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CENTRAL LIMIT THEOREMS FOR U -STATISTICS OF POISSON
POINT PROCESSES

BY MATTHIAS REITZNER AND MATTHIAS SCHULTE

University of Osnabrueck and Karlsruher Institut für Technologie

A U -statistic of a Poisson point process is defined as the sum∑
f (x1, . . . , xk) over all (possibly infinitely many) k-tuples of distinct points

of the point process. Using the Malliavin calculus, the Wiener–Itô chaos ex-
pansion of such a functional is computed and used to derive a formula for the
variance. Central limit theorems for U -statistics of Poisson point processes
are shown, with explicit bounds for the Wasserstein distance to a Gaussian
random variable. As applications, the intersection process of Poisson hyper-
planes and the length of a random geometric graph are investigated.

1. Introduction. In recent years, Malliavin calculus, Wiener–Itô chaos ex-
pansions and Fock space representations of functionals of Poisson point processes
have been a rapidly developing topic. First results already appeared in the classical
works of Itô [13, 14] and Wiener [37]. Yet only in the last years prominent con-
tributions produced a deep theory which most probably will have a strong impact
on modern theory and applications of Poisson point processes; see, for example,
Houdre and Perez-Abreu [12], Last and Penrose [19], Nualart and Vives [25] and
Wu [38]. Here in particular we want to point out the groundbreaking paper by Pec-
cati et al. [27] on central limit theorems using Stein’s method and Malliavin calcu-
lus. These methods were combined the first time by Nourdin and Peccati [24] for
functionals depending on Gaussian processes instead of Poisson point processes.
Further developments include the book of Peccati and Taqqu [28] about product
formulas for multiple Wiener–Itô integrals in the Gaussian and Poisson case and a
central limit theorem due to Peccati and Zheng [29] generalizing the main result
of [27] to random vectors.

Poisson point processes occur in many branches of probability theory, for exam-
ple, in the theory of Levy processes, and in the theory of random graphs, in spatial
statistics, in communication theory and in stochastic geometry. Hence there is a
wide range of potential applications of these new results. In this work, we use the
Wiener–Itô chaos expansion and a related result from [27] to prove central limit
theorems for a broad class of functionals, namely for U -statistics of Poisson point
processes.
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Let η be a Poisson point process over a state space X. We call a random variable
F a U -statistic of η if

F(η) = ∑
(x1,...,xk)∈ηk�=

f (x1, . . . , xk).

By ηk�= we denote the set of all k-tuples of distinct points of the process. One should
compare this definition to classical U -statistics defined on a set of n random vari-
ables {Z1, . . . ,Zn} = ζ where U(ζ ) =∑ζ k�=

f (x1, . . . , xk). For details on classical

U -statistics we refer to [11, 16, 20]. From now on, we mean by U -statistic a U -
statistic of a Poisson point process.

The first step in this paper is the explicit evaluation of expressions involving
Malliavin operators acting on U -statistics of Poisson point processes. The main
result of this paper is Theorem 4.7 which gives an explicit bound on the Wasser-
stein distance between a normalized U -statistic and a standard Gaussian random
variable N ,

dW

(
F − EF√

VarF
,N

)
≤ 2k7/2

∑
1≤i≤j≤k

√
Mij (f )

VarF
,

where Mij (f ) are sums of certain fourth moment integrals. If the intensity measure
of η is of the form μ = λθ with an intensity parameter λ ≥ 1 and a measure θ , one
is interested in the behavior of F for increasing λ. In the particular situation that
f :Xk → R is independent of λ, we conclude in Theorem 5.2 that

dW

(
F − EF√

VarF
,N

)
≤ Cf λ−1/2.

In general this is the optimal rate in λ because for a set A ⊂ X with θ(A) = 1 the
U -statistic F =∑x∈η 1(x ∈ A) is Poisson distributed with parameter λ, and it is
widely known that a Poisson distributed random variable has this rate of conver-
gence.

As an application of our result we investigate the intrinsic volumes of the in-
tersection process of Poisson hyperplanes in a compact convex window. A central
limit theorem for some of these functionals was proved in two long and intricate
papers by Heinrich [9] and Heinrich, Schmidt and Schmidt [10]. Here we obtain a
general result which in addition gives rates of convergence to Gaussian variables.
A second example concerns functionals of Sylvester type by which we mean the
question about the probability that k points in a convex set are in convex position.
Our last example is about the number of edges of a random geometric graph in a
bounded window. Again we obtain a central limit theorem with a rate of conver-
gence. As general references to stochastic geometry and random graphs we refer
to [30, 32] and [35].

To prove our central limit theorems, we first use a result of Last and Pen-
rose [19], to expand a U -statistic in a Wiener–Itô chaos expansion as a finite sum
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of multiple Wiener–Itô integrals. This enables us to give a formula for the variance
of a U -statistic and to compute two operators from Malliavin calculus that are de-
fined by their chaos expansions. Using a theorem for the normal approximation of
Poisson functionals due to Peccati et al. [27], we show convergence in the Wasser-
stein distance. In order to apply their result, we need to compute expected values
of products of multiple Wiener–Itô integrals which is well known to be a notorious
difficult task. We expect that the same techniques can be used to show central limit
theorems for more general functionals of Poisson point processes.

This paper is organized in the following way. In Section 2, we introduce
Wiener–Itô chaos expansions for functionals of a Poisson point process and some
operators from Malliavin calculus. Then we compute the Wiener–Itô chaos expan-
sion of a U -statistic and its variance in Section 3. Using Malliavin calculus we
prove the general version of our central limit theorem for U -statistics in Section 4.
Finally, we investigate two special classes of U -statistics and present examples in
the Sections 5 and 6.

2. Wiener–Itô chaos expansions for Poisson point processes.

2.1. Poisson point process. In this paper, we let η be a Poisson point process
on the measure space (X, B(X),μ) where X is a Borel space and μ is a σ -finite
nonatomic Borel measure. A Borel space is a measurable space which is isomor-
phic to a Borel subset of [0,1]; see page 7 in [15].

More precisely, let (�, F ,P ) be a probability space. Denote by N(X) the set of
all integer-valued σ -finite measures ν on X, equipped with the smallest σ -algebra
N (X) such that the mappings ν → ν(A) are measurable for all sets A ∈ B(X).
A random measure η :� → N(X) is called a Poisson point process with inten-
sity measure μ if for A ∈ B(X) the random variable η(A) is Poisson distributed
with parameter μ(A), and the random variables η(A1), . . . , η(Am) are indepen-
dent for pairwise disjoint sets A1, . . . ,Am ∈ B(X). Since the intensity measure μ

is nonatomic, the Poisson point process is simple, that is, η({x}) ≤ 1 for all x ∈ X

almost surely. Thus, we can view η as a random set of points in X.
As usual, Lp(Xk) denotes the space of all measurable functions f :Xk → R :=

R ∪ {±∞} with ∫
Xk

∣∣f (x1, . . . , xk)
∣∣p dμ(x1, . . . , xk) < ∞,

where dμ(x1, . . . , xk) stands for dμ(x1) · · · dμ(xk). Let L
p
s (Xk) be the subset of

μk-almost everywhere symmetric functions in Lp(Xk). We call a function sym-
metric if it is invariant under all permutations of its arguments. We denote by ‖ · ‖
the norm in L2(Xk), and by 〈·, ·〉 the inner product in L2(Xk). Equipped with this
inner product, L2(Xk) and L2

s (X
k) form Hilbert spaces. Instead of the original

probability measure P , we always use the image measure P = P ◦ η. In the fol-
lowing, Lp(P) stands for the set of all measurable functions F :N(X) → R with
E|F |p < ∞.
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An important property of Poisson point processes is the Slivnyak–Mecke for-
mula (see Corollary 3.2.3 in [32]) which says that

E
∑

(x1,...,xk)∈ηk�=

f (x1, . . . , xk) =
∫
Xk

f (x1, . . . , xk) dμ(x1, . . . , xk)(1)

for f ∈ L1(Xk). (Recall the definition of ηk�= in the Introduction.) The sum on

the left-hand side is a priori defined as an L1(P) limit summing only over points
in an increasing window. Yet it follows from the Slivnyak–Mecke formula that
f ∈ L1(Xk) implies that the sum on the left-hand side is absolutely convergent
almost surely.

