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ADAPTIVE FUNCTIONAL LINEAR REGRESSION1

BY FABIENNE COMTE AND JAN JOHANNES

Université Paris Descartes and Sorbonne Paris Cité,
and Université Catholique de Louvain

We consider the estimation of the slope function in functional linear re-
gression, where scalar responses are modeled in dependence of random func-
tions. Cardot and Johannes [J. Multivariate Anal. 101 (2010) 395–408] have
shown that a thresholded projection estimator can attain up to a constant
minimax-rates of convergence in a general framework which allows us to
cover the prediction problem with respect to the mean squared prediction er-
ror as well as the estimation of the slope function and its derivatives. This
estimation procedure, however, requires an optimal choice of a tuning pa-
rameter with regard to certain characteristics of the slope function and the
covariance operator associated with the functional regressor. As this infor-
mation is usually inaccessible in practice, we investigate a fully data-driven
choice of the tuning parameter which combines model selection and Lepski’s
method. It is inspired by the recent work of Goldenshluger and Lepski [Ann.
Statist. 39 (2011) 1608–1632]. The tuning parameter is selected as minimizer
of a stochastic penalized contrast function imitating Lepski’s method among
a random collection of admissible values. This choice of the tuning parameter
depends only on the data and we show that within the general framework the
resulting data-driven thresholded projection estimator can attain minimax-
rates up to a constant over a variety of classes of slope functions and covari-
ance operators. The results are illustrated considering different configurations
which cover in particular the prediction problem as well as the estimation of
the slope and its derivatives. A simulation study shows the reasonable perfor-
mance of the fully data-driven estimation procedure.

1. Introduction. In functional linear regression the dependence of a real-
valued response Y on the variation of a random function X is studied. Typically
the functional regressor X is assumed to be square-integrable or more generally to
take its values in a separable Hilbert space H with inner product 〈·, ·〉H and norm
‖ · ‖H. Furthermore, we suppose that Y and X are centered, which simplifies the
notations, and that the dependence between Y and X is linear in the sense that

Y = 〈β,X〉H + σε, σ > 0,(1.1)
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for some slope function β ∈ H and error term ε with mean zero and variance
one. Assuming an independent and identically distributed (i.i.d.) sample of (Y,X),
the objective of this paper is the construction of a fully data driven estimation
procedure of the slope function β which still can attain minimax-optimal rates of
convergence.

Functional linear models have become very important in a diverse range of dis-
ciplines, including medicine, linguistics, chemometrics as well as econometrics;
see, for instance, [15] and [36], for several case studies, or more specific, [16] and
[35] for applications in economics. The main class of estimation procedures of the
slope function studied in the statistical literature is based on principal components
regression; see, for example, [2, 6, 9, 17] or [31] in the context of generalized
linear models. The second important class of estimators relies on minimizing a
penalized least squares criterion which can be seen as generalization of the ridge
regression; cf. [7] and [28]. More recently an estimator based on dimension reduc-
tion and threshold techniques has been proposed by Cardot and Johannes [8] which
borrows ideas from the inverse problems community ([13] and [23]). It is worth
noting that all the proposed estimation procedures rely on the choice of at least one
tuning parameter, which in turn, crucially influences the attainable accuracy of the
constructed estimator.

It has been shown, for example, in [8], that the attainable accuracy of an estima-
tor of the slope β is essentially determined by a priori conditions imposed on both
the slope function and the covariance operator � associated to the random func-
tion X (defined below). These conditions are usually captured by suitably chosen
classes F ⊂ H and G of slope functions and covariance operators, respectively.
Typically, the class F characterizes the level of smoothness of the slope function,
while the class G specifies the decay of the sequence of eigenvalues of �. For
example, [5, 12] or [21] consider differentiable slope functions and a polynomial
decay of the eigenvalues of �. Furthermore, given a weighted norm ‖ · ‖ω and the
completion Fω of H with respect to ‖ · ‖ω we shall measure the performance of an
estimator β̂ of β by its maximal Fω-risk over a class F ⊂ Fω of slope functions
and a class G of covariance operators, that is,

Rω[β̂; F , G] := sup
β∈F

sup
�∈G

E‖β̂ − β‖2
ω.

This general framework with appropriate choice of the weighted norm ‖ · ‖ω al-
lows us to cover the prediction problem with respect to the mean squared predic-
tion error (see, e.g., [7] or [12]) and the estimation not only of the slope function
(see, e.g., [21]) but also of its derivatives. For a detailed discussion, we refer to [8].
Having these applications in mind the additional condition F ⊂ Fω only means
that the estimation of a derivative of the slope function necessitates its existence.
Assuming an i.i.d. sample of (Y,X) of size n obeying model (1.1) Cardot and
Johannes [8] have derived a lower bound of the maximal weighted risk, that is,

R∗
ω[n; F , G] ≤ C inf

β̂
Rω[β̂; F , G]
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for some finite positive constant C where the infimum is taken over all possible
estimators β̂ . Moreover, they have shown that a thresholded projection estimator
β̂m∗

n
in dependence of an optimally chosen tuning parameter m∗

n ∈ N can attain this
lower bound up to a constant C > 0,

Rω[β̂m∗
n
; F , G] ≤ CR∗

ω[n; F , G]
for a variety of classes F and G . In other words, R∗

ω[n; F , G] is the minimax rate
of convergence and β̂m∗

n
is minimax-optimal. The optimal choice m∗

n of the tuning
parameter, however, follows from a classical squared-bias-variance compromise
and requires an a priori knowledge about the classes F and G , which is usually
inaccessible in practice.

In this paper we propose a fully data driven method to select a tuning parame-
ter m̂ in such a way that the resulting data-driven estimator β̂m̂ can still attain the
minimax-rate R∗

ω[n; F , G] up to a constant over a variety of classes F and G . It is
interesting to note that, considering a linear regression model with infinitely many
regressors, Goldenshluger and Tsybakov [19, 20] propose an optimal data-driven
prediction procedure allowing sharp oracle inequalities. However, a straightfor-
ward application of their results is not obvious to us since they assume a priori
standardized regressors, which in turn, in functional linear regression necessitates
the covariance operator � to be fully known in advance. In contrast, given a jointly
normally distributed regressor and error term, Verzelen [38] establishes sharp or-
acle inequalities for the prediction problem in case the covariance operator is not
known in advance. Although, it is worth noting that considering the mean predic-
tion error as risk eliminates the ill-posedness of the underlying problem, which
in turn leads to faster minimax rates of convergences of the prediction error than,
for example, the mean integrated squared error. Cai and Zhou [5] present a fully
data-driven estimation procedure of the slope function which attains optimal rates
of convergence with respect to the maximal mean integrated squared error. On the
other hand, covering both of these two risks within the general framework dis-
cussed above, Comte and Johannes [10] consider functional linear regression with
circular functional regressor which results in a partial knowledge of the associ-
ated covariance operator, that is, its eigenfunctions are known in advance, but the
eigenvalues have to be estimated. In this situation, Comte and Johannes [10] have
applied successfully a model selection approach which is inspired by the work of
[1] now extensively discussed in [29]. In the circular case, it is possible to develop
the unknown slope function in the eigenbasis of the covariance operator, which in
turn, allows one to derive an orthogonal series estimator in dependence of a dimen-
sion parameter. This dimension parameter has been chosen fully data driven by a
model selection approach, and it is shown that the resulting data-driven orthogonal
series estimator can attain minimax-optimal rates of convergence up to a constant.
Although, the proof crucially relies on the possibility to write the orthogonal series
estimator as a minimizer of a contrast.
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In this paper we do not impose an a priori knowledge of the eigenbasis, and
hence the orthogonal series estimator is no more accessible to us. Instead, we con-
sider the thresholded projection estimator β̂m as presented in [8] which we did not
succeed to write as a minimizer of a contrast. Therefore, our selection method com-
bines model selection and Lepski’s method (cf. [27] and its recent review in [30])
which is inspired by a bandwidth selection method in kernel density estimation
proposed recently in [18]. Selecting the dimension parameter m̂ as minimizer of a
stochastic penalized contrast function imitating Lepski’s method among a random
collection of admissible values, we show that the fully data-driven estimator β̂m̂

can attain the minimax-rate up to a constant C > 0, that is,

Rω[β̂m̂; F , G] ≤ C · R�
ω[n; F , G](1.2)

for a variety of classes F and G . We shall emphasize that in contrast to the result
obtained in [5], we show that the proposed estimator can attain minimax-optimal
rates without specifying in advance neither that the slope function belongs to a
class of differentiable or analytic functions nor that the decay of the eigenvalues
is polynomial or exponential. The only price for this flexibility is in term of the
constant C which is asymptotically not equal to one; that is, the oracle inequality
(1.2) is not sharp.

The paper is organized as follows: in Section 2 we briefly introduce the thresh-
olded projection estimator β̂m as proposed in [8]. We present the data driven
method to select the tuning parameter and prove a first upper risk-bound for the
fully data-driven estimator β̂m̂ which emphasizes the key arguments. In Section 3
we review the available minimax theory as presented in [8]. Within this general
framework we derive upper risk-bounds for the fully-data driven estimator impos-
ing additional assumptions on the distribution of the functional regressor X and
the error term ε. Namely, we suppose first that X and ε are Gaussian random
variables and second that they satisfy certain moment conditions. In both cases the
proof of the upper risk-bound employs the key arguments given in Section 2, while
more technical aspects are deferred to the Appendix. The results in this paper are
illustrated considering different configurations of classes F and G . We recall the
minimax-rates in this situations and show that up to a constant, these rates are
attained by the fully-data driven estimator. A simulation study illustrating the rea-
sonable performance of the fully data-driven estimation procedure is available at
the supplementary material archive.

2. Methodology. Consider the functional linear model (1.1) where the ran-
dom function X and the error term ε are independent. Let the centred random
function X, that is, E〈X,h〉H = 0 for all h ∈ H, have a finite second moment,
that is, E‖X‖2

H
< ∞. Multiplying both sides in (1.1) by 〈X,h〉H and taking the

expectation leads to the normal equation

〈g,h〉H := E
[
Y 〈X,h〉H] = E

[〈β,X〉H〈X,h〉H] =: 〈�β,h〉H ∀h ∈ H,(2.1)
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where g belongs to H, and � denotes the covariance operator associated to the ran-
dom function X. Throughout the paper we shall assume that there exists a solution
β ∈ H of equation (2.1) and that the covariance operator � is strictly positive defi-
nite which ensures the identifiability of the slope function β; cf. [7]. However, due
to the finite second moment of X the associated covariance operator � has a finite
trace; that is, it is nuclear. Thereby, solving equation (2.1) is an ill-posed inverse
problem with the additional difficulty that � is unknown and has to be estimated;
for a detailed discussion of ill-posed inverse problems in general we refer to [14].

2.1. Thresholded projection estimator. In this paper, we follow [8] and con-
sider a linear Galerkin approach to derive an estimator of the slope function β .
Here and subsequently, let {ψj }j≥1 be a pre-specified orthonormal basis in H

which in general does not correspond to the eigenbasis of the operator � de-
fined in (2.1). With respect to this basis, we consider for all h ∈ H the devel-
opment h = ∑∞

j=1[h]jψj where the sequence ([h]j )j≥1 with generic elements
[h]j := 〈h,ψj 〉H is square-summable, that is, ‖h‖2

H
= ∑

j≥1[h]2
j < ∞. Moreover,

given any strictly positive sequence of weights (ωj )j≥1 define the weighted norm
‖h‖2

ω := ∑∞
j=1 ωj [h]2

j . We will refer to any sequence as a whole by omitting its
index as, for example, in “the sequence of weights ω.” Furthermore, for m ≥ 1
let [h]m := ([h]1, . . . , [h]m)t (where xt is the transpose of x), and let Hm be the
subspace of H spanned by {ψ1, . . . ,ψm}. Obviously, the norm of h ∈ Hm equals
the Euclidean norm of its coefficient vector [h]m, that is, ‖h‖H = ([h]tm[h]m)1/2 =:
‖[h]m‖ with a slight abuse of notation.

