11/ ||On,11]|2 to guarantee positiveness of the first element
of éo.

Step 3. Let IA‘Z = XT0n,1, AZ = Zféo. We then use the “synthesis” data
{(T;,A:,Y7);1 < i < n} to define an estimator & of the parameter & in
the following partially linear model:

Step 4. Define an estimator of 3, as Bo = ROy, 1.
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In Step 1, one may consider other SDR methods, such as SIR, SAVE or DR.
See Zhu, Zhu and Feng (2010) for a discussion on advantages and disadvantages
of these SDR methods. In Step 3, one can estimate the parameter k with the
commonly used partially linear model techniques such as the kernel method
(Liang et al., 1999, 2004; Speckman, 1988) or spline method (Chen, 1988; Cuz-
ick, 1992; Wahba, 1984). It is remarkable that the proposed procedure does not
need any iteration, neither initial value. In contrast, spline method (Yu and
Ruppert, 2002) and MAVE (Xia and Héardle, 2006) need to delicately choose
initial values or iteration. Thus the proposed method is particularly computa-
tionally efficient compared to its competitors. The gain is substantial when p,
and g, diverge. The proposed procedure still has appealing asymptotic proper-
ties (see Sections 3.2-3.4 for details). Moreover, our numerical studies suggest
the good performance of our method.

It is noteworthy that if we study only estimation for model (2.1), we can still
use the dimension reduction principle to obtain the estimator v, = (7, r, oy, 1;)7,
Steps 2 and 3 to obtain the estimators of 8, and 6y, which are consistent and
asymptotically normal under mild conditions. This estimation method is of an
independent interest in dimension reduction area, and provides an alternative
way different from MAVE (Xia and Hérdle, 2006) or profile likelihood based
(Liang et al., 2010) methods, which need iteration for implementation.

Without loss of generality, denote B, = (81g,8%)", 6o = (67y,0%,)", where
B1o and 619 are pg and gp nonzero components of 3, and 6y, respectively, and
By and Os are two (p, — po)- and (g, — qo) X 1-zero vectors. Assume that p
and qg are fixed. Accordingly, Xy and Zg are the first py covariates of X and
the first go covariates of Z. Furthermore, by a simple permutation, let the first
(po + qo) elements of the eigenvector vy correspond to the covariates (X7, Zj)",
denoted as v(g). Thus, vy = (vz'o), vz'l))T, where v(g) = (v(TO)J, v(TO)JI)T with v(g), 1
and v(gy, 77 corresponding to X and Zo, while v(y) is a (pn, +¢n —po—qo) x 1 zero
vector. Let To = (X7,2§)7, X7 = (X1,...,Xp), Z5 = (Z1,...,Zg,), L0y =
Cov(Ty). Suppose Y is an independent, copy of Y. Write mp(y) = E{To1(Y <

SN . —1/2 ~1/2
y)} and M(O) = Em(o)(Y)m(O)(Y) Write G(O) = 2(0)/ M(O)E(O)/ and let

AL A2, .oy Apgtqo De its eigenvalues ordered from the largest to the smallest, and
ugég, u%, .. .ugg;’Jrqo) be the corresponding eigenvectors. Theorem 1 of Zhu, Zhu

and Feng (2010) shows that G ) has only two nonzero eigenvalues A\; > Ay > 0.
That means \,, = 0 and ugg;) are the eigenvectors corresponding to the 0
eigenvalue for m > 3.

With slight notation abuse, we redefine 0, in the Algorithm as 0, = (62(6)’
f;;(i))", where 7,5 = (52(6),176;(6),11>T’ Oy (5),r and 0,5y ;; are the nonzero
components of v,, ; and v, rr respectively. Let X, Z; be the subset of the X,
Z with respect to ¥,,) 1+ Un5y,r7- @nd po and go be the lengths of 7, ; and
Dy (5),11 Tespectively. So po and ¢p are estimates of p and ¢ instead of constants.
Analogously, define T; = (X7,Z7)7, Ty = (X[, Z],)" fori=1,...,n.

In what follows, we write A®2 = AA™ for any matrix or vector A. Apin(A)
and Apax(A) stand for the smallest and largest eigenvalues of A for any square
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matrix A. For any integer s, 05 and Iy denote the zero and identity matrices of
size s.

3.2. Asymptotic property of v,

We first present the asymptotic results for the eigenvector o,,.

Theorem 3.1. Let dy, = max{pn, ¢, }. Assume that Conditions (A1) and (A2)

in the Appendiz are satisfied, and furthermore \/n Inax {ay} = 0 and d3 /n —
T<po+qo

0, then the estimator v, satisfies

[0n, = voll2 = Op(v/d3 /1)

Remark 1. This theorem indicates that by properly choosing the penalty pa-
rameters {ar}fg{q", the estimator is still consistent when p,, and ¢, diverge at
a rate of o(n'/3), which is the same as that in the context of variable selection
for parametric (Fan and Peng, 2004) and semiparametric regressions (Zhu and
Zhu, 2009a). Furthermore, we can observe that if p,, and ¢, are fixed, we obtain
a root-n estimator v,,. This conclusion coincides with Theorem 1 of Chen et al.

(2010).

To investigate the oracle property of the estimator v,,, we define the follow-
ing quantities. By replacing T; with T;;, we define ¥, , T;, G,s, and then
Qni(w; Gnr, Xnr)s pnr, Mur, myr(Y;) in the same way as the corresponding
quantities for (2.3). Write 91 = E;Il / *al | where 4! is the following minimizer;
ie.,

! =arg  min  Qur(u; Gy, Xny) subject to uTu = 1.
weR@Po+do) x1

In the following theorem, we state the oracle property of v,,. Let A, = {j :
5n,j 7£ O} and .AQ = {1, 2,...,po + qO}.

Theorem 3.2. Under the conditions of Theorem 3.1, if \/n max {a,}/dp, —
T>poTd4o

00, then the estimator v, also satisfies

(i) P(A,=Ag) — 1.
(i1) (9,6 — o413 = op(1/n).

Remark 2. Theorem 3.2(i) indicates that the estimator ¢,, can consistently se-
lect relevant covariates. That is, with probability approaching 1, the estimators
of all zero elements of vy go to zero. Theorem 3.2(ii) is different from Theorem
2(ii) in Chen et al. (2010), in which the authors established the oracle property
of the CISE procedure under the assumptions that the number of relevant co-
variates, ¢, is an unknown constant, while our py and gy are both estimators
of pg and qg. Accordingly, f’n(()) and 9 are two estimators on the basis of the
variable selection procedure. As a result, we can further use U (6) for estimating
By and 0y, as required in Steps 2 and 3 in Section 3.1.
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We further consider the asymptotic distribution of f)n(@), which is gener-
ally ignored in the literature of dimension reduction. Because ¥ is positive
definite, it has an orthogonal decomposition such as Xy = P()AoPj, where
Ao = diag (A1(Z(0)), - - - » Apo+ao (E(0))) consists of the eigenvalues of (g, sat-
isfying A\1(X0)) > A2(E) > -+ > Apotqo(E0)) > 0, and the columns of
P (o) are the eigenvectors corresponding to A(gy. Let B be a square matrix of
size po + qo, whose (s,t)th element is equal to —1/2)\;3/2(2(0)) if s =t, and

)\71/2(2(0))7);1/2(2(0)) . .
= otherwise. Write
As(B(0))=Ae(Z0)) b S

Ng1/2(To) = P (Bo [Pl {(To = ET0)** ~ ETo(To - ET0) }Po)|) Py,

where ® is the Hadamard product operator. Furthermore, write

R, (To,Y) = 2{E[T01(YgY)m(o)(y)y(To,Y)} + E[m(Y)T}

1(Y <Y)|(To,Y)] + m)(Y)m, (V) — 3M<o>}-

w172 w12 1/2
Py = E(O) {E(O) Nz(foi/z (To) M(O) + M(O)Nz(foi/z (To) E(O)

—1/2
+ NM(O) (To,Y) }E(O)/ .

We now present the asymptotic distribution of U (0)-

Theorem 3.3. Under the conditions of Theorem 3.2, the estimator v,,g) is
asymptotically normally distributed with covariance matriz g, where

12 po+qo uém)uém)T(I)Ouém) 12
Qo = Var<2(0) 7;:2 N = A I(m < 2) + NE@;/Z (To) %0 'U(O)) (3.1)

with I(D) being the indicator function of the set D.

3.3. Asymptotic distribution of the estimator of 019

Write
1

T = (050,150),71'1 = (Opovlqo) and J910 = m

(Iq0 — 010010).
Note that 7,5y = (17;(6)7[, 77;(()),11)7’ and 9,y ;7 is an estimator of v(g) 7. Recall
that the first element of 61 is assumed to be positive. Then the estimator of
019 can be defined as
y T105(5)
Ui (0).5: )f

O+ 1715, 512

} 77n(6),11
0)7ﬁo+1) B

010 = sign(d,,( Tonriil
n(0),IT

= sign(

Theorem 3.4. Under the conditions of Theorem 8.2, the estimator 910 18
asymptotically normally distributed with mean 6819 and variance Jg,, 712077 Jo,, -
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3.4. Asymptotic distributions of the estimators of k and (B4,

We first state the estimation procedure for k and its asymptotic distribution.
Write ry (t;5) = E(Y|sTZr = t). rx,(t;¢) is a po-vector whose elements are
rx,(t;5), where rx, (t;) = E(X)[c"Z; = t) for L € {j : 0,5, ; # 0,1 < j < Po},
and the local linear estimators of these elements are respectively denoted as
fy(t;s) = E(Y|STZr = t), 7x,(t;5) = E(Xi|s"Zr = t), ix,(t;<) is a po-vector
whose elements are 7'x, (t; <), that is,

Zz 1 7/)Z(t §)
i vilt,s)

Zz 11/}1(1f §)
x, (t:¢) = —Elzlwz(tK) 7
for I € {j : B,5); # 0,1 < j < Po}

Py (t;c) =

where 1;(t, <) = Kp(s"Zir — t) [Va2(t,¢) — (T Zig — ) V1 (t,6)] fori=1,...,n,
Va,j(t,s) = Doy Kn(s7Zir — t)(<7Zig — t)7 for j = 1,2, Ky() = b~ 1K( /h)
with the kernel function K (-) satisfying the conditions in the Appendix, and h
being a bandwidth.