2.2. Multiple Wiener–Itô integrals. Now we present the definition of multi-
ple Wiener–Itô integrals of order k ∈ N following [36]. One starts with simple
functions and extends the definition to arbitrary functions in L2

s (X
k). A function

f ∈ L2(Xk) is called simple if:

(1) f is symmetric;
(2) f is constant on a finite number of Cartesian products B1 × · · · × Bk ∈

B(X)k and vanishes elsewhere;
(3) f vanishes on diagonals, which means f (x1, . . . , xk) = 0 if xi = xj for

some i �= j .

Let S(Xk) be the space of all simple functions. For f0 ∈ S(Xk) and k ∈ N, the
multiple Wiener–Itô integral Ik(f0) of f0 with respect to the compensated Poisson
point process η − μ is defined by

Ik(f0) =
∫
Xk

f0 d(η − μ)k =∑f
B1×···×Bk

0 (η − μ)(B1) · · · (η − μ)(Bk),

where we sum over all Cartesian products and f
B1×···×Bk

0 is the value of f0 on
such a set. For k = 0 we put I0(f ) = f . By a straightforward computation, one
shows

EIk(f0)
2 = k!‖f0‖2.(2)

Thus there is an isometry between S(Xk) and a subset of L2(P). Furthermore,
S(Xk) is dense in L2

s (X
k), whence for every f ∈ L2

s (X
k) there is a sequence

(fn)n∈N of simple functions with fn → f in L2
s (X

k). Because of the isometry (2),
it is possible to define Ik(f ) as the limit of (Ik(fn))n∈N in L2(P). Hence for an
arbitrary symmetric function f ∈ L2

s (X
k) we put f 0(x1, . . . , xk) = f (x1, . . . , xk)

if xi �= xj for all i �= j and f 0(x1, . . . , xk) = 0 otherwise and obtain

Ik(f ) =
∫
Xk

f 0 d(η − μ)k.
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We remark that the denseness of S(Xk) in L2
s (X

k) depends on the topological
structure of X and the fact that μ is nonatomic. For a definition without these
requirements we refer to [19].

It follows directly from the definition that multiple Wiener–Itô integrals have
the properties summarized in the following:

LEMMA 2.1. Let f ∈ L2
s (X

n) and g ∈ L2
s (X

m) with n,m ≥ 1. Then:

(a) EIn(f ) = 0;
(b) EIn(f )Im(g) = 1(n = m)n!〈f,g〉.

2.3. Wiener–Itô chaos expansions. For a measurable function F :N(X) → R

and y ∈ X we define the difference operator as

DyF(η) = F(η + δy) − F(η),

where δy is the Dirac measure at the point y. The difference operator DyF mea-
sures the effect of adding the point y ∈ X to the Poisson point process, whence it
is also denoted as add one cost operator in [19]. The iterated difference operator is
defined by

Dy1,...,yi
F = Dy1Dy2,...,yi

F.

Let the functions fi :Xi → R be given by f0 = EF and

fi(y1, . . . , yi) = 1

i!EDy1,...,yi
F, i ≥ 1,

if these expectations exist. Because of the symmetry of the iterated difference oper-
ator, fi is symmetric if defined. The following relationships between F , the func-
tions fi , i ∈ N, and the variance of F have been shown by Last and Penrose [19].

THEOREM 2.2 (Last and Penrose [19]). Let F ∈ L2(P). Then fi ∈ L2
s (X

i),
i ∈ N and

F =
∞∑
i=0

Ii(fi),

where the sum converges in L2(P). The fi ∈ L2
s (X

i), i ∈ N are the μi-almost ev-
erywhere unique gi ∈ L2

s (X
i), i ∈ N, satisfying F =∑∞

i=0 Ii(gi) in L2(P). Fur-
thermore,

VarF =
∞∑
i=1

i!‖fi‖2.
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In the following, we call the functions fi , i ∈ N, kernels of the Wiener–Itô chaos
expansion of F . The class of sequences (gi)i∈N with gi ∈ L2

s (X
i) and

∞∑
i=0

i!‖gi‖2 < ∞

composes a Hilbert space isomorphic to the symmetric Fock space associated with
L2(X). In this context, Theorem 2.2 states that there exists an isometry between
L2(P) and a symmetric Fock space.

2.4. Malliavin calculus. Our proofs for central limit theorems are based on a
result for the normal approximation of Poisson functionals from [27], which uses
operators from Malliavin calculus. In the following, we give a short introduction
to these operators. For more details we refer to [19, 25, 27].

Let F ∈ L2(P) and fi , i ∈ N, be the kernels of the Wiener–Itô chaos expansion
of F . First of all, we give an alternative definition of the difference operator Dy

using the Wiener–Itô chaos expansion of F .

DEFINITION 2.3. Let
∞∑
i=1

ii!‖fi‖2 < ∞.(3)

Then the random function y �→ DyF,y ∈ X, is given by

DyF =
∞∑
i=1

iIi−1
(
fi(y, ·)).

It can be proved (see [25], Theorem 6.2 or [19], Theorem 3.3) that for F ∈
L2(P) satisfying (3) this definition coincides with the one introduced in Sec-
tion 2.3.

DEFINITION 2.4. If
∞∑
i=1

i2i!‖fi‖2 < ∞,

then the Ornstein–Uhlenbeck generator LF is the random variable given by

LF = −
∞∑
i=1

iIi(fi).

The Ornstein–Uhlenbeck generator has an inverse operator. Its domain is the
space of all centred F ∈ L2(P), that is, F ∈ L2(P) with EF = 0, and

L−1F = −
∞∑
i=1

1

i
Ii(fi).
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If F is in the domain of L, then the Ornstein–Uhlenbeck generator can be writ-
ten as

LF =
∫
X

F(η − δx) − F(η)dη(x) −
∫
X

(
F(η) − F(η + δz)

)
dμ(z).(4)

This follows from the representation of the difference operator and the Skorohod-
integral (see [19], formula (3.19)), which is not used in this work.

3. Malliavin calculus and Wiener–Itô chaos expansions for U -statistics.
In this section, we define U -statistics of Poisson point processes and investigate
their Wiener–Itô chaos expansions. In particular, we apply the Malliavin opera-
tors to U -statistics and present explicit formulae for the kernels of the Wiener–Itô
chaos expansion and the variance.

3.1. U -statistics of Poisson point processes. Recall the definition ηk�= =
{(x1, . . . , xk) ∈ ηk, xi �= xj for i �= j} from the Introduction.

DEFINITION 3.1. A random variable

F = ∑
(x1,...,xk)∈ηk�=

f (x1, . . . , xk)(5)

with f ∈ L1
s (X

k) is called U -statistic of order k.

By the Slivnyak–Mecke formula (1), it holds that

E

∑
(x1,...,xk)∈ηk�=

f (x1, . . . , xk) =
∫
X

· · ·
∫
X

f (x1, . . . , xk) dμ(x1, . . . , xk)

so that f ∈ L1
s (X

k) guarantees F ∈ L1(P). Due to the fact that we sum over all
permutations of k points in (5), we can assume without loss of generality in Defi-
nition 3.1 that f is symmetric.

Since we want to use Wiener–Itô chaos expansions, we always require that F

is in L2(P). For the central limit theorems we additionally assume that F is abso-
lutely convergent.

DEFINITION 3.2. A U -statistic F is absolutely convergent if

F = ∑
(x1,...,xk)∈ηk�=

∣∣f (x1, . . . , xk)
∣∣

is in L2(P).

Note that F absolutely convergent implies that F ∈ L2(P). Obviously every
F ∈ L2(P) with f ≥ 0 is absolutely convergent.
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3.2. Malliavin calculus. We start by calculating the difference operator of a
U -statistic F .

LEMMA 3.3. Let F ∈ L2(P) be a U -statistic of order k. Then the difference
operator applied to F gives

Dy1F = k
∑

(x1,...,xk−1)∈ηk−1
�=

f (y1, x1, . . . , xk−1).

PROOF. By the definition of the difference operator Dy and the symmetry
of f , we obtain for a U -statistic

Dy1F = ∑
(x1,...,xk)∈(η∪{y1})k�=

f (x1, . . . , xk) − ∑
(x1,...,xk)∈ηk�=

f (x1, . . . , xk)

= ∑
(x1,...,xk−1)∈ηk−1

�=

(
f (y1, x1, . . . , xk−1) + · · · + f (x1, . . . , xk−1, y1)

)

= k
∑

(x1,...,xk−1)∈ηk−1
�=

f (y1, x1, . . . , xk−1).