An element βm ∈ Hm satisfying ‖g − �βm‖H ≤ ‖g − �β̆‖H for all β̆ ∈ Hm,
is called a Galerkin solution of equation (2.1). Since the covariance operator
� is strictly positive definite, it follows that the covariance matrix [�]m :=
E([X]m[X]tm) associated with the m-dimensional random vector [X]m is strictly
positive definite too. Consequently, the Galerkin solution βm ∈ Hm is uniquely de-
termined by [βm]m = [�]−1

m [g]m and [βm]j = 0 for all j > m. Although, it does
generally not correspond to the orthogonal projection of β onto the subspace Hm

and the approximation error supk≥m ‖βk − β‖ω does generally not converge to
zero as m → ∞. Here and subsequently, however, we restrict ourselves to classes
F and G of slope functions and covariance operators, respectively, which ensure
the convergence. Obviously, this is a minimal regularity condition for us since we
aim to estimate the Galerkin solution.

Assuming a sample {(Yi,Xi)}ni=1 of (Y,X) of size n, it is natural to consider
the estimators ĝ := n−1 ∑n

i=1 YiXi and �̂ := n−1 ∑n
i=1〈·,Xi〉HXi for g and �,

respectively. Moreover, let [�̂]m := n−1 ∑n
i=1[Xi]m[Xi]tm and note that [ĝ]m =

n−1 ∑n
i=1 Yi[Xi]m. Replacing the unknown quantities by their empirical counter-

parts β̃m ∈ Hm denotes a Galerkin solution satisfying ‖ĝ − �̂β̃m‖H ≤ ‖ĝ − �̂β̆‖H

for all β̆ ∈ Hm. Observe that there exists always a solution β̃m, but it might
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not be unique. Obviously, if [�̂]m is nonsingular, then [β̃m]m = [�̂]−1
m [ĝ]m. We

shall emphasize the multiplication with the inverse of the random matrix [�̂]m
which may result in an unstable estimator even in case [�]m is well conditioned.
Let 1{‖[�̂]−1

m ‖s≤n} denote the indicator function which takes the value one if [�̂]m
is nonsingular with spectral norm ‖[�̂]−1

m ‖s := sup‖z‖=1 ‖[�̂]−1
m z‖ of its inverse

bounded by n, and the value zero otherwise. The estimator of β proposed in [8]
consists of thresholding the estimated Galerkin solution, that is,

β̂m := β̃m1{‖[�̂]−1
m ‖s≤n}.(2.2)

In the next paragraph we introduce a data-driven method to select the dimension
parameter m ∈ N.

2.2. Data-driven thresholded projection estimator. Given a random integer M̂

and a random sub sequence of penalties (p̂en1, . . . , p̂enM̂), we select the dimension
parameter m̂ among the random collection of admissible values {1, . . . , M̂} as min-
imizer of a penalized contrast criterion. To be precise, setting arg minm∈A{am} :=
min{m :am ≤ am′,∀m′ ∈ A} for a sequence (am)m≥1 with minimal value in A ⊂ N,
we define

m̂ := arg min
1≤m≤M̂

{	m + p̂enm}.(2.3)

The data-driven estimator of β is now given by β̂m̂, and below we derive an upper
bound for its maximal Fω-risk. The choice of the Fω-risk as performance measure
is reflected in the definition of the contrasts, that is,

	m := max
m≤k≤M̂

{‖β̂k − β̂m‖2
ω − p̂enk

}
, 1 ≤ m ≤ M̂.

The construction of the random penalty sequence p̂en and the upper bound M̂

given below is guided by the key arguments used in the proof of the Fω-risk bound
which we present first. A central step for our reasoning is the next assertion which
employs essentially the particular choice of the contrast.

LEMMA 2.1. Consider the approximation errors biasm = supm≤k ‖βk − β‖ω,
m ≥ 1. If the sub sequence (p̂en1, . . . , p̂enM̂) is nondecreasing, then we have

‖β̂m̂ − β‖2
ω ≤ 7p̂enm + 78bias2

m + 42 max
m≤k≤M̂

(∥∥β̂k − βk
∥∥2
ω − 1

6
p̂enk

)
+

(2.4)

for all 1 ≤ m ≤ M̂ , where (a)+ = max(a,0).

PROOF. From the definition of m̂ we deduce for all 1 ≤ m ≤ M̂ that

‖β̂m̂ − β‖2
ω ≤ 3

{
	m + p̂enm̂ + 	m̂ + p̂enm + ‖β̂m − β‖2

ω

}
(2.5)

≤ 6{	m + p̂enm} + 3‖β̂m − β‖2
ω.



ADAPTIVE FUNCTIONAL LINEAR REGRESSION 2771

First, employing an elementary triangular inequality allows us to write

‖β̂m − β‖2
ω ≤ 1

3
p̂enm + 2bias2

m + 2 max
m≤k≤M

(∥∥β̂k − βk
∥∥2
ω − 1

6
p̂enk

)
+

for all 1 ≤ m ≤ M̂ . Second, since (p̂en1, . . . , p̂enM̂) is nondecreasing and 4bias2
m ≥

maxm≤k≤M̂ ‖βk − βm‖2
ω, 1 ≤ m ≤ M̂ , it is easily verified that

	m ≤ 6 sup
m≤k≤M̂

(∥∥β̂k − βk
∥∥2
ω − 1

6
p̂enk

)
+

+ 12bias2
m.

Combining the last two inequalities and (2.5), we obtain the result. �

Keeping the last assertion in mind we decompose the Fω-risk with respect to an
event on which the quantities p̂enm and M̂ are close to some theoretical counter-
parts penm, M−

n and M+
n . More precisely, define the event

En := {
penk ≤ p̂enk ≤ 72penk,∀1 ≤ k ≤ M+

n

} ∩ {
M−

n ≤ M̂ ≤ M+
n

}
(2.6)

and the corresponding risk decomposition

Rω(β̂m̂; F , G) = sup
β∈F

sup
�∈G

E
(‖β̂m̂ − β‖2

ω1En

) + sup
β∈F

sup
�∈G

E
(‖β̂m̂ − β‖2

ω1E c
n

)
.(2.7)

Consider the first right-hand side (r.h.s.) term. If (p̂en1, . . . , p̂enM̂) is nondecreas-
ing, then we may apply Lemma 2.1 which on the event En implies

‖β̂m̂ − β‖2
ω1En ≤ 582 max

(
penm�

n
,bias2

m�
n

)
+ 42 max

m�
n≤k≤M+

n

(∥∥β̂k − βk
∥∥2
ω − 1

6
penk

)
+
,

where m�
n realizes a penalty-squared-bias compromise among the collection of

admissible values {1, . . . ,M−
n }. Keeping in mind that m�

n should mimic the value
of the optimal variance-squared-bias trade-off, we wish the upper bound M−

n to be
as large as possible. In contrast, in order to control the remainder term, the second
r.h.s. term, we are forced to use a rather small upper bound M+

n ≥ M−
n to ensure

that the penalty term is uniformly bounded with increasing sample size. However,
we bound the remainder term by imposing the following assumption, which though
holds true for a wide range of classes F and G under reasonable assumptions on
the distribution of ε and X; see Propositions 3.1 and 3.3 in Section 3.

ASSUMPTION 2.1. There exists a constant K1 such that

sup
β∈F

sup
�∈G

E

{
max

m�
n≤k≤M+

n

(∥∥β̂k − βk
∥∥2
ω − 1

6
penk

)
+

}
≤ K1n

−1 for all n ≥ 1.
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Roughly speaking, the penalty term penm should provide an upper bound for
the estimator’s variation which allows us to establish a concentration inequality
for the ‖ · ‖ω-norm of the corresponding empirical process. However, under As-
sumption 2.1 we bound the first r.h.s. term in (2.7) by

sup
β∈F

sup
�∈G

E
(‖β̂m̂ − β‖2

ω1En

) ≤ 582 sup
β∈F

sup
�∈G

max
{
penm�

n
,bias2

m�
n

} + 42
K1

n
.(2.8)

It remains to consider the second r.h.s. term. The conditions on the distribution of
ε and X presented in the next section are also sufficient to show that the following
assumption holds true.

ASSUMPTION 2.2. There exists a constant K2 > 0 such that

sup
β∈F

sup
�∈G

E
(‖β̂m̂ − β‖2

ω1E c
n

) ≤ K2n
−1 for all n ≥ 1.

Under Assumption 2.2, M̂ and p̂enm behave similarly to their theoretical coun-
terparts with sufficiently high probability so as not to deteriorate the estimators
risk. The next assertion provides an upper bound for the maximal Fω-risk over
the classes F and G of the thresholded projection estimator β̂m̂ with data-driven
choice m̂ given by (2.3).

PROPOSITION 2.2. Suppose that (p̂en1, . . . , p̂enM̂) is nondecreasing. If As-
sumptions 2.1 and 2.2 hold true, then for all n ≥ 1 we have Rω[β̂m̂; F , G] ≤
582 supβ∈F sup�∈G max{penm�

n
,bias2

m�
n
} + (42K1 + K2)n

−1.

PROOF. Keeping in mind the risk decomposition (2.7) the upper bound (2.8)
and Assumption 2.2 imply the result. �

REMARK 2.1. The first r.h.s. term in the last upper risk-bound is strongly rem-
iniscent of a variance-squared-bias decomposition of the Fω-risk for the estimator
β̂m�

n
with dimension parameter m�

n. Indeed, in many cases the penalty term penm�
n

is in the same order as the variance of the estimator β̂m�
n
; cf. Illustration 3.1[P-P]

and [E-P] below. Consequently, in this situation the upper risk bound of the data-
driven estimator is essentially given by Rω[β̂m�

n
; F , G]. Moreover, by balancing

penalty and squared-bias m�
n just realizes the optimal trade-off between variance

and squared-bias which in turn in many cases means that Rω[β̂m�
n
; F , G] is of

optimal order.

We complete this section by introducing our choice for the random upper bound
M̂ and the random penalty p̂enm which takes its inspiration from [10]. Let us first
define some auxiliary quantities required in the construction. For m ≥ 1, let [∇ω]m
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denote the m-dimensional diagonal matrix with diagonal entries (ωj )1≤j≤m, and
for any sequence [K] := ([K]k)k≥1 of matrices, define


[K]
m := max

1≤k≤m

∥∥[∇ω]1/2
k [K]−1

k [∇ω]1/2
k

∥∥
s and

(2.9)

δ[K]
m := m
[K]

m

log(
[K]
m ∨ (m + 2))

log(m + 2)
.

For n ≥ 1, set Mω
n := max {1 ≤ m ≤ �n1/4� :ω(m) ≤ n} with integer part �n1/4� of

n1/4 and ω(m) := max1≤k≤m ωk . For any sequence a := (am)m≥1 let

Mn(a) := min
{

2 ≤ m ≤ Mω
n :mω(m)am >

n

1 + logn

}
− 1,(2.10)

where we set Mn(a) := Mω
n if the defining set is empty. Given the sequence of

covariance matrices [�] = ([�]m)m≥1 associated with the regressor X, define

penm := κσ 2
mδ[�]

m n−1 with σ 2
m := 2

(
EY 2 + [g]tm[�]−1

m [g]m)
and

(2.11)
M� := Mn(a) with a := (∥∥[�]−1

m

∥∥
s

)
m≥1,

where κ is a positive numerical constant to be chosen below. Roughly speaking the
penalty term provides an upper bound of the variance of the estimator β̂m and is in
many cases even in the same order. Its construction, however, allows a deterioration
to ensure that Assumption 2.1 can be satisfied; cf. Illustration 3.1[P-E]. Moreover,
for growing sample size n the penalty sequence is uniformly bounded over the
collection of admissible values {1, . . . ,M�

n }. Note that the penalty and the upper
bound still depend on unknown quantities which, however, can easily be estimated,
that is,

p̂enm := 14κσ̂ 2
mδ[�̂]

m n−1

with σ̂ 2
m := 2

(
1

n

n∑
i=1

Y 2
i + [ĝ]tm[�̂]−1

m [ĝ]m
)

and(2.12)

M̂ := Mn(a) with a := (∥∥[�̂]−1
m

∥∥
s

)
m≥1.