In the following, denote Xo = Xo — E(Xo|07,Z0), Zo = Zo — E(Zo|07,Z0),
and ¥y = COV(XO). Furthermore, let 7o = (I,,,04,), 72 = (I5,,0g,), and

o2B37,3« B W
w = (7P x, P 12T > 3.9

( Wi, BloXx, m2Qm53% Big (3:2)
with

po+4qo (m)T (m)T‘IMLé) 172

Wiz = BIOE{EXO< Z M~ AnI(m <2) O

T 1/2 T
+ v(O)E(g) N 1/2 (TO)) }7"225(0610-

The estimator & can be obtained through the local linear smoothing in Step 3;
that is,

T

B 5 2ie1 {Y 010Z117010 }{XI_TXI 910Z117010 } 71'2Un(o) (3.
2
%Z?:l {{le —7x, (Olozil; 910 Wzvn(o) }

k=

(3-3)

Theorem 3.5. In addition to the conditions of Theorem 3.2, assume that Con-
ditions (A83)-(A5) are satisfied. The estimator & is asymptotically normal with
variance

2 K’2 T
= —— = - W - . '4
sy I EL A (34)

Finally we define an estimator of 3, as 3,y = & X (Un(y,1) = R X (T20,(5)),
and present its asymptotic distribution in the following theorem.
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Theorem 3.6. Under the conditions of Theorem 3.5, the estimator Blo 18
asymptotically normal with covariance matrix:

T X T0X% _
2,6’10 _ Var{ /310 05,310 ke <ﬁ10ﬁ10 Xo Ip0> P (E(o /

2

1
ﬁIoEXOﬁ10 ﬁlozx[ﬁw )
po+qo (m) (m)T (m)
ug “ug  Poug 1/2
RN 1/2 (To) X . (3.5
m; M T =) gy (To) <o>U<o>>} (35

4. Simulation studies

In this section, we report simulation results to evaluate the performance of
the proposed procedure. Two dimension reduction methods, SIR and CUME
have been adopted for a comparison. The number of slices for the SIR method
was chosen as 5. The experiments were repeated 500 times, each consisting of
n = 150 samples from the following two models:

Y X"By +exp(Z70y) + <, (4.1)
Y = X'8,+3sin(Z76y) + <. (4.2)

The first model has a monotonic link function for the single-index part and
the second link function is of high frequency. The dimensions of X and Z are
(10, 10), (30, 20), (20, 30), (50, 30) and (30, 50), respectively. The following three
cases were considered:

e Case 1. (X7,Z7)" follows normal distribution N (0, 4¢,)x15Ip,+q, ), and
e follows N (0,0.1%);

e Case 2. (X7,Z7)" follows normal distribution N(0(,, 44.)x1,%), where
¥ = (045) with o;; = 0.5/" 771 and ¢ is the same as in Case 1;

e Case 3. (X7,Z7)7 are the same as in Case 2, while ¢ is generated from
N(0,0.1% x (|X1]+|Z1])), correlated with (X7, Z")7. Here Xy, Z; are the
first elements of X and Z, respectively.

To estimate the parameter k in Step 3, we used the local linear smoother as men-
tioned in Section 3.3 to obtain nonparametric estimators E(Y|A) and E(X|A)
with the Epanechnikov kernel function K (t) = 3/4(1 — t?)I(|t| < 1). For select-
ing bandwidth h, the cross-validation criterion was applied (Fan and Gijbels,
1996, page 149). Following Chen et al. (2010), let

—w

Qr = Qg [2;1/217%] (r) 5

where 4, = arg min (—u"Gpu) subject to u"u = 1, and G,, was defined
weR®n+an)

n (2.3). That is, 4, is the first eigenvector of G, with respect to it largest

/2

nonzero eigenvalue, and [, Y Qﬁn] (r) is the r-th component of 3, ! Uy 0 and
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w are positive tuning parameters that were selected by minimizing the following
BIC-type criterion (Chen et al., 2010):

logn

f(O‘(va) = _’D:—L(ao,w)Mnﬁn(ao,W) + (N(ao,ﬁr) - 1)7 (4'3)

where U, (q,,w) denotes the estimator of vy through (2.3) for a given pair (ao, @),
N(ay,=) stands for the number of the non-zero elements of ¥, (q, =), logn/n is
the BIC-type factor, and M,, is the sample version of either the CUME kernel
matrix defined in (2.3) or the SIR kernel matrix: Cov[E{T — E(T|Y)}] when
these two methods are applied. This minimization can be easily solved by a
two-dimensional grid search. To simplify this minimization, Chen et al. (2010)
fixed w = 0.5 in their simulation. But our numerical experience suggests that
the data-driven strategy performs better with a slight increase of computational
burden.

To measure the selection and estimation accuracy, we define w, g,, we,g, and
Wo B, as the proportions of underfitted, correctly fitted and overfitted models. In
the case of overfitted, the labeled “17, “2” and “> 3” are the proportions of mod-
els including 1, 2 and more than 2 insignificant covariates. Denote by Medseg,
the median of the squared error || B, — B2, “C 8, and “INg,” the average num-
ber of the zero coefficients that were correctly set to be zero, and the average
number of the non-zero coefficients that were incorrectly set to be zero, respec-
tively. In the same way, define the quantities wy, g,, We,0,, Wo,0,, Medseg,, “Cg,”,
and “INg,”. Tables 1-4 report the values of these quantities under various con-
figurations when the true parameters are chosen as 3, = (3,1.5,0.5,0,...,0)7
and 8y = (1/v/2,1//2,0,...,0). Overall, the SIR and CUME based procedures
successfully distinguish significant and insignificant covariates in the three cases.
That is, the values of “Cg,” and “INg,” are respectively close to the true values
(pn — 3) and 0, and the values of “Cy,” and “INp,” close to the true values
(gn — 2) and 0. For the linear components of X, the proportion of which the
model is correctly fitted (column we g,) is above 70% in all the three cases even
when the number of the covariates increases to 50. The average proportions of
which the model is correctly fitted for the SIR and CUME based methods are
99.23% and 99.52%, respectively. The proportions of which the model is un-
derfitted (column w, g,) and overfitted (columns under w. g,) are about 20%
and 10%, respectively. In the overfitted case, the proportion of models including
1 insignificant covariate dominates the ones including 2 or more insignificant
covariates. The latter is nearly 0% in most situations. This indicates that our
method most likely selects model that is very close to the true one. Compared
with the SIR-based procedure, the CUME-based procedure performs better re-
garding model complexity with slightly higher proportions of correctly selected
model in most situations. However, it also more often inclines to underfitting.
A similar but better pattern can be observed from the results for the single-
index components. For instance, the proportions of correctly fitted models are
all about 80%, and the values of wy, g, , We,8, Wo,g, are smaller, larger, and smaller
than the corresponding values of wy, g,, We.g,, Wo,3,, respectively.
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TABLE 1
Simulating results for model (4.1) when By = (3,1.5,0.5,0,...,0)7. The performance of B
The true Cg, value is equal to (pn — 3)

Wo.5q () No of zeros

(Pn,gn) Method wu gy (%) wepy (%) "1 (R)7 27 (%) “>37(%) Medsegy Cpg;, INg,

Case 1
(10, 10) SIR 13.00 77.20 9.80 0.40 0.00 0.1620 6.862 0.130
(10,10) CUME 10.60 81.80 7.60 0.00 0.00 0.1617 6.906 0.106
(30, 20) SIR 15.80 70.40 13.80 0.00 0.00 0.2108 26.784 0.158
(30,20) CUME 16.00 77.40 6.20 0.40 0.00 0.2110 26.870 0.160
(20, 30) SIR 10.80 77.40 11.80 0.00 0.00 0.2038 16.842 0.108
(20,30) CUME 15.00 77.80 6.80 0.40 0.00 0.2084 16.888 0.150
(50, 30) SIR 22.80 66.40 10.40 0.40 0.00 0.2380 46.758 0.228
(50,30) CUME 21.40 68.20 10.40 0.00 0.00 0.2356  46.814 0.214
(30, 50) SIR 22.80 70.00 7.20 0.00 0.00 0.2479  26.872 0.228
(30,50) CUME 22.40 72.20 5.40 0.00 0.00 0.2511  26.888 0.224

Case 2
(10, 10) SIR 12.80 77.60 9.40 0.40 0.00 0.1719 6.866 0.126
(10,10) CUME 20.40 70.80 8.60 0.20 0.00 0.1955 6.860 0.204
(30, 20) SIR 22.60 69.40 7.80 0.20 0.00 0.2330 26.840 0.226
(30,20) CUME 26.40 71.40 2.20 0.00 0.00 0.2504  26.934 0.264
(20, 30) SIR 19.40 74.20 6.40 0.00 0.00 0.2241 16.884 0.194
(20,30) CUME 24.80 71.00 4.20 0.00 0.00 0.2540 16.928 0.248
(50, 30) SIR 22.20 69.40 8.20 0.20 0.00 0.2444  46.840 0.222
(50,30) CUME 26.20 71.40 2.40 0.00 0.00 0.2576  46.948 0.262
(30, 50) SIR 21.60 72.40 5.60 0.40 0.00 0.2260 26.884 0.216
(30,50) CUME 27.60 70.00 2.40 0.00 0.00 0.2547 26.954 0.276

Case 3
(10, 10) SIR 17.40 73.80 8.20 0.60 0.00 0.1937 6.844 0.174
(10,10) CUME 24.40 72.00 3.60 0.20 0.00 0.2125 6.938 0.244
(30, 20) SIR 19.40 69.60 10.80 0.20 0.00 0.2130 26.826 0.194
(30,20) CUME 26.20 71.00 2.80 0.00 0.00 0.2340 26.938 0.262
(20, 30) SIR 17.00 74.60 8.20 0.20 0.00 0.2071 16.862 0.170
(20,30) CUME 25.00 71.00 4.00 0.00 0.00 0.2411  16.922 0.250
(50, 30) SIR 17.60 69.80 12.20 0.20 0.20 0.2241  46.792 0.176
(50,30) CUME 23.80 72.40 3.80 0.00 0.00 0.2359  46.912 0.238
(30, 50) SIR 18.40 72.60 8.80 0.20 0.00 0.2090 26.858 0.184
(30,50) CUME 27.40 70.20 2.40 0.00 0.00 0.2604 26.936 0.274

It is worth mentioning that the smaller value of 3, increases the chance of
choosing underfitted model. This may be common in variable selection procedure
in that the smaller parameters are hard to detect and easily to be penalized to
zero. To confirm this observation, we increased the third element of 3, to 1.5 but
keep 6 the same as before. We run additional simulations and report the results
for the linear components when (p,,q,) = (30, 50), (50,30) in Tables 5 and 6,
which indicate that, for the linear components 3, the proportions of underfitted
models and overfitted models decrease, while the proportion of correctly fitted
models increases and the estimation accuracy of B, also gets improved.

