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Many statistical M-estimators are based on convex optimization prob-
lems formed by the combination of a data-dependent loss function with a
norm-based regularizer. We analyze the convergence rates of projected gra-
dient and composite gradient methods for solving such problems, working
within a high-dimensional framework that allows the ambient dimension d

to grow with (and possibly exceed) the sample size n. Our theory identi-
fies conditions under which projected gradient descent enjoys globally linear
convergence up to the statistical precision of the model, meaning the typical
distance between the true unknown parameter θ∗ and an optimal solution θ̂ .
By establishing these conditions with high probability for numerous statisti-
cal models, our analysis applies to a wide range of M-estimators, including
sparse linear regression using Lasso; group Lasso for block sparsity; log-
linear models with regularization; low-rank matrix recovery using nuclear
norm regularization; and matrix decomposition using a combination of the
nuclear and �1 norms. Overall, our analysis reveals interesting connections
between statistical and computational efficiency in high-dimensional estima-
tion.

1. Introduction. High-dimensional data sets present challenges that are both
statistical and computational in nature. On the statistical side, recent years have
witnessed a flurry of results on convergence rates for various estimators under
high-dimensional scaling, allowing for the possibility that the problem dimen-
sion d exceeds the sample size n. These results typically involve some assumption
regarding the structure of the parameter space, such as sparse vectors, structured
covariance matrices, or low-rank matrices, as well as some regularity of the data-
generating process. On the computational side, many estimators for statistical re-
covery are based on solving convex programs. Examples of such M-estimators in-
clude �1-regularized quadratic programs (Lasso) for sparse linear regression (e.g.,
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[7, 13, 26, 40, 44]), second-order cone programs (SOCP) for the group Lasso (e.g.,
[19, 24, 45]) and SDP relaxations for various problems, including sparse PCA and
low-rank matrix estimation (e.g., [3, 11, 28, 36, 37, 39]).

Many of these programs are instances of convex conic programs, and so can
(in principle) be solved to ε-accuracy in polynomial time using interior point
methods, and other standard methods from convex programming; for example,
see the books [6, 8]. However, the complexity of such quasi-Newton methods
can be prohibitively expensive for the very large-scale problems that arise from
high-dimensional data sets. Accordingly, recent years have witnessed a renewed
interest in simpler first-order methods, among them the methods of projected gra-
dient descent and mirror descent. Several authors (e.g., [4, 5, 20]) have used vari-
ants of Nesterov’s accelerated gradient method [31] to obtain algorithms for high-
dimensional statistical problems with a sublinear rate of convergence. Note that an
optimization algorithm, generating a sequence of iterates {θ t }∞t=0, is said to exhibit
sublinear convergence to an optimum θ̂ if the optimization error ‖θ t − θ̂‖ decays
at the rate 1/tκ , for some exponent κ > 0 and norm ‖ · ‖. It is known that this is
the best possible convergence rate for gradient descent-type methods for convex
programs under only Lipschitz conditions [30].

It is known that much faster global rates—in particular, a linear or geometric
rate—can be achieved if global regularity conditions like strong convexity and
smoothness are imposed [30]. An optimization algorithm is said to exhibit linear
or geometric convergence if the optimization error ‖θ t − θ̂‖ decays at a rate κt ,
for some contraction coefficient κ ∈ (0,1). Note that such convergence is expo-
nentially faster than sub-linear convergence. For certain classes of problems in-
volving polyhedral constraints and global smoothness, Tseng and Luo [25] have
established geometric convergence. However, a challenging aspect of statistical
estimation in high dimensions is that the underlying optimization problems can
never be strongly convex in a global sense when d > n (since the d × d Hes-
sian matrix is rank-deficient), and global smoothness conditions cannot hold when
d/n → +∞. Some more recent work has exploited structure specific to the opti-
mization problems that arise in statistical settings. For the special case of sparse
linear regression with random isotropic designs (also referred to as compressed
sensing), some authors have established local linear convergence, meaning guar-
antees that apply once the iterates are close enough to the optimum [9, 17]. Also
in the setting of compressed sensing, Tropp and Gilbert [41] studied finite conver-
gence of greedy algorithms, while Garg and Khandekar [16] provide results for a
thresholded gradient algorithm. In both of these results, the convergence happens
up to a tolerance of the order of the noise variance, which is substantially larger
than the true statistical precision of the problem.

The focus of this paper is the convergence rate of two simple gradient-
based algorithms for solving optimization problems that underlie regularized M-
estimators. For a constrained problem with a differentiable objective function, the
projected gradient method generates a sequence of iterates {θ t }∞t=0 by taking a step
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FIG. 1. Convergence rates of projected gradient descent in application to Lasso (�1-constrained
least-squares). Each panel shows the log optimization error log‖θt − θ̂‖ versus the iteration num-
ber t . Panel (a) shows three curves, corresponding to dimensions d ∈ {5000;10,000;20,000}, spar-
sity s = �√d	 and all with the same sample size n = 2500. All cases show geometric convergence,
but the rate for larger problems becomes progressively slower. (b) For an appropriately rescaled
sample size (α = n

s logd
), all three convergence rates should be roughly the same, as predicted by the

theory.

in the negative gradient direction, and then projecting the result onto the constraint
set. The composite gradient method of Nesterov [31] is well-suited to solving reg-
ularized problems formed by the sum of a differentiable and a nondifferentiable
component.

The main contribution of this paper is to establish a form of global geometric
convergence for these algorithms that holds for a broad class of high-dimensional
statistical problems. In order to provide intuition for this guarantee, Figure 1 shows
the performance of projected gradient descent for Lasso problems (�1-constrained
least-squares), each one based on a fixed sample size n = 2500 and varying di-
mensions d ∈ {5000;10,000;20,000}. In panel (a), we have plotted the logarithm
of the optimization error, measured in terms of the Euclidean norm ‖θ t − θ̂‖ be-
tween θ t and an optimal solution θ̂ , versus the iteration number t . Note that all
curves are linear (on this logarithmic scale), revealing the geometric convergence
predicted by our theory. Moreover, the results in panel (a) exhibit an interesting
property: the convergence rate is dimension-dependent, meaning that for a fixed
sample size, projected gradient descent converges more slowly for a larger prob-
lem than a smaller problem. This phenomenon reflects the natural intuition that
larger problems are “harder” than smaller problems. A notable aspect of our the-
ory is that it makes a quantitative prediction regarding the extent to which a larger
problem is harder than a smaller one. In particular, our convergence rates suggest
that if the sample size n is re-scaled according to the dimension d and also other
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model parameters such as sparsity, then convergence rates should be roughly sim-
ilar. Panel (b) confirms this prediction: when the sample size is rescaled according
to our theory (in particular, see Corollary 2 in Section 3.2), then all three curves lie
essentially on top of each other.

Although high-dimensional optimization problems are typically neither strongly
convex nor smooth, this paper shows that it is fruitful to consider suitably restricted
notions of strong convexity and smoothness. Our notion of restricted strong con-
vexity (RSC) is related to but slightly different than that of Negahban et al. [27]
for establishing statistical consistency. We also introduce a related notion of re-
stricted smoothness (RSM), not needed for proving statistical rates, but essential
in the setting of optimization. Our analysis consists of two parts. We first show that
for optimization problems underlying many regularized M-estimators, RSC/RSM
conditions are sufficient to guarantee global linear convergence of projected gra-
dient descent. Our second contribution is to prove that for the iterates generated
by our methods, these RSC/RSM assumptions do hold with high probability for
numerous statistical models, among them sparse linear models, models with group
sparsity, and various matrix estimation problems, including matrix completion and
matrix decomposition.

An interesting aspect of our results is that the geometric convergence is not
guaranteed to an arbitrary precision, but only to an accuracy related to statistical
precision of the problem. For a given norm ‖ · ‖, the statistical precision is given
by the mean-squared error E[‖θ̂ − θ∗‖2] between the true parameter θ∗ and the
solution θ̂ of the optimization problem. Our analysis guarantees geometric conver-
gence to a parameter θ such that∥∥θ − θ∗∥∥ = ∥∥θ̂ − θ∗∥∥ + o

(∥∥θ̂ − θ∗∥∥)
,

which is the best we can hope for statistically, ignoring lower order terms. Overall,
our results reveal an interesting connection between the statistical and computa-
tional properties of M-estimators—that is, the properties of the underlying statis-
tical model that make it favorable for estimation also render it more amenable to
optimization procedures.

The remainder of this paper is organized as follows. We begin in Section 2 with
our setup and the necessary background. Section 3 is devoted to the statement of
our main results and various corollaries. In Section 4, we provide a number of
empirical results that confirm the sharpness of our theory. Proofs of our results are
provided in the Supplementary Material [1].