�

An analogous straightforward computation using (4) verifies the following
lemma.

LEMMA 3.4. Let F ∈ L2(P) be a U -statistic of order k. Then the Ornstein–
Uhlenbeck operator applied to F gives

LF = −kF + k

∫
X

∑
(x1,...,xk−1)∈ηk−1

�=

f (x1, . . . , xk−1, z) dμ(z).

Without proof we also state the inverse Ornstein–Uhlenbeck operator of a U -
statistic.

L−1(F − EF)

=
(

k∑
m=1

1

m

)∫
Xk

f (y1, . . . , yk) dμ(y1, . . . , yk)

−
k∑

m=1

1

m

∑
(x1,...,xm)∈ηm�=

∫
Xk−m

f (x1, . . . , xm, y1, . . . , yk−m)

dμ(y1, . . . , yk−m).
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3.3. Wiener–Itô chaos expansions. Let us now compute the kernels and the
Wiener–Itô chaos expansion of a U -statistic F =∑ηk�=

f with F ∈ L2(P).

LEMMA 3.5. Let F ∈ L2(P) be a U -statistic of order k. Then the kernels of
the Wiener–Itô chaos expansion of F have the form

fi(y1, . . . , yi) =

⎧⎪⎪⎨
⎪⎪⎩
(

k

i

)∫
Xk−i

f (y1, . . . , yi, x1, . . . , xk−i) dμ(x1, . . . , xk−i),

i ≤ k,

0, i > k,

and F has the variance

VarF =
k∑

i=1

i!
(

k

i

)2

×
∫
Xi

(∫
Xk−i

f (y1, . . . , yi, x1, . . . , xk−i) dμ(x1, . . . , xk−i)

)2
(6)

dμ(y1, . . . , yi).

For the special case k = 2 the formulas for the kernels are already implicit in
the paper by Molchanov and Zuyev [22] where ideas closely related to Malliavin
calculus have been used.

PROOF OF LEMMA 3.5. In Lemma 3.3, the difference operator of a U -statistic
was computed. Proceeding by induction, we get

Dy1,...,yi
F = k!

(k − i)!
∑

(x1,...,xk−i )∈ηk−i
�=

f (y1, . . . , yi, x1, . . . , xk−i)

for i ≤ k. Hence Dy1,...,yk
F only depends on y1, . . . , yk and is independent of the

Poisson point process. This yields

Dy1,...,yk+1F = 0 and Dy1,...,yi
F = 0

for all i > k. We just proved

Dy1,...,yi
F

=

⎧⎪⎪⎨
⎪⎪⎩

k!
(k − i)!

∑
(x1,...,xk−i )∈ηk−i

�=

f (y1, . . . , yi, x1, . . . , xk−i), i ≤ k,

0, otherwise.
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By the Slivnyak–Mecke formula (1), we obtain

fi(y1, . . . , yi) = 1

i!EDy1,...,yi
F

= 1

i!E
k!

(k − i)!
∑

(x1,...,xk−i )∈ηk−i
�=

f (y1, . . . , yi, x1, . . . , xk−i)

= k!
i!(k − i)!

∫
Xk−i

f (y1, . . . , yi, x1, . . . , xk−i) dμ(x1, . . . , xk−i)

for i ≤ k. The formula for the variance follows from Proposition 2.2. �

Note that F ∈ L2(P) implies fi ∈ L2
s (X

i), and thus that for all 1 ≤ i ≤ k∫
Xi

(∫
Xk−i

f (y1, . . . , yi, x1, . . . , xk−i) dμ(x1, . . . , xk−i)

)2

dμ(y1, . . . , yi) < ∞.

In particular, it holds f ∈ L2
s (X

k).
By Lemma 3.5, U -statistics only have a finite number of nonvanishing ker-

nels. The following theorem characterizes a U -statistic by this property. We call a
Wiener–Itô chaos expansion finite if only a finite number of kernels do not vanish.

THEOREM 3.6. Assume F ∈ L2(P).

(1) If F is a U -statistic, then F has a finite Wiener–Itô chaos expansion with
kernels fi ∈ L1

s (X
i) ∩ L2

s (X
i), i = 1, . . . , k.

(2) If F has a finite Wiener–Itô chaos expansion with kernels fi ∈ L1
s (X

i) ∩
L2

s (X
i), i = 1, . . . , k, then F is a (finite) sum of U -statistics and a constant.

PROOF. The fact that a U -statistic F ∈ L2(P) has a finite Wiener–Itô chaos
expansion with fi ∈ L1

s (X
i) follows from Lemma 3.5 and from f ∈ L1

s (X
k).

For the second part of the proof, let F ∈ L2(P) have a finite Wiener–Itô chaos
expansion, that is,

F =
m∑

i=0

Ii(fi)

with kernels fi ∈ L1
s (X

i)∩L2
s (X

i) and m ∈ N. Now Proposition 4.1 in [36] implies
that

Ii(fi) =
i∑

j=0

(−1)i−j

(
i

j

) ∑
(x1,...,xj )∈η

j
�=

f
(j)
i (x1, . . . , xj ),

where the inner sum is a constant for j = 0 and f
(j)
i is given by

f
(j)
i (x1, . . . , xj ) =

∫
Xi−j

fi(x1, . . . , xj , y1, . . . , yi−j ) dμ(y1, . . . , yi−j ).
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The assumption fi ∈ L1
s (X

i) guarantees f
(j)
i ∈ L1

s (X
j ) for j = 1, . . . , i and

f
(0)
i ∈ R. Hence, every Wiener–Itô integral is a (finite) sum of U -statistics and

a constant, and the same holds for F . �

3.4. Examples. The following examples show that the assumptions on F

and fi in Theorem 3.6 are necessary. In all examples, we consider a Poisson point
process in R with the Lebesgue measure as intensity measure.

EXAMPLE. There exist random variables in L2(P) with finite Wiener–Itô
chaos expansions which are not sums of U -statistics. This is possible if the kernels
fi are in L2

s (X
i) \ L1

s (X
i). Define g : R → R as

g(x) = 1

x
1
(|x| > 1

)
,

which is in L2(R) \L1(R). Now we define the random variable G = I1(g). G is in
L2(P) and has a finite Wiener–Itô chaos expansion. But the formal representation

I1(g) =∑
x∈η

g(x) −
∫

R

g(x) dx

we used in the proof of Theorem 3.6 fails because the integral does not exist.

EXAMPLE. There also exist U -statistics F ∈ L1(P) with f ∈ L1
s (X

k) ∩
L2

s (X
k) which are not in L2(P). We construct f ∈ L1

s (R
2) ∩ L2

s (R
2) with ‖f1‖ =

∞ by putting

f (x1, x2) = 1(0 ≤ x1
√

x2 ≤ 1)1(0 ≤ x2
√

x1 ≤ 1)

and

F = ∑
(x1,x2)∈η2�=

f (x1, x2).

In this case the first kernel,

f1(y) = E

[
2
∑
x∈η

f (y, x)

]
= 2
∫

R

f (y, x) dx = 21(y ≥ 0)min
{

1

y2 ,
1√
y

}

is not in L2
s (R) so that F has no Wiener–Itô chaos expansion and cannot be in

L2(P).

EXAMPLE. By Theorem 3.6(2), a functional F ∈ L2(P) with a finite Wiener–
Itô chaos expansion and kernels fi ∈ L1

s (X
i) ∩ L2

s (X
i), i = 1, . . . , k, is a (finite)

sum of U -statistics. Our next example shows that neither the single U -statistics
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are in L2(P) nor are the summands necessarily in L2
s (X

i). Set F = I2(f ) with f

as above. Then

I2(f ) =
∫

R2
f (x, y) dx dy − 2

∑
x∈η

∫
R

f (x, y) dy + ∑
(x1,x2)∈η2�=

f (x1, x2),

and F is a sum of U -statistics. Since E[(∑x∈η

∫
R

f (x, y) dy)2] = ∞, we know
that the U -statistic ∑

x∈η

∫
R

f (x, y) dy

is not in L2(P), nor are the summands
∫
R

f (x, y) dy in L2(R). This is in contrast
to the remark after the proof of Lemma 3.5 that for a U -statistic F ∈ L2(P), we
always have f ∈ L2(Xk).