Note that by construction (p̂en1, . . . , p̂enM̂) is nondecreasing. Indeed, the iden-
tity 〈�̂(β̂k − β̂m), (β̂k − β̂m)〉H = [ĝ]tk[�̂]−1

k [ĝ]k − [ĝ]tm[�̂]−1
m [ĝ]m holds true for

all 1 ≤ m ≤ k ≤ M̂ . Since �̂ is positive definite, [ĝ]tm[�̂]−1
m [ĝ]m ≤ [ĝ]tk[�̂]−1

k [ĝ]k
and σ̂ 2

m ≤ σ̂ 2
k which in turn implies the assertion. Consequently, we may apply

Proposition 2.2 if Assumptions 2.1 and 2.2 hold true.

3. Minimax-optimality. In this section we recall first a general framework
proposed by Cardot and Johannes [8] which allows us to derive minimax-optimal
rates for the maximal Fω-risk, supβ∈F sup�∈G E‖β̂ − β‖2

ω, over the classes F
and G .
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3.1. Notations and basic assumptions. The classes F and G of slope functions
and covariance operators, respectively, are characterized by different weighted
norms in H with respect to the pre-specified orthonormal basis {ψj , j ∈ N}.
Given a strictly positive sequence of weights b and a radius r > 0, let Fb be
the completion of H with respect to the weighted norm ‖ · ‖b and the ellipsoid
F r

b := {h ∈ Fb :‖h‖2
b ≤ r} be the class of possible slope functions. Furthermore,

as usual in the context of ill-posed inverse problems, we link the mapping proper-
ties of the covariance operator � and the regularity condition β ∈ F r

b . Denote by
N the set of all strictly positive nuclear operators defined on H. Given a strictly
positive sequence of weights γ and a constant d ≥ 1 define the class of covariance
operators by

Gd
γ := {

T ∈ N :d−2‖f ‖2
γ 2 ≤ ‖Tf ‖2 ≤ d2‖f ‖2

γ 2,∀f ∈ H
}
,

where arithmetic operations on sequences are defined element-wise, for example,
γ 2 = (γ 2

j )j≥1. Let us briefly discuss the last definition. If T ∈ Gd
γ , then we have

d−1 ≤ 〈T ψj ,ψj 〉/γj ≤ d , for all j ≥ 1. Consequently, the sequence γ is nec-
essarily summable, because T is nuclear. Moreover, if λ denotes the sequence of
eigenvalues of T , then d−1 ≤ λj/γj ≤ d , for all j ≥ 1. In other words the sequence
γ characterizes the decay of the eigenvalues of T ∈ Gd

γ . We do not specify the se-
quences of weights ω, b and γ , but impose from now on the following minimal
regularity conditions.

ASSUMPTION 3.1. Let ω, b and γ be strictly positive sequences of weights
with b1 = ω1 = γ1 = 1, and

∑∞
j=1 γj < ∞ such that the sequences b−1, ωb−1, γ

and γ 2ω−1 are monotonically nonincreasing and converging to zero.

The last assumption is fairly mild. For example, assuming that ωb−1 is nonin-
creasing, ensures that F r

b ⊂ Fω. Furthermore, it is shown in [8] that the minimax
rate R∗

ω[n; F r
b , Gd

γ ] is of order n−1 for all sequences γ and ω such that γ 2ω−1

is nondecreasing. We will illustrate all our results considering the following three
configurations for the sequences ω, b and γ .

ILLUSTRATION 3.1. In all three cases, we take ωj = j2s , j ≥ 1. Moreover,
let:

[P-P] bj = j2p and γj = j−2a , j ≥ 1, with p > 0, a > 1/2 and p > s > −2a;
[E-P] bj = exp(j2p − 1) and γj = j−2a , j ≥ 1, with p > 0, a > 1/2, s > −2a;
[P-E] bj = j2p and γj = exp(−j2a + 1), j ≥ 1, with p > 0, a > 0, and p > s;

then Assumption 3.1 is satisfied in all cases.

REMARK 3.1. In the configurations [P-P] and [E-P], the case s = −a can be
interpreted as mean-prediction error; cf. [8]. Moreover, if {ψj } is the trigonometric
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basis and the value of s is an integer, then the weighted norm ‖h‖ω corresponds
to the L2-norm of the weak sth derivative of h; cf. [33]. In other words in this
situation we consider as risk the mean integrated squared error when estimating the
sth derivative of β . In the configurations [P-P] and [P-E], the additional condition
p > s means that the slope function has at least p ≥ s + 1 weak derivatives, while
for a value p > 1 in [E-P], the slope function is assumed to be an analytic function;
cf. [25].

3.2. Minimax optimal estimation reviewed. Let us first recall a lower bound of
the maximal Fω-risk over the classes F r

b and Gd
γ due to [8]. Given an i.i.d. sample

of (Y,X) of size n and sequences as in Assumption 3.1, define

m∗
n := arg min

m≥1

{
max

(
ωm

bm

,

m∑
j=1

ωj

nγj

)}
and

(3.1)

R∗
n := max

(
ωm∗

n

bm∗
n

,

m∗
n∑

j=1

ωj

nγj

)
.

If ξ := infn≥1{(R∗
n)−1 min(ωm∗

n
b−1
m∗

n
,
∑m∗

n

j=1 ωj(nγj )
−1)} > 0, then there exists a

constant C := C(σ, r, d, ξ) > 0 depending on σ, r, d and ξ only such that

inf
β̃

R∗
ω

[
β̃; F r

b , Gd
γ

] ≥ CR∗
n for all n ≥ 1.(3.2)

On the other hand, considering the dimension parameter m∗
n given in (3.1) Car-

dot and Johannes [8] have shown that the maximal risk R∗
ω[β̂m∗

n
; F r

b , Gd
γ ] of the

estimator β̂m∗
n

defined in (2.2) is bounded by R∗
n up to constant for a wide range

of sequences ω, b and γ , provided the random function X and the error ε satisfy
certain additional moment conditions. In other words R∗

n = R∗
ω[n; F r

b , Gd
γ ] is the

minimax-rate in this situation, and the estimator β̂m∗
n

is minimax optimal; although,
the definition of the dimension parameter m∗

n necessitates an a priori knowledge
of the sequences b and γ . In the remaining part of this paper we show that the
data-driven choice of the dimension parameter constructed in Section 2 can auto-
matically attain the minimax-rate R∗

n for a variety of sequences ω, b and γ . First,
let us briefly illustrate the minimax result.

ILLUSTRATION (CONTINUED) 3.2. Considering the three configurations (see
Illustration 3.1), it has been shown in [8] that the estimator β̂m∗

n
with m∗

n as given
below attains the rate R∗

n up to a constant. We write for two strictly positive se-
quences (an)n≥1 and (bn)n≥1 that an ∼ bn, if (an/bn)n≥1 is bounded away from 0
and infinity.

[P-P] If s + a > −1/2, then m∗
n ∼ n1/(2p+2a+1), while m∗

n ∼ n1/[2(p−s)] for
s + a < −1/2. Thus, R∗

n ∼ max(n−(2p−2s)/(2a+2p+1), n−1) for s + a �= −1/2. If
s + a = −1/2, then m∗

n ∼ (n/ logn)1/[2(p−s)] and R∗
n ∼ log(n)/n.
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[E-P] If s + a > −1/2, then m∗
n ∼ (logn − 2a+1

2p
log(logn))1/(2p) and R∗

n ∼
n−1(logn)(2a+1+2s)/(2p), while m∗

n ∼ (logn + (s/p) log(logn))1/(2p) and R∗
n ∼

n−1 for s + a < −1/2 [and R∗
n ∼ log(logn)/n for a + s = −1/2].

[P-E] m∗
n ∼ (logn − 2p+(2a−1)+

2a
log(logn))1/(2a) and R∗

n ∼ (logn)−(p−s)/a .

An increasing value of the parameter a leads in all three cases to a slower rate R∗
n ,

and hence it is called degree of ill-posedness; cf. [32].

3.3. Minimax-optimality of the data-driven estimation procedure. Consider
the thresholded projection estimator β̂m̂ with data-driven choice m̂ of the dimen-
sion parameter. Supposing that the joint distribution of the random function X and
the error term ε satisfies certain additional conditions, we will prove below that As-
sumptions 2.1 and 2.2 formulated in Section 2 hold true. These assumptions rely
on the existence of sequences (m�

n)n≥1 and (M+
n )n≥1 which amongst others we de-

fine now referring only to the classes F r
b and Gd

γ . Keep in mind the notation given

in (2.9) and (2.10). For m,n ≥ 1 and [∇γ ] = ([∇γ ]m)m≥1 define 

γ
m := 


[∇γ ]
m and

δ
γ
m := δ

[∇γ ]
m , set M−

n := Mn(16d3γ −1) and M+
n := Mn((4dγ )−1), and let

m�
n := arg min

1≤m≤M−
n

{
max

(
ωm

bm

,
δ
γ
m

n

)}
and R�

n := max
(

ωm�
n

bm�
n

,
δ
γ
m�

n

n

)
,

where m�
n ≤ M−

n ≤ M+
n . Let � := �(Gd

γ ) denote a finite constant such that

� ≥ ∑
j≥1

γj and � ≥ ∑
m≥1


γ
m exp

(
− m log(


γ
m ∨ (m + 2))

16(1 + logd) log(m + 2)

)
,(3.3)

which by construction always exists and depends on the class Gd
γ only. We illustrate

below the last definitions by revisiting the three configurations for the sequences
ω, b and γ (Illustration 3.1).

ILLUSTRATION (CONTINUED) 3.3. In the following we state the order of M−
n

and δ
γ
m which in turn are used to derive the order of m�

n and R�
n .

[P-P] M−
n ∼ ( n

1+logn
)1+2a+(2s)+ , δγ

m ∼ m1+(2a+2s)+ and for p > (s)+ it follows

m�
n ∼ m1/[1+2p−2s+(2a+2s)+] and R�

n ∼ n−2(p−s)/[1+2p−2s+(2a+2s)+];
[E-P] M−

n ∼ ( n
1+logn

)1+2a+(2s)+ , δ
γ
m ∼ m1+(2a+2s)+ and for p > 0, m�

n ∼
(logn − 1+2(a+s)+−2s

2p
log(logn))1/(2p) and R�

n ∼ n−1(logn)[1+2(a+s)+]/(2p);

[P-E] M−
n ∼ (logn − 1+2a+2(s)+

2a
log(logn))1/(2a), δ

γ
m ∼ m1+2s+2a exp(m2a)

and for p > (s)+, it follows m�
n ∼ (logn − 1+2a+2p

2a
log(logn))1/(2a) and R�

n ∼
(logn)−(p−s)/a .

We proceed by formalizing additional conditions on the joint distribution of ε

and X, allowing us to prove that Assumptions 2.1 and 2.2 hold true.
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Imposing a joint normal distribution. Let us first assume that X is a centred
Gaussian H-valued random variable; that is, for all k ≥ 1 and for all finite collec-
tions {h1, . . . , hk} ⊂ H the joint distribution of the real valued random variables
〈X,h1〉H, . . . , 〈X,hk〉H is Gaussian with zero mean vector and covariance matrix
with generic elements E〈hj ,X〉H〈X,hl〉H, 1 ≤ j, l ≤ k. Moreover, suppose that
the error term is standard normally distributed.

ASSUMPTION 3.2. The joint distribution of X and ε is normal.

The more involved proof of the next assertion is deferred to Appendix C.