5. Real Data Analysis

Now we illustrate the proposed method by analyzing a real dataset from an
economic growth study. The data include 59 potential covariates that describe
economic, political, social, and geographical characteristics of the countries from
1960-1992. Sala-I-Martin (1997) analyzed the data using a linear regression
model and found that 22 out of the 59 variables appear to be “significant”. As
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TABLE 2
Simulating results for model (4.1) when By = (3,1.5,0.5,0,...,0)7. The performance of 0.
The true Cg, value is equal to (qgn — 2)

Wo,0, (%) No of zeros
(Pn, gn) Method wy 9, (%) wep, () “1 ()" 27 (%) “>3"(%) Medseg, Cg, INp,
Case 1
(10, 10) SIR 0.20 91.00 8.60 0.20 0.00 0.0276  7.910 0.002
(10,10) CUME 0.00 91.00 8.80 0.20 0.00 0.0127  7.908 0.000
(30, 20) SIR 0.00 83.20 16.60 0.20 0.00 0.0149 17.830 0.000
(30,20) CUME 0.20 89.00 10.60 0.20 0.00 0.0141 17.890 0.002
(20, 30) SIR 0.20 89.80 10.00 0.00 0.00 0.0296 27.900 0.002
(20,30) CUME 0.00 83.20 16.60 0.20 0.00 0.0146 27.830 0.000
(50, 30) SIR 0.40 85.20 14.00 0.40 0.00 0.0169 27.852 0.004
(50,30) CUME 0.60 87.20 12.00 0.20 0.00 0.0139 27.874 0.006
(30, 50) SIR 0.40 76.00 23.00 0.60 0.00 0.0153 47.758 0.004
(30,50) CUME 0.20 83.40 16.00 0.40 0.00 0.0165 47.832 0.002
Case 2
(10, 10) SIR 0.00 93.80 5.60 0.60 0.00 0.0264 7.932 0.000
(10,10) CUME 0.60 93.40 5.80 0.20 0.00 0.0233 7.936 0.006
(30, 20) SIR 0.00 91.40 8.40 0.00 0.00 0.0284 17.914 0.000
(30,20) CUME 2.00 93.60 4.40 0.00 0.00 0.0339 17.956 0.020
(20, 30) SIR 0.20 90.20 9.60 0.00 0.00 0.0240 27.904 0.002
(20,30) CUME 1.20 94.60 4.20 0.00 0.00 0.0404 27.958 0.012
(50, 30) SIR 0.20 90.40 9.40 0.00 0.00 0.0313 27.906 0.002
(50,30) CUME 1.20 96.00 2.80 0.00 0.00 0.0307 27.972 0.012
(30, 50) SIR 0.40 86.40 13.20 0.00 0.00 0.0304 47.866 0.004
(30,50) CUME 1.60 92.80 5.60 0.00 0.00 0.0359 47.944 0.016
Case 3
(10, 10) SIR 0.02 92.20 7.60 0.00 0.00 0.0298 7.924 0.002
(10,10) CUME 1.80 93.40 4.80 0.00 0.00 0.0331  7.952 0.018
(30, 20) SIR 0.00 90.80 9.20 0.00 0.00 0.0250 17.908 0.000
(30,20) CUME 1.60 94.00 4.40 0.00 0.00 0.0341 17.954 0.016
(20, 30) SIR 0.40 86.60 12.60 0.40 0.00 0.0304 27.864 0.004
(20,30) CUME 0.40 95.40 4.20 0.00 0.00 0.0358 27.958 0.004
(50, 30) SIR 0.80 88.60 10.40 0.20 0.00 0.0297 27.892 0.008
(50,30) CUME 1.60 93.00 5.20 0.20 0.00 0.0366 27.944 0.016
(30, 50) SIR 0.60 83.00 16.20 0.20 0.00 0.0338 47.834 0.006
(30,50) CUME 1.60 93.60 4.60 0.20 0.00 0.0442 47.950 0.016

a consequence, he had to fit 30,856 regressions per variable or a total of nearly
2 million regressions, which poses a computational challenge. Another concern
is whether the linear regression is proper, since other investigators found some
nonlinear structure between the covariates and the response (economic growth
gamma). As an illustrative purpose, we used model (2.1) and the proposed
procedure to examine the relationship between the response variable and 17
continuous covariates, which are listed in Table 7. We first fitted the response
Y and each covariate with local linear smoothing and obtained a 95% point-
wise confidence band, and also fitted a linear regression. If the linear straight
line was encompassed in the confidence band, we classified that covariate as
a linear component, and a single index one otherwise. As a result, we sug-
gested “h607, “abslatit”, “urb60”, “lforce60” as single-index components. We
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TABLE 3
Simulating results for model (4.2) when By = (3,1.5,0.5,0,...,0)7. The performance of 3.
The true Cg, value is equal to (pn — 3)

Wo.5q () No of zeros

(Pn,qn) Method wu gy (%) wepy () T (B)” <27 (%) “>3"(%) Medseg, Cpg, INg,

Case 1
(10, 10) SIR 19.20 79.20 1.60 0.00 0.00 0.1947 6.960 0.192
(10,10) CUME 10.40 85.80 3.80 0.00 0.00 0.1796 6.940 0.104
(30, 20) SIR 19.60 79.00 1.40 0.00 0.00 0.2478  26.920 0.196
(30,20) CUME 14.60 79.00 6.40 0.00 0.00 0.2157  26.858 0.146
(20, 30) SIR 21.60 76.20 2.20 0.00 0.00 0.2368 16.936 0.216
(20,30) CUME 23.20 75.60 1.20 0.00 0.00 0.2206  16.956 0.232
(50, 30) SIR 21.60 73.60 4.80 0.00 0.00 0.2605 46.840 0.216
(50,30) CUME 26.80 71.60 1.60 0.00 0.00 0.2607  46.882 0.268
(30, 50) SIR 23.20 74.00 2.80 0.00 0.00 0.2506  26.900 0.232
(30,50) CUME 23.60 74.80 1.40 0.20 0.00 0.2372  26.956 0.236

Case 2
(10, 10) SIR 13.40 77.60 9.00 0.00 0.00 0.1598 6.874 0.134
(10,10) CUME 21.00 75.20 3.80 0.00 0.00 0.1921 6.928 0.210
(30, 20) SIR 19.80 71.00 9.20 0.00 0.00 0.2237  26.830 0.198
(30,20) CUME 18.00 75.20 6.80 0.00 0.00 0.1995 26.894 0.180
(20, 30) SIR 17.40 74.20 8.40 0.00 0.00 0.1987 16.878 0.174
(20,30) CUME 23.60 73.20 3.20 0.00 0.00 0.2134 16.942 0.236
(50, 30) SIR 21.40 71.20 7.20 0.20 0.00 0.2171  46.844 0.214
(50,30) CUME 26.60 72.20 1.20 0.00 0.00 0.2507  46.918 0.266
(30, 50) SIR 15.80 76.60 7.60 0.00 0.00 0.2115  26.862 0.158
(30,50) CUME 28.00 69.00 3.00 0.00 0.00 0.2384 26.946 0.280

Case 3
(10, 10) SIR 14.20 77.60 8.20 0.00 0.00 0.1886 6.876 0.142
(10,10) CUME 22.40 74.40 3.20 0.00 0.00 0.1901 6.940 0.224
(30, 20) SIR 19.40 73.20 7.40 0.00 0.00 0.2113  26.870 0.194
(30,20) CUME 24.00 72.00 4.00 0.00 0.00 0.2341  26.932 0.240
(20, 30) SIR 15.20 75.80 8.80 0.20 0.00 0.1984 16.866 0.152
(20,30) CUME 27.00 70.00 3.00 0.00 0.00 0.2353  16.932 0.270
(50, 30) SIR 15.60 71.40 13.00 0.00 0.00 0.2113  46.810 0.156
(50,30) CUME 26.20 70.60 3.20 0.00 0.00 0.2417  46.934 0.262
(30, 50) SIR 17.60 76.20 6.20 0.00 0.00 0.2147  26.874 0.176
(30,50) CUME 26.60 69.80 3.60 0.00 0.00 0.2593  26.934 0.266

then applied our procedure to estimate and select nonzero elements of (3, 09).
The final estimated values of (8,,0¢) and the standard errors based on 1000
bootstrap resamples are reported in Table 7, which show that the SIR-based
and CUME-based procedures select out the variables X1, Xo, X, and Xg, and
the SIR-based procedure selects two more variable X717 and Xj5. The proce-
dures also distinguish two single-index variables: Zs and Z4. We estimated the
nonparametric function g(-) by using the estimated values (BO_VSIR, 0o.s1r), and

(ﬁo_’cUME, 6o.cume) and show the estimated curves of g(-) in Figure 1, which
show a similar pattern but difference in magnitude.