EXAMPLE. To motivate the definition of an absolutely convergent U -statistic,
we give an example of a U -statistic that is in L2(P) but not absolutely convergent.
Similarly to the previous examples, we set

f (x1, x2) = 1
(
0 ≤ |x1|

√|x2| ≤ 1
)
1
(
0 ≤ |x2|

√|x1| ≤ 1
)(

21(x1x2 ≥ 0) − 1
)

and

F = ∑
(x1,x2)∈η2�=

f (x1, x2) and F = ∑
(x1,x2)∈η2�=

∣∣f (x1, x2)
∣∣.

Now it is easy to verify that f1(x) = 0 and f2(x1, x2) = f (x1, x2) so that F ∈
L2(P). But the first kernel of F is not in L2(R) so that F /∈ L2(P).

4. Central limit theorems for U -statistics. In this section, we derive a cen-
tral limit theorem for U -statistics of Poisson point processes. In particular, we are
interested in the Wasserstein distance of a normalized U -statistic and a standard
Gaussian random variable. Recall that the Wasserstein distance dW(Y,Z) of two
random variables Y and Z is given by

dW(Y,Z) = sup
h∈Lip(1)

∣∣Eh(Y ) − Eh(Z)
∣∣,

where Lip(1) is the set of all functions h : R → R with a Lipschitz-constant less
than or equal to one. It is important to note that convergence in the Wasserstein
distance implies convergence in distribution. In particular, it is known (see [4],
e.g.) that for a Gaussian random variable N we have∣∣P(Y ≤ t) − P(N ≤ t)

∣∣≤ 2
√

dW(Y,N)

for all t ∈ R. Hence, we can prove central limit theorems by showing convergence
to a Gaussian random variable in the Wasserstein distance.
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Our main estimate for the distance between F =∑ηk�=
f and a standard Gaus-

sian random variable N is Theorem 4.7 which states that

dW

(
F − EF√

VarF
,N

)
≤ 2k7/2

∑
1≤i≤j≤k

√
Mij (f )

VarF
,

where the Mij (f ) are sums of certain fourth moment integrals. The precise defini-
tion is given in formula (14). In most applications, it is elementary to bound these
fourth moments of f . This is carried out in Sections 5 and 6.

4.1. An abstract CLT. Our most general result is the following upper bound
for the Wasserstein distance of a Poisson functional with a finite Wiener–Itô chaos
expansion and a standard Gaussian random variable. To neatly formulate our re-
sults and proofs, we use the abbreviations

Rij = E

(∫
X

Ii−1
(
fi(z, ·))Ij−1

(
fj (z, ·))dμ(z)

)2

(7)

−
[
E

∫
X

Ii−1
(
fi(z, ·))Ij−1

(
fj (z, ·))dμ(z)

]2

,

R̃i = E

∫
X

Ii−1
(
fi(z, ·))4 dμ(z)(8)

for i, j = 1, . . . , k. Note that R11 = 0 and that for i �= j the second expectation in
Rij vanishes.

THEOREM 4.1. Suppose F ∈ L2(P) has a finite Wiener–Itô chaos expansion
of order k, and N is a standard Gaussian random variable. Then

dW

(
F − EF√

VarF
,N

)
≤ k

∑
1≤i,j≤k

√
Rij

VarF
+ k7/2

k∑
i=1

√
R̃i

VarF
(9)

with Rij and R̃i defined in (7) and (8).

PROOF. Our proof is based on the following result of Peccati et al. (Theo-
rem 3.1 in [27]), which is derived by a combination of Malliavin calculus and
Stein’s method.

THEOREM 4.2 (Peccati et al. [27]). Let G ∈ L2(P) with EG = 0 be in the
domain of D and let N be a standard Gaussian random variable. Then

dW(G,N) ≤ E
∣∣1 − 〈DG,−DL−1G

〉∣∣+ ∫
X

E
[|DzG|2∣∣DzL

−1G
∣∣]dμ(z)

≤
√

E
(
1 − 〈DG,−DL−1G

〉)2 +
∫
X

E
[|DzG|2∣∣DzL

−1G
∣∣]dμ(z).



3892 M. REITZNER AND M. SCHULTE

From now on, we denote by

G = F − EF√
VarF

the normalization of F and by gi ∈ L2
s (X

i), i = 1, . . . , k, the kernels of G. Thus,
it follows

gi(x1, . . . , xi) = 1√
VarF

fi(x1, . . . , xi)

for i = 1, . . . , k and VarG =∑k
i=1 i!‖gi‖2 = 1.

Since F has a finite Wiener–Itô chaos expansion, F is in the domain of D, and
we can apply the above theorem. By the definitions of the Malliavin operators and
the triangle inequality, we obtain

E
∣∣1 − 〈DG,−DL−1G

〉∣∣
= E

∣∣∣∣∣
k∑

i=1

i!‖gi‖2 −
∫
X

k∑
i=1

iIi−1
(
gi(z, ·)) k∑

i=1

Ii−1
(
gi(z, ·))dμ(z)

∣∣∣∣∣
≤

k∑
i=2

E

∣∣∣∣i!‖gi‖2 − i

∫
X

Ii−1
(
gi(z, ·))Ii−1

(
gi(z, ·))dμ(z)

∣∣∣∣
+

k∑
i,j=1,i �=j

iE

∣∣∣∣
∫
X

Ii−1
(
gi(z, ·))Ij−1

(
gj (z, ·))dμ(z)

∣∣∣∣.
The first sum on the right-hand side of the inequality starts with i = 2 since
the summand for i = 1 vanishes. As a consequence of Fubini’s theorem and
Lemma 2.1, it holds that

Ei

∫
X

Ii−1
(
gi(z, ·))Ii−1

(
gi(z, ·))dμ(z) = i!‖gi‖2.

Combining this with the Cauchy–Schwarz inequality leads to

E

∣∣∣∣i!‖gi‖2 − i

∫
X

Ii−1
(
gi(z, ·))Ii−1

(
gi(z, ·))dμ(z)

∣∣∣∣
≤
√

E

(
i!‖gi‖2 − i

∫
X

Ii−1
(
gi(z, ·))Ii−1

(
gi(z, ·))dμ(z)

)2

=
√

i2E

(∫
X

Ii−1
(
gi(z, ·))Ii−1

(
gi(z, ·))dμ(z)

)2

− (i!)2‖gi‖4

= i

√
Rii

VarF
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and

E

∣∣∣∣
∫
X

Ii−1
(
gi(z, ·))Ij−1

(
gj (z, ·))dμ(z)

∣∣∣∣
≤
√

E

(∫
X

Ii−1
(
gi(z, ·))Ij−1

(
gj (z, ·))dμ(z)

)2

=
√

Rij

VarF

for i �= j . Now it holds that

E
∣∣1 − 〈DG,−DL−1G

〉∣∣≤ k∑
i=2

i

√
Rii

VarF
+

k∑
i,j=1,i �=j

i

√
Rij

VarF
(10)

≤ k
∑

1≤i,j≤k

√
Rij

VarF
.

Furthermore, again by the Cauchy–Schwarz inequality we have∫
X

E
[
(DzG)2∣∣DzL

−1G
∣∣]dμ(z)

≤
(∫

X
E
[
(DzG)4]dμ(z)

)1/2(∫
X

E
[(

DzL
−1G
)2]

dμ(z)

)1/2

.

By the definitions of the Malliavin operators and Hölder’s inequality, we can
rewrite the expressions on the right-hand side as∫

X
E
[(

DzL
−1G
)2]

dμ(z) =
∫
X

k∑
i=1

E
[
Ii−1
(
gi(z, ·))2]dμ(z)

=
k∑

i=1

(i − 1)!‖gi‖2 ≤ 1

and∫
X

E
[
(DzG)4]dμ(z) ≤

∫
X

k3
k∑

i=1

i4
E
[
Ii−1
(
gi(z, ·))4]dμ(z) = k3

k∑
i=1

i4 R̃i

(VarF)2 .

Hence∫
X

E
[
(DzG)2∣∣DzL

−1G
∣∣]dμ(z) ≤

√√√√k3
k∑

i=1

i4 R̃i

(VarF)2

(11)

≤ k
√

k

k∑
i=1

i2

√
R̃i

VarF
≤ k7/2

k∑
i=1

√
R̃i

VarF
.