PROPOSITION 3.1. Assume an i.i.d. n-sample of (Y,X) obeying (1.1) and
Assumption 3.2. Consider sequences ω, b and γ satisfying Assumption 3.1 and set
κ = 96 in the definition (2.11) and (2.12) of the penalty pen and p̂en, respectively.
For the classes F r

b and Gd
γ there exist finite constants C1 := C1(d) and C2 :=

C2(d) depending on d only such that Assumptions 2.1 and 2.2 with K1 := C1(σ
2 +

r)� and K2 := C2(σ
2 + r)�, respectively, holds true.

By taking the value κ = 96 the random penalty and upper bound given in (2.12)
depend indeed only on the data, and hence the choice m̂ in (2.3) is fully data-
driven. Moreover, we can apply Proposition 2.2 to prove the next upper risk-bound
for the data-driven thresholded projection estimator β̂m̂.

THEOREM 3.2. Let the assumptions of Proposition 3.1 be satisfied. There ex-
ists a finite constant K := K(d) depending on d only such that

Rω

[
β̂m̂, F r

b , Gd
γ

] ≤ K
(
σ 2 + r

){
R�

n + �n−1}
for all n ≥ 1.

PROOF. We shall provide in the Appendix among others, the two techni-
cal Lemmas B.1 and B.2 which are used in the following. Moreover, we de-
note by K := K(d) a constant depending on d only which changes from line
to line. Making use of Proposition 3.1 we intend to apply Proposition 2.2.
To this end, if β ∈ F r

b and � ∈ Gd
γ , then first from (iv) in Lemma B.1 it

follows that bias2
m�

n
≤ 34d8rωm�

n
b−1
m�

n
because γ 2ω−1 and ωb−1 are nonin-

creasing due to Assumption 3.1. Second, by combination of (i) and (iv) in
Lemma B.2, it is easily verified that penm� ≤ K(σ 2 + r)δ

γ
m�n−1. Consequently,

supβ∈F r
b

sup�∈Gd
γ

max(penm�
n
,bias2

m�
n
) ≤ K(σ 2 + r)R�

n for all n ≥ 1 by combina-

tion of the last two estimates and the definition of R�
n which in turn together with

Proposition 2.2 implies the assertion of the theorem. �

Imposing moment conditions. We now dismiss Assumption 3.2 and formalize
in its place, conditions on the moments of the random function X and the error
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term ε. In particular we use that for all h ∈ H with 〈�h,h〉 = 1, the random variable
〈h,X〉 is standardized, that is, has mean zero and variance one.

ASSUMPTION 3.3. There exist a finite integer k ≥ 16 and a finite constant
η ≥ 1 such that E|ε|4k ≤ η4k and that for all h ∈ H with 〈�h,h〉 = 1 the standard-
ized random variable 〈h,X〉 satisfies E|〈h,X〉|4k ≤ η4k .

It is worth noting that for any Gaussian random function X with finite sec-
ond moment, Assumption 3.3 holds true, since for all h ∈ H with 〈�h,h〉 = 1 the
random variable 〈h,X〉 is standard normally distributed and hence E|〈h,X〉|2k =
(2k − 1) · · · · · 5 · 3 · 1. The proof of the next assertion is again rather involved and
deferred to Appendix D. It follows, however, along the general lines of the proof
of Proposition 2.2 though it is not a straightforward extension. Take as an example
the concentration inequality for the random variable ‖[�]1/2

m ([ĝ]m −[�̂]m[βm]m)‖
in Lemma C.3 in Appendix C which due to Assumption 3.2 is shown by employ-
ing elementary inequalities for Gaussian random variables. In contrast, the proof
of an analogous result under Assumption 3.3 given in Lemma D.3 in Appendix D
is based on an inequality due to Talagrand [37] (Proposition D.1 in the Appendix
states a version as presented in [26]).

PROPOSITION 3.3. Assume an i.i.d. n-sample of (Y,X) obeying (1.1) and
Assumption 3.3. Consider sequences as in Assumption 3.1 and set κ = 288 in the
definition (2.11) and (2.12) of the penalty pen and p̂en, respectively. For the classes
F r

b and Gd
γ , there exist finite constants C1 := C1(σ, η, F r

b , Gd
γ ) depending on σ , η

and the classes F r
b and Gd

γ only, and C2 := C2(d) depending on d only, such that

Assumptions 2.1 and 2.2 with K1 := C1η
64(σ 2 + r)� and K2 := C2η

64(σ 2 + r)�,
respectively, hold true.

We remark on a change only in the constants when comparing the last proposi-
tion with Proposition 3.1. Note further that we need a larger value for the constant
κ than in Proposition 3.1 although it is still a numerical constant and hence the
choice m̂ given by (2.3) is again fully data-driven. Moreover, both values for the
constant κ , though convenient for deriving the theory, are far too large in prac-
tice. In our simulation study they are instead determined by means of preliminary
simulations as proposed in [11], for example. The next assertion provides an upper
risk-bound for the data-driven thresholded projection estimator β̂m̂ when imposing
moment conditions.

THEOREM 3.4. Let the assumptions of Proposition 3.3 be satisfied. There ex-
ist finite constants K := K(d) depending on d only and K ′ := K ′(σ, η, F r

b , Gd
γ )

depending on σ , η and the classes F r
b and Gd

γ only such that

Rω

[
β̂m̂, F r

b , Gd
γ

] ≤ K
(
σ 2 + r

){
R�

n + K ′η64�n−1}
for all n ≥ 1.
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PROOF. Taking into account Proposition 3.3 rather than Proposition 3.1 we
follow line by line the proof of Theorem 3.2 and we omit the details. �

Minimax-optimality. A comparison of the upper bounds in both Theorems 3.2
and 3.4 with the lower bound displayed in (3.2) shows that the data-driven esti-
mator β̂m̂ attains up to a constant the minimax-rate R∗

n = min1≤m<∞{max(ωm

bm
,∑m

j=1
ωj

nγj
)} only if R�

n = min1≤m≤M−
n
{max(ωm

bm
, δ

γ
m

n
)} has the same order as R∗

n .

Note that, by construction, δ
γ
m ≥ ∑m

j=1
ωj

γj
for all m ≥ 1. The next assertion is an

immediate consequence of Theorems 3.2 and 3.4, and we omit its proof.

COROLLARY 3.5. Let the assumptions of either Theorems 3.2 or 3.4 be
satisfied. If ξ� := supn≥1{R�

n/R∗
n} < ∞ holds true, then Rω[β̂m̂; F r

b , Gd
γ ] ≤ C ·

infβ̃ Rω[β̃; F r
b , Gd

γ ] for all n ≥ 1 and a finite positive constant C, where the infi-
mum is taken over all possible estimators β̃ .

REMARK 3.2. In the last assertion ξ� = supn≥1{R�
n/R∗

n} < ∞ is, for exam-
ple, satisfied if the following two conditions hold simultaneously true: (i) m∗

n ≤
M−

n for all n ≥ 1 and (ii) 

γ
m = max1≤j≤m ωjγ

−1
j ≤ Cm−1 ∑m

j=1 ωjγ
−1
j and

log(

γ
m ∨ (m + 2)) ≤ C log(m + 2) for all m ≥ 1. Observe that (ii) which im-

plies δ
γ
m ≤ C

∑m
j=1

ωj

γj
is satisfied in case 


γ
m is in the order of a power of m (e.g.,

Illustration 3.2[P-P] and [E-P]). If this term has an exponential order with respect
to m (e.g., Illustration 3.2[P-E]), then a deterioration of the term δ

γ
m compared to

the variance term
∑m

j=1
ωj

γj
is possible. However, no loss in terms of the rate may

occur, that is, ξ� < ∞, when the squared-bias term ωm�
n
b−1
m�

n
dominates the vari-

ance term n−1δ
γ
m�

n
; for a detailed discussion in a deconvolution context, we refer

to [3, 4].

Let us illustrate the performance of the data-driven thresholded projection esti-
mator revisiting the three configurations presented in Illustration 3.1.

PROPOSITION 3.6. Assume an i.i.d. n-sample of (Y,X) satisfying (1.1) and
let either Assumptions 3.2 or 3.3 hold true where we set, respectively, κ = 96 or
κ = 288 in (2.12). The data-driven estimator β̂m̂ attains the minimax-rates R∗

n , up
to a constant, in the three cases given in Illustration 3.1, if we additionally assume
a + s ≥ 0 in the cases [P-P] and [E-P].

PROOF. Under the stated conditions it is easily verified that the assumptions
of either Theorems 3.2 or 3.4 are satisfied. Moreover, the rates R∗

n (Illustration 3.2)
and R�

n (Illustration 3.3) are of the same order if we additionally assume a + s ≥ 0
in the cases [P-P] and [E-P]. Therefore, Corollary 3.5 applies, and we obtain the
assertion. �
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APPENDIX

This section gathers preliminary technical results and the proofs of Proposi-
tions 3.1 and 3.3.

APPENDIX A: NOTATION

We begin by defining and recalling notation to be used in all proofs. Given
m ≥ 1, Hm denotes the subspace of H spanned by the functions {ψ1, . . . ,ψm}.
�m and �⊥

m denote the orthogonal projections on Hm and its orthogonal comple-
ment H⊥

m, respectively. If K is an operator mapping H to itself and if we restrict
�mK�m to an operator from Hm to itself, then it can be represented by a matrix
[K]m with generic entries 〈ψj ,Kψl〉H =: [K]j,l for 1 ≤ j, l ≤ m. The spectral
norm of [K]m is denoted by ‖[K]m‖s , and the inverse matrix of [K]m by [K]−1

m .
Furthermore, [∇ω]m and [Id]m denote, respectively, the m-dimensional diagonal
matrix with diagonal entries (ωj )1≤j≤m and the identity matrix. For h ∈ Hm it

follows ‖h‖2
ω = [h]tm[∇ω]m[h]m = ‖[∇ω]1/2

m [h]m‖2. Keeping in mind the notation

given in (2.9)–(2.12) we use for all m ≥ 1 in addition �[�]
m := log(


[�]
m ∨(m+2))

log(m+2)
,

�
γ
m := log(


γ
m∨(m+2))

log(m+2)
and �[�̂]

m := log(

[�̂]
m ∨(m+2))

log(m+2)
allowing us to write δ[�]

m =
m
[�]

m �[�]
m , δ

γ
m = m


γ
m�

γ
m and δ[�̂]

m = m
[�̂]
m �[�̂]

m . Given a Galerkin solution
βm ∈ Hm of equation (1.2), let Zm := Y − 〈βm,X〉H = σε + 〈β − βm,X〉H and
denote ρ2

m := EZ2
m = σ 2 +〈�(β −βm), (β −βm)〉H, σ 2

Y := EY 2 = σ 2 +〈�β,β〉H
and σ 2

m = 2(σ 2
Y + [g]tm[�]−1

m [g]m) employing that ε and X are uncorrelated. De-

fine the matrix [�]m := [�]−1/2
m [�̂]m[�]−1/2

m − [Id]m and the vector [W ]m :=
[ĝ]m − [�̂]m[βm]m satisfying E[�]m = 0 and E[W ]m = [�(β − βm)]m = 0. Let
further σ̂ 2

Y := n−1 ∑n
i=1 Y 2

i and define the events

�m,n := {∥∥[�̂]−1
m

∥∥
s ≤ n

}
, �m,n := {

8
∥∥[�]m

∥∥
s ≤ 1

}
,

An := {
1/2 ≤ σ̂ 2

Y /σ 2
Y ≤ 3/2

}
, Bn := {∥∥[�]k

∥∥
s ≤ 1/8,∀1 ≤ k ≤ Mω

n

}
,(A.1)

Cn := {
8[W ]tk[�]−1

k [W ]k ≤ ([g]tk[�]−1
k [g]k + σ 2

Y

)
,∀1 ≤ k ≤ Mω

n

}
,

and their complements �c
m,n, �c

m,n, Ac
n, Bc

n and Cc
n, respectively. Furthermore, we

will denote by C universal numerical constants and by C(·) constants depending
only on the arguments. In both cases, the values of the constants may change from
line to line.