As a referee suggested, we use the additive model and adaptive COSSO
method proposed by Lin and Zhang (2006) to select significant component. The
selected covariates are listed in Table 7, from which we can see that 5-fold
CV adaptive COSSO tends to select more covariates than our two dimension-
reduction based methods. All the unimportant covariates identified by the adap-
tive COSSO are also identified as unimportant covariates by the CUME dimen-
sion reduction based method. Moreover, the leave-one-out prediction error by
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TABLE 4
Simulating results for model (4.2) when By = (3,1.5,0.5,0,...,0)7. The performance of 0.
The true Cg, value is equal to (qgn — 2)

Wo.00 (%) No of zeros

(Pn,qn) Method wy py (%) weoy (%) 1T ()7 27 (%) “>3"(%) Medseg, Coy  INg,

Case 1
(10, 10) SIR 0.00 94.40 5.60 0.00 0.00 0.0061 7.944 0.000
(10,10) CUME 0.00 94.20 5.80 0.00 0.00 0.0041 7.942  0.000
(30, 20) SIR 0.00 92.60 7.40 0.00 0.00 0.0052 17.926 0.000
(30,20) CUME 0.00 89.60 10.40 0.00 0.00 0.0057 17.896 0.000
(20, 30) SIR 0.00 88.60 11.40 0.00 0.00 0.0057  27.886 0.000
(20,30) CUME 0.00 90.40 9.60 0.00 0.00 0.0052  27.904 0.000
(50, 30) SIR 0.00 93.80 6.20 0.00 0.00 0.0064 27.938 0.000
(50,30) CUME 0.00 94.40 5.60 0.00 0.00 0.0052  27.944 0.000
(30, 50) SIR 0.00 83.00 17.00 0.00 0.00 0.0061  47.830 0.000
(30,50) CUME 0.00 91.20 8.80 0.00 0.00 0.0043 47.912 0.000

Case 2
(10, 10) SIR 0.20 93.00 6.60 0.20 0.00 0.0267 7.930 0.002
(10,10) CUME 1.20 93.20 5.60 0.00 0.00 0.0285 7.944 0.012
(30, 20) SIR 1.00 90.60 8.40 0.00 0.00 0.0238 17.916 0.010
(30,20) CUME 0.40 91.40 8.20 0.00 0.00 0.0319 17.918 0.004
(20, 30) SIR 1.20 87.20 11.40 0.20 0.00 0.0279  27.876 0.012
(20,30) CUME 0.80 93.60 5.60 0.00 0.00 0.0304 27.944 0.008
(50, 30) SIR 0.00 91.00 9.00 0.00 0.00 0.0372  27.910 0.000
(50,30) CUME 1.40 94.60 4.00 0.00 0.00 0.0330 27.960 0.014
(30, 50) SIR 0.80 87.60 11.60 0.00 0.00 0.0301  47.880 0.008
(30,50) CUME 0.40 94.60 5.00 0.00 0.00 0.0324  47.950 0.004

Case 3
(10, 10) SIR 1.00 92.00 6.60 0.40 0.00 0.0221 7.924 0.010
(10,10) CUME 1.00 96.20 2.80 0.00 0.00 0.0271 7.970 0.010
(30, 20) SIR 0.40 91.60 8.00 0.00 0.00 0.0275 17.920 0.004
(30,20) CUME 1.60 95.20 3.20 0.00 0.00 0.0404 17.968 0.016
(20, 30) SIR 0.20 89.00 10.60 0.20 0.00 0.0269  27.890 0.002
(20,30) CUME 0.60 95.20 4.00 0.20 0.00 0.0345  27.956 0.006
(50, 30) SIR 0.00 90.20 9.60 0.20 0.00 0.0313  27.900 0.000
(50,30) CUME 0.60 95.40 4.00 0.00 0.00 0.0401  27.960 0.006
(30, 50) SIR 0.20 85.60 14.20 0.00 0.00 0.0327 47.858 0.002
(30,50) CUME 0.60 94.40 5.00 0.00 0.00 0.0341  47.948 0.006

the adaptive COSSO procedure is 5.3597 x 10~#, while the leave-one-out pre-
diction error by the dimension-reduction based method are 2.0303 x 10~ with
SIR, and 1.7052 x 10~* with CUME. Consequently, the CUME based dimension
reduction procedure has the smallest prediction error.

6. Discussion

We have proposed a dimension reduction based procedure for estimation and
variable selection in PLSIM when the dimensions of the covariates diverge with
the sample size. The procedure naturally inherits the advantages of sufficient
dimension reduction and PLM, and avoids computational complexity and lim-
itations in the existing estimation and variable selection methods for PLSIM.
However, the corresponding theory for the procedure is subject to the assump-
tion d2/n — 0. The difficulty mainly comes from estimating the covariance
matrix. Like most dimension reduction methods, our method is limited to con-
tinuous covariates. Further investigations for the discrete covariates would be of
great value.
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TABLE 5 R
Simulating results for model (4.1) when By = (3,1.5,1.5,0,...,0)7. The performance of 3.
The true Cg, value is equal to (pn — 3)

Wo, B (%) No of zeros
(Pn,gn) Method wu gy (%) wepy (%) "1 (R)7 27 (%) “>37(%) Medsegy Cpg;, INg,
Case 1
(50, 30) SIR 0.00 91.00 9.00 0.00 0.00 0.1346  46.910 0.000
(50,30) CUME 0.00 91.00 9.00 0.00 0.00 0.1747  46.910 0.000
(30, 50) SIR 0.00 96.00 4.00 0.00 0.00 0.1323  26.960 0.000
(30,50) CUME 0.00 93.00 7.00 0.00 0.00 0.1840 26.930 0.000
Case 2
(50, 30) SIR 0.00 98.00 2.00 0.00 0.00 0.1550  46.980 0.000
(50,30) CUME 0.00 94.00 6.00 0.00 0.00 0.2098  46.940 0.000
(30, 50) SIR 0.00 98.00 2.00 0.00 0.00 0.2115  26.980 0.000
(30,50) CUME 0.00 99.00 1.00 0.00 0.00 0.1991  26.990 0.000
Case 3
(50, 30) SIR 0.00 96.00 4.00 0.00 0.00 0.2129  46.960 0.000
(50,30) CUME 0.00 91.00 9.00 0.00 0.00 0.2224  46.910 0.000
(30, 50) SIR 0.00 99.00 1.00 0.00 0.00 0.2041  26.990 0.000
(30,50) CUME 0.00 96.00 4.00 0.00 0.00 0.2213  26.960 0.000
wo.0q (%) No of zeros
(Pry@n) Method wuey (%) wewq (%) “TTHY "2 (%) ~5 3°(%) Medses, Coy _ INog
Case 1
(50, 30) SIR 1.00 97.00 2.00 0.00 0.00 0.0228 27.980 0.020
(50,30) CUME 10.00 86.00 4.00 0.00 0.00 0.0354  27.960 0.100
(30, 50) SIR 4.00 90.00 6.00 0.00 0.00 0.0198  47.940 0.040
(30,50) CUME 8.00 86.00 7.00 0.00 0.00 0.0360 47.940 0.080
Case 2
(50, 30) SIR 6.00 94.00 0.00 0.00 0.00 0.0336  28.000 0.100
(50,30) CUME 1.00 95.00 4.00 0.00 0.00 0.0496  27.960 0.010
(30, 50) SIR 12.00 86.00 2.00 0.00 0.00 0.0347  47.980 0.200
(30,50) CUME 6.00 91.00 3.00 0.00 0.00 0.0449 47.970 0.060
Case 3
(50, 30) SIR 6.00 94.00 0.00 0.00 0.00 0.0493  28.000 0.080
(50,30) CUME 6.00 93.00 1.00 0.00 0.00 0.0575  27.990 0.060
(30, 50) SIR 0.00 98.00 2.00 0.00 0.00 0.0498  47.980 0.000
(30,50) CUME 4.00 94.00 2.00 0.00 0.00 0.0530 47.980 0.040

Our estimation procedure needs to estimate covariance X or inverse covari-
ance matrix £ ~1/2. For high-dimensional settings like p >> n, it is always
assumed that covariance matrices is sparsity; that is, many entries of the off-
diagonal elements are zero and the number of nonzero off-diagonal entries grows
slowly. Under the sparsity condition, regularization and thresholding procedures
have been proposed to construct estimators of ¥ and =1 (Bickel and Levina,
2008a,b; Cai and Liu, 2011; Lam and Fan, 2009). However, there is little dimen-
sion reduction literature on such a setting because there are additional challenges
for estimating the dimension reduction kernel matrix M, besides estimating the
covariance X.. For example, for the SIR dimension reduction method, one needs
to estimate Mg, = Cov{E(X",Z7)7|Y)} as well. But the usual assumptions
like off-diagonal elements being zero may be inappropriately to impose on Mg,
directly. To the best of our acknowledge, only Zhu et al. (2006) recently investi-
gated estimation of Mg;, when the dimension is divergent but smaller than the
sample size. How to handle the settings like p >> n needs much more efforts
and warrants further study.
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TABLE 6
Simulating results for model (4.2) when By = (3,1.5,1.5,0,...,0)7. The performance of 3.
The true Cg, value is equal to (pn — 3)

Wo, B (%) No of zeros
(Pn,gqn) Method wu.gy (%) wepy (%) "1 (R)7 27 (%) “>37(%) Medsegy Cpg;, INg,
Case 1
(50, 30) SIR 0.00 93.00 7.00 0.00 0.00 0.1497  46.930 0.000
(50,30) CUME 0.20 89.40 10.40 0.00 0.00 0.1844  46.896 0.002
(30, 50) SIR 0.00 99.00 1.00 0.00 0.00 0.1810  26.990 0.000
(30,50) CUME 0.40 93.40 6.00 0.00 0.00 0.1928 26.940 0.004
Case 2
(50, 30) SIR 0.00 98.00 2.00 0.00 0.00 0.1651  46.980 0.000
(50,30) CUME 1.00 95.00 4.00 0.00 0.00 0.1949  46.960 0.010
(30, 50) SIR 0.00 99.00 1.00 0.00 0.00 0.1810  26.990 0.000
(30,50) CUME 0.04 95.20 4.40 0.00 0.00 0.1856  26.956 0.004
Case 3
(50, 30) SIR 0.00 100.00 0.00 0.00 0.00 0.1723  47.000 0.000
(50,30) CUME 0.00 100.00 0.00 0.00 0.00 0.2113  47.000 0.000
(30, 50) SIR 1.00 97.00 2.00 0.00 0.00 0.2049  26.980 0.010
(30,50) CUME 1.00 97.00 2.00 0.00 0.00 0.1861 26.980 0.010
W0 (%) No of zeros
(Prn,gqn) Method wyey (%) weoy (%) 1 (H)7 27 (%) “=>37(%) Medseg, Coy  INgg
Case 1
(50, 30) SIR 0.00 95.00 5.00 0.00 0.00 0.0102 27.950 0.000
(50,30) CUME 0.60 93.60 5.80 0.00 0.00 0.0097 27.942 0.006
(30, 50) SIR 6.00 92.00 2.00 0.00 0.00 0.0117  47.980 0.080
(30,50) CUME 0.20 90.20 9.60 0.00 0.00 0.0083 47.904 0.002
Case 2
(50, 30) SIR 4.00 95.00 1.00 0.00 0.00 0.0348 27.990 0.060
(50,30) CUME 2.00 97.00 1.00 0.00 0.00 0.0404 27.990 0.020
(30, 50) SIR 6.00 92.00 2.00 0.00 0.00 0.0470  47.980 0.080
(30,50) CUME 2.40 95.60 2.00 0.00 0.00 0.0533 47.976 0.024
Case 3
(50, 30) SIR 9.00 89.00 2.00 0.00 0.00 0.0343  27.980 0.100
(50,30) CUME 3.00 97.00 0.00 0.00 0.00 0.0514  28.000 0.040
(30, 50) SIR 14.00 86.00 0.00 0.00 0.00 0.0516  48.000 0.190
(30,50) CUME 9.00 91.00 0.00 0.00 0.00 0.0527  47.990 0.100

It should be worth pointing out that the procedure developed in this paper
applies for fixed pg and ¢g. Relax this case to infinite py andgy would enhance the
applicability in real data analysis. But substantial efforts seem to need because
the current method relies on the asymptotic property for estimation of X, which
is valid only for fixed py and ¢qg. To overcome this challenge, alternative approach
may be needed and is worth further studying.