2. Background and problem formulation. In this section, we begin by de-
scribing the class of regularized M-estimators to which our analysis applies, as
well as the optimization algorithms that we analyze. Finally, we introduce some
important notions that underlie our analysis, including the notions of a decompos-
able regularization, and the properties of restricted strong convexity and smooth-
ness.
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2.1. Loss functions, regularization and gradient-based methods. Given a ran-
dom variable Z ∼ P taking values in some set Z , let Zn

1 = {Z1, . . . ,Zn} be
a sample of n observations. Assuming that P lies within some indexed family
{Pθ , θ ∈ �}, the goal is to recover an estimate of the unknown true parameter
θ∗ ∈ � generating the data. Here � is some subset of R

d , where d is the ambient
dimension of the problem. In order to measure the “fit” of any θ ∈ � to a given data
set Zn

1 , we introduce a loss function Ln :� × Z n → R+. By construction, for any
given n-sample data set Zn

1 ∈ Z n, the loss function assigns a cost Ln(θ;Zn
1 ) ≥ 0

to the parameter θ ∈ �. In many applications, the loss function has a separable
structure across the data set, meaning that Ln(θ;Zn

1 ) = 1
n

∑n
i=1 �(θ;Zi) where

� :� × Z :→ R+ is the loss function associated with a single data point.
Of primary interest in this paper are estimation problems that are under-

determined, meaning that the sample size n is smaller than the ambient dimen-
sion d . In such settings, without further restrictions on the parameter space �,
there are various impossibility theorems, asserting that consistent estimates of the
unknown parameter θ∗ cannot be obtained. For this reason, it is necessary to as-
sume that the unknown parameter θ∗ either lies within a smaller subset of �, or
is well-approximated by some member of such a subset. In order to incorporate
these types of structural constraints, we introduce a regularizer R :� → R+ over
the parameter space. Given a user-defined radius ρ > 0, our analysis applies to the
constrained M-estimator

θ̂ρ ∈ arg min
R(θ)≤ρ

{
Ln

(
θ;Zn

1
)}

(1)

as well as to the regularized M-estimator

θ̂λn ∈ arg min
R(θ)≤ρ̄

{
Ln

(
θ;Zn

1
) + λnR(θ)︸ ︷︷ ︸

φn(θ)

}
,(2)

where the regularization weight λn > 0 is user-defined. Note that the radii ρ and ρ̄

may be different in general. Throughout this paper, we impose the following two
conditions:

(a) for any data set Zn
1 , the function Ln(·;Zn

1 ) is convex and differentiable
over �, and

(b) the regularizer R is a norm.

These conditions ensure that the overall problem is convex, so that by Lagrangian
duality, the optimization problems (1) and (2) are equivalent. However, as our anal-
ysis will show, solving one or the other can be computationally more preferable
depending upon the assumptions made. When the radius ρ or the regularization
parameter λn is clear from the context, we will drop the subscript on θ̂ to ease the
notation. Similarly, we frequently adopt the shorthand Ln(θ). Procedures based on
optimization problems of either form are known as M-estimators in the statistics
literature.
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The focus of this paper is on two simple algorithms for solving the above op-
timization problems. The method of projected gradient descent applies naturally
to the constrained problem (1), whereas the composite gradient descent method
due to Nesterov [31] is suitable for solving the regularized problem (2). Each rou-
tine generates a sequence {θ t }∞t=0 of iterates by first initializing to some parameter
θ0 ∈ �, and then for t = 0,1,2, . . . , applying the recursive update

θ t+1 = arg min
θ∈BR(ρ)

{
Ln

(
θ t ) + 〈∇Ln

(
θ t ), θ − θ t 〉 + γu

2

∥∥θ − θ t
∥∥2

}
,(3)

in the case of projected gradient descent, or the update

θ t+1 = arg min
θ∈BR(ρ̄)

{
Ln

(
θ t ) + 〈∇Ln

(
θ t ), θ − θ t 〉 + γu

2

∥∥θ − θ t
∥∥2+λnR(θ)

}
(4)

for the composite gradient method. Note that the only difference between the two
updates is the addition of the regularization term in the objective. These updates
have a natural intuition: the next iterate θ t+1 is obtained by constrained minimiza-
tion of a first-order approximation to the loss function, combined with a smoothing
term that controls how far one moves from the current iterate in terms of Euclidean
norm. Moreover, it is easily seen that update (3) is equivalent to

θ t+1 = �

(
θ t − 1

γu

∇Ln

(
θ t )),(5)

where � ≡ �BR(ρ) denotes Euclidean projection onto the regularizer norm ball
BR(ρ) := {θ ∈ � | R(θ) ≤ ρ} of radius ρ. In this formulation, we see that the
algorithm takes a step in the negative gradient direction, using the quantity 1/γu

as stepsize parameter, and then projects the resulting vector onto the constraint set.
Update (4) takes an analogous form; however, the projection will depend on both
λn and γu. As will be illustrated in the examples to follow, for many problems,
updates (3) and (4), or equivalently (5), have a very simple solution. For instance,
in the case of �1-regularization, they are easily computed by an appropriate form
of soft-thresholding.

2.2. Restricted strong convexity and smoothness. In this section, we define the
conditions on the loss function and regularizer that underlie our analysis. Global
smoothness and strong convexity assumptions play an important role in the classi-
cal analysis of optimization algorithms [6, 8, 30]. In application to a differentiable
loss function Ln, both of these properties are defined in terms of a first-order Taylor
series expansion around a vector θ ′ in the direction of θ—namely, the quantity

T L
(
θ; θ ′) := Ln(θ) − Ln

(
θ ′) − 〈∇Ln

(
θ ′), θ − θ ′〉.(6)

By the assumed convexity of Ln, this error is always nonnegative, and global
strong convexity is equivalent to imposing a stronger condition, namely that for
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some parameter γ� > 0, the first-order Taylor error T L(θ; θ ′) is lower bounded by a
quadratic term γ�

2 ‖θ −θ ′‖2 for all θ, θ ′ ∈ �. Global smoothness is defined in a sim-
ilar way, by imposing a quadratic upper bound on the Taylor error. It is known that
under global smoothness and strong convexity assumptions, the method of pro-
jected gradient descent (3) enjoys a globally geometric convergence rate, meaning
that there is some κ ∈ (0,1) such that4∥∥θ t − θ̂

∥∥2 � κt
∥∥θ0 − θ̂

∥∥2 for all iterations t = 0,1,2, . . . .(7)

We refer the reader to Bertsekas [6], Proposition 1.2.3, page 145, or Nesterov [30],
Theorem 2.2.8, page 88, for such results on projected gradient descent, and to
Nesterov [31] for related results on composite gradient descent.

Unfortunately, in the high-dimensional setting (d > n), it is usually impossible
to guarantee strong convexity of problem (1) in a global sense. For instance, when
the data is drawn i.i.d., the loss function consists of a sum of n terms. If the loss
is twice differentiable, the resulting d × d Hessian matrix ∇2L(θ;Zn

1 ) is often a
sum of n matrices each with rank one, so that the Hessian is rank-degenerate when
n < d . However, as we show in this paper, in order to obtain fast convergence rates
for optimization method (3), it is sufficient that (a) the objective is strongly convex
and smooth in a restricted set of directions, and (b) the algorithm approaches the
optimum θ̂ only along these directions. Let us now formalize these ideas.

DEFINITION 1 [Restricted strong convexity (RSC)]. The loss function Ln

satisfies restricted strong convexity with respect to R and with parameters
(γ�, τ�(Ln)) over the set �′ if

T L
(
θ; θ ′) ≥ γ�

2

∥∥θ − θ ′∥∥2 − τ�(Ln)R2(
θ − θ ′) for all θ, θ ′ ∈ �′.(8)

We refer to the quantity γ� as the (lower) curvature parameter, and to the quan-
tity τ� as the tolerance parameter. The set �′ corresponds to a suitably chosen
subset of the space � of all possible parameters.5

In order to gain intuition for this definition, first suppose that condition (8) holds
with tolerance parameter τ� = 0. In this case, the regularizer plays no role in the
definition, and condition (8) is equivalent to the usual definition of strong convex-
ity on the optimization set �. As discussed previously, this type of global strong
convexity typically fails to hold for high-dimensional inference problems. In con-
trast, when tolerance parameter τ� is strictly positive, condition (8) is much milder,

4In this statement (and throughout the paper), we use � to mean an inequality that holds with some
universal constant c, independent of the problem parameters.

5As pointed out by a referee, our RSC condition is an instance of the general theory of paraconvex-
ity (e.g., [32]); however, we are not aware of convergence rates for minimizing general paraconvex
functions.
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in that it only applies to a limited set of vectors. For a given pair θ �= θ ′, consider
the inequality

R2(θ − θ ′)
‖θ − θ ′‖2 <

γ�

2τ�(Ln)
.(9)

If this inequality is violated, then the right-hand side of bound (8) is nonpositive,
in which case the RSC constraint (8) is vacuous. Thus, RSC imposes a nontriv-
ial constraint only on pairs θ �= θ ′ for which inequality (9) holds, and a central
part of our analysis will be to prove that for our methods, the optimization error
�̂t := θ t − θ̂ satisfies a constraint of the form (9). We note that since the regular-
izer R is convex, strong convexity of the loss function Ln also implies the strong
convexity of the regularized loss φn.