APPENDIX B: PRELIMINARY RESULTS

This section gathers results exploiting Assumption 3.1 only. The proof of the
next lemma can be found in [24].
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LEMMA B.1. Let � ∈ Gd
γ with sequence γ as in Assumption 3.1. Then we

have:

(i) supm≥1{γm‖[�]−1
m ‖s} ≤ 4d3;

(ii) supm≥1 ‖[∇γ ]1/2
m [�]−1

m [∇γ ]1/2
m ‖s ≤ 4d3;

(iii) supm≥1 ‖[∇γ ]−1/2
m [�]m[∇γ ]−1/2

m ‖s ≤ d .

Let in addition β ∈ F r
b with sequence b as in Assumption 3.1. If βm denotes a

Galerkin solution of g = �β , then for each strictly positive sequence w such that
wb−1 is nonincreasing and for all m ≥ 1 we obtain:

(iv) ‖β − βm‖2
w ≤ 34d8rwmb−1

m max(1, γ 2
mw−1

m max1≤j≤m wjγ
−2
j );

(v) ‖βm‖2
b ≤ 34d8r and ‖�1/2(β − βm)‖2

H
≤ 34d9rγmb−1

m .

LEMMA B.2. Let Assumption 3.1 be satisfied. If � ∈ Gd
γ and D := 4d3, then:

(i) d−1 ≤ γm‖[�]−1
m ‖s ≤ D, d−1 ≤ 
[�]

m /

γ
m ≤ D, (1 + logd)−1 ≤ �[�]

m /

�
γ
m ≤ (1+ logD), and d−1(1+ logd)−1 ≤ δ[�]

m /δ
γ
m ≤ D(1+ logD), for all m ≥ 1;

(ii) δ
γ

M+
n

≤ n4D(1 + logD) and δ
[�]
M+

n
≤ n4D2(1 + 2 logD), for all n ≥ 1;

(iii) n ≥ 2 max1≤m≤M+
n

‖[�]−1
m ‖ if n ≥ 2D and ω(M+

n )M
+
n (1 + logn) ≥ 8D2;

(iv) ρ2
m ≤ σ 2

m ≤ 2(σ 2 + 35d9r), for all m ≥ 1, assuming in addition β ∈ F r
b .

PROOF. Consider (i). From Lemma B.1(i), (iii) follows ‖[�]−1
m ‖s ≤ 4d3γ −1

m

and γ −1
m ≤ d‖[�]−1

m ‖s which in turn imply d−1 ≤ ‖[�]−1
m ‖sγm ≤ D and d−1 ≤

γM max1≤m≤M ‖[�]−1
m ‖s ≤ D due to the monotonicity of γ . From these esti-

mates we conclude (i). Consider (ii). Observe that 

γ

M+
n

≤ ω(M+
n )γ

−1
M+

n
. In case

M+
n = 1 the assertion follows from ω(1)γ

−1
1 = 1 (Assumption 3.1). Thus, let

Mω
n ≥ M+

n > 1, then min1≤j≤M+
n
{γj (jω(j))

−1} ≥ (1 + logn)(4Dn)−1, and hence

M+
n 


γ

M+
n

≤ 4Dn(1 + logn)−1, �
γ

M+
n

≤ (1 + logD)(1 + logn), M+
n 


[�]
M+

n
≤

4D2n(1 + logn)−1 and �
[�]
M+

n
≤ (1 + 2 logD)(1 + logn). (ii) follows now

by combination of these estimates. Consider (iii). By employing Dγ −1
M+

n
≥

max1≤m≤M+
n

‖[�]−1
m ‖, (iii) follows from γ1 = 1 if M+

n = 1, while for M+
n > 1, we

use M+
n ω(M+

n )γ
−1
M+

n
≤ 4Dn(1 + logn)−1. Consider (iv). Since ε and X are centred

the identity [βm]m = [�]−1
m [g]m implies ρ2

m ≤ 2(EY 2 + E|〈βm,X〉H|2) = 2(σ 2
Y +

[g]tm[�]−1
m [g]m) = σ 2

m. By applying successively the inequality ‖�1/2β‖2 ≤
d‖β‖2

γ due to [22], Assumption 3.1, that is, γ and b−1 are nonincreasing, and

the identity σ 2
Y = σ 2 + 〈�β,β〉H follows

σ 2
Y ≤ σ 2 + d‖β‖2

γ ≤ σ 2 + dr.(B.1)
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Furthermore, from (iii) and (v) in Lemma B.1, we obtain

[g]tm[�]−1
m [g]m ≤ d

∥∥βm
∥∥2
γ ≤ 34d9r,(B.2)

which together with (B.1) implies (iv) and completes the proof. �

LEMMA B.3. Let � ∈ Gd
γ with γ as in Assumption 3.1. For all n,m ≥ 1 holds

{
1

4
<

‖[�̂]−1
m ‖s

‖[�]−1
m ‖s

≤ 4,∀1 ≤ m ≤ Mω
n

}
⊂ {

M−
n ≤ M̂ ≤ M+

n

}
.

PROOF. Let τ̂m := ‖[�̂]−1
m ‖−1

s and τm := ‖[�]−1
m ‖−1

s . We use below without

further reference that D−1 ≤ τm/γm ≤ d due to Lemma B.2(i). The result of the
lemma follows by combination of the next two assertions,

{
M̂ < M−

n

} ⊂
{

min
1≤m≤Mω

n

τ̂m

τm

<
1

4

}
,(B.3)

{
M̂ > M+

n

} ⊂
{

max
1≤m≤Mω

n

τ̂m

τm

≥ 4
}
.(B.4)

Consider (B.3) which holds trivially true for M−
n = 1. If M−

n > 1, then

min
1≤m≤M−

n

γm

mω(m)

≥ 4D(1 + logn)

n

implies

min
1≤m≤M−

n

τm

mω(m)

≥ 4(1 + logn)

n

and

{
M̂ < Mω

n

} ∩ {
M̂ < M−

n

} =
M−

n −1⋃
M=1

{M̂ = M}

⊂
M−

n −1⋃
M=1

{
τ̂M+1

(M + 1)ω(M+1)

<
1 + logn

n

}

⊂
{

min
1≤m≤M−

n

τ̂m

τm

< 1/4
}
,

while {M̂ = Mω
n } ∩ {M̂ < M−

n } = ∅ which shows (B.3) because M−
n ≤ Mω

n .
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Consider (B.4) which holds trivially true for M+
n = Mω

n . If M+
n < Mω

n , then
τ
M

+
n +1

(M+
n +1)ω

(M
+
n +1)

<
(1+logn)

4n
and (B.4) follows from

{M̂ > 1} ∩ {
M̂ > M+

n

} =
Mω

n⋃
M=M+

n +1

{M̂ = M}

⊂
Mω

n⋃
M=M+

n +1

{
min

2≤m≤M

τ̂m

mω(m)

≥ 1 + logn

n

}

⊂
{
τ̂M+

n +1

τM+
n +1

≥ 4
}

and {M̂ = 1} ∩ {M̂ > M+
n } = ∅ which completes the proof. �

LEMMA B.4. Let An, Bn and Cn as in (A.1). For all n ≥ 1 it holds true that
An ∩ Bn ∩ Cn ⊂ {penk ≤ p̂enk ≤ 72penk,1 ≤ k ≤ Mω

n } ∩ {M−
n ≤ M̂ ≤ M+

n }.
PROOF. Let Mω

n ≥ k ≥ 1. If ‖[�]k‖s ≤ 1/8, that is, on the event Bn, it is easily
verified that ‖([Id]k + [�]k)−1 − [Id]k‖s ≤ 1/7 which we exploit to conclude

6

7
≤ ‖[∇ω]1/2

k [�̂]−1
k [∇ω]1/2

k ‖s

‖[∇ω]1/2
k [�]−1

k [∇ω]1/2
k ‖s

≤ 8

7
,

6

7
≤ ‖[�̂]−1

k ‖s

‖[�]−1
k ‖s

≤ 8

7
and

(B.5)
6xt [�]−1

k x ≤ 7xt [�̂]−1
k x ≤ 8xt [�]−1

k x for all x ∈ R
k

and, consequently

(6/7)[ĝ]tk[�]−1
k [ĝ]k ≤ [ĝ]tk[�̂]−1

k [ĝ]k ≤ (8/7)[ĝ]tk[�]−1
k [ĝ]k.(B.6)

Moreover, from ‖[�]k‖s ≤ 1/8 we obtain after some algebra,

[g]tk[�]−1
k [g]k ≤ (1/16)[g]tk[�]−1

k [g]k + 4[W ]k[�]−1
k [W ]k + 2[ĝ]tk[�]−1

k [ĝ]k,
[ĝ]tk[�]−1

k [ĝ]k ≤ (33/16)[g]tk[�]−1
k [g]k + 4[W ]k[�]−1

k [W ]k.
Combining each of these estimates with (B.6) yields

(15/16)[g]tk[�]−1
k [g]k ≤ 4[W ]k[�]−1

k [W ]k + (7/3)[ĝ]tk[�̂]−1
k [ĝ]k,

(7/8)[ĝ]tk[�̂]−1
k [ĝ]k ≤ (33/16)[g]tk[�]−1

k [g]k + 4[W ]k[�]−1
k [W ]k.

If in addition [W ]tk[�]−1
k [W ]k ≤ 1

8([g]tk[�]−1
k [g]k + σ 2

Y ), that is, on the event Cn,
then the last two estimates imply, respectively,

(7/16)
([g]tk[�]−1

k [g]k + σ 2
Y

) ≤ (15/16)σ 2
Y + (7/3)[ĝ]tk[�̂]−1

k [ĝ]k,
(7/8)[ĝ]tk[�̂]−1

k [ĝ]k ≤ (41/16)[g]tk[�]−1
k [g]k + (1/2)σ 2

Y
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and hence in case 1/2 ≤ σ̂ 2
Y /σ 2

Y ≤ 3/2, that is, on the event An, we obtain

(7/16)
([g]tk[�]−1

k [g]k + σ 2
Y

) ≤ (15/8)σ̂ 2
Y + (7/3)[ĝ]tk[�̂]−1

k [ĝ]k,
(7/8)

([ĝ]tk[�̂]−1
k [ĝ]k + σ̂ 2

Y

) ≤ (41/16)[g]tk[�]−1
k [g]k + (29/16)σ 2

Y .

Combining the last two estimates we have

1
6

(
2[g]tk[�]−1

k [g]k + 2σ 2
Y

) ≤ (
2[ĝ]tk[�̂]−1

k [ĝ]k + 2σ̂ 2
Y

)
≤ 3

(
2[g]tk[�]−1

k [g]k + 2σ 2
Y

)
.

On An ∩ Bn ∩ Cn the last estimate and (B.5) hold for all 1 ≤ k ≤ Mω
n , hence

An ∩ Bn ∩ Cn ⊂
{

1

6
≤ σ̂ 2

m

σ 2
m

≤ 3 and
6

7
≤ 
[�̂]

m



[�]
m

≤ 8

7
,∀1 ≤ m ≤ Mω

n

}
.

Moreover it is easily seen that (6/7) ≤ 
[�̂]
m /
[�]

m ≤ (8/7) implies

1/2 ≤ (
1 + log(7/6)

)−1 ≤ �[�̂]
m /�[�]

m ≤ (
1 + log(8/7)

) ≤ 3/2.

Due to the last estimates the definitions of penm and p̂enm imply

An ∩ Bn ∩ Cn ⊂ {
penm ≤ p̂enm ≤ 72penm,∀1 ≤ m ≤ Mω

n

}
.(B.7)

On the other hand, by exploiting successively (B.5) and Lemma B.3, we have

An ∩ Bn ∩ Cn ⊂
{

6

7
≤ ‖[�̂]−1

m ‖s

‖[�]−1
m ‖s

≤ 8

7
,∀1 ≤ m ≤ Mω

n

}
⊂ {

M−
n ≤ M̂ ≤ M+

n

}
.

The last display and (B.7) imply the assertion of the lemma. �

LEMMA B.5. For all m,n ≥ 1 with n ≥ (8/7)‖[�]−1
m ‖s we have �m,n ⊂ �m,n.