We thank a referee for raising the question on which covariates for the linear
part and which for the single index part. There is little literature on linear versus
nonlinear forms for additive regression models (Zhang et al., 2011). Whether
their procedure works for PLSIM needs additional efforts and beyond the scope
of this paper. Currently, we use a guideline as follows. The effects of all the
continuous covariates are put in the single-index part and those of the discrete
covariates in the linear part. If the estimation results show that some of the
continuous covariate effects can be relocated in the linear part, then a new
model can be fitted with those continuous covariate effects moved to the linear
part. The procedure is iterated several times if needed.
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TABLE 7
Results for real data analysis. The estimated values and standard errors (SE) of By and

0y. “AC” stands for “Adaptive COSSO”
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Linear component
Variable X Bo.sir (SE, x107%)| Bg cumr (SE, x107 )| AC
X1 primary school enrollment rate 0.0128 (0.2235) 0.0049 (0.1459) V4
in 1960
X, area index -0.0014 (0.0238) -0.0026 (0.0247)
X3 average rate of growth of N/A N/A
population between 1960 and 1990
X4 number of years on open economy 0.0196 (0.1975) 0.0155 (0.149) Vv
X5 number of revolutions and coups N/A N/A Vv
Xg political rights -0.0013 (0.0286) -0.0018 (0.0272) i
X7 index of civil liberties N/A N/A v
Xsg fraction of primary exports in total N/A N/A Vv
exports in 1970
Xg work index in 1960 N/A N/A
Xi0 fraction Catholic N/A N/A
X11 fraction Muslim 0.0037 (0.1534) N/A
X1z fraction Protestant -0.0008 (0.2156) N/A N
X3 fraction GDP in mining N/A N/A v
Single-index component
Variable Z 0o.s1r (SE) 0o.cume (SE) AC
Z higher education enrollment rate N/A N/A
in 1960
Zo absolute latitude 0.4185 (0.0081) 0.294 (0.0082) Vv
Z3 urbanization rate (fraction in cities) N/A N/A
Zy Iforce index in 1960 0.9082 (0.0294) 0.9558 (0.0292) v
Appendix

In this Appendix, we state the assumptions and give the proofs of the main

results.

A.1. Assumptions

The following are the regularity conditions for our asymptotic results.

(A1)
(A2)

1<j<qn

between two positive ¢ and C for all p,, and g,.

(A3)

sup EXZ4 < Cy, sup EZ;»l < (4 for some constants Cy > 0, Cy > 0.
1<i<pn
Y = Cov(T) is positive definite, and all of its eigenvalues are bounded

The function E(X|073Zo = 07z0) and the density function for z,(07020)

(A4)

(A5)

of the random variable 87,Z are both three times continuously differen-
tiable with respect to zp. The third derivatives are uniformly Lipschitz
continuous on Tg,, = {0729 : 0 € O,z € Z; C RP°}, where Z is a
compact support set. Furthermore, the density function for z,(672) is
bounded away from 0 on 7y, .

The kernel function K (-) is a bounded, continuous and symmetric prob-
ability density function satisfying ffooo |ul) K (u)du < oo for j = 1,2, and
J75 u?K(u)du # 0. Moreover, K (-) satisfies a Lipschitz condition on R,
The bandwidth h satisfies h — 0, and log® n/nh? — 0, and nh® — occ.
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Fic 1. The estimated curves (solid lines) of the single-index function g(-) and the associated
95% pointwise confidence intervals (dotted lines). The left panel: the SIR dimension reduction
method; the right panel: CUME dimension reduction method.

Condition (Al) is a technical condition imposed on the moments of X and
Z in the context of diverging parameters. See more detailed discussions in Zhu
and Zhu (2009a); Zhu et al. (2006). Condition (A2) is imposed on the covariance

matrix of (X7,Z7)" to avoid the ill-conditioned problem of estimator X, 12

Because %, 172 i5 needed in the CISE estimation procedure, the full rank con-
dition of ¥ guarantees that even when the dimensions of 3, 8y diverge. Once

n is large enough, the estimator X, 12 ig of full rank, and X, is invertible.
See more details in Remark 2 of Zhu et al. (2006). Condition (A3) entails the
density function fgr z,(-) is positive, which implies that the denominators in-
volved in the nonparametric estimators bounded away from 0. The three times
continuously derivatives of £(Xo|07yZo = 07z0) and for z,(07920) are stan-
dard smoothness conditions in nonparametric estimation. Condition (A4) is a
standard assumption in the nonparametric regression literature. The Gaussian
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and quadratic kernels satisfy this condition. Condition (A5) indicates that the
“optimal” bandwidth can be routinely used.

A.2. Notations and Definitions

As Chen et al. (2010) mentioned, the CISE procedure hinges operationally on

Grassmann manifold optimization. In order to prove the results of Theorems 3.1

and 3.2, we introduce some notations and definitions for ease of illustration.
Define the Stiefel manifold St(p,d) as

St(p,d) = {n € RP** : 7y = 1}.

Let |v| be the subspace spanned by the columns of n, then n € G,(p,d),
where G,(p,d) stands for the Grassmann manifold. The projection operator
L : RP*? — St(p,d) onto the Stiefel manifold St(p, d) is defined to be

L(n) = i 2
(n) arg min I — w3
The tangent space T,(p,d) of n € St(p,d) is defined by
Ty(p,d) = {y € R*® iy = nJ +1° K, J € R T 4+ J7 = 0gq, K € RPD*4Y,

where 7¢ € RP*(P=9) is the complement of 7 satisfying 777 = 0 and (7°)"n° =
Lop-a)-

Next, we define the neighborhood of |n]. For any matrix w € R and
0 € R, the perturbed point around 7 in the Stiefel manifold can be expressed
by L(n + éw), and the perturbed point around |7n] in the Grassmann manifold
can be expressed by |L(n + éw)]|. According to Lemma 8 of Manton (2002),
w can be uniquely decomposed as w = nJ + n°K + nD, where J € R4 is a
skew-symmetric matrix, K € R®=9*4 ig an arbitrary matrix, and D € R%*4
is a symmetric matrix. As Chen et al. (2010) showed that, for a sufficiently
small 6, |L(n + ow)] = |L(n + 0n°K)|, which indicates that the movement
from [n] in the near neighborhood only depends on the n°K. In other words,
it suffices to consider perturbed points like L(n + 6¢) in the following proofs,
where 9 = nJ 4+ n°K and ||K||; = \/tr(K7K) = C for some given constant C,
tr(-) is the trace operator.

pXxd

A.3. Identifiability

In this section we provide an identifiability condition to guarantee that we have
nonzero ¢; and ¢s. To this end, let Y° be an independent copy of Y. Write
Mx = Eyo[Exzy{(X — EX)I(Y < Y} My = Eyo[Exzy{(Z -
EZ)I(Y <Y%)}]%? and Cx,z = Eyo[Ex 2y {(X—EX)I(Y < Y°)}Ex 7y {(Z—
EZ)"I(Y < YO)H, where Ex zy and Eyo stand for the expectation over
(X,Z,Y) and Y, respectively. Let Xx 7z = Cov(X,Z), and x and ¥z be
the covariance matrices of X and Z, respectively. Then we have the following
proposition.
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Proposition A.1. Suppose

BoXx,z60

BoXx,z60
BoXx By

BoCx,z00 # 075,80,

BoMxBy and BiCx,z00 # 05 Mz0,.

(A1)

Then o1 # 0 and w2 # 0.

Remark 3. (A.1) actually depicts the correlation relationship between
BXI(Y < YY) and 0JZI(Y < Y?). The proposition means that if we hope
the eigenvector corresponding to the largest eigenvalue Apax to recover two di-
rections B, and 6, then B{XI(Y < YY) and OJZI(Y < YY) cannot be linearly
related to each other. This requirement is reasonable.

Proof of Proposition A.1. Note that the CUME based kernel matrix (Zhu, Zhu
and Feng, 2010) can be expressed as

M:Eyo I:EX,Z,Y {TI(YSYO)}}®2: < MX OX,Z > .