Combining Theorem 4.2 with formulas (10) and (11) gives the right-hand side
of (9) in Theorem 4.1. �
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4.2. Estimates for the error terms. To estimate the right-hand side of (9) for a
U -statistic F =∑ηk�=

f in terms of the function f , we are interested in the behavior

of Rij and R̃i for i, j = 1, . . . , k. Thus we need to compute expected values of the
type

E

m∏
l=1

Inl
(fl), m ∈ N, n1, . . . , nm ∈ N

with fl ∈ L1
s (X

nl ) ∩ L2
s (X

nl ) for l = 1, . . . ,m. Such products of multiple Wiener–
Itô integrals are discussed in [28] and [36]. Before stating a result for the
expected value of such a product, we introduce some notation. The function⊗m

l=1 fl :X
∑

nl → R is given by(
m⊗

l=1

fl

)(
z
(1)
1 , . . . , z(1)

n1
, . . . , z

(m)
1 , . . . , z(m)

nm

)= m∏
l=1

fl

(
z
(l)
1 , . . . , z(l)

nl

)
.

DEFINITION 4.3. Let 
n1,...,nm be the set of all partitions of the set of vari-
ables z

(1)
1 , . . . , z

(m)
nm such that two variables z

(l)
i and z

(l)
j with i �= j but the same

upper index (l) are always in different blocks, and such that every block includes
at least two variables.

In this definition, we think of variables as combinatorial objects and partition a
set of them. This is slightly different from the approach in [28], where the variables
are numbered, and the partitions are defined for a set of numbers. Observe that by
definition each block of π ∈ 
n1,...,nm has at least two and at most m variables each
of them with different upper index (l). Subsequently also the following subset of

n1,...,nm will play a central role.

DEFINITION 4.4. Let 
n1,...,nm be the set of all partitions π ∈ 
n1,...,nm such
that for any decomposition of {1, . . . ,m} into two disjoint nonempty sets M1,M2

there are l1 ∈ M1, l2 ∈ M2 and two variables z
(l1)
i , z

(l2)
j which are in the same block

of π .

By |π | we denote the number of blocks of the partition π . For every partition
π ∈ 
n1,...,nm we define the function (

⊗m
l=1 fl)π :X|π | → R by replacing all vari-

ables of
⊗m

l=1 fl that belong to the same block of π by a new common variable.
The order of the new variables does not matter since we always integrate over all
variables.

Let us recall that S(Xk) stands for the set of simple functions. These are all
f ∈ L2

s (X
k) that are zero on all diagonals, are constant on a finite number of Carte-

sian products, and vanish everywhere else. For the product of multiple Wiener–
Itô integrals of such functions the following proposition holds; see Corollary 7.2
in [28].
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PROPOSITION 4.5. Let fl ∈ S(Xnl ) for l = 1, . . . ,m. Then

E

m∏
l=1

Inl
(fl) = ∑

π∈
n1,...,nm

∫
X|π |

(
m⊗

l=1

fl

)
π

(y1, . . . , y|π |) dμ(y1, . . . , y|π |).(12)

As a consequence of Proposition 3.1 in [36], equation (12) is also true for fl ∈
L2

s (X
k), l = 1, . . . ,m, satisfying(

m⊗
l=1

fl

)
π

∈ L2(X|π |)(13)

for all partitions π of the set of variables such that all variables of a function are in
different blocks. For some classes of functions fl it is obvious that (13) holds, for
example, if the fl are bounded and have a support of finite measure. But in general
it is difficult to verify condition (13).

In order to avoid this problem, we approximate a general U -statistic by a se-
quence of U -statistics, whose kernels are simple functions, and apply Proposi-
tion 4.5. Afterward, we extend our results to the original U -statistic. From now on,
we assume that F is an absolutely convergent U -statistic.

Because of f ∈ L1
s (X

k), there exists a sequence (f (n))n∈N of functions in
S(Xk) such that |f (n)| ≤ |f | μk-almost everywhere and (f (n))n∈N converges to
f μk-almost everywhere on Xk . We define U -statistics F (n), n ∈ N, by

F (n) = ∑
(x1,...,xk)∈ηk�=

f (n)(x1, . . . , xk).

Since (f (n))n∈N converges μk-almost everywhere on Xk to f ,

lim
n→∞f (n)(x1, . . . , xk) = f (x1, . . . , xk) for all (x1, . . . , xk) ∈ ηk�=

holds with probability 1. Furthermore, the absolute convergence of F implies∣∣F (n)
∣∣≤ ∑

(x1,...,xk)∈ηk�=

∣∣f (n)(x1, . . . , xk)
∣∣≤ ∑

(x1,...,xk)∈ηk�=

∣∣f (x1, . . . , xk)
∣∣ ∈ L2(P).

Hence, (F (n))n∈N converges almost surely to F , and the dominated convergence
theorem implies even convergence in L1(P) and L2(P). Moreover, F (n) ∈ L2(P),
and every F (n) has a Wiener–Itô chaos expansion with kernels f

(n)
i that are simple

functions since integration over a variable of a simple function leads to a simple
function.

The fact that the kernels of F (n) are simple functions brings us in the position
to use Proposition 4.5 to evaluate Rij and R̃i for i, j = 1, . . . , k. We start by esti-
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mating Rii . By (12), we have

Rii =
∫
X2

EIi−1
(
f

(n)
i (s, ·))2Ii−1

(
f

(n)
i (t, ·))2 dμ(s, t) − [(i − 1)!∥∥f (n)

i

∥∥2]2
= ∑

π∈
i−1,i−1,i−1,i−1

∫
X|π |+2

(
f

(n)
i (s, ·) ⊗ f

(n)
i (s, ·)

⊗ f
(n)
i (t, ·) ⊗ f

(n)
i (t, ·))π(y1, . . . , y|π |)

dμ(y1, . . . , y|π |, s, t)

− [(i − 1)!∥∥f (n)
i

∥∥2]2.
The sum over those partitions of 
i−1,i−1,i−1,i−1 such that every block contains
only variables of the first pair or of the second pair of functions leads exactly to
[(i − 1)!‖f (n)

i ‖2]2. These partitions cancel out with the minus term and we denote
the remaining partitions by 
̃i−1,i−1,i−1,i−1. Hence,

Rii = ∑
π̃∈
̃i−1,i−1,i−1,i−1

∫
X|π̃ |+2

(
f

(n)
i (s, ·) ⊗ f

(n)
i (s, ·)

⊗ f
(n)
i (t, ·) ⊗ f

(n)
i (t, ·))π̃ (y1, . . . , y|π̃ |)

dμ(y1, . . . , y|π̃ |, s, t)

≤ ∑
π̃∈
̃i−1,i−1,i−1,i−1

∫
X|π̃ |+2

∣∣(f (n)
i (s, ·) ⊗ f

(n)
i (s, ·)

⊗ f
(n)
i (t, ·) ⊗ f

(n)
i (t, ·))π̃ (y1, . . . , y|π̃ |)

∣∣
dμ(y1, . . . , y|π̃ |, s, t).

In order to simplify our notation, we include s and t into the partitions by
adding two blocks generating s and t to the old partition π̃ and obtain a
new partition π ∈ 
i,i,i,i . By definition of π̃ , π has at least one block in-
cluding variables z

(l1)
i1

and z
(l2)
i2

, l1 ∈ {1,2}, l2 ∈ {3,4}. By construction of
π , there are also blocks including variables of the first two functions and
of the last two functions. Altogether, this implies π ∈ 
i,i,i,i . Since each
π̃ ∈ 
̃i−1,i−1,i−1,i−1 leads to a different π ∈ 
i,i,i,i , we obtain the upper
bound

Rii ≤ ∑
π∈
i,i,i,i

∫
X|π |
∣∣(f (n)

i ⊗ f
(n)
i ⊗ f

(n)
i ⊗ f

(n)
i

)
π(y1, . . . , y|π |)

∣∣
dμ(y1, . . . , y|π |).
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In the very same way, we obtain an upper bound for Rij , i �= j . By (12), it fol-
lows

Rij =
∫
X2

E
[
Ii−1
(
f

(n)
i (s, ·))Ij−1

(
f

(n)
j (s, ·))Ii−1

(
f

(n)
i (t, ·))

× Ij−1
(
f

(n)
j (t, ·))]dμ(s, t)

= ∑
π̃∈
i−1,j−1,i−1,j−1

∫
X|π̃ |+2

(
f

(n)
i (s, ·) ⊗ f

(n)
j (s, ·)

⊗ f
(n)
i (t, ·) ⊗ f

(n)
j (t, ·))π̃ (y1, . . . , y|π̃ |)

dμ(y1, . . . , y|π̃ |, s, t)

≤ ∑
π∈
i,j,i,j

∫
X|π |
∣∣(f (n)

i ⊗ f
(n)
j ⊗ f

(n)
i ⊗ f

(n)
j

)
π(y1, . . . , y|π |)

∣∣dμ(y1, . . . , y|π |).