We also specify an analogous notion of restricted smoothness:

DEFINITION 2 [Restricted smoothness (RSM)]. We say the loss function Ln

satisfies restricted smoothness with respect to R and with parameters (γu, τu(Ln))

over the set �′ if

T L
(
θ; θ ′) ≤ γu

2

∥∥θ − θ ′∥∥2 + τu(Ln)R2(
θ − θ ′) for all θ, θ ′ ∈ �′.(10)

As with our definition of restricted strong convexity, the additional tolerance
τu(Ln) is not present in analogous smoothness conditions in the optimization lit-
erature, but it is essential in our set-up.

2.3. Decomposable regularizers. In past work on the statistical properties of
regularization, the notion of a decomposable regularizer has been shown to be
useful [27]. Although the focus of this paper is a rather different set of questions—
namely, optimization as opposed to statistics—decomposability also plays an im-
portant role here. Decomposability is defined with respect to a pair of subspaces
defined with respect to the parameter space � ⊆ R

d . The set M is known as the
model subspace, whereas the set �M⊥, referred to as the perturbation subspace,
captures deviations from the model subspace.

DEFINITION 3. Given a subspace pair (M, �M⊥) such that M ⊆ �M, we say
that a norm R is (M, �M⊥)-decomposable if

R(α + β) = R(α) + R(β) for all α ∈ M and β ∈ �M⊥.(11)

To gain some intuition for this definition, note that by the triangle inequality, we
always have the bound R(α + β) ≤ R(α) + R(β). For a decomposable regular-
izer, this inequality always holds with equality. Thus, given a fixed vector α ∈ M,
the key property of any decomposable regularizer is that it affords the maximum
penalization of any deviation β ∈ �M⊥.

For a given error norm ‖ · ‖, its interaction with the regularizer R plays an
important role in our results. In particular, we have the following:
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DEFINITION 4 (Subspace compatibility). Given the regularizer R(·) and a
norm ‖ · ‖, the associated subspace compatibility is given by

�( �M) := sup
θ∈M̄\{0}

R(θ)

‖θ‖ when �M �= {0} and �
({0}) := 0.(12)

The quantity �( �M) corresponds to the Lipschitz constant of the norm R with
respect to ‖ · ‖, when restricted to the subspace �M.

2.4. Some illustrative examples. We now describe some particular examples
of M-estimators with decomposable regularizers, and discuss the form of the pro-
jected gradient updates as well as RSC/RSM conditions. We cover two main fami-
lies of examples: log-linear models with sparsity constraints and �1-regularization
(Section 2.4.1), and matrix regression problems with nuclear norm regularization
(Section 2.4.2).

2.4.1. Sparse log-linear models and �1-regularization. Suppose that each
sample Zi consists of a scalar-vector pair (yi, xi) ∈ R × R

d , corresponding to the
scalar response yi ∈ R associated with a vector of predictors xi ∈ R

d . A log-linear
model with canonical link function assumes that the response yi is linked to the
covariate vector xi via a conditional distribution of the form P(yi | xi; θ∗, σ ) ∝
exp{yi〈θ∗,xi〉−�(〈θ∗,xi〉)

c(σ )
}, where c(σ ) is a known scaling parameter, �(·) is a known

log-partition function and θ∗ ∈ R
d is an unknown regression vector. In many ap-

plications, θ∗ is relatively sparse, so that it is natural to impose an �1-constraint.
Computing the maximum likelihood estimate subject to such a constraint involves
solving the convex program6

θ̂ ∈ arg min
θ∈�

{
1

n

n∑
i=1

{
�

(〈θ, xi〉) − yi〈θ, xi〉}
}

︸ ︷︷ ︸
Ln(θ;Zn

1 )

such that ‖θ‖1 ≤ ρ,(13)

with xi ∈ R
d as its ith row. We refer to this estimator as the log-linear Lasso; it is a

special case of the M-estimator (1). Ordinary linear regression is the special case of
the log-linear setting with �(t) = t2/2 and � = R

d , and in this case, estimator (13)
corresponds to ordinary least-squares version of Lasso [13, 40]. Other forms of
log-linear Lasso that are of interest include logistic regression, Poisson regression
and multinomial regression.

6The function � is convex since it is the log-partition function of a canonical exponential family.
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Projected gradient updates. For the log-linear loss from equation (13), an easy
calculation yields the gradient ∇Ln(θ) = 1

n

∑n
i=1 xi{�′(〈θ, xi〉 − yi)}, and update

(5) corresponds to the Euclidean projection of the vector θ t − 1
γu

∇Ln(θ
t ) onto the

�1-ball of radius ρ. It is well known that this projection can be characterized in
terms of soft-thresholding, and that the projected update (5) can be computed in
O(d) operations [14].

Composite gradient updates. The composite gradient update for this problem
amounts to solving

θ t+1 = arg min
‖θ‖1≤ρ̄

{〈
θ,∇Ln(θ)

〉 + γu

2

∥∥θ − θ t
∥∥2

2 + λn‖θ‖1

}
.

The update can be computed by two soft-thresholding operations. The first step is
soft thresholding the vector θ t − 1

γu
∇Ln(θ

t ) at a level λn. If the resulting vector
has �1-norm greater than ρ̄, then we project on to the �1-ball as before. Overall,
the complexity of the update is still O(d).

Decomposability of �1-norm. We now illustrate how the �1-norm is
decomposable with respect to appropriately chosen subspaces. For any subset
S ⊆ {1,2, . . . , d}, consider the subspace

M(S) := {
α ∈ R

d | αj = 0 for all j /∈ S
}
,(14)

corresponding to all vectors supported only on S. Defining �M(S) = M(S), its
orthogonal complement (with respect to the Euclidean inner product) is given
by �M⊥(S) = M⊥(S) = {β ∈ R

d | βj = 0 for all j ∈ S}. Since any pair of vectors
α ∈ M(S) and β ∈ �M⊥(S) have disjoint supports, it follows that
‖α‖1 + ‖β‖1 = ‖α + β‖1. Consequently, for any subset S, the �1-norm is de-
composable with respect to the pairs (M(S), M⊥(S)).

In analogy to the �1-norm, various types of group-sparse norms are also de-
composable with respect to nontrivial subspace pairs. We refer the reader to the
paper [27] for further examples of such decomposable norms.

RSC/RSM conditions. A calculation using the mean-value theorem shows that for
loss function (13), the error in the first-order Taylor series, as previously defined
in equation (6), can be written as

T L
(
θ; θ ′) = 1

n

n∑
i=1

�′′(〈θt , xi〉)(〈xi, θ − θ ′〉)2
,

where θt = tθ + (1 − t)θ ′ for some t ∈ [0,1]. When n < d , then we can always
find pairs θ �= θ ′ such that 〈xi, θ − θ ′〉 = 0 for all i = 1,2, . . . , n, showing that
the objective function can never be strongly convex. On the other hand, RSC for
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log-linear models requires only that there exist positive numbers (γ�, τ�(Ln)) such
that for all θ, θ ′ ∈ �′,

1

n

n∑
i=1

�′′(〈θt , xi〉)(〈xi, θ − θ ′〉)2 ≥ γ�

2

∥∥θ − θ ′∥∥2 − τ�(Ln)R2(
θ − θ ′),(15)

where �′ := �∩ B2(R). This restriction is essential because for many generalized
linear models (e.g., logistic), the Hessian function �′′ approaches zero as its argu-
ment diverges. RSM imposes an analogous upper bound on the Taylor error. For
a broad class of log-linear models, such bounds hold with tolerance τ�(Ln) and

τu(Ln) of the order
√

logd
n

. A detailed discussion of RSC for exponential families
can be found in the paper [27].

In the special case of linear regression, we have �′′(t) = 1 for all t ∈ R, so that
the lower bound (15) involves only the Gram matrix XT X/n. (Here X ∈ R

n×d

is the usual design matrix, with xi ∈ R
d as its ith row.) For linear regression and

�1-regularization, the RSC condition is equivalent to

‖X(θ − θ ′)‖2
2

n
≥ γ�

2

∥∥θ − θ ′∥∥2
2 − τ�(Ln)

∥∥θ − θ ′∥∥2
1 for all θ, θ ′ ∈ �.(16)

Such a condition corresponds to a variant of the restricted eigenvalue (RE) con-
ditions that have been studied in the literature [7, 42]. Such RE conditions are
significantly milder than the restricted isometry property; we refer the reader to
van de Geer and Buhlmann [42] for an in-depth comparison of different RE con-
ditions. From past work, condition (16) is satisfied with high probability with a
constant γ� > 0 and tolerance τ�(Ln) � logd

n
for a broad classes of anisotropic

random design matrices [33, 38], and parts of our analysis make use of this fact.

