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LIMITING DISTRIBUTION OF MAXIMAL CROSSING AND
NESTING OF POISSONIZED RANDOM MATCHINGS

BY JINHO BAIK1 AND ROBERT JENKINS

University of Michigan

The notion of r-crossing and r-nesting of a complete matching was in-
troduced and a symmetry property was proved by Chen et al. [Trans. Amer.
Math. Soc. 359 (2007) 1555–1575]. We consider random matchings of large
size and study their maximal crossing and their maximal nesting. It is known
that the marginal distribution of each of them converges to the GOE Tracy–
Widom distribution. We show that the maximal crossing and the maximal
nesting becomes independent asymptotically, and we evaluate the joint dis-
tribution for the Poissonized random matchings explicitly to the first cor-
rection term. This leads to an evaluation of the asymptotic of the covari-
ance. Furthermore, we compute the explicit second correction term in the
distribution function of two objects: (a) the length of the longest increas-
ing subsequence of Poissonized random permutation and (b) the maximal
crossing, and hence also the maximal nesting, of Poissonized random match-
ing.

1. Introduction. Let Mn be the set of complete matchings of [2n]. The size
of Mn is (2n − 1)!!. It is well known that the number of complete matchings of
[2n] with no crossings equals the nth Catalan number Cn, as is the number of com-
plete matchings with no nestings. In [15], a notation of r-crossing and r-nesting
was introduced: given a complete matching M = {(i1, j1), . . . , (in, jn)} ∈ Mn,
{(is1, js1), . . . , (isr , jsr )} is called an r-crossing if is1 < is2 < · · · < isr < js1 <

· · · < jsr and an r-nesting if is1 < is2 < · · · < isr < jsr < · · · < js2 < js1 . Let
crn(M) be the largest number k such that M has a k-crossing (maximal crossing)
and nen(M) denote the largest number j such that M has a j -nesting (maximal
nesting). See Figure 1 for an example. Various combinatorial properties of crn and
nen were studied by Chen et al. in [15]. This paper subsequently generated a flurry
of research concerning crossings and nestings of many combinatorial objects; see,
for example, [42] and also the survey article [48].

We may equip Mn with the uniform probability and regard crn and nen as
random variables. Let N be a Poisson random variable with parameter t2/2 and
consider matchings of random size distributed as 2N . Let CRt and NEt denote
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FIG. 1. A complete matching M of [12]. In this sample cr6(M) = 4, achieved by {(1,6), (2,7),

(4,9), (5,10)}, and ne6(M) = 2, achieved by {(3,11), (4,9)}.

crN and neN , respectively. The object of this paper is to study the asymptotics of
CRt and NEt as t → ∞.

One of the main results of [15] is that the joint distribution of crn and nen are
symmetric. Hence CRt and NEt are symmetrically distributed. The limit of the
marginal distribution of NEt can be obtained by noting a bijection between match-
ings and fixed-point-free involutions. Let Invn be the set of permutations of size 2n

consisting of only 2-cycles. To σ ∈ Invn whose cycles are (i1, j1), . . . , (in, jn), as-
sociate the complete matching {(i1, j1), . . . , (in, jn)}. This gives a natural bijection
ϕ from Invn onto Mn. Moreover, if we define �̃n(σ ) as the length of the longest
decreasing subsequence of σ ∈ Invn, it is easy to check that �̃n(σ )/2 = nen(ϕ(σ )).
The limiting distribution of �̃n, and also of �̃N were obtained obtained earlier
in [8, 9]. From this and the symmetry of crn and nen, Chen et al. [15] concluded
that for each x ∈ R,

lim
n→∞ P

{
crn − √

2n

2−1(2n)1/6 ≤ x

}
= lim

n→∞ P

{
nen − √

2n

2−1(2n)1/6 ≤ x

}
= F(x),(1)

where F(x) is the GOE Tracy–Widom distribution function from random matrix
theory [50] defined in (3) below. We also find a similar result for the Poissonized
version,

lim
t→∞P

{
CRt − t

2−1t1/3 ≤ x

}
= lim

t→∞P

{
NEt − t

2−1t1/3 ≤ x

}
= F(x).(2)

We note that the length �n(σ ) of the longest increasing subsequence of σ ∈ Invn

has a different distribution from �̃n. For example, while �̃n(σ ) is always an even
integer, �n(σ ) can be both even or odd integers. Moreover, it was shown in [9] that
�n/2−√

2n

2−1(2n)1/6 converges to a random variable whose distribution function is different
from F ; it is given by the so-called GSE Tracy–Widom distribution. Hence the
joint distribution of crn and nen cannot be the joint distribution of �n/2 and �̃n/2.

A geometric meaning of crn(ϕ(σ )) and nen(ϕ(σ )) is the following. Represent σ

as a permutation matrix. Geometrically we imagine the square of size 2n with
(1,1) entry at the top left corner. The condition that σ consists of only 2-cycles
implies that the matrix is symmetric and the diagonal entries are zeros. Then it
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FIG. 2. The permutation matrix of the permutation σ corresponding to the matching in Figure 1.
Since the matrix is symmetric, only the lower triangular part is shown and the entries with element 1
are marked by ×. On the left: The maximal up/right path (of length 2) corresponding to nen(ϕ(σ )).
On the right: The maximizing down/right path (of length 4) corresponding to crn(ϕ(σ )) is realized
by �6

6. Note that the longer down/right path indicated by the dashed line is not allowed as it does not

fit inside the rectangles bounding the paths �k
6 for any k = 1, . . . ,12.

is easy to see that nen(ϕ(σ )) = �̃n(σ )/2 equals the length of the longest up/right
chain consisting of 1’s in the lower-triangle {(i, j) : 1 ≤ j < i ≤ 2n}. On the other
hand, for each k = 1, . . . ,2n, let �k

n(σ ) denotes the length of the longest down/right
chain consisting of 1’s in the rectangle with two opposite corners (2n,1), (k, k).
Then crn(ϕ(σ )) equals the maximum of �k

n(σ ) over k = 1, . . . ,2n [42]; see Fig-
ure 2.

1.1. Joint distribution. The first main result of this paper is the following re-
sult for the joint distribution of CRt and NEt . Let F(x) denote the GOE Tracy–
Widom distribution defined by

F(x) := exp
[

1

2

∫ ∞
x

(
u(s) − q(s)

)
ds

]
, u(x) :=

∫ x

∞
q(s)2 ds,(3)

where q(s) is the unique solution of Painlevé II, q ′′(s) = sq(s) + q(s)3, such that
q(s) ∼ Ai(s) as s → ∞ (where Ai denotes the Airy function). The solution q(s)

is called the Hastings–McLeod solution [32