C}}z My
Recall 3 = ( 2x EXvZ), vo = (8701, 0705)" and Muy = AmaxSve. We have

Egi,Z A
the following two equations:

MxBop1 + Cx, 20002 = AmaxZxBo@1 + AmaxZx,z00p2, (A.2)
Cx 2B0p1 + Mz0002 = AmaxEx zBoP1 + Amax 2 z00p2. (A.3)

Note that vjXvy = 1, then at least one of @1, @2 is non-zero. Without loss of
generality, we assume ¢ # 0, but @2 = 0. A direct simplification from (A.2)
and (A.3) yields that

MXﬁO = )\maXEX/BO and O;()Zﬁo = /\maxzq)-()zﬁo- (A4)

Multiplying B and 6 from the left of (A.4), respectively, we have Apax =

% and further
0~XMo

BoMx By
Bo2XxBo
which contradicts condition (A.1). Then it is not possible that o is zero. In

the same way, we can prove that when ¢ # 0, @1 # 0 too. We complete the
proof. O

0603-(,2/30 = 062},250a (A-5)

A./4. Proof of Theorem 3.1

Recall X, is the estimator of ¥ defined in Section 2. Write {n = E,l/zﬁn, & =
271/21}0, & = X1/2v,. We finish the proof in two steps. In the first step we study
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the relationship between ||, —vo[|3 and ||, —&;13. In the second step we derive
the order of [|&, — & |3
Step A.1l. From the definition of v,, in Section 3.1, we can derive that

190 = w013 = (T = v0)" (T — v0) = (27126, — £7260) (2,126, — 5712
— 52(27—11/2 1/2) 5 +§T( -1/2 _ E—l/?)z—l/?(éﬂ _ 50)
+ (gn - 50) 1/2( n1/2 - l/z)én + (gn - 50)7-271(571 - 50)7-'

For any s x s symmetric matrix A and any s x 1 vector z, 7 Ax < Apax(A)z" 2.
Note that Condition (A2) indicates Amin(X) > 0. Then by Cauchy-Schwarz
inequality and the equality &, = 1, we have

15 — w013 < E(T712 = £V2)928, porst (B) (212 — nm1/%)e?
~ 1/2 _
E P NEn = Gollz + Ak (D)II€n — &ol12
S)\max{(z 1/2_2—1/2)@2}4_2)\71 )\311/212)({ -1/2 _ 1/2)®2}
1€n — Eoll2 + Ak (D)1 — &lI3.

In the following, we show that Amax{ (2 I R-Y2)@2% = Op(d2/n). For
any symmetric matrix A and any positive semi-definite matrix B, we have the
following inequality:

/\min(B)Amax(AAT) < /\max(ABAT) < /\max(B)/\max(AAT)-

Taking A = £Y/? — £1/2 B = (/2 4+ £1/2)%2  we then have

)\max{(zn - E)®2} _
Aax | (D12 — n1/2)®21 < <AL (D) A L (2, — )82
{( n ) }— )\min{(zi/2—|—21/2)®2} — mln( ) {( ) }

Note that Amax{(Zn — X)®?} < [|X, — Z[|%. We know that all the elements of
(X, — ¥) are of order Op(n~1/?). Tt follows that |2, — S||p = E||Z, — Z||F +
Op(\/Var(|[Z, — Z[r)) = Op(/E|Z, — £[|%) = Op (d%/n) . Thus, we have
Amax{ (2 »i/2 21/2)®2} = (d2/n) . Furthermore, Apax{(Z w2 ’1/2)®2} =
Amas (57 (Sl = SV2)2571) <AL (S At (D Ama { (507 = £1/2)27} =
(d2/n) . These statements yield

2 ) )
||vn—vo||2—op< )+0p( >||€n Eolla + Aok (D)l — &oll2
\/_

Observe that

1€ — &olI3 < 2lI€n — & 113 + 21165 — &oll3
< 2||§n - 53”% + )‘maX{(E}z/Q - 21/2)®2}

= 2|, — & 113 + Op(d; /n).
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Then we have
o0 —voll2 = 0p (22} + 00 (22 &, = &2lls + 272L (D) — €212 (A6)
Un — Vo 2 — P n P % 571 50 2 min gn—go 2 .

Step A.2. In this step, we show that ||€, —&2]|2 = Op(d? /n) and then we finally
obtain the result ||, — vo|3 = Op(d?/n) together with the result of (A.6). It
suffices to show that, for any given small € > 0, there is a large constant C' such
that, for large enough n,

: dn .
P {ﬂGng (pn+11171f1):|\KH2:CQ ( (50 \/— ) Gna b ) > Qn(fo, Gna En)}
>1-—e (A.7)

Then we conclude that there exists a local minimizer én of Qn(9; Gy, X)), with
probability approaching one, such that ||&, — &5ll2 = Op(dn//1).

Since ¥ € Tes (pn + Gn, 1), we have ¥ = &K, K € RPn+0=1_ Thus, as
d? /n — 0, applying Lemma 1 of Chen et al. (2010), we have

Qn ( (50 df ) G, S, )—Qn@zs;cn,zn)

dn d2 d3

- {sz;TGnszs - (szs + o - G0+ O ( )) G
dy, d2 a3

(- Soron (5

2 3
+ {pn ( 22 <§0 + dTﬁ d—;ééﬂnw Op <ncf,f}2>>>

o (3226}

3

dﬁf Tln + TQn

We first deal with Yy,,. Denote by 1,, the (p,, + ¢») vector of ones.

di T *,9T T d"
Tip = ?( 0 Gr&ITY = ITGRY) — 7n
3

&3
+op( 5 (67 Gl + VTG &GUTI ))

(207Gn&p)

4

+Op (d (07 Gl + £ G (079) ))

d5
+op< 16 Gl 19719>

Note that ¥ = &K, and &3¢ = 1, 14, -1, KTK = C?. Similar to ||, —
3|12 = Op(d? /n), we have | M,, — M||% = Op(d2 /n), and then Apax{ (M —
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M)®2} = Op(d2 /n). It follows that

ETGRETY = v (M, — M)vgd™ 0 + v Mugd ™9
= US(MH — M)U()KTK + )\1KTK

> (C? {A;;{f(z)op (%) - )\1} .

Next we consider the term 97 G, 9. Let vg,v1,...,vp, +4,—1 be the eigenvectors
defined by: Mv = AXv. vg and v; are the eigenvectors corresponding to the
two largest eigenvalues A1 and A2, and vo,...,vp, 1+q,—1 are the eigenvectors

corresponding to the zero eigenvalues. Since the columns of v* = (El/ 2015,
El/van+qn_1) consist of an orthogonal basis of RP»T~1 there exists a B*
such that £5¢ = v*B*. Noting that v*7v* = {575 = I, +4,,—1, We also have
B*"B* =1, 44,-1. Thus,

9T Gnl) = KTET Gl K = K™ B* 0™ Gpo* B'K
— KTB*TU*T(E;1/2Mn2;1/2 _ 271/2M271/2)U*B*K
+ KTB*TU*TE—1/2ME—1/2U*B*K
S {KTB*TB*K}I/Q{KTB*T,U*T
% (251/2/\4"27—11/2 _ 2—1/2/\/@_1/2) ®2 U*B*K}1/2

An.

+ K"B*" B*K Apax (0*72—1/2/\42—1/%*) — COp (\/_
n

) +02)\2.

Note that v*7%/2y5 = 0, then

ITGREs = KTETYV2(M,, — M)y + KTE7S 2 Mug

IN

1/2
{KTgasc"'ggCK}l/Q {1}8251/2(/\/{71 _ M)®2E;1/2,UO}
+ AlKTB*T’U*T(Egl/? _ 2_1/2)21)0
< PP @A ONE{ M - M)}

min min max

£ OMAL2 ((251/2 _ 2—1/2)®2>

max

Furthermore,
&G, = 1I37Y2(M, — M)vy + 175712 Muyg
< VT {0 (My — M)S; (Mo — Myog}?
+ VI LA (v 5, Sg)
= 0p(d)/?),
I GLl, = KETG,1, <\/171,{9"GE29}/2 = Op(d/?).
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Thus, we have

T, > %{02(/\1 —X2) + COp(1) + (C? = C)Op (d—n> }

NG
£ (5] o ()

So if d3 /n — 0, as long as the constant C is sufficiently large, Y1, is positive
because A1 > Ao. In the following, we consider the second term Ys,. Let e, =
(0,0,...,0,1,0,...,0)" be a (pn +¢n) vector with the rth element being 1 and 0

otherwise. Note that 6:2;1/253 = elvg = 0 for any r > po + qo by the definition
of vg. Then we have

Pntqn
T2n = Z { (
r=1

S e Beronon (5
ar |7 12<§0+—z9 Gugsomd +Op <—>)
= \/_ m n3/2

el

= Z {arsign(elvo)

r=1
dn Ty —1/2 2 T T 1/2 ds
X %erzn §— = 2 ’U019 19+€ E 1 OP( 3/2>

T 1/2 d2 T d?z
r51/2 (g +719 SEEITI + Op 3

J)

dn,

2

DA

Y

2

er 1/250

Po-+ao
> — Z { rsign(ervo)
- P2
<0A;m( n) + 2f + Ain(Zn)Op <7> )}
o 2
> _\C{_n— Tg;?fq {ar}(po+ QO)d

5/2
(ot e rinaon (£7))

Recall that /n max {a,} — 0. Then we have that Yo, = op(1)d2 /nC. Con-

r<po+qo
sequently, Y5, is dominated by Y1,. This implies that the probability inequality

(A.7) holds, and the proof is completed. O
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A.5. Proof of Theorem 3.2

Step B.1. To prove the first conclusion, we first show that there exists an
r > po+qo such that v, , = 0. Suppose that all ¥, , are non-zero for r > po+qo.
Then, according to the proof of Theorem 2 in Chen et al. (2010), 0,, satisfies
the following equation:

2H, M0y, = Hptyp, (A.8)
h j;[ =1 EnUn 0y Xn d _ . ~ . -
where fin = lp,+qn — TGz, MAin = (a18ign(Tn,1), cv2sign(Vn 2), - - -, Ap, 44,

Sign (. p, 14, ))7- It follows from the expression of H,, that H,, is an idempotent
matrix with rank p, +¢, —1, and X,,v,, is the eigenvector of ﬁn corresponding to
its eigenvalue 0. Let (11, ...,lp, +4,1) be the eigenvectors of H, corresponding
to its eigenvalue 1. Thus, (X,0n,0,...,1p, +¢,—1) is an independent basis of
the space RP»*4 By using this independent basis, there exist two sequences of
constants {ar}fg{q", {al, f;’{q” such that M, 0, = agX,0n + f:{q"_l ayl,,
and 1, = ay¥, 0, + 22T /1, Plugging these two expressions into (A.8),
we obtain that

O MTn — 200 SnTn = tn — @ySnbn. (A.9)
From (A.9), we obtain that for r > pg + qo,
a,sign(y, ) = 2e] M0, — (2a0 — ag)e] X On, (A.10)

where e, is a (p, + gn) vector with 1 in the rth position and 0 elsewhere for
r > Ppo + qo-

We have supposed that @, ,» are non-zero for all 7 > po+qo, then [sign(d,,,.)]*> =
1. Note that 07%,,0, = 1, |2, — Z||r = O, (dy//1), |0, — voll2 = Op (dn//1)
and |M,, — M||r = O, (d,/+/n), from (A.10) we have