2.4.2. Matrices and nuclear norm regularization. We now discuss a general
class of matrix regression problems that falls within our framework. Consider
the space of d1 × d2 matrices endowed with the trace inner product 〈〈A,B〉〉 :=
trace(AT B). Let �∗ ∈ R

d1×d2 be an unknown matrix and suppose that for i =
1,2, . . . , n, we observe the pair Zi = (yi,Xi) ∈ R × R

d1×d2 , where the scalar re-
sponse yi and covariate matrix Xi are linked to the unknown matrix �∗ via the
linear model

yi = 〈〈
Xi,�

∗〉〉 + wi for i = 1,2, . . . , n.(17)

Here wi is an additive observation noise. In many contexts, it is natural to as-
sume that �∗ is exactly low-rank, or approximately so, meaning that it is well-
approximated by a matrix of low rank. In such settings, a number of authors (e.g.,
[15, 28, 37]) have studied the M-estimator

�̂ ∈ arg min
�∈R

d1×d2

{
1

2n

n∑
i=1

(
yi − 〈〈

Xi,�
〉〉)2

}
such that |||�|||1 ≤ ρ,(18)
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or the corresponding regularized version. Defining d = min{d1, d2}, the nuclear
or trace norm is given by |||�|||1 := ∑d

j=1 σj (�), corresponding to the sum of
the singular values. As discussed in Section 3.3, there are various applications in
which this estimator and variants thereof have proven useful.

Form of projected gradient descent. For the M-estimator (18), the projected gra-
dient updates take a very simple form—namely

�t+1 = �

(
�t − 1

γu

∑n
i=1(yi − 〈〈Xi,�

t 〉〉)Xi

n

)
,(19)

where � denotes Euclidean (i.e., in Frobenius norm) projection onto the nuclear
norm ball BN(ρ) = {� ∈ R

d1×d2 | |||�|||1 ≤ ρ}. This nuclear norm projection can
be obtained by first computing the singular value decomposition (SVD), and then
projecting the vector of singular values onto the �1-ball. The latter step can be
achieved by the fast projection algorithms discussed earlier, and there are various
methods for fast computation of SVDs. The composite gradient update also has a
simple form, requiring at most two singular value thresholding operations.

Decomposability of nuclear norm. We now define matrix subspaces for which
the nuclear norm is decomposable. Defining d := min{d1, d2}, let U ∈ R

d1×d and
V ∈ R

d2×d be arbitrary matrices with orthonormal columns. Using col to denote
the column span of a matrix, we define the subspaces7

M(U,V ) := {
� ∈ R

d1×d2 | col
(
�T ) ⊆ col(V ), col(�) ⊆ col(U)

}
and

�M⊥(U,V ) := {
� ∈ R

d1×d2 | col
(
�T ) ⊆ (

col(V )
)⊥

, col(�) ⊆ (
col(U)

)⊥}
.

Finally, let us verify the decomposability of the nuclear norm . By construction,
any pair of matrices � ∈ M(U,V ) and � ∈ �M⊥(U,V ) have orthogonal row and
column spaces, which implies the required decomposability condition—namely
|||� + �|||1 = |||�|||1 + |||�|||1.

Finally, we note that in some special cases such as matrix completion or matrix
decomposition, �′ will involve an additional bound on the entries of �∗ as well as
the iterates �t to establish RSC/RSM conditions.

3. Main results and some consequences. We are now equipped to state the
two main results of our paper, and discuss some of their consequences. We il-
lustrate its application to several statistical models, including sparse regression
(Section 3.2), matrix estimation with rank constraints (Section 3.3) and matrix de-
composition problems (Section 3.4). The proofs of all our results can be found in
the Supplementary Material [1].

7Note that the model space M(U,V ) is not equal to �M(U,V ). Nonetheless, as required by Defi-
nition 3, we do have the inclusion M(U,V ) ⊆ �M(U,V ).
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3.1. Geometric convergence. Recall that the projected gradient algorithm (3)
is well suited to solving an M-estimation problem in its constrained form, whereas
the composite gradient algorithm (4) is appropriate for a regularized problem. Ac-
cordingly, let θ̂ be any optimum of the constrained problem (1), or the regularized
problem (2), and let {θ t }∞t=0 be a sequence of iterates generated by generated by the
projected gradient (3), or the the composite gradient updates (4), respectively. Of
primary interest to us are bounds on the optimization error, which can be measured
either in terms of the error vector �̂t := θ t − θ̂ , or the difference between the ob-
jective values at θ t and θ̂ . In this section, we state two main results—Theorems 1
and 2—corresponding to the constrained and regularized cases, respectively. In
addition to the optimization error previously discussed, both of these results in-
volve the statistical error �∗ := θ̂ − θ∗ between the optimum θ̂ and the nominal
parameter θ∗. At a high level, these results guarantee that under the RSC/RSM
conditions, the optimization error shrinks geometrically, with a contraction coef-
ficient that depends on the the loss function Ln via the parameters (γ�, τ�(Ln))

and (γu, τu(Ln)). An interesting feature is that the contraction occurs only up to a
certain tolerance ε2 depending on these same parameters, and the statistical error.
However, as we discuss, for many statistical problems of interest, we can show that
this tolerance ε2 is of a lower order than the intrinsic statistical error, and conse-
quently our theory gives an upper bound on the number of iterations required to
solve an M-estimation problem up to the statistical precision.

Convergence rates for projected gradient. We now provide the notation nec-
essary for a precise statement of this claim. Our main result involves a family
of upper bounds, one for each pair (M, �M⊥) of R-decomposable subspaces;
see Definition 3. This subspace choice can be optimized for different model
to obtain the tightest possible bounds. For a given pair (M, �M⊥) such that
16�2( �M)τu(Ln) < γu, let us define the contraction coefficient

κ(Ln; �M) :=
{

1 − γ�

γu

+ 16�2( �M)(τu(Ln) + τ�(Ln))

γu

}
(20)

×
{

1 − 16�2( �M)τu(Ln)

γu

}−1

.

In addition, we define the tolerance parameter

ε2(
�∗; M, �M

)
(21)

:= 32(τu(Ln) + τ�(Ln))(2R(�M⊥(θ∗)) + �( �M)‖�∗‖ + 2R(�∗))2

γu

,

where �∗ = θ̂ − θ∗ is the statistical error, and �M⊥(θ∗) denotes the Euclidean
projection of θ∗ onto the subspace M⊥.

In terms of these two ingredients, we now state our first main result:
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THEOREM 1. Suppose that the loss function Ln satisfies the RSC/RSM condi-
tion with parameters (γ�, τ�(Ln)) and (γu, τu(Ln)), respectively. Let (M, �M) be
any R-decomposable pair of subspaces such that M ⊆ �M and

0 < κ(Ln, �M) < 1.(22)

Then for any optimum θ̂ of the problem (1) for which the constraint is active, for
all iterations t = 0,1,2, . . . , we have

∥∥θ t+1 − θ̂
∥∥2 ≤ κt

∥∥θ0 − θ̂
∥∥2 + ε2(�∗; M, �M)

1 − κ
,(23)

where κ ≡ κ(Ln, �M).

REMARKS. Theorem 1 actually provides a family of upper bounds, one for
each R-decomposable pair (M, �M) such that condition (22) holds. This condi-
tion is always satisfied by setting �M equal to the trivial subspace {0}: indeed,
by definition (12) of the subspace compatibility, we have �( �M) = 0, and hence
κ(Ln; {0}) = (1 − γ�

γu
) < 1. Although this choice of �M minimizes the contrac-

tion coefficient, it will lead8 to a very large tolerance parameter ε2(�∗; M, �M).
A more typical application of Theorem 1 involves nontrivial choices of the sub-
space �M.

Bound (23) guarantees that the optimization error decreases geometrically,
with contraction factor κ ∈ (0,1), up to a certain tolerance proportional to
ε2(�∗; M, �M), as illustrated in Figure 2(a). Whenever the tolerance terms in
the RSC/RSM conditions decay to zero as the sample size increases—the typ-
ical case—then the contraction factor κ approaches 1 − γ�/γu. The appearance
of the ratio γ�/γu is natural since it measures the conditioning of the objec-
tive function; more specifically, it is essentially a restricted condition number
of the Hessian matrix. On the other hand, the residual error ε defined in equa-
tion (21) depends on the choice of decomposable subspaces, the parameters of the
RSC/RSM conditions and the statistical error �∗ = θ̂ − θ∗. In the corollaries of
Theorem 1 to follow, we show that the subspaces can often be chosen such that
ε2(�∗; M, �M) = o(‖θ̂ − θ∗‖2). Consequently, bound (23) guarantees geometric
convergence up to a residual error smaller than statistical precision, as illustrated
in Figure 2(b). This is sensible, since in statistical settings, there is no point to
optimizing beyond the statistical precision.

The result of Theorem 1 takes a simpler form when there is a subspace M that
includes θ∗, and the R-ball radius is chosen such that ρ ≤ R(θ∗).