PROOF. Taking into account [�̂]m = [�]1/2
m {[Id]m + [�]m}[�]1/2

m observe that
‖[�]m‖s ≤ 1/8 and n ≥ (8/7)‖[�]−1

m ‖s imply ‖[�̂]−1
m ‖s ≤ n due to a Neumann

series argument. Hence, �m,n ⊂ �m,n which proves the lemma. �

APPENDIX C: PROOF OF PROPOSITION 3.1

We will suppose throughout this section that the conditions of Proposition 3.1
are satisfied which allow us to employ Lemmas B.1–B.5. First, we show tech-
nical assertions (Lemmas C.1–C.5) exploiting Assumption 3.2, that is, X and ε

are jointly normally distributed. They are used below to prove that Assumptions
2.1 and 2.2 are satisfied (Propositions C.6 and C.7, resp.), which is the claim of
Proposition 3.1.
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We begin by recalling elementary properties due to Assumption 3.2 which are
frequently used in this section. Given f ∈ H the random variable 〈f,X〉H is nor-
mally distributed with mean zero and variance 〈�f,f 〉H. Consider the Galerkin so-
lution βm and h ∈ Hm; then 〈β − βm,X〉H and 〈h,X〉H are independent. Thereby,
Zm = Y − 〈βm,X〉H = σε + 〈β − βm,X〉H and [X]m are independent, normally
distributed with mean zero and, respectively, variance ρ2

m and covariance ma-

trix [�]m. Consequently, (ρ−1
m Zm, [X]tm[�]−1/2

m ) is a vector with independent,
standard normally distributed entries. The next assertion states elementary inequal-
ities for Gaussian random variables and its straightforward proof is omitted.

LEMMA C.1. Let {Ui,Vij ,1 ≤ i ≤ n,1 ≤ j ≤ m} be independent and stan-
dard normally distributed. For all η > 0 and ζ ≥ 4m/n we have:

(i) P(n−1/2 ∑n
i=1(U

2
i − 1) ≥ η) ≤ exp(−1

8
η2

1+ηn−1/2 );

(ii) P(n−1|∑n
i=1 UiVi1| ≥ η) ≤ ηn1/2+1

ηn1/2 exp(−n
4 min {η2,1/4});

(iii) P(n−2 ∑m
j=1 |∑n

i=1 UiVij |2 ≥ ζ ) ≤ exp(−n
16 ) + exp(

−ζn
64 );

and for all c ≥ 1 and a1, . . . , am ≥ 0 we obtain:

(iv) E(
∑n

i=1 U2
i − 2cn)+ ≤ 16 exp(−cn

16 );
(v) E(

∑m
j=1 |n−1/2 ∑n

i=1 UiVij |2 − 4cm)+ ≤ 16 exp(−cm
16 ) + 32 cm

n
exp(−n

16 );

(vi) E(
∑m

j=1 aj |∑n
i=1 UiVij |2)2 = n(n + 2)(

∑m
j=1 a2

j + (
∑m

j=1 aj )
2).

LEMMA C.2. For all n,m ≥ 1 we have:

(i) n2ρ−4
m E‖[W ]m‖4 ≤ 6(E‖X‖2)2.

Furthermore, there exist a numerical constant C > 0 such that for all n ≥ 1:

(ii) n8 max1≤m≤�n1/4� P(
[W ]tm[�]−1

m [W ]m
ρ2

m
> 1

16) ≤ C;

(iii) n8 max1≤m≤�n1/4� P(‖[�]m‖s > 1/8) ≤ C;
(iv) n7P({1/2 ≤ σ̂ 2

Y /σ 2
Y ≤ 3/2}c) ≤ C.

PROOF. Denote by (λj , ej )1≤j≤m an eigenvalue decomposition of [�]m. De-

fine Ui := (σεi + 〈β − βm,Xi〉H)/ρm and Vij := (λ
−1/2
j et

j [Xi]m), 1 ≤ i ≤ n, 1 ≤
j ≤ m, where U1, . . . ,Un,V11, . . . , Vnm are independent and standard normally
distributed. Consider (i) and (ii). Taking into account

∑m
j=1 λj ≤ E‖X‖2

H
and the

identities n4ρ−4
m ‖[W ]m‖4 = (

∑m
j=1 λj (

∑n
i=1 UiVij )

2)2 and ([W ]tm[�]−1
m [W ]m)/

ρ2
m = n−2 ∑m

j=1(
∑n

i=1 UiVij )
2, assertions (i) and (ii) follow, respectively, from

in Lemma C.1(vi) and (iii) (with aj = λj ). Consider (iii). Since n‖[�]m‖s ≤
mmax1≤j,l≤m |∑n

i=1(VijVil − δjl)| we obtain due to (i) and (ii) in Lemma C.1
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that for all η > 0

P
(∥∥[�]m

∥∥
s ≥ η

)
≤ ∑

1≤j,l≤m

P

(∣∣∣∣∣n−1
n∑

i=1

(VijVil − δjl)

∣∣∣∣∣ ≥ η/m

)

≤ m2 max

{
P

(∣∣∣∣∣1

n

n∑
i=1

Vi1Vi2

∣∣∣∣∣ ≥ η

m

)
,P

(∣∣∣∣∣ 1

n1/2

n∑
i=1

(
V 2

i1 − 1
)∣∣∣∣∣ ≥ n1/2 η

m

)}

≤ m2 max
{(

1 + m

ηn1/2

)
exp

(
−n

4
min

{
η2

m2 ,
1

4

})
,2 exp

(
−1

8

nη2/m2

1 + η/m

)}
.

Keeping in mind that 1/8 = η ≤ m/2, the last bound implies (iii). Consider (iv).
Since {Yi/σY }ni=1 are independent, standard, normally distributed and {1/2 ≤
σ̂ 2

Y /σ 2
Y ≤ 3/2}c ⊂ {|n−1 ∑n

i=1 Y 2
i /σ 2

Y − 1| > 1/2}, (iv) follows from Lem-
ma C.1(i). �

LEMMA C.3. We have for all c ≥ 1 and n,m ≥ 1

E

(
n[W ]tm[�]−1

m [W ]m
ρ2

m

− 4cm

)
+

≤ 16 exp
(−cm

16

)
+ 32

cm

n
exp

(−n

16

)
.

PROOF. From n‖[�]−1/2
m [W ]m‖2ρ−2

m = ∑m
j=1(n

−1/2 ∑n
i=1 UiVij )

2 derived in
the proof of Lemma C.2 and Lemma C.1(v) follows the assertion. �

LEMMA C.4. There is a constant C(d) depending on d such that for all n ≥ 1,

sup
β∈F r

b

sup
�∈Gd

γ

M+
n∑

k=m�
n



[�]
k E

(
[W ]tk[�]−1

k [W ]k − 4σ 2
k

k�
[�]
k

n

)
+

≤ C(d)
(
σ 2 + r

)
�n−1.

PROOF. The key argument of the proof is Lemma C.3 with c = �
[�]
k . Tak-

ing into account this bound and for all β ∈ F r
β and � ∈ Gd

γ that 

[�]
k ≤ 4d3


γ
k ,

(1 + logd)−1�
γ
k ≤ �

[�]
k , δ

[�]
M+

n
≤ nCd6(1 + logd) and ρ2

k ≤ σ 2
k ≤ 2(σ 2 + 35d6r)

[Lemma B.2(i), (ii) and (iv), resp.] hold true, we obtain

M+
n∑

k=m�
n



[�]
k E

(
[W ]tk[�]−1

k [W ]k − 4σ 2
k

k�
[�]
k

n

)
+

≤
M+

n∑
k=1

σ 2
k 


[�]
k

n
E

(n[W ]tk[�]−1
k [W ]k

ρ2
k

− 4k�
[�]
k

)
+
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≤ C(d)
(
σ 2 + r

)
× n−1

{M+
n∑

k=1



γ
k exp

(
− k�

γ
k

16(1 + logd)

)
+ M+

n exp(−n/16)

}
.

Finally, exploiting the constant � satisfying (3.3) and M+
n exp(−n/16) ≤ C for all

n ≥ 1, we obtain the assertion of the lemma. �

LEMMA C.5. There exist a numerical constant C and a constant C(d) only
depending on d such that for all n ≥ 1, we have:

(i) supβ∈F r
b

sup�∈Gd
γ
{n6(M+

n )2 max1≤m≤M+
n

P (�c
m,n)} ≤ C;

(ii) supβ∈F r
b

sup�∈Gd
γ
{nM+

n max1≤m≤M+
n

P (�c
m,n)} ≤ C(d);

(iii) supβ∈F r
b

sup�∈Gd
γ
{n7P(E c

n)} ≤ C.

PROOF. Since M+
n ≤ �n1/4� and �c

m,n = {‖[�]m‖ > 1/8} assertion (i) fol-
lows from Lemma C.2(ii). Consider (ii). Let no := no(d) := exp(128d6) ≥ 8d3,
and consequently ω(M+

n )(M
+
n logn) ≥ 128d6 for all n ≥ no. We distinguish in

the following the cases n < no and n ≥ no. First, let 1 ≤ n ≤ no. Obviously,
M+

n max1≤m≤M+
n

P (�c
m,n) ≤ M+

n ≤ n−1n
5/4
o ≤ C(d)n−1 since M+

n ≤ n1/4 and
no depends on d only. On the other hand, if n ≥ no, then Lemma B.2(iii) im-
plies n ≥ 2 max1≤m≤M+

n
‖[�]−1

m ‖, and hence �m,n ⊂ �m,n for all 1 ≤ m ≤ M+
n

by employing Lemma B.5. From (i) we conclude M+
n max1≤m≤M+

n
P (�c

m,n) ≤
M+

n max1≤m≤M+
n

P (�c
m,n) ≤ Cn−3. By combination of the two cases we ob-

tain (ii). It remains to show (iii). Consider the events An, Bn and Cn given
in (A.1), where An ∩ Bn ∩ Cn ⊂ En due to Lemma B.4. We have n7P(Ac

n) ≤ C,
n7P(Bc

n) ≤ C, n7P(Cc
n) ≤ C due to Lemma C.2(iv), (iii), (ii), respectively (keep

in mind �n1/4� ≥ Mω
n and 2(σ 2

Y + [g]tk[�]−1
k [g]k) = σ 2

k ≥ ρ2
k ). Combining these

estimates implies (iii). �

PROPOSITION C.6. Let κ = 96 in definition (2.11) of the penalty pen. There
exists a constant C(d) only depending on d such that for all n ≥ 1,

sup
β∈F r

b

sup
�∈Gd

γ

E

{
sup

m�
n≤k≤M+

n

(∥∥β̂k − βk
∥∥2
ω − 1

6
penk

)
+

}
≤ C(d)

(
σ 2 + r

)
�n−1.

PROOF. Since [β̂k − βk]k = [�̂]−1
k [W ]k1�k,n

− [βk]k1�c
k,n

it follows∥∥β̂k − βk
∥∥2
ω = ∥∥[∇ω]1/2

k [�̂]−1
k [W ]k

∥∥21�k,n
+ ∥∥βk

∥∥2
ω1�c

k,n
.(C.1)

Exploiting ‖([Id]k + [�]k)−1‖s1�k,n
≤ 2, [�̂]k = [�]1/2

k {[Id]k + [�]k}[�]1/2
k and

the definition of 

[�]
k imply ‖[∇ω]1/2

k [�̂]−1
k [W ]k‖21�k,n

≤ 4

[�]
k ‖[�]−1/2

k [W ]k‖2.
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On the other hand, we have ‖[∇ω]1/2
k [�̂]−1

k [W ]k‖21�k,n
≤ ω(k)n

2‖[W ]k‖2. From

these estimates and ‖βk‖ω ≤ ‖βk‖b (ωb−1 is nonincreasing due to Assump-
tion 3.1) we deduce for all k ≥ 1,∥∥β̂k − βk

∥∥2
ω ≤ 4


[�]
k

∥∥[�]−1/2
k [W ]k

∥∥2 + ω(k)n
2∥∥[W ]k

∥∥21�
c
k,n

+ ∥∥βk
∥∥2
b1�c

k,n
.