Since i �= j , there exist no π̃ ∈ 
i−1,j−1,i−1,j−1 with blocks including either vari-
ables of the first two or last two functions. Hence, we obtain partitions π ∈ 
i,j,i,j

by the same construction as for Rii and obtain an upper bound by summing over

i,j,i,j .

The last step is to estimate R̃i . Here, we have in a similar way

R̃i =
∫
X

EIi−1
(
f

(n)
i (s, ·))4 dμ(s)

= ∑
π̃∈
i−1,i−1,i−1,i−1

∫
X|π̃ |+1

(
f

(n)
i (s, ·) ⊗ f

(n)
i (s, ·)

⊗ f
(n)
i (s, ·) ⊗ f

(n)
i (s, ·))π̃ (y1, . . . , y|π̃ |)

dμ(y1, . . . , y|π̃ |, s)

≤ ∑
π∈
i,i,i,i

∫
X|π |
∣∣(f (n)

i ⊗ f
(n)
i ⊗ f

(n)
i ⊗ f

(n)
i

)
π(y1, . . . , y|π |)

∣∣dμ(y1, . . . , y|π |).

In this case, it is immediate that we obtain a partition π ∈ 
i,i,i,i by adding s

to a partition π̃ ∈ 
i−1,i−1,i−1,i−1. Thus Rij and R̃i are bounded by the same
expressions.

Now it remains to estimate the kernels f
(n)
i . From Lemma 3.5, it follows that

∣∣f (n)
i (y1, . . . , yi)

∣∣
≤
(

k

i

)∫
Xk−i

∣∣f (n)(y1, . . . , yi, x1, . . . , xk−i)
∣∣dμ(x1, . . . , xk−i).
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We obtain the following expression as an upper bound for Rij and R̃i . With Mij (·)
defined by

Mij (g) =
(

k

i

)2 (
k

j

)2

× ∑
π∈
i,j,i,j

∫
X|π |+4k−2i−2j

∣∣(g(·, x(1)
1 , . . . , x

(1)
k−i

)

⊗ g
(·, x(2)

1 , . . . , x
(2)
k−j

)
(14)

⊗ g
(·, x(3)

1 , . . . , x
(3)
k−i

)
⊗ g
(·, x(4)

1 , . . . , x
(4)
k−j

))
π(y1, . . . , y|π |)

∣∣
dμ
(
x

(1)
1 , . . . , x

(4)
k−j , y1, . . . , y|π |

)
,

where π acts on the first i, respectively, j variables of g :Xk → R, we have

Rij ≤ Mij

(
f (n)) and R̃i ≤ Mii

(
f (n)) for 1 ≤ i, j ≤ k.

Since in the definition of Mij every block of a partition π ∈ 
i,j,i,j has at least two
elements, the integration in (14) runs over at most 4k− i −j variables. For i = j =
1 the only partition in 
i,j,i,j is the partition with one block and the integration
runs over 4k − 3 variables. This observation will be important in Section 5.

Combining our bounds for Rij and R̃i with Theorem 4.1 yields:

LEMMA 4.6. Suppose F (n) =∑ηk�=
f (n) is a U -statistic of order k with f (n) ∈

S(Xk) and N is a standard Gaussian random variable. Then

dW

(
F (n) − EF (n)

√
VarF (n)

,N

)
≤ 2k7/2

∑
1≤i≤j≤k

√
Mij (f (n))

VarF (n)
.

Together with the fact that Mij (f
(n)) ≤ Mij (f ) since |f (n)| ≤ |f | and the tri-

angle inequality for the Wasserstein distance, we obtain

dW

(
F − EF√

VarF
,N

)

≤ dW

(
F − EF√

VarF
,
F (n) − EF (n)

√
VarF (n)

)
+ dW

(
F (n) − EF (n)

√
VarF (n)

,N

)

≤ dW

(
F − EF√

VarF
,
F (n) − EF (n)

√
VarF (n)

)
+ 2k7/2

∑
1≤i≤j≤k

√
Mij (f )

VarF (n)
.
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By the definition of the Wasserstein distance and some straightforward computa-
tions, it follows that

dW

(
F − EF√

VarF
,
F (n) − EF (n)

√
VarF (n)

)
≤ E

∣∣∣∣F − EF√
VarF

− F (n) − EF (n)

√
VarF (n)

∣∣∣∣
≤ E|F (n) − F + EF − EF (n)|√

VarF (n)

+
∣∣∣∣E|F − EF |√

VarF
− E|F − EF |√

VarF (n)

∣∣∣∣.
Because of the convergence of (F (n))n∈N to F in L1(P) and L2(P), the right-hand
side vanishes for n → ∞, and we get our main result.

THEOREM 4.7. Suppose F is an absolutely convergent U -statistic of order k,
and N is a standard Gaussian random variable. Then

dW

(
F − EF√

VarF
,N

)
≤ 2k7/2

∑
1≤i≤j≤k

√
Mij (f )

VarF

with Mij (f ) defined in (14).

5. Geometric U -statistics.

5.1. Central limit theorems for geometric U -statistics. In this section, we
assume that our intensity measure has the form μ(·) = λθ(·) with a σ -finite
nonatomic measure θ(·) and λ ≥ 1. We are interested in the behavior of the U -
statistic F for λ → ∞.

DEFINITION 5.1. A U -statistic F = ∑ηk�=
f is a geometric U -statistic if it

satisfies

f (x1, . . . , xk) = g(λ)f̃ (x1, . . . , xk)

with g : R → R, and with f̃ :Xk → R not depending on λ.

In the case that g = 1 and f = f̃ , the value of F for a given realization of
the Poisson point process is only determined by the geometry of the points and
does not depend on the intensity rate λ of the underlying process. The term “ge-
ometric” is used to emphasize this behavior. We slightly generalize this property
by allowing our geometric U -statistics to have an intensity related scaling factor
since we always consider standardized random variables, where the scaling factor
is cancelled out.

By M̃ij we denote the value of Mij (f̃ ), which is defined in (14), for λ = 1. With
this notation, the following central limit theorem holds:
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THEOREM 5.2. Suppose F is an absolutely convergent geometric U -statistic
of order k with ‖f1‖ > 0 and N is a standard Gaussian random variable. Then

lim
λ→∞

VarF

λ2k−1g(λ)2 = k2
∫
X

(∫
Xk−1

f̃ (y, x1, . . . , xk−1) dθ(x1, . . . , xk−1)

)2

dθ(y)︸ ︷︷ ︸
=:Ṽ

with Ṽ > 0, and

dW

(
F − EF√

VarF
,N

)
≤ λ−1/2

(
2k7/2

∑
1≤i≤j≤k

√
M̃ij

Ṽ

)
(15)

for λ ≥ 1.

The main feature of this theorem is that the term in brackets is independent
of λ, which means that for λ → ∞ the distance to the Gaussian distribution tends
to zero at a rate λ−1/2.

PROOF OF THEOREM 5.2. Because we are interested in the standardized vari-
able (F − EF)/

√
VarF which is independent of g(λ), w.l.o.g. we put g(λ) = 1

and f̃ = f . From formula (6) we infer

VarF =
k∑

i=1

λ2k−i i!
(

k

i

)2

×
∫
Xi

(∫
Xk−i

f (y1, . . . , yi, x1, . . . , xk−i) dθ(x1, . . . , xk−i)

)2

dθ(y1, . . . , yi),

which means that the variance is a polynomial of degree 2k − 1 with the leading
term Ṽ λ2k−1 = ‖f1‖2 > 0 and VarF ≥ Ṽ λ2k−1.