8Indeed, the setting M⊥ = R
d means that the term R(�M⊥ (θ∗)) = R(θ∗) appears in the toler-

ance; this quantity is far larger than the statistical precision.
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FIG. 2. (a) Generic illustration of Theorem 1. The optimization error �̂t = θt − θ̂ is guaran-
teed to decrease geometrically with coefficient κ ∈ (0,1), up to the tolerance ε2 = ε2(�∗; M, �M),
represented by the circle. (b) Relation between the optimization tolerance ε2(�∗; M, �M) (solid
circle) and the statistical precision ‖�∗‖ = ‖θ∗ − θ̂‖ (dotted circle). In many settings, we have
ε2(�∗; M, �M) � ‖�∗‖2.

COROLLARY 1. In addition to the conditions of Theorem 1, suppose that θ∗ ∈
M and ρ ≤ R(θ∗). Then as long as �2( �M)(τu(Ln) + τ�(Ln)) = o(1), we have
for all iterations t = 0,1,2, . . . ,∥∥θ t+1 − θ̂

∥∥2 ≤ κt
∥∥θ0 − θ̂

∥∥2 + o
(∥∥θ̂ − θ∗∥∥2)

.(24)

Thus, Corollary 1 guarantees that the optimization error decreases geometri-
cally, with contraction factor κ , up to a tolerance that is of strictly lower order
than the statistical precision ‖θ̂ − θ∗‖2. As will be clarified in several examples to
follow, the condition �2( �M)(τu(Ln) + τ�(Ln)) = o(1) is satisfied for many sta-
tistical models, including sparse linear regression and low-rank matrix regression.
This result is illustrated in Figure 2(b), where the solid circle represents the opti-
mization tolerance, and the dotted circle represents the statistical precision. In the
results to follow, we quantify the term o(‖θ̂ − θ∗‖2) in a more precise manner for
different statistical models.

Convergence rates for composite gradient. We now present our main result for
the composite gradient iterates (4) that are suitable for the Lagrangian-based es-
timator (2). As before, our analysis yields a range of bounds indexed by sub-
space pairs (M, �M⊥) that are R-decomposable. For any subspace �M such that
64τ�(Ln)�

2( �M) < γ�, we define the effective RSC coefficient as

�γ� := γ� − 64τ�(Ln)�
2( �M).(25)

This coefficient accounts for the residual amount of strong convexity after account-
ing for the lower tolerance terms. In addition, we define the compound contraction
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coefficient as

κ(Ln; �M) :=
{

1 − �γ�

4γu

+ 64�2( �M)τu(Ln)

�γ�

}
ξ( �M),(26)

where ξ( �M) := (1 − 64τu(Ln)�2(M̄)
�γ�

)−1, and �∗ = θ̂λn − θ∗ is the statistical error

vector9 for a specific choice of ρ̄ and λn. As before, the coefficient κ measures the
geometric rate of convergence for the algorithm. Finally, we define the compound
tolerance parameter

ε2(
�∗; M, �M

) := 8ξ( �M)β( �M)
(
6�( �M)

∥∥�∗∥∥ + 8R
(
�M⊥

(
θ∗)))2

,(27)

where β( �M) := 2(
�γ�

4γu
+ 128τu(Ln)�2(M̄)

�γ�
)τ�(Ln) + 8τu(Ln) + 2τ�(Ln). As with

our previous result, the tolerance parameter determines the radius up to which
geometric convergence can be attained.

Recall that the regularized problem (2) involves both a regularization weight λn

and a constraint radius ρ̄. Our theory requires that the constraint radius is chosen
such that ρ̄ ≥ R(θ∗), which ensures that θ∗ is feasible. In addition, the regulariza-
tion parameter should be chosen to satisfy

λn ≥ 2R∗(∇Ln

(
θ∗))

,(28)

where R∗ is the dual norm of the regularizer. This constraint is known to play
an important role in proving bounds on the statistical error of regularized M-
estimators; see the paper [27] and references therein for further details. Recalling
definition (2) of the overall objective function φn, the following result provides
bounds on the excess loss φn(θ

t ) − φn(θ̂λn).

THEOREM 2. Consider the optimization problem (2) for a radius ρ̄ such
that θ∗ is feasible, and a regularization parameter λn satisfying bound (28),
and suppose that the loss function Ln satisfies the RSC/RSM condition with pa-
rameters (γ�, τ�(Ln)) and (γu, τu(Ln)), respectively. Let (M, �M⊥) be any R-
decomposable pair such that

κ ≡ κ(Ln, �M) ∈ [0,1) and
32ρ̄

1 − κ(Ln; �M)
ξ( �M)β( �M) ≤ λn.(29)

Then for any δ2 ≥ ε2(�∗;M, �M)
(1−κ)

, we have φn(θ
t ) − φn(θ̂λn) ≤ δ2 for all

t ≥ 2 log((φn(θ
0) − φn(θ̂λn))/δ

2)

log(1/κ)
+ log2 log2

(
ρ̄λn

δ2

)(
1 + log 2

log(1/κ)

)
.(30)

9When the context is clear, we remind the reader that we drop the subscript λn on the parameter θ̂ .
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REMARKS. Note that bound (30) guarantees that the excess loss
φn(θ

t ) − φn(θ̂) decays geometrically up to any squared error δ2 larger than the
compound tolerance (27). Moreover, the RSC condition also allows us to further
translate this result to a bound on the optimization error θ t − θ̂ . In particular, for
any iterate θ t such that φn(θ

t ) − φn(θ̂) ≤ δ2, we are guaranteed that∥∥θ t − θ̂λn

∥∥2 ≤ 2δ2

�γ�

+ 16δ2τ�(Ln)

�γ�λ2
n

(31)

+ 4τ�(Ln)(6�( �M) + 8R(�M⊥(θ∗)))2

�γ�

.

In conjunction with Theorem 2, we see that it suffices to take a number of steps
that is logarithmic in the inverse tolerance (1/δ), again showing a geometric rate
of convergence.

Whereas Theorem 1 requires setting the radius so that the constraint is active,
Theorem 2 has only a very mild constraint on the radius ρ̄, namely that it be large
enough such that ρ̄ ≥ R(θ∗). The reason for this much milder requirement is
that the additive regularization with weight λn suffices to constrain the solution,
whereas the extra side constraint is only needed to ensure good behavior of the
optimization algorithm in the first few iterations.

Step-size setting. It seems that updates (3) and (4) need to know the smoothness
bound γu in order to set the step-size for gradient updates. However, we can use
the same doubling trick as described in Algorithm 3.1 of Nesterov [31]. At each
step, we check if the smoothness upper bound holds at the current iterate relative to
the previous one. If the condition does not hold, we double our estimate of γu and
resume. Nesterov [31] demonstrates that this guarantees a geometric convergence
with a contraction factor worse at most by a factor of 2, compared to the knowledge
of γu.

The following subsections are devoted to the development of some conse-
quences of Theorems 1 and 2 and Corollary 1 for some specific statistical models,
among them sparse linear regression with �1-regularization, and matrix regression
with nuclear norm regularization. In contrast to the entirely deterministic argu-
ments that underlie the Theorems 1 and 2, these corollaries involve probabilistic
arguments, more specifically in order to establish that the RSC and RSM properties
hold with high probability.

3.2. Sparse vector regression. Recall from Section 2.4.1 the observation
model for sparse linear regression. In a variety of applications, it is natural to as-
sume that θ∗ is sparse. For a parameter q ∈ [0,1] and radius Rq > 0, let us define
the �q “ball”

Bq(Rq) :=
{
θ ∈ R

d
∣∣∣ d∑
j=1

|βj |q ≤ Rq

}
.(32)
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Note that q = 0 corresponds to the case of “hard sparsity,” for which any vec-
tor β ∈ B0(R0) is supported on a set of cardinality at most R0. For q ∈ (0,1],
membership in the set Bq(Rq) enforces a decay rate on the ordered coefficients,
thereby modeling approximate sparsity. In order to estimate the unknown regres-
sion vector θ∗ ∈ Bq(Rq), we consider the least-squares Lasso estimator from Sec-
tion 2.4.1, based on L(θ;Zn

1 ) := 1
2n

‖y − Xθ‖2
2, where X ∈ R

n×d is the design
matrix. In order to state a concrete result, we consider a random design matrix X,
in which each row xi ∈ R

d is drawn i.i.d. from a N(0,�) distribution, where �

is the covariance matrix. We use σmax(�) and σmin(�) to refer the maximum and
minimum eigenvalues of �, respectively, and ζ(�) := maxj=1,2,...,d �jj for the
maximum variance. We also assume that the observation noise is zero-mean and
ν2-sub-Gaussian.

Guarantees for constrained Lasso. Our convergence rate on the optimization
error θ t − θ̂ is stated in terms of the contraction coefficient

κ :=
{

1 − σmin(�)

4σmax(�)
+ χn(�)

}{
1 − χn(�)

}−1
,(33)

where we have adopted the shorthand

χn(�) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c0ζ(�)

σmax(�)
Rq

(
logd

n

)1−q/2

, for q > 0,

c0ζ(�)

σmax(�)
s

(
logd

n

)
, for q = 0

(34)

for a numerical constant c0. We assume that χn(�) is small enough to ensure
that κ ∈ (0,1); in terms of the sample size, this amounts to a condition of the
form n = �(R

1/(1−q/2)
q logd). Such a scaling is sensible, since it is known from

minimax theory on sparse linear regression [34] to be necessary for any method to
be statistically consistent over the �q -ball.