Pntqn Pntqn 9
Z ozf = Z {26T/\/lnf)n — (2a9 — aé)eTEnf)n}
r=po+qo+1 r=po+qo+1
Pntqn d
< > {Afxmax(z) +0, <72)} =0(d,).  (A.11)
r=po+qo+1
Furthermore,
po+qo Pntdn
Unin = Y s+ D rlBng| = 20] My — (200 — )5, S,
r=1 r=po+qo+1

o N - dy, dy,
0] M0, = M ojZvg — (2a0 — ag) + O, (%) =X — (2a0 — ap) + O, (ﬁ) )

As d—ﬁ max {ar} — 0, we have o, = o(d—") for r < pg + qo. Thus, we obtain

" r<po+qo "

3

Pntdn

dn
Z Oér|’L~)n17«| = )\1 - (20,0 - CLE)) + Op (—> . (A12)

Jn
r=po+qo+1
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By the result of Theorem 3.1 and the definition of vg = (5] ¢1, 0] p2)7, we know
‘;hat |l17Anl—1)vo|§dTAOlg)((ﬁl/?) and Zfl;fiqoﬂ [On,r|? = Op (d2/n). Tt follows
rom (A.11) an . a

{)\1 — (2a0 — a})) + O, (%) }2 < ( pf arlﬁn,rl>2

r=po+qo+1
Pntqn Pntan d3
(S ) (8 pr)-on(%)
r=po+qo+1 r=po+qo+1
Together with (A.12) and that v/n min {«,}/d, — oo, we have
r>po+qo
Pntqn ~
- ar|p, | 1
: ~ < r=potgqo+1l "TITTT i I A13
r>1110101£qo{|vn’r|} ~ d, min {a,} or d, ( )
T>po+qo

So we have 1 = sign(min,sp4q{|0n.r|}) = sign(op(y/1/dy)) 250, a con-
tradiction, which means that, as n — oo, there is at least 7o > po + go such
that ¥, , = 0 with probability going to 1. We now further confirm that, for all
7 > po + go, Un,» = 0 with probability going to 1. This can be proved in a way
similar to the proof of Theorem 2 in Chen et al. (2010). The details are omitted.
Step B.2. In this step, we show that 7,5y = L (14 op(1/4/n)), where Uy(5y 18

—1/2 71

the first (po + qo) elements of o,. 0! = ¥ /74!, where 4/, is the minimizer as

ﬁfl = arg min Qni(u; G, Xnr) subject to u u =1, (A.14)
weRPo+do)x1
where, Qnr(u; Gpr, Xnr) = —u"Gpru + pnI(E;}mu). Write 0 = Jnax. {a}.
r<po+qo

Similar to the proof of Theorem 3.1, we first prove that, for large n and arbi-
trarily small € > 0, there exists a sufficiently large constant C' such that

inf nr (L ﬁ’7]1+ ~19I ;Gn 7271
{ﬁleTﬁé(ﬁf)‘H‘Ivo,l)JKI||2_CQ I( ( 0 ) I I)

> Qur (@k; G, zm)} 1 (A.15)
Applying Lemma 1 (ii) of Chen et al. (2010), we have
in (L (’&711 + 519[) ; Gn17 Enl) - Qn[ (’ELZ7 Gn[; Enl)

1 T
- {a{fc;n,a; - <a,§ + o9t — 55)2@{119“191 + op(§3)) Gos
1
X <a,§ + o9t — 55)2@{119”191 + op(§3)) }

! 1y tor . _1/a.
n {pn1<2n}/2 <U,€ + 0! = ST + OP(93)> ) — pnz(En}/2u£)}

def

= Zp1 1+ Zno.
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Using the arguments similar to the proofs of T,; and Y,s in Theorem 3.1,
we have 2,1 = 02§2(5\1 — 5\2) + o0p(0°®) and Z,2 = Cop(p?), where A\, and
Ao are the two largest eigenvalues of G, ;. Note that P(A, = A)) — 1 in
Step B.1, thus, on the set {4, = Ay}, we have A LS A and Ao LY Ao
So A1 > A; holds in probability, which implies that the probability inequal-
ity (A.15) holds for large C. On the set {4, = A}, following the similar
arguments in Theorem 2 of Chen et al. (2010), 3 nl25

nl n(

imizer of Q,s(u; Gnr,2nr). The inequality (A.15) implies that the local min-

) is also a local min-

imizer 2711/12571(6) satisfies ||E:L/12ﬁn(6) —al|l3 = Op(g?). Note that on the set

{A, = Ao}, Po = po, Go = qo, 80 v/no = y/no = op(1) and HEHI (@) — al|3 =
~ N 1/2 ~ 1/2 ~ 1/2 ~ 1/2
op(1/n). Thus, [[8,0) =04 113 = (207 B0) = Snr 00 Sf (S0 ey = Sl 08) <

nl “n nl “n

Al(m n1)||23/12~n(0) al]|3 = op(1/n). We complete the proof. O

min

A.6. Proof of Theorem 3.3

Define TiO = (XZO, Z;—O)T with XZ—O = (Xi17 . 7Xip0)7 and ZZ—O = (Zil7 RN Ziqo)
for i = 1,...,n. By replacing T; by T, we define %,,0), To, Gy(0), Pn(0) and
M0y, My y(Y;) in the same way as the corresponding quantities for (2.3),
and denote ﬁ%l) as the first eigenvector of G,() corresponding to its largest
eigenvalue. Write G gy = (gi5) for 1 < i, j < (po+qo). The standard perturbation

theory gives the following chain-rule formulas (Zhu and Fang, 1996):

Po+qo u(m m)"' (aG 0)/89”) )

Oug) _ 5 o)
99ij =, AL = Am

Recall that the eigenvalues of G ) satisfy A\; > Ao > A3 = -+ = Apj4q0 = 0.
Thus, by the argument similar to Zhu and Fang (1996), we have the following
expression:

( — ug ) (A.16)

g up) (Gonoy — Gooy) 1™
n(0) (0)
- \/—Z - M — A " +op (V|G — Gooyllz,)

where ||Al|L, = Elgs,t,gk las| for any k x k matrix A = (ast)1<s,t,<k-
We now establish an asymptotic expansion of Gy, ) — G(p). Write Cp1 =

(& "(10/2 B E(701/2)‘/\/1(0 70;/2’ Cn2 = X )/ M0y — M(o))E(O;ﬂ, and C,3 =
S0 M) = M) Eriy’ = S0y )+ i) = Z i) ) Mgy = M) S > +
(= n(lo/z_z 1/2 )Moy — M) (S 1/2_2—1/2)+(2;1/2_2—1/2)/\4(0)(2—1/2_
Y

(0)
(_0;/ %). Then we have

n(0) (0) (0) (0) n(0)

Vin(Gpo) — Gy)) = \/5(2;(10/)2/\/171(0)2;(10/)2 - _1 2/\/l(o _1/2)
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1/2 _\=1/2

Applying the asymptotic expansion of X (0) ©) in Lemma 2.4 of Yu et al.

(2011), we have
—1/2 BN _ 1
Thus,
V(o + o) = Vi (Ef7 - S5 Mz
~1/2 ~1/2 ~1/2
Z0) Mo 0~ E )}
- 1/2
e Zl{ 1/2 M(O)E(O)
1/2M(0 1/2(T )} + Op(l).

It follows from (A.15) in Zhu, Zhu and Feng (2010) that

Vi (M) — M) = % ZNM (Ti0,Y;) +Op <%) -

So
I e _
VnChra = ﬁ Z E(O;/QNM (Ti0,Y7) E(O;/2 +op(1).
i=1
From the asymptotic expansions of ¥ (0/)2 — E() % and M0y — M0, we con-

clude that /nC,3 = op(1). As a consequence, we have
Y R S
+ M O)N 1/2 (Tio) Ezgf—l—NM (Ti,Y:) }E(_O;/Q—FOP(I)

o \/—Z‘I)zo—i—op 1).

Note that on the set {A, = Ao}, Gr0) = Gnr, Xn) = Znr, Mp) = Maur,
Do = po and go = qo. As eigenvalue decomposition is a linear operator, the

condition \/n <rn1n {ar} — 0 and the perturbation theory entail that ||af —
r<po+qo

ﬁn)HQ =op(1/4/n) on the set {A,, = Ap}. Then, by (A.16), we have
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po+qo (m) (m)T (m)
. g uy™" (Ggo) — Go)) %o
Vn (Ufz - U(o)) =n E Y

m=2
+op (V| G0y — Goyllz,)

From Theorem 3.2 and A, = 0 for m > 3, we know that \/n(,,5) — v(0)) equals

\/ﬁE;(lo/)Q (@l — ug)) + V(= 1/2 - (Oﬁ/z)E(é) (o), which can be expressed as

1 n 172 P0+q0 )T(I> Ou(()m) 12
nz{ Z T oHm<2) g (T“O’)E“’)U(O’}Hp(l)'

i=1
(A.17)

Together with P(A, = Ao) — 1 and (A.17), /n(9,5) — 9o) converges to
N (0(py-+q0)x1, 20) in distribution. We complete the proof. O

A.7. Proof of Theorem 3.4

2
Recall that Jg,, = 1/|[m1v(0) 214, — 1/H71'1v(0)||§[71'1v(0)]® . On the set {A4, =
Ao}, 1 =7, po = po and ¢o = qo and P(A,, = Ag) — 1. Using Delta method
and expression (A.17), we have

7~1'1571(6) ™1V(0) L
Vn | —— - —5 N(0gox1, Jo1,m120m] Ty )
Frtaole  Tmvols Ot Jag 0 o)
Note that wivg) = (v(0)7p0+1, V(0),po+25 - - - ,v(o))pﬁqo)q—, and this is proportional

to 019. From the asymptotic expression given in (A.17), we have

~ L
\/ﬁ (Un(ﬁ),ﬁoJrl - U(O)7P0+1) g N(O’ 01270-1-1)

for some aﬁoﬂ. Since v(g),po+1 18 non-zero, and when w # 0 the sign function
sign(w) is a continuous function and the first derivation of sign(w) is zero, it
follows that