As previously mentioned, the integration in Mij (f ) runs over at most 4k − i −
j ≤ 4k − 3 variables for (i, j) �= (1,1) and 4k − 3 variables for (i, j) = (1,1), and
we see that

Mij (f ) ≤ M̃ijλ
4k−3

for λ ≥ 1. Hence, Theorem 4.7 leads directly to (15). �

The assumption ‖f1‖ > 0 cannot be easily dispensed as can be seen from the
following example:

EXAMPLE. Let η be a Poisson process on [−1,1] with intensity measure
the Lebesgue measure times intensity λ > 0. We define the U -statistic F =
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∑
(x1,x2)∈η2�=

f (x1, x2) with

f (x1, x2) =
{

1, x1x2 ≥ 0,

−1, x1x2 < 0.

Obviously, we obtain f1(y) = 0. It is possible to rewrite F as F = L(L − 1) +
R(R − 1) − 2LR where L and R are the number of points in [−1,0] and [0,1],
respectively. This brings us in the position to compute the moments. Elementary
calculations show that the variance equals 8λ2, and the third moment of F is 64λ3.
Thus the third moment of (F − EF)/

√
VarF tends to a constant and hence is too

large for convergence of F to a Gaussian distribution. By a technical computation
of all moments, using the product formula for multiple Wiener–Itô integrals, for
example, and the method of moments, it can be shown that

√
2(F − EF)/

√
VarF

follows a centered chi-square distribution with one degree of freedom as λ → ∞.

In the special case μ(X) = λθ(X) < ∞, it is possible to approximate the Pois-
son point process η by a binomial point process, that consists of a fixed number
of independently distributed points with the probability measure θ(·)/θ(X). If we
sum over k-tuples of distinct points of the binomial point process instead of a
Poisson point process, we obtain a classical U -statistic. This well-known class of
random variables satisfies a similar central limit theorem as above with a rate of
convergence; see [7, 11, 16, 20]. Although both results are similar, it seems to be
difficult to prove one result by the other, especially with keeping rates of conver-
gence.

For classical U -statistics the so-called Hoeffding decomposition which is
closely related to the Wiener–Itô chaos expansion plays a crucial role. In the re-
cent paper by Lachiéze-Rey and Peccati [18], this decomposition is applied to
U -statistics of Poisson point processes which yields a representation similar to the
Wiener–Itô chaos expansion. Combining this with the result of Dynkin and Man-
delbaum [6], the authors derive our Theorem 5.2 for the case μ(X) < ∞ (without
rates of convergence). They also prove noncentral limit theorems for the case that
some of the first kernels of the chaos expansion of a U -statistic vanish, which
allows one to deal with situations as in the previous example.

In Sections 5.2 and 5.3, we apply Theorem 5.2 to problems from stochastic
geometry. In the recent paper [5] the underlying result from [27] is used to derive
a central limit theorem for the number random simplices on a torus. This problem
exactly fits in the framework of geometric U -statistics, and some of the results can
also be obtained by using Theorem 5.2.

5.2. Central limit theorems for Poisson hyperplanes. We use Theorem 5.2 to
establish central limit theorems for Poisson hyperplane processes. Let η be a Pois-
son process on the space H of all hyperplanes in R

d with an intensity measure of
the form μ(·) = λθ(·) with λ ∈ R

+ and a σ -finite nonatomic measure θ . The Pois-
son hyperplane process is only observed in a compact convex window W ⊂ R

d
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with interior points. Thus, we can view η as a Poisson process on the set [W ]
defined by

[W ] = {h ∈ H :h ∩ W �= ∅}.
Given the hyperplane process η, we investigate the (d − k)-flats in W which

occur as the intersection of k hyperplanes of η. In particular, we are interested in
the sum of their ith intrinsic volumes given by

�k
i (W) = 1

k!
∑

(h1,...,hk)∈ηk�=

Vi(h1 ∩ · · · ∩ hk ∩ W)

for i = 0, . . . , d − k and k = 1, . . . , d . For the definition of the ith intrinsic volume
Vi(·) we refer to [31]. We remark that V0(K) is the Euler characteristic of the
set K , and that Vn(K) of an n-dimensional convex set K is the Lebesgue measure

n(K). Thus �k

0 is the number of (d − k)-flats in W , and �k
d−k is their (d − k)-

volume. To ensure that the expectations of these random variables are neither 0 nor
infinite, we assume that:

• 0 < θ([W ]) < ∞;
• 2 ≤ k ≤ d independent random hyperplanes on [W ] with probability measure

θ(·)/θ([W ]) intersect in a (d − k)-flat almost surely and their intersection flat
hits the interior of W with positive probability.

For example, these conditions are satisfied if the hyperplane process is stationary
and the directional distribution is not concentrated on a great subsphere.

The fact that the summands in the definition of �k
i are bounded and have a

bounded support makes sure that the fourth moments in Mij (·) are finite, and we
can apply Theorem 5.2:

THEOREM 5.3. Let N be a standard Gaussian random variable. Then con-
stants c�(W,k, i) exist such that

dW

(
�k

i (W) − E�k
i (W)√

Var�k
i (W)

,N

)
≤ c�(W,k, i)λ−1/2

for λ ≥ 1, i = 0, . . . , d − k and k = 1, . . . , d .

Furthermore, the asymptotic variances are given by

lim
λ→∞

Var�k
i (W)

λ2k−1

= 1

(k − 1)!2

×
∫
[W ]

(∫
[W ]k−1

Vi(h ∩ h1 ∩ · · · ∩ hk−1 ∩ W)dθ(h1, . . . , hk−1)

)2

dθ(h).
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Similar results have first been derived by Paroux [26], and by Heinrich [9] and
Heinrich, Schmidt and Schmidt [10] using Hoeffding’s decomposition of classi-
cal U -statistics. Schulte and Thäle [33] used the Wiener–Itô chaos expansion to
compute the moments and cumulants and to formulate central limit theorems for
the surface area of Poisson hyperplanes in an increasing window. In their recent
paper [34] this approach is further refined to obtain point process convergence for
the intrinsic volumes of the intersection process of Poisson k-flats in the unit ball.

5.3. Convex hulls of random points. In the following, we assume that the Pois-
son point process η has an intensity-measure of the form μ(·) = λ
d(· ∩ K),
λ ≥ 1, where 
d is Lebesgue measure, and K ⊂ R

d a compact convex set with

d(K) = 1. If we integrate with respect to 
d , we omit the measure in our nota-
tion.

We consider the following functional related to Sylvester’s problem:

H = ∑
(x1,...,xk)∈ηk�=

h(x1, . . . , xk)

with

h(x1, . . . , xk) = 1
(
x1, . . . , xk are vertices of conv(x1, . . . , xk)

)
,

which counts the number of k-tuples of the process such that every point is a vertex
of the convex hull, that is, the number of k-tuples in convex position. The expected
value of H is then given by

EH = λk
P
(
X1, . . . ,Xk are vertices of conv(X1, . . . ,Xk)

)= λkp(k)(K),

where X1, . . . ,Xk are independent random points chosen according to the uniform
distribution on K .

The question to determine the probability p(k)(K) that k random points in a
convex set K are in convex position has a long history; see, for example, the more
recent developments by Bárány [1, 2] and Buchta [3]. In our setting, the function H

is an estimator for the probability p(k)(K), and we are interested in distributional
properties of this estimator.

The asymptotic behavior of VarH is determined by

H̃ = lim
λ→∞

VarH

λ2k−1 = k2
∫
K

(∫
Kk−1

h(y, x1, . . . , xk−1) dx1 · · ·dxk−1

)2

dy.

By the Cauchy–Schwarz inequality, because 
d(K) = 1 and h2 = h, we obtain

H̃ ≤ k2
∫
K

∫
Kk−1

h(y, x1, . . . , xk−1)
2 dx1 · · ·dxk−1 dy

= k2p(k)(K)
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and

k2p(k)(K)2 = k2
(∫

Kk
h(x1, . . . , xk) dx1 · · ·dxk

)2

≤ k2
∫
K

(∫
Kk−1

h(x1, x2, . . . , xk) dx2 · · ·dxk

)2

dx1 = H̃ .

Together with Theorem 5.2, we immediately get the following result showing that
the estimator H is asymptotically Gaussian:

THEOREM 5.4. Let N be a standard Gaussian random variable. Then there
exists a constant C such that

dW

(
H − EH√

VarH
,N

)
≤ Cλ−1/2.

Furthermore VarH = λ2k−1H̃ (1 + O(λ−1)) as λ → ∞ with

k2p(k)(K)2 ≤ H̃ ≤ k2p(k)(K).