With this set-up, we have the following consequence of Theorem 1:

COROLLARY 2 (Sparse vector recovery). Under conditions of Theorem 1,
suppose that we solve the constrained Lasso with ρ ≤ ‖θ∗‖1 and γu = 2σmax(�).

(a) Exact sparsity: Suppose that θ∗ is supported on a subset of cardinality s.
Then the iterates (3) satisfy∥∥θ t − θ̂

∥∥2
2 ≤ κt

∥∥θ0 − θ̂
∥∥2

2 + c2χn(�)
∥∥θ̂ − θ∗∥∥2

2(35)

for all t = 0,1,2, . . . with probability at least 1 − exp(−c1 logd).
(b) Weak sparsity: Suppose that θ∗ ∈ Bq(Rq) for some q ∈ (0,1]. Then the

error ‖θ t − θ̂‖2
2 in the iterates (3) is at most∥∥θ0 − θ̂

∥∥2
2 + c2χn(�)

{
Rq

(
logd

n

)1−q/2
+ ∥∥θ̂ − θ∗∥∥2

2

}
(36)

for all t = 0,1,2, . . . with probability at least 1 − exp(−c1 logd).
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We can now compare part (a), which deals with the special case of exactly
sparse vectors, to some past work that has established convergence guarantees for
optimization algorithms for sparse linear regression. Certain methods are known
to converge at sublinear rates (e.g., [5]), more specifically at the rate O(1/t2). The
geometric rate of convergence guaranteed by Corollary 2 is exponentially faster.
Other work on sparse regression has provided geometric rates of convergence that
hold once the iterates are close to the optimum [9, 17], or geometric convergence
up to the noise level ν2 using various methods, including greedy methods [41] and
thresholded gradient methods [16]. In contrast, Corollary 2 guarantees geometric
convergence for all iterates up to a precision below that of statistical error. For

these problems, the statistical error ν2s logd
n

is typically much smaller than the noise
variance ν2, and decreases as the sample size is increased.

In addition, Corollary 2 also applies to the case of approximately sparse vec-
tors, lying within the set Bq(Rq) for q ∈ (0,1]. There are some important differ-
ences between the case of exact sparsity and that of approximate sparsity. Part (a)
guarantees geometric convergence to a tolerance depending only on the statisti-
cal error ‖θ̂ − θ∗‖2. In contrast, the second result also has the additional term
Rq(

logd
n

)1−q/2. This second term arises due to the statistical nonidentifiability of
linear regression over the �q -ball, and it is no larger than ‖θ̂ −θ∗‖2

2 with high prob-
ability. This fact follows from known results [34] about minimax rates for linear
regression over �q -balls; these unimprovable rates include a term of this order.

Guarantees for regularized Lasso. Using similar methods, we can also use
Theorem 2 to obtain an analogous guarantee for the regularized Lasso estimator.
Here we focus only on the case of exact sparsity, although the result extends to ap-
proximate sparsity in a similar fashion. Letting ci, i = 0,1,2,3,4 be universal pos-
itive constants, we define the modified curvature constant �γ� := γ� − c0

s logd
n

ζ(�).
Our results assume that n = �(s logd), a condition known to be necessary for
statistical consistency, so that �γ� > 0. The contraction factor then takes the form

κ :=
{

1 − σmin(�)

16σmax(�)
+ c1χn(�)

}{
1 − c2χn(�)

}−1
,

where χn(�) := ζ(�)
�γ�

s logd
n

. The residual error in the optimization is given by

ε2
tol := 5 + c2χn(�)

1 − c3χn(�)

ζ(�)s logd

n

∥∥θ∗ − θ̂
∥∥2

2,(37)

where θ∗ ∈ R
d is the unknown regression vector, and θ̂ is any optimal solution.

With this notation, we have the following corollary.

COROLLARY 3 (Regularized Lasso). Under the conditions of Theorem 2, sup-

pose that we solve the regularized Lasso with λn = 6ν

√
logd

n
, and that θ∗ is sup-
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ported on a subset of cardinality at most s. Suppose further that we have

64ρ̄
logd

n

{
5 + �γ�

4γu

+ 64s logd/n

�γ�

}{ �γ�

4γu

− 128s logd/n

�γ�

}−1

≤ λn.(38)

Then for any δ2 ≥ ε2
tol and any optimum θ̂λn , we have

∥∥θ t − θ̂λn

∥∥2
2 ≤ δ2 for all iterations t ≥

(
log

φn(θ
0) − φn(θ̂λn)

δ2

)/(
log

1

κ

)
with probability at least 1 − exp(−c4 logd).

As with Corollary 2(a), this result guarantees that O(log(1/ε2
tol)) iterations are

sufficient to obtain an iterate θ t that is within squared error O(ε2
tol) of any opti-

mum θ̂λn . Condition (38) is the specialization of equation (29) to the sparse linear
regression problem, and imposes an upper bound on admissible settings of ρ̄ for
our theory. Moreover, whenever s logd

n
= o(1)—a condition that is required for sta-

tistical consistency of any method by known minimax results [34]—the residual
error ε2

tol is of lower order than the statistical error ‖θ∗ − θ‖2
2.

3.3. Matrix regression with rank constraints. We now turn to estimation of
matrices under various types of “soft” rank constraints. Recall the model of matrix
regression from Section 2.4.2, and the M-estimator based on least-squares regu-
larized with the nuclear norm (18). So as to reduce notational overhead, here we
specialize to square matrices �∗ ∈ R

d×d , so that our observations are of the form

yi = 〈〈
Xi,�

∗〉〉 + wi for i = 1,2, . . . , n,(39)

where Xi ∈ R
d×d is a matrix of covariates, and wi ∼ N(0, ν2) is Gaussian noise.

As discussed in Section 2.4.2, the nuclear norm R(�) = |||�|||1 = ∑d
j=1 σj (�)

is decomposable with respect to appropriately chosen matrix subspaces, and we
exploit this fact heavily in our analysis.

We model the behavior of both exactly and approximately low-rank matrices by
enforcing a sparsity condition on the vector of singular values. In particular, for a
parameter q ∈ [0,1], we define the �q -“ball” of matrices

Bq(Rq) :=
{
� ∈ R

d×d
∣∣∣ d∑
j=1

∣∣σj (�)
∣∣q≤ Rq

}
,(40)

where σj (�) denotes the j th singular value of �. Note that if q = 0, then B0(R0)

consists of the set of all matrices with rank at most r = R0. On the other hand, for
q ∈ (0,1], the set Bq(Rq) contains matrices of all ranks, but enforces a relatively
fast rate of decay on the singular values.
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3.3.1. Bounds for matrix compressed sensing. We begin by considering the
compressed sensing version of matrix regression, a model first introduced by Recht
et al. [36], and later studied by other authors (e.g., [22, 28]). In this model, the ob-
servation matrices Xi ∈ R

d×d are dense and drawn from some random ensemble.
The simplest example is the standard Gaussian ensemble, in which each entry of
Xi is drawn i.i.d. as standard normal N(0,1). Note that Xi is a dense matrix in
general; this in an important contrast with the matrix completion setting to follow
shortly.

Here we consider a more general ensemble of random matrices Xi , in which
each matrix Xi ∈ R

d×d is drawn i.i.d. from a zero-mean normal distribution in
R

d2
with covariance matrix � ∈ R

d2×d2
. The setting � = Id2×d2 recovers the

standard Gaussian ensemble studied in past work. As usual, we let σmax(�)

and σmin(�) define the maximum and minimum eigenvalues of �, and we de-
fine ζmat(�) = sup‖u‖2=1 sup‖v‖2=1 var(〈〈X,uvT 〉〉), corresponding to the maximal
variance of X when projected onto rank one matrices. For the identity ensemble,
we have ζmat(I ) = 1.

We now state a result on the convergence of the updates (19) when applied to a
statistical problem involving a matrix �∗ ∈ Bq(Rq). The convergence rate depends
on the contraction coefficient

κ :=
{

1 − σmin(�)

4σmax(�)
+ χn(�)

}{
1 − χn(�)

}−1
,

where χn(�) := c1ζmat(�)
σmax(�)

Rq(d
n
)1−q/2 for some universal constant c1. In the case

q = 0, corresponding to matrices with rank at most r , note that we have R0 = r .
With this notation, we have the following convergence guarantee:

COROLLARY 4 (Low-rank matrix recovery). Under the conditions of Theo-
rem 1, consider the semidefinite program (18) with ρ ≤ |||�∗|||1, and suppose that
we apply the projected gradient updates (19) with γu = 2σmax(�).