. . L
N (&gn(vn(ﬁ)ﬁoﬂ) — 51gn(v(o),po+1)> — 0,

Le, sign(d,5) 5o4+1) = sign(v(o),po+1) + or(1/y/n). Note that sign(v() py+1) X
TT1v(0)
171000y ll2

vn (910 - 910) =Vn (Sigﬂ(f)n(ﬁ),ﬁoﬂ)fflﬁn(o)/ﬂfflﬁn(o)||2 - 910) ,

which converges to N (0gyx1,J0,,71207] Jo,,) in distribution. We complete the
proof. O

= 019. As a consequence, we have
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A.8. Proof of Theorem 3.5

Step C.1. The numerator of & can be decomposed as:
-~ Z { ; — Ty 0102117 010)} {Xil — X, (@ﬁozu; 910)} (727,,5))
[ Z {Yi = ry(010Zir; 610)} {Xir — 7x,(070Ziz;010)}" (72v(0))
+ - Z {Yi —ry(070Zir; 010)} {Xir — rx,(070Zir; 010)}"
-~ def
(71'2’1),”(6) - 772’0(0) ):| + Rnl = Inl + Rn17
where
Z {Yi — v (670Zir; 010)}
{sz (870Zir; 010) — #x, (010 Zir; 910)} (T20,,))

{TY(OIOZU; 010) — fy(éiozu; 910)}

+
S|

=1

{Xir = rx; (070Zir; 610)}" (F20,(5))

{TY(OIOZU; 610) — f'Y(éIQZiIQ 910)}

+
S|

=1

{TXI (670Zir; 010) — x, (B10Zir: [910)}
x(720,5) € RY + R+ RY).
Recall that on the set {A, = Ao}, Po = Po, Go = qo, T2 = ™2, Zi; = Zip and
Xir =X fori=1,...,n,and rx, (t;<) = rx,(t; <), 7x, (t;¢) = 7x, (t;<). Using

Bio = kX (mav(0)) and the result in Theorem 3.3 that 7,5, —v(0) = Op(1/v/n),
we can obtain the following asymptotic expression:

S|
M:

L = K(mav)” X; X o(mav(0)) + ZEX (m2v(0))

1

1
+ K(mav())” ZXlOXZO{wQ v n(0) — 0))} +op <%> .

.
I

Next, we show that R, is of order op(1/4/n). First, we deal with Rgl) on the
set {An = .Ao}
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S

1 T ~7 T ~ T T (~ =~
Ry = =3 (e + BioXio) {rx, (070%i0; 010) — Px, (070 Zio: 010))” (72, )
=1
1 = T ~ ~ T ~ a7 a T s
+- > (e + BToXio) {Txo (070Zi0; 610) — 7x, (010Zio; 910)} (720,,5))
1=1

dci R(l) +R(1) '
By applying Proposition 1(7) in Cui et al. (2011), we can obtain that

X, (010Zio; 010) — X, (éIQZiOQ 610) (A.18)

{Txo (070Zi0; 010) Zio + Op (\/ h* + n—lh—3) }T (B10 — 010).

Thus, (A.18) entails that R(l)B = op(1/y/n). Now, we consider the first term

R7(111)A on the set {4, = Ao}, which can be expressed as follows.

l)A Z Z ei + B10Xi0)

1/13'(0{0Z1-0,010) (rx,(070Zio, 010) — Xj0) ", . -
Ly T (T20,5))-
n Z_j:l 7/}j(01ozz‘07 010)

We first derive asymptotic expansions of V;, o(0§Zio, €10), Vn.1(079Zi0, 010) and
Vin.2(079Zio, 010), which were defined in the first paragraph of Section 3.4, and
then that of 1;(07yZi0,610) for j = 1,...,n. It follows from the arguments
similar to the proof of Theorem 3.1 in Fan and Gijbels (1996) that, as h — 0
and nh — oo,

1 i B 1
E{ EVn,2(010Zi07 010) — for,z, (elozio)‘} = O<h4 + %>

1 - - 1
E{ %le(elozio, 010) — hféfozo(Glozio)/K(w)w2dw‘} = O(h6 + —)

nh
1 T T 2 2 4 1
E{ an,z(elozioﬁlo) — fo7,20(070Zi0) | K(w)w dw‘} =0(h*+ —
Thus, Rglll)A can be asymptotically expressed as
A 1 n n i . .
R = = Z Z (070Zjo — 019Zio) (Ei + /810Xi0)
=1 j5=1
X, (070Zi0, 010) — Xjo }T
X (71mov 1+ op(1)).
{rellitu b~ (m200)(1 + 0p (1)
We know that, if nh? — oo,
1 ¢ o {rx0(610Zio, 010) — Xio}" (m10(0))
— K(0)(e; + B1o X, =op(1/vn
— ; (0)(ei + B1oXi0) o 2 (0T Z00) (1/Vn)



2268 J. Zhang et al.

by the law of large numbers. Using the arguments similar to those used by Zhu
and Fang (1996), we can prove that the summation for ¢ # j within Rglll)A

standard U-statistic with a varying kernel with the bandwidth h; that is,

is a

2071 T T
wn—1) > H{(Xio, 070Zi, ), (Xj0,070Z;0,€5) } (1 + 0p(1)),

1<i<j<n

where ¢, = (n—1)/n. Note that K (-) is a symmetric function and the symmetric
U-statistic kernel is H{ (X0, 07¢Zio, 1), (Xj0,070Zj0,¢;)} given as

1 { (e + BToXi0) (rx, (870 Zi0, 010) — Xjo)

2 fo7,20(070Zio)
n (55 + BToXjo0) (rx, (070 Z;o0, 010) — Xio) }T

fo7,20(070Zjo)
x (m2v(0)) Kn(019Zjo0 — 079Zio0)-

Using the projection of U-statistics (Serfling, 1980, Section 5.3.1), we obtain
that

WA 1= s - 1
ROA = Z ST H (Xig, 070 Zio, 1) (1 1 —
= D X052+ or1) + or ()
with H* (X0, 07¢Zi0, i) being E[H{(Xi0,07¢Zio, i), (Xj0,010Zj0,€5) H(Xio,
070Zio,2;)], which can be expressed as

1 €i+ﬁ71-0XiO { , ) B
ST 7 ) ("%, (010Zi0, 610) for, 2, (010Zs
2 fo7,20(010Zio) (r, (¢10Zi0, 010) fo7, 2, (010 Zi0)

1 T T
+ 57"3/(0 (010Zio, 010) fo7,z0 (91021'0)}}12-

Note that EH*(Xio,ei—OZio,Ei) = O, then 1/\/%2?:1 H*(Xio, ‘{Ozio,&'i) =

Op(1)h%. 1t follows from h — 0 that \/ﬁRnll)A = op(1). Using a similar analysis

to the proof for Rgl), we obtain \/HREZ) = op(1). Applying Lemma A.4 in Wang

et al. (2010) and Cauchy-Schwarz inequality, we have, as (logn)?/(nh?) — 0,

SRS

n 1/2
L .2
Ry < [Z {TY (010Zio; 010) — Ty (019 Zio; 910)} 1

i=1

! 1/2
X (Z HTXO (070Zi0; 010) — 7x, (éﬁozio;éw)} 7?25"(6)}2>

i=1

o ()0 (&)

So on the set {A,, = Ap}, we have that RY R® and R are all op(1/y/n).

nl> nl nl

Again as P(A,, = Ay) — 1, we obtain that R,1 = op(1/\/n).
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Step C.2. We now decompose the denominator of & on the set {A,, = Ay} as
follows.

n

%ZHXZ'O‘fxﬂ(ézozio;élo)}T(*2%(0)} l Z”W«n

=1
. 2 "
X 71'2U 0) E Z 1Y 0) zoxzo{(ﬂgvn(o) 7T2U(0))} + R,
C o + R

Similar to the analysis of R, 1, we obtain that R,2 = op (1/4/n). Recalling that
the asymptotic expression of o, in (A.17) and P(A, = Ag) — 1, we have

Fo ) def f Z 1 51/310X10 L
= — N (02 1, W) s
( Fry < BloZx, [V(Tat, gy — T2v(0))] i

where W is defined in (3.2). As a consequence, we have

Ini = 2 i BioXiwXhBy \_ [ 1/ 1 Fny
v ( " BT X0 X N 0 2/k

Inz — # Zi:l BroXio X810 Fra
Ly N (0, W),
«_ (1/k 1 1/ 0
where W* = ( o 2/K)W( | 2/}@),

We have shown that v/nR,1 = op(1), ViRn2 = op(1),and L 31" | ﬁ{o)v(io X
Xzoﬁlo = B1oX%, P10, a-s. The asymptotic distribution of & can be obtained by
the following expression and a direct calculation:

\/ﬁ(k—n)=\/ﬁ(m—n> =¢ﬁ(ﬁ—n)+0p<1>

In2 + Rn2

LS BT, Xi0X],
_\/— fnl n{{Zz’;l/GI:) V0 u7,0/610 +0P(1)L>N(O,O',24J) 0
Inz g 3001 BloXio X Bo

A.9. Proof of Theorem 3.6

Note that on the set {A,, = Ao}, po = po, o = qo, then

Vn (510 - 510) = \/ﬁ{'% X (20, (5)) — K X (772”(0))}

= Vn(k — k) X (wav(0)) + n{\/ﬁ (frgﬁn(@) - 7"2“(0))} +op(1).
(A.19)
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Taylor expansion implies

K2

- 1 E T~ T
Vn(k —k) = \/ﬁ(fnl - ; ﬁlonoxioﬁlo) m

- VY K
~ V(T2 = =5 3 BT XiX B ) e + 0r(1
27 K2 ; 104300210 ﬁlozx(ﬁlo (1)
K2 (1 2 K3
= T _Fnl+Fn2>__ T Fn2+0P(1)-
51025(0510 K "551025(0510
It follows that
2
K K
Vnk —K) = ————Fu — —=—=—F,2 +op(1). (A.20)
51025(0510 51025(0510

Note that 3,5 = k X (2v(gy). A combination of (A.17), (A.19) and (A.20) and
P(A, = Ap) — 1 yields

~ B _ /610 F L — H'Blo F
\/ﬁ(ﬁlo 510) ﬁzozxfﬁlo " ﬁIoExoﬁw "

+ R{\/ﬁ (ﬁ'gﬁn(()) — 71'2’1}(0)) } + Op(l) i> N (0, 2510) .

We complete the proof. O
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