This upper bound and penk = 96σ 2
k k


[�]
k �

[�]
k n−1 imply

E

{
sup

m�
n≤k≤M+

n

(∥∥β̂k − βk
∥∥2
ω − penk

6

)
+

}

≤
M+

n∑
k=m�

n

n3(
E

∥∥[W ]k
∥∥4)1/2(

P
(
�

c
k,n

))1/2 +
M+

n∑
k=m�

n

∥∥βk
∥∥2
bP

(
�c

k,n

)

+ 4
M+

n∑
k=m�

n



[�]
k E

(∥∥[�]−1/2
k [W ]k

∥∥2 − 4σ 2
k

k�
[�]
k

n

)
+
.

By exploiting Lemmas B.1(v) and C.2(i) together with ρ2
m ≤ 2(σ 2 + 35d6r)

[Lemma B.2(iv)] the first and second r.h.s. term are bounded by

6
(
σ 2 + 35d6r

)
E‖X‖2n2M+

n max
m�

n≤k≤M+
n

(
P

(
�

c
k,n

))1/2

+ 34d8rM+
n max

m�
n≤k≤M+

n

P
(
�c

k,n

)
.

Combining this upper bound, the property E‖X‖2 ≤ d
∑

j≥1 γj ≤ d� and the es-
timates given in Lemma C.5, we deduce for all β ∈ F r

b and � ∈ Gd
γ that

sup
β∈F r

b

sup
�∈Gd

γ

E

{
sup

m�
n≤k≤M+

n

(∥∥β̂k − βk
∥∥2
ω − 1

6
penk

)
+

}

≤ C(d)
(
σ 2 + r

)
�n−1

+ 4 sup
β∈F r

b

sup
�∈Gd

γ

M+
n∑

k=m�
n



[�]
k E

(∥∥[�]−1/2
k [W ]k

∥∥2 − 4σ 2
k

k�
[�]
k

n

)
+
.

The result of the proposition follows now by replacing the last r.h.s. term by its
upper bound given in Lemma C.4, which completes the proof. �

PROPOSITION C.7. Let κ = 96 in definition (2.11) and (2.12) of pen and p̂en.
There exists a constant C(d) only depending on d such that for all n ≥ 1

sup
β∈F r

b

sup
�∈Gd

γ

E
(‖β̂m̂ − β‖2

ω1E c
n

) ≤ C(d)
(
σ 2 + r

)
�n−1.
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PROOF. From the decomposition (C.1) and ‖[∇ω]1/2
k [�̂]−1

k [W ]k‖21�k,n
≤


ω
k n2‖[W ]k‖2 given in the proof of Proposition C.6 we conclude

‖β̂k − β‖2
ω ≤ 2
ω

k n2∥∥[W ]k
∥∥2 + 2

∥∥βk
∥∥2
ω + 2‖β‖2

ω for all k ≥ 1.

By exploiting Lemma B.1(v) together with ‖βk‖ω ≤ ‖βk‖b (ωb−1 is nonincreas-
ing due to Assumption 3.1) we obtain for all β ∈ F r

b and � ∈ Gd
γ

‖β̂k − β‖2
ω ≤ 2
ω

k n2∥∥[W ]k
∥∥2 + 2

(
34d8r + r

)
for all k ≥ 1.

Since 1 ≤ m̂ ≤ Mω
n and max1≤k≤Mω

n
ω(k) ≤ n it follows that

E
(‖β̂m̂ − β‖2

ω1E c
n

) ≤ 2n3Mω
n max

1≤k≤Mω
n

(
E

∥∥[W ]k
∥∥4)1/2∣∣P (

E c
n

)∣∣1/2

+ 70d8rMω
n P

(
E c

n

)
.

From Lemma C.2(i) together with ρ2
m ≤ 2(σ 2 + 35d6r) (Lemma B.2) and

E‖X‖2 ≤ d�, we conclude for all β ∈ F r
b and � ∈ Gd

γ that

E
(‖β̂m̂ − β‖2

ω1E c
n

) ≤ 12
(
σ 2 + 35d6r

)
d�n2Mω

n

∣∣P (
E c

n

)∣∣1/2

+ 70d8rMω
n P

(
E c

n

)
.

The result of the proposition follows now from Mω
n ≤ �n1/4� and by replacing the

probability P(E c
n) by its upper bound Cn−7 given in Lemma C.5. �

PROOF OF PROPOSITION 3.1. The assertion follows from Propositions C.6
and C.7, and we omit the details. �

APPENDIX D: PROOF OF PROPOSITION 3.3

We assume throughout this section that the conditions of Proposition 3.3 are sat-
isfied which allows us to employ Lemmas B.1–B.5. We formulate first preliminary
results (Proposition D.1 and Lemmas D.2–D.5) relying on the moment conditions
(Assumption 3.3). They are used to prove that Assumptions 2.1 and 2.2 are satis-
fied (Propositions D.6 and D.7, resp.), which is the claim of Proposition 3.3. We
begin by gathering elementary bounds due to Assumption 3.3. Let k be given by
Assumption 3.3; then for all m ≥ 1 we have

E|Zm|4k ≤ ρ2
mη4k, E|Y |4k ≤ σ 4k

Y η4k,

max
1≤j≤m

E
∣∣([�]−1/2

m [X]m)
j

∣∣4k ≤ η4k,

E
∣∣〈β − βm,X

〉
H

∣∣4k ≤ ∥∥�1/2(
βm − β

)∥∥4k
H

η4k,

E
∣∣[X]tm[�]−1

m [X]m
∣∣2k ≤ m2kη4k.
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From E|V |1{|V |≥t} ≤ t−k+1E|V |k , t > 0, under Assumption 3.3 follows

Eε21{|ε|>n1/6} ≤ η32

n5 ,

E
∣∣〈β − βm,X

〉
H

∣∣21{|〈β−βm,X〉H|>‖�1/2(βm−β)‖Hn1/6}
(D.1)

≤ η32

n5

∥∥�1/2(
βm − β

)∥∥2
H
,

E
∣∣[X]tm[�]−1

m [X]m
∣∣21{[X]tm[�]−1

m [X]m>mn1/3} ≤ η32

n14/3 m2

for all m,n ≥ 1, and by employing Markov’s inequality

P
(|ε| > n1/6) ≤ η32

n16/3 ,

(D.2)

P
(∣∣〈β − βm,X

〉
H

∣∣ >
∥∥�1/2(

βm − β
)∥∥

H
n1/6) ≤ η32

n16/3 .

We exploit these bounds in the following proofs. The key argument used in the
proof of Lemma D.3 is the following inequality due to [37]; see, for example, [26].

PROPOSITION D.1 (Talagrand’s inequality). Let T1, . . . , Tn be independent
T -valued random variables and ν∗

s = (1/n)
∑n

i=1[νs(Ti) − E[νs(Ti)]], for νs be-
longing to a countable class {νs : s ∈ S} of measurable functions. Then, for ε > 0,

E

(
sup
s∈S

∣∣ν∗
s

∣∣2 − 2(1 + 2ε)H 2
)
+

≤ C

(
v

n
exp

(
−K1ε

nH 2

v

)
+ h2

n2C2(ε)
exp

(
−K2C(ε)

√
ε
nH

h

))
with K1 = 1/6, K2 = 1/(21

√
2), C(ε) = √

1 + ε − 1 and C a universal constant
and where

sup
s∈S

sup
t∈T

∣∣νs(t)
∣∣ ≤ h, E

[
sup
s∈S

∣∣ν∗
s

∣∣] ≤ H, sup
s∈S

1

n

n∑
i=1

Var
(
νs(Ti)

) ≤ v.

LEMMA D.2. There exist a numerical constant C > 0 such that for all n ≥ 1:

(i) n2 supm≥1 ρ−4
m E‖[W ]m‖4 ≤ Cη8(E‖X‖2

H
)2;

(ii) n8 max1≤m≤�n1/4� P(
[W ]tm[�]−1

m [W ]m
ρ2

m
> 1

16) ≤ Cη64;

(iii) n8 max1≤m≤�n1/4� P(‖[�]m‖s > 1/8) ≤ C(η);
(iv) n7P({1/2 ≤ σ̂ 2

Y /σ 2
Y ≤ 3/2}c) ≤ Cη64.
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PROOF. Denote by (λj , ej )1≤j≤m an eigenvalue decomposition of [�]m. De-

fine Ui := (σεi + 〈β − βm,Xi〉H)/ρm and Vij := (λ
−1/2
j et

j [Xi]m), 1 ≤ i ≤ n,

1 ≤ j ≤ m. Keep in mind that E|Ui |4k ≤ η4k , E|Vij |4k ≤ η4k and E|UiVij |2k ≤
η4k for k ≥ 16 (Assumption 3.3) and {UiVij }ni=1 are independent, centred for
1 ≤ j ≤ m. Consider (i), (ii) where n4ρ−4

m ‖[W ]m‖4 = (
∑m

j=1 λj (
∑n

i=1 UiVij )
2)2

and ([W ]tm[�]−1
m [W ]m)/ρ2

m = n−2 ∑m
j=1(

∑n
i=1 UiVij )

2. Applying Minkowski’s
(resp., Jensen’s) inequality and Theorem 2.10 in [34], we have

n2ρ−4
m E

∥∥[W ]m
∥∥4 ≤ n−2

[
m∑

j=1

λj

(
E

∣∣∣∣∣
n∑

i=1

UiVij

∣∣∣∣∣
4)1/2]2

≤ Cη8

[
m∑

j=1

λj

]2

;

nkm−kρ−2k
m E

∥∥[�]−1/2
m [W ]m

∥∥2k ≤ 1

m

m∑
j=1

n−k
E

∣∣∣∣∣
n∑

i=1

UiVij

∣∣∣∣∣
2k

≤ C(k)η4k,

which, respectively, implies (i), since
∑m

j=1 λj ≤ E‖X‖2
H

, and (ii), by employing
Markov’s inequality. Proof of (iii). Since {VijVil − δjl}ni=1 are independent, cen-
tred with E|VijVil − δjl|2k ≤ Cη4k , 1 ≤ j, l ≤ m, Theorem 2.10 in [34] implies
nkE|n−1 ∑n

i=1(VijVil − δjl)|2k ≤ C(k)η4k and m−2knkE‖[�]m‖2k
s ≤ C(k)η4k

because ‖[�]m‖2
s ≤ ∑

1≤j,l≤m |VijVil − δjl|2. Applying Markov’s inequality
gives (iii). Proof of (iv). Since {Y 2

i /σ 2
Y − 1}ni=1 are independent, centred with

E|Y 2
i /σ 2

Y − 1|2k ≤ C(k)η4k Theorem 2.10 in [34] implies E|n−1 ∑n
i=1 Y 2

i /σ 2
Y −

1|2k ≤ C(k)n−kη4k and P(|n−1 ∑n
i=1 Y 2

i /σ 2
Y − 1| > 1/2) ≤ Cn−16η64 employ-

ing Markov’s inequality. (iv) follows now from {1/2 ≤ σ̂ 2
Y /σ 2

Y ≤ 3/2}c ⊂
{|n−1 ∑n

i=1 Y 2
i /σ 2

Y − 1| > 1/2}. �

LEMMA D.3. Let ςm := σ + η2‖�1/2(βm − β)‖H, m ≥ 1. There exists a nu-
merical constant C such that for all �n1/4� ≥ m ≥ 1 we have

E

(‖[�]−1/2
m [Wn]m‖2

ς2
m

− 12
m�[�]

m

n

)
+

≤ C

n

{
exp

(
−m�[�]

m

6

)
+ exp

(
−n1/6

100

)
+ η32

n2

}
.