(a) Exactly low-rank: Suppose that �∗ has rank r < d . Then the iterates (19)
satisfy the bound∣∣∣∣∣∣�t − �̂

∣∣∣∣∣∣2
F ≤ κt

∣∣∣∣∣∣�0 − �̂
∣∣∣∣∣∣2

F + c2χn(�)
∣∣∣∣∣∣�̂ − �∗∣∣∣∣∣∣2

F(41)

for all t = 0,1,2, . . . with probability at least 1 − exp(−c0d).
(b) Approximately low-rank: Suppose that �∗ ∈ Bq(Rq) for some q ∈ (0,1].

Then the iterates (19) satisfy

∣∣∣∣∣∣�t − �̂
∣∣∣∣∣∣2

F ≤ κt
∣∣∣∣∣∣�0 − �̂

∣∣∣∣∣∣2
F + c2χn(�)

{
Rq

(
d

n

)1−q/2

+ ∣∣∣∣∣∣�̂ − �∗∣∣∣∣∣∣2
F

}
for all t = 0,1,2, . . . with probability at least 1 − exp(−c0d).
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Although quantitative aspects of the rates are different, Corollary 4 is analo-
gous to Corollary 2. For the case of exactly low rank matrices [part (a)], geo-
metric convergence is guaranteed up to a tolerance involving the statistical error
|||�̂ − �∗|||2F . For the case of approximately low rank matrices [part (b)], the toler-
ance term involves an additional factor of Rq(

d
n
)1−q/2. Again, from known results

on minimax rates for matrix estimation [37], this term is known to be of compara-
ble or lower order than the quantity |||�̂ − �∗|||2F . As before, it is also possible to
derive an analogous corollary of Theorem 2 for estimating low-rank matrices; in
the interests of space, we leave such a development to the reader.

3.3.2. Bounds for matrix completion. In this model, the observation yi is
a noisy version of a randomly selected entry �∗

a(i),b(i) of the unknown matrix
�∗. Applications of this matrix completion problem include collaborative filter-
ing [39], where the rows of the matrix �∗ correspond to users, and the columns
correspond to items (e.g., movies in the Netflix database), and the entry �∗

ab cor-
responds to user’s a rating of item b. Given observations of only a subset of the
entries of �∗, the goal is to fill in, or complete the matrix, thereby making recom-
mendations of movies that a user has not yet seen.

Matrix completion can be viewed as a particular case of the matrix regression
model (17), in particular by setting Xi = Ea(i)b(i), corresponding to the matrix
with a single one in position (a(i), b(i)), and zeros in all other positions. Note
that these observation matrices are extremely sparse, in contrast to the compressed
sensing model. Nuclear-norm based estimators for matrix completion are known
to have good statistical properties (e.g., [11, 29, 35, 39]). Here we consider the
M-estimator

�̂ ∈ arg min
�∈�

1

2n

n∑
i=1

(yi − �a(i)b(i))
2 such that |||�|||1 ≤ ρ,(42)

where � = {� ∈ R
d×d | ‖�‖∞ ≤ α

d
} is the set of matrices with bounded elemen-

twise �∞ norm. This constraint eliminates matrices that are overly “spiky” (i.e.,
concentrate too much of their mass in a single position); as discussed in the pa-
per [29], such spikiness control is necessary in order to bound the nonidentifiable
component of the matrix completion model.

COROLLARY 5 (Matrix completion). Under the conditions of Theorem 1, sup-
pose that �∗ ∈ Bq(Rq), and that we solve program (42) with ρ ≤ |||�∗|||1. As long

as n > c0R
1/(1−q/2)
q d logd for a sufficiently large constant c0, then there is a con-

traction coefficient �κt ∈ (0,1) that decreases with t such that∣∣∣∣∣∣�t+1 − �̂
∣∣∣∣∣∣2

F ≤�κt
t

∣∣∣∣∣∣�0 − �̂
∣∣∣∣∣∣2

F
(43)

+ c2

{
Rq

(
α2d logd

n

)1−q/2
+ ∣∣∣∣∣∣�̂ − �∗∣∣∣∣∣∣2

F

}
for all iterations t = 0,1,2, . . . , with probability at least 1 − exp(−c1d logd).
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As with our previous results, the residual optimization error in this result is of
the same order as known statistical minimax rates for the matrix completion prob-
lem under the soft-rank model described here; cf. Theorem 3 in Negahban and
Wainwright [29]. In some cases, the bound on ‖�‖∞ in the algorithm (42) might
be unknown, or undesirable. While this constraint is necessary in general [29], it
can be avoided if more information such as the sampling distribution (i.e., the dis-
tribution of Xi) is known and used to construct the estimator. In this case, Koltchin-
skii et al. [21] use an alternative nuclear-norm penalized estimator for which it is
not necessary to directly impose an �∞ bound on �̂.

Again a similar corollary of Theorem 2 can be derived by combining the proof
of Corollary 5 with that of Theorem 2. An interesting aspect of this problem is

that condition (29)(b) takes the form λn >
cα

√
d logd/n
1−κ

, where α is a bound on
‖�‖∞. This condition is independent of ρ̄, and hence, given a sample size as
stated in the corollary, the algorithm always converges geometrically for any radius
ρ̄ ≥ |||�∗|||1.

3.4. Matrix decomposition problems. In recent years, various researchers have
studied methods for solving the problem of matrix decomposition (e.g., [2, 10, 12,
18, 43]). The basic problem has the following form: given a pair of unknown ma-
trices �∗ and �∗, both lying in R

d1×d2 , suppose that we observe a third matrix
specified by the model Y = �∗ + �∗ + W , where W ∈ R

d1×d2 represents obser-
vation noise. Typically the matrix �∗ is assumed to be low-rank, and some low-
dimensional structural constraint is assumed on the matrix �∗. For example, in [10,
12, 18], the authors consider the setting in which �∗ is sparse, while Xu et al. [43]
consider a column-sparse model, in which only a few of the columns of �∗ have
nonzero entries. In order to illustrate the application of our general result to this
setting, here we consider the low-rank plus column-sparse framework [43]. (We
note that since the �1-norm is decomposable, similar results can easily be derived
for the low-rank plus entrywise-sparse setting as well.)

Since �∗ is assumed to be low-rank, as before we use the nuclear norm |||�|||1 as
a regularizer; see Section 2.4.2. We assume that the unknown matrix �∗ ∈ R

d1×d2

is column-sparse, say with at most s < d2 nonzero columns. A suitable convex
regularizer for this matrix structure is based on the columnwise (1,2)-norm, given
by

‖�‖1,2 :=
d2∑

j=1

‖�j‖2,(44)

where �j ∈ R
d1 denotes the j th column of �. Note also that the dual norm is given

by the elementwise (∞,2)-norm ‖�‖∞,2 = maxj=1,...,d2 ‖�j‖2, corresponding to
the maximum �2-norm over columns.
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In order to estimate the unknown pair (�∗,�∗), we consider the M-estimator
(�̂, �̂) which minimizes the objective

min
�,�

|||Y − � − �|||2F s.t. |||�|||1 ≤ ρ�,

(45)
‖�‖1,2 ≤ ρ�, ‖�‖∞,2 ≤ α√

d2
.

The first two constraints restrict � and � to a nuclear norm ball of radius ρ�

and a (1,2)-norm ball of radius ρ� , respectively. The final constraint controls the
“spikiness” of the low-rank component �, as measured in the (∞,2)-norm, cor-
responding to the maximum �2-norm over the columns. As with the elementwise
�∞-bound for matrix completion, this additional constraint is required in order to
limit the nonidentifiability in matrix decomposition. (See the paper [2] for more
discussion of nonidentifiability issues in matrix decomposition.)

With this set-up, consider the projected gradient algorithm when applied to the
matrix decomposition problem: it generates a sequence of matrix pairs (�t ,�t ) for
t = 0,1,2, . . . , and the optimization error is characterized in terms of the matrices
�̂t

� := �t − �̂ and �̂t
� := �t − �̂. Finally, we measure the optimization error at

time t in terms of the squared Frobenius error e2(�̂t
�, �̂t

�) := |||�̂t
�|||2F + |||�̂t

�|||2F ,
summed across both the low-rank and column-sparse components.

COROLLARY 6 (Matrix decomposition). Under the conditions of Theorem 1,
suppose that ‖�∗‖∞,2 ≤ α√

d2
and �∗ has at most s nonzero columns. If we solve

the convex program (45) with ρ� ≤ |||�∗|||1 and ρ� ≤ ‖�∗‖1,2, then for all itera-
tions t = 0,1,2, . . . ,

e2(
�̂t

�, �̂t
�

) ≤
(

3

4

)t

e2(
�̂0

�, �̂0
�

) + c

(∣∣∣∣∣∣�̂ − �∗∣∣∣∣∣∣2
F + α2 s

d2

)
.

This corollary has some unusual aspects, relative to the previous corollaries.
First of all, in contrast to the previous results, the guarantee is a deterministic one
(as opposed to holding with high probability). More specifically, the RSC/RSM
conditions hold deterministic sense, which should be contrasted with the high
probability statements given in Corollaries 2–5. Consequently, the effective con-
ditioning of the problem does not depend on sample size, and we are guaranteed
geometric convergence at a fixed rate, independent of sample size. The additional
tolerance term is completely independent of �∗ and only depends on the column-
sparsity of �∗.