6. Local U -statistics.

6.1. Central limit theorems for local U -statistics. For a geometric U -statistic
the function f is [up to the scaling factor g(λ)] independent of λ. Now we allow
that f is influenced by λ in a more intricate way, but we assume that a k-tupel of
points is only in the support of f if the points are close together.

From now on, let X be a metric space, and denote by B(y, r) the ball with
center y and radius r . Again, we assume that the intensity measure μ has the form
μ(·) = λθ(·) with λ ≥ 1 and a σ -finite nonatomic measure θ(·) on X. We denote
the diameter of A ⊂ X by diam(A).

DEFINITION 6.1. A U -statistic F =∑ηk�=
f is a local U -statistic if it satisfies

f (x1, . . . , xk) = 0 if diam
({x1, . . . , xk})> δ.(16)

Note that in general δ may depend on λ. We denote the L2-norm on Xi with
respect to the measure θ(·) by ‖ · ‖θ . Now we can rephrase Theorem 4.7 for local
U -statistics as follows:

THEOREM 6.2. Suppose F is an absolutely convergent local U -statistic of
order k with ‖f1‖ > 0, and N is a standard Gaussian random variable. Putting
Ṽ = ‖f1‖2/λ2k−1 and b(δ) = maxy∈X μ(B(y,4δ)) < ∞, we have

dW

(
F − EF√

VarF
,N

)
≤ ckλ

−3k/2+1 max
{
1, b(δ)(3k−3)/2}‖f 2‖θ

Ṽ

with a constant ck ∈ R only depending on k.
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PROOF. Formula (6) yields VarF ≥ ‖f1‖2 = λ2k−1Ṽ . The estimate for Mij

runs as follows. Since π ∈ 
i,j,i,j , and condition (16) forces all arguments of f to
be close, we can rewrite Mij (f ) as

Mij (f ) =
(

k

i

)2 (
k

j

)2

× ∑
π∈
i,j,i,j

∫
X|π |+4k−2i−2j

∣∣(f (·, x(1)
1 , . . . , x

(1)
k−i

)

⊗ f
(·, x(2)

1 , . . . , x
(2)
k−j

)
⊗ f
(·, x(3)

1 , . . . , x
(3)
k−i

)
⊗ f
(·, x(4)

1 , . . . , x
(4)
k−j

))
π(y1, . . . , y|π |)

∣∣
× 1
(
diam

({
x

(1)
1 , . . . , x

(4)
k−j , y1, . . . , y|π |

})≤ 4δ
)

dμ
(
x

(1)
1 , . . . , x

(4)
k−j , y1, . . . , y|π |

)
.

By Hölder’s inequality, we obtain

Mij (f ) ≤ cij

∑
π∈
i,j,i,j

∫
X|π |+4k−2i−2j

f (z1, . . . , zk)
4

× 1
(
diam

({z1, . . . , z|π |+4k−2i−2j })≤ 4δ
)
dμ(z1, . . . , z|π |+4k−2i−2j )

≤ cij

∥∥f 2∥∥2 ∑
π∈
i,j,i,j

b(δ)|π |+3k−2i−2j

= cijλ
k
∥∥f 2∥∥2

θ

∑
π∈
i,j,i,j

b(δ)|π |+3k−2i−2j

with a constant cij ∈ R depending on i, j, k. One should keep in mind that
max(i, j) ≤ |π | ≤ i + j for all π ∈ 
i,j,i,j and that the only partition π ∈ 
1,1,1,1
satisfies |π | = 1. This leads to |π | − 2i − 2j ≤ −3 and

2k7/2
∑

1≤i≤j≤k

√
Mij (f )

VarF
≤ c′

k

∑
1≤i≤j≤k

√
λk‖f 2‖2

θ

∑
π∈
i,j,i,j

b(δ)|π |+3k−2i−2j

λ2k−1Ṽ

≤ c′
kλ

−3k/2+1 ‖f 2‖θ

Ṽ

∑
1≤i≤j≤k

√√√√ ∑
π∈
i,j,i,j

b(δ)|π |+3k−2i−2j

≤ ckλ
−3k/2+1 ‖f 2‖θ

Ṽ
max
{
1, b(δ)(3k−3)/2}
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with constants c′
k, ck ∈ R only depending on k. Combining this estimate with The-

orem 4.1 gives the claimed result. �

The proof rests essentially upon the fact that F is a local U -statistic since this
allows us to rewrite Mij (f ) such that every function depends on all variables and
to split these functions using Hölder’s inequality.

6.2. A central limit theorem for the total edge length of a random geometric
graph. We apply the results of the previous subsection to a problem from random
graph theory. We construct a random graph in the following way. Let η be a Poisson
process in X = R

d with an intensity measure of the form

μ(·) = λ
d(· ∩ W)

with λ ≥ 1, the d-dimensional Lebesgue-measure 
d(·) and a compact window
W ⊂ R

d of volume 
d(W) = 1 containing the origin in its interior. We regard η

as a set of points in W . As in (16) we connect two points x, y ∈ η by an edge if

‖x − y‖ ≤ δ = δ(λ).

The resulting graph G(Pλ, δ) is a random geometric graph, sometimes called a
Gilbert graph or an interval graph (for d = 1) and a disk graph (for d = 2). For
graph-theoretical properties of G(Pλ, δ) we refer to [30] and to the more recent
developments [8, 17, 21, 23]. For our central limit theorem we take λ → ∞ and
assume that δ is small enough to ensure that⋂

x∈B(0,δ)

(W + x) ⊃ 1

2
W.

We are interested in the total edge length L(η) of G(Pλ, δ) in the window W ,
which is given by

L(η) = 1

2

∑
(x,y)∈η2�=

g(x − y)1
(‖x − y‖ ≤ δ

)
.

Here g :B(0, δ) → R is some kind of measure of the length of the edge (x, y).
We assume g ∈ L2(B(0, δ)) which implies that L is absolutely convergent. The
following lemma is immediate from Lemma 3.5.

LEMMA 6.3. L(η) has a Wiener–Itô chaos expansion with kernels

f1(y) = λ

∫
B(0,δ)

g(x)1(y + x ∈ W)dx, y ∈ W

and

f2(x, y) = 1
2g(x − y)1

(‖x − y‖ ≤ δ
)
, x, y ∈ W.
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For the length of this random graph, we obtain the following central limit theo-
rem:

THEOREM 6.4. Assume g ∈ L2(B(0, δ)) with
∫
B(0,δ) g(x) dx �= 0, and let N

be a standard Gaussian random variable. Then there is a constant cd only depend-
ing on the dimension d such that

dW

(
F − EF√

VarF
,N

)
≤ cdλ−2 max

{
1, b(δ)3/2}(∫B(0,δ) g(x)4 dx)1/2

(
∫
B(0,δ) g(x) dx)2 .

PROOF. We compute the bound from Theorem 6.2. Lemma 6.3 yields

Ṽ = ‖f1‖2

λ3 =
∫
W

(∫
B(0,δ)

g(x)1(y + x ∈ W)dx

)2

dy

≥
∫
(1/2)W

(∫
B(0,δ)

g(x) dx

)2

dy = 2−d

(∫
B(0,δ)

g(x) dx

)2

and

∥∥f 2∥∥2
θ = 1

16

∫
W

∫
B(0,δ)

g(x)41(y + x ∈ W)dx dy ≤ 1

16

∫
B(0,δ)

g(x)4 dx. �

As an example we consider the particular case g = 1, where L(η) reduces to the
number of edges of the graph. Then the expectation is of order λ2δd . Lemma 6.3
and Theorem 6.4 tell us that the variance is of order max{λ3δ2d, λ2δd} and that

dW

(
L − EL√

VarL
,N

)
≤ c̃dλ−2δ−3d/2 max

{
1, λ3/2δ3d/2}

with a constant c̃d ∈ R only depending on d . The right-hand side tends to zero
if λ4/3
d(B(0, δ)) → ∞ as λ → ∞. In the maybe most natural case when
λ
d(B(0, δ)) stays constant we have an order λ−1/2 of convergence to the Gaus-
sian distribution. A central limit theorem without rate of convergence is a special
case of Theorem 3.9 in [30].

Similar results to Lemma 6.3 and Theorem 6.4 can be obtained if the intensity
measure is of the form dμ(x) = λf (x) d
d(x) with λ ∈ R

+ and a density func-
tion f (x).
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