PROOF. Let Sm := {z ∈ Rm : ztz ≤ 1}. Define En := {e ∈ R : |e| ≤ n1/6},
X1n := {x ∈ H : |〈β − βm,x〉H| ≤ ‖�1/2(β − βm)‖Hn1/6}, X2n := {x ∈ H :
[x]tm[�]−1

m [x]m ≤ mn1/3} and Xn := X1n ∩ X2n. For e ∈ R, x ∈ H, s ∈ Sm set

νs(e, x) := (
σe + 〈

β − βm,x
〉
H

)
st [�]−1/2

m [x]m1{e∈En,x∈Xn},
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Rs(e, x) := (
σe + 〈

β − βm,x
〉
H

)
st [�]−1/2

m [x]m(1 − 1{e∈En,x∈Xn}).

Let ν∗
s := n−1 ∑n

i=1{νs(εi,Xi) − Eνs(εi,Xi)} and R∗
s := n−1 ∑n

i=1{Rs(εi,Xi) −
ERs(εi,Xi)}, then ‖[�]−1/2

m [Wn]m‖2 = sups∈Sm |ν∗
s + R∗

s |2 and hence

E

(∥∥[�]−1/2
m [Wn]m

∥∥2 − 12ς2
m

m�[�]
m

n

)
+

≤ 2E

(
sup
s∈Sm

∣∣ν∗
s

∣∣2 − 6ς2
m

m�[�]
m

n

)
+

+ 2E sup
s∈Sm

∣∣R∗
s

∣∣2(D.3)

=: 2{T1 + T2},
where we bound the r.h.s. terms T1 and T2 separately. Consider first T1. We intend
to apply Talagrand’s inequality. To this end, for e ∈ R, x ∈ H, we have

sup
s∈Sm

∣∣νs(e, x)
∣∣2 = (

σe + 〈
β − βm,x

〉
H

)2[x]tm[�]−1
m [x]m1{e∈En,x∈Xn}

(D.4)
≤ (

σ + ∥∥�1/2(
βm − β

)∥∥
H

)2
n2/3m ≤ ς2

mn2/3m =: h2.

By employing the independence of ε and X it is easily seen that

nE sup
s∈Sm

∣∣ν∗
s

∣∣2 ≤ σ 2m + E
∣∣〈β − βm,X

〉
H

∣∣2[X]tm[�]−1
m [X]m,

sup
s∈Sm

1

n

n∑
i=1

Var
(
νs(εi,Xi)

) ≤ σ 2 + sup
s∈Sm

E
∣∣〈β − βm,X

〉
H

∣∣2∣∣st [�]−1/2
m [X]m

∣∣2.
By applying the Cauchy–Schwarz inequality together with E‖[�]−1/2

m [X]m‖4 ≤
m2η4 and E|〈β − βm,X〉H|4 ≤ ‖�1/2(βm − β)‖4

H
η4 we obtain

E sup
s∈Sm

∣∣ν∗
s

∣∣2 ≤ m

n

(
σ 2 + ∥∥�1/2(

β − βm)∥∥2
H
η4) ≤ ς2

m

m�[�]
m

n
=: H 2,(D.5)

and taking into account that E|st [�]−1/2
m [X]m|4 ≤ η4, s ∈ Sm, we obtain

sup
s∈Sm

1

n

n∑
i=1

Var
(
νs(εi,Xi)

) ≤ σ 2 + ∥∥�1/2(
βm − β

)∥∥2
H
η4 ≤ ς2

m =: v.(D.6)

Due to (D.4)–(D.6) Talagrand’s inequality (Lemma D.1 with ε = 1) implies

E

(
sup
s∈Sm

∣∣ν∗
s

∣∣2 − 6ς2
m

m�[�]
m

n

)
+

≤ C
ς2

m

n

{
exp

(
−m�[�]

m

6

)
+ exp

(
−n1/6

100

)}
,(D.7)

where we used that m ≤ �n1/4�. Consider T2. By employing [X]m[�]−1
m [X]m ×

1{X∈X2,n} ≤ mn1/3 and Xn = X1n ∩ X2n we have

nE sup
s∈Sm

∣∣R∗
s

∣∣2 ≤ E
(
σε + 〈

β − βm,X
〉
H

)2[X]m[�]−1
m [X]m1{X/∈X2,n}

+ mn1/3
E

(
σε + 〈

β − βm,X
〉
H

)2
(1{ε/∈En} + 1{X/∈X1n}).
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Since E(σε+〈β−βm,X〉H)4 ≤ (σ 2 +‖�1/2(β−βm)‖2
H
)2η4, Eε2 = 1 and E|〈β−

βm,X〉H|2 = ‖�1/2(β − βm)‖2
H

the independence of ε and X implies

nE sup
s∈Sm

∣∣R∗
s

∣∣2 ≤ (
σ 2 + ∥∥�1/2(

β − βm)∥∥2
H

)
η2(

E
∣∣[X]m[�]−1

m [X]m
∣∣21{X/∈X2,n}

)1/2

+ mn1/3{
σ 2

Eε21{ε/∈En} + ∥∥�1/2(
β − βm)∥∥2

H
P(ε /∈ En)

+ σ 2P(X /∈ X1n) + E
∣∣〈β − βm,X

〉
H

∣∣21{X/∈X1n}
}
.

We exploit now the estimates given in (D.1) and (D.2). Thereby, we obtain

nE sup
s∈Sm

∣∣R∗
s

∣∣2 ≤ C
(
σ 2 + ∥∥�1/2(

β − βm)∥∥2
H

)
η32mn−7/3 ≤ Cς2

mη32n−2,

where we used that m ≤ �n1/4�. Keeping in mind decomposition (D.3), the last
bound and (D.7) imply together the claim of Lemma D.3. �

LEMMA D.4. There exists a constant K := K(σ,η, F r
b , Gd

γ ) depending on σ ,
η and the classes F r

b and Gd
γ only such that for all n ≥ 1 we have

sup
β∈F r

b

sup
�∈Gd

γ

M+
n∑

m=m�
n


[�]
m E

(∥∥[�]−1/2
m [Wn]m

∥∥2 − 12σ 2
mm�[�]

m

n

)
+

≤ K
η32(σ 2 + r)�

n
.

PROOF. There exists an integer no := no(σ, η, F r
b , Gd

γ ) depending on σ , η

and the classes F r
b and Gd

γ only such that for all n ≥ no and for all m ≥ m�
n we

have ς2
m ≤ 2(σ 2 + ‖�1/2β‖2

H
+ [g]tm[�]−1

m [g]m) = 2(σ 2
Y + [g]tm[�]−1

m [g]m) = σ 2
m.

Indeed, we have 1/m�
n = o(1) as n → ∞ and |ς2

m − σ 2| = o(1) as m → ∞
because ςm = σ + η2‖�1/2(βm − β)‖H and ‖�1/2(βm − β)‖2

H
≤ 34d9rγmb−1

m

due to Lemma B.1(v). First, consider n < no. Due to Lemma D.2(i) and ρ2
m ≤

2(σ 2 + 35d6r) [Lemma B.2(iv)] we have for all m ≥ 1

E

(∥∥[�]−1/2
m [Wn]m

∥∥2 − 12σ 2
mm��

m

n

)
+

≤ E
∥∥[�]−1/2

m [Wn]m
∥∥2 ≤ C

m

n
η4(

σ 2 +d6r
)
.

Hence, M+
n ≤ �n1/4� and m
�

m ≤ δ�
M+

n
≤ nC(d) [Lemma B.2(ii)] imply

sup
β∈F r

b

sup
�∈Gd

γ

M+
n∑

m=m�
n


[�]
m E

(∥∥[�]−1/2
m [Wn]m

∥∥2 − 12σ 2
m

m�[�]
m

n

)
+

≤ C(d)
n

5/4
o η4(σ 2 + r)

n
,
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which proves the lemma for all 1 ≤ n < no. Consider now n ≥ no where ς2
m ≤ σ 2

m

for all m ≥ m�
n. Thereby, we can apply Lemma D.3, which gives

sup
β∈F r

b

sup
�∈Gd

γ

M+
n∑

m=m�
n


[�]
m E

(∥∥[�]−1/2
m [Wn]m

∥∥2 − 12σ 2
m

m�[�]
m

n

)
+

≤ C sup
βF r

b

sup
�∈Gd

γ

M+
n∑

m=m�
n

ς2
m
[�]

m

n

{
exp

(
−m�[�]

m

6

)
+ exp

(
−n1/6

100

)
+ η32

n2

}
.

Since 

[�]
k ≤ 4d3


γ
k , �

[�]
k ≥ (1 + logd)−1�

γ
k , M+

n 

[�]
M+

n
≤ δ

[�]
M+

n
≤ nCd6(1 +

logd) and ς2
k ≤ σ 2

k ≤ 2(σ 2 + 35d6r) [Lemma B.2(i), (ii), (iv), resp.] follows

sup
β∈F r

b

sup
�∈Gd

γ

M+
n∑

m=m�
n


[�]
m E

(∥∥[�]−1/2
m [Wn]m

∥∥2 − 12σ 2
m

m�[�]
m

n

)
+

≤ C(d)
(
σ 2 + r

)
n−1

× sup
β∈F r

b

sup
�∈Gd

γ

{ M+
n∑

m=m�
n


γ
m exp

(
− m�

γ
m

6(1 + logd)

)
+ n exp

(
−n1/6

100

)
+ η32

n

}
.

Finally, � = �(Gd
γ ) as in (3.3) and n exp(−n1/6/100) ≤ C imply for n ≥ no

sup
β∈F r

b

sup
�∈Gd

γ

M+
n∑

m=m�
n


[�]
m E

(∥∥[�]−1/2
m [Wn]m

∥∥2 − 12σ 2
m

m�[�]
m

n

)
+

≤ C(d)
η32(σ 2 + r)�

n
.

Combining the cases n < no and n ≥ no completes the proof. �

LEMMA D.5. There exist a numerical constant C and a constant C(d) only
depending on d such that for all n ≥ 1 we have:

(i) supβ∈F r
b

sup�∈Gd
γ
{n6(M+

n )2 max1≤m≤M+
n

P (�c
m,n)} ≤ Cη64;

(ii) supβ∈F r
b

sup�∈Gd
γ
{nM+

n max1≤m≤M+
n

P (�c
m,n)} ≤ C(d)η64;

(iii) supβ∈F r
b

sup�∈Gd
γ
{n7P(E c

n)} ≤ Cη64.

PROOF. By employing Lemma D.2 rather than Lemma C.2 the proof follows
along the lines of the proof of Lemma C.5, and we omit the details. �

PROPOSITION D.6. Let κ = 288 in the definition (2.11) of the penalty pen.
There exists a constant K := K(σ,η, F r

b , Gd
γ ) depending on σ , η and the classes
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F r
b and Gd

γ only such that for all n ≥ 1, we have

sup
β∈F r

b

sup
�∈Gd

γ

E

{
sup

m�
n≤k≤M+

n

(∥∥β̂k − βk
∥∥2
ω − 1

6
penk

)
+

}
≤ Kη64(

σ 2 + r
)
�n−1.

PROOF. By employing Lemmas D.2, D.4 and D.5 rather than Lemmas C.2,
C.4 and C.5 the proof follows along the lines of the proof of Proposition C.6, and
we omit the details. �

PROPOSITION D.7. Let κ = 288 in definition (2.11) and (2.12) of pen and
p̂en. There exists a constant C(d) only depending on d such that for all n ≥ 1,

sup
β∈F r

b

sup
�∈Gd

γ

E
(‖β̂m̂ − β‖2

ω1E c
n

) ≤ C(d)η64(
σ 2 + r

)
�n−1.

PROOF. Taking into account Lemmas D.2(i) and D.5 rather than Lemmas
C.2(i) and C.5 the proof follows along the lines of the proof of Proposition C.7,
and we omit the details. �

PROOF OF PROPOSITION 3.3. The result follows from Propositions D.6
and D.7, and we omit the details. �
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SUPPLEMENTARY MATERIAL

Simulation study (DOI: 10.1214/12-AOS1050SUPP; .pdf). A simulation study
illustrating the finite sample behavior of the fully data-driven estimation procedure
and its good performance.
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