4. Simulation results. In this section, we provide some experimental results
that confirm the accuracy of our theoretical results, in particular showing excellent
agreement with the linear rates predicted by our theory. In addition, the rates of
convergence slow down for smaller sample sizes, which lead to problems with
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relatively poor conditioning. In all the simulations reported below, we plot the
log error ‖θ t − θ̂‖ between the iterate θ t at time t versus the final solution θ̂ .
Each curve provides the results averaged over five random trials, according to the
ensembles which we now describe.

4.1. Sparse regression. We investigate the standard linear regression model
y = Xθ∗ + w where θ∗ is the unknown regression vector belonging to the set
Bq(Rq), and i.i.d. observation noise wi ∼ N(0,0.25). We consider a family of en-
sembles for the random design matrix X ∈ R

n×d . In particular, we construct X

by generating each row xi ∈ R
d independently according to following procedure.

Let z1, . . . , zn be an i.i.d. sequence of N(0,1) variables, and fix some correlation
parameter ω ∈ [0,1). We first initialize by setting xi,1 = z1/

√
1 − ω2, and then

generate the remaining entries by applying the recursive update xi,t+1 = ωxi,t + zt

for t = 1,2, . . . , d − 1, so that xi ∈ R
d is a zero-mean Gaussian random vector.

It can be verified that all the eigenvalues of � = cov(xi) lie within the interval
[ 1
(1+ω)2 ,

2
(1−ω)2(1+ω)

], so that � has a finite condition number for all ω ∈ [0,1).
At one extreme, for ω = 0, the matrix � is the identity, and so has condition
number equal to 1. As ω → 1, the matrix � becomes progressively more ill-
conditioned, with a condition number that is very large for ω close to one. As
a consequence, although incoherence conditions like the restricted isometry prop-
erty can be satisfied when ω = 0, they will fail to be satisfied (w.h.p.) once ω is
large enough.

For this random ensemble of problems, we have investigated convergence rates
for a wide range of dimensions d and radii Rq . Since the results are relatively
uniform across the choice of these parameters, here we report results for dimension
d = 20,000, and radius Rq = �(logd)2	. In the case q = 0, the radius R0 = s

corresponds to the sparsity level. The per iteration cost in this case is O(nd). In
order to reveal dependence of convergence rates on sample size, we study a range
of the form n = �αs logd	, where the order parameter α > 0 is varied.

Our first experiment is based on taking the correlation parameter ω = 0, and the
�q -ball parameter q = 0, corresponding to exact sparsity. We then measure con-
vergence rates for sample sizes specified by α ∈ {1,1.25,5,25}. As shown by the
results plotted in panel (a) of Figure 3, projected gradient descent fails to converge
for α = 1 or α = 1.25; in both these cases, the sample size n is too small for the
RSC and RSM conditions to hold, so that a constant step size leads to oscilla-
tory behavior in the algorithm. In contrast, once the order parameter α becomes
large enough to ensure that the RSC/RSM conditions hold (w.h.p.), we observe a
geometric convergence of the error ‖θ t − θ̂‖2. Moreover the convergence rate is
faster for α = 25 compared to α = 5, since the RSC/RSM constants are better with
larger sample size. Such behavior is in agreement with the conclusions of Corol-
lary 2, which predicts that the the convergence rate should improve as the number
of samples n is increased.
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FIG. 3. Plot of the log of the optimization error log(‖θt − θ̂‖2) in the sparse linear regression
problem, rescaled so the plots start at 0. In this problem, d = 20,000, s = �logd	, n = αs logd .
Plot (a) shows convergence for the exact sparse case with q = 0 and � = I (i.e., ω = 0). In panel (b),
we observe how convergence rates change as the correlation parameter ω is varied for q = 0 and
α = 25. Plot (c) shows the convergence rates when ω = 0, α = 25 and q is varied. Plot (d), repeated
from Figure 1 shows that keeping α fixed keeps the convergence rate constant across problem sizes.

On the other hand, Corollary 2 also predicts that convergence rates should be
slower when the condition number of � is worse. In order to test this prediction,
we again studied an exactly sparse problem (q = 0), this time with the fixed sample
size n = �25s logd	, and we varied the correlation parameter ω ∈ {0,0.5,0.8}. As
shown in panel (b) of Figure 3, the convergence rates slow down as the correlation
parameter is increased and for the case of extremely high correlation of ω = 0.8,
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the optimization error curve is almost flat—the method makes very slow progress
in this case.

A third prediction of Corollary 2 is that the convergence of projected gradient
descent should become slower as the sparsity parameter q is varied between exact
sparsity (q = 0), and the least sparse case (q = 1). [In particular, note for n > logd ,
the quantity χn from equation (34) is monotonically increasing with q .] Panel (c)
of Figure 3 shows convergence rates for the fixed sample size n = 25s logd and
correlation parameter ω = 0, and with the sparsity parameter q ∈ {0,0.5,1.0}. As
expected, the convergence rate slows down as q increases from 0 to 1. Corollary 2
further captures how the contraction factor changes as the problem parameters
(s, d, n) are varied. In particular, it predicts that as we change the triplet simultane-
ously, while holding the ratio α = s logd/n constant, the convergence rate should
stay the same. This phenomenon that we earlier pointed out in the Introduction is
indeed demonstrated in Figure 3(d).

5. Low-rank matrix estimation. We also performed experiments with two
different versions of low-rank matrix regression. Our simulations applied to in-
stances of the observation model yi = 〈〈Xi,�

∗〉〉 + wi , for i = 1,2, . . . , n, where
�∗ ∈ R

200×200 is a fixed unknown matrix, Xi ∈ R
200×200 is a matrix of covariates,

and wi ∼ N(0,0.25) is observation noise. In analogy to the sparse vector prob-
lem, we performed simulations with the matrix �∗ belonging to the set Bq(Rq)

of approximately low-rank matrices, as previously defined in equation (40) for
q ∈ [0,1]. The case q = 0 corresponds to the set of matrices with rank at most
r = R0, whereas the case q = 1 corresponds to the ball of matrices with nuclear
norm at most R1.

In our first set of matrix experiments, we considered the matrix version of com-
pressed sensing [35], in which each matrix Xi ∈ R

200×200 is randomly formed with
i.i.d. N(0,1) entries, as described in Section 3.3.1. In the case q = 0, we formed
a matrix �∗ ∈ R

200×200 with rank R0 = 5, and performed simulations over the
sample sizes n = αR0d , with the parameter α ∈ {1,1.25,5,25}. The per iteration
cost in this case is O(nd2). As seen in panel (a) of Figure 4, the projected gradient
descent method exhibits behavior that is qualitatively similar to that for the sparse
linear regression problem. More specifically, it fails to converge when the sample
size (as reflected by the order parameter α) is too small, and converges geomet-
rically with a progressively faster rate as α is increased. We have also observed
similar types of scaling as we vary q ∈ [0,1].

In our second set of matrix experiments, we studied the behavior of projected
gradient descent for the problem of matrix completion, as described in Sec-
tion 3.3.2. For this problem, we again studied matrices of dimension d = 200 and
rank R0 = 5, and we varied the sample size as n = αR0d logd for α ∈ {1,2,5,25}.
As shown in Figure 4(b), projected gradient descent for matrix completion also en-
joys geometric convergence for α large enough.
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FIG. 4. (a) Plot of log Frobenius error log(|||�t − �̂|||F ) versus number of iterations in matrix
compressed sensing for a matrix size d = 200 with rank R0 = 5, and sample sizes n = αR0d . For
α ∈ {1,1.25}, the algorithm oscillates, whereas geometric convergence is obtained for α ∈ {5,25}.
(b) Convergence rate for the matrix completion problem with d = 200, R0 = 5, and n = αRod log(d)

with α ∈ {1,2,5,25}. For α ∈ {2,5,25} the algorithm enjoys geometric convergence.

6. Discussion. In this paper, we have shown that even though high-
dimensional M-estimators in statistics are neither strongly convex nor smooth,
simple first-order methods can still enjoy global guarantees of geometric conver-
gence. The key insight is that strong convexity and smoothness need only hold
in restricted senses, and moreover, these conditions are satisfied with high proba-
bility for many statistical models and decomposable regularizers used in practice.
Examples include sparse linear regression and �1-regularization, various statistical
models with group-sparse regularization, matrix regression with nuclear norm con-
straints (including matrix completion and multi-task learning) and matrix decom-
position problems. Some related work also shows that these ideas can be used to
provide rigorous guarantees for gradient methods in application to certain classes
of nonconvex programs [23]. Overall, our results highlight some important connec-
tions between computation and statistics: the properties of M-estimators favorable
for fast rates in statistics can also be used to establish fast rates for optimization
algorithms.
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SUPPLEMENTARY MATERIAL

Proofs of results (DOI: 10.1214/12-AOS1032SUPP; .pdf). The Supplementary
Material contains proofs of our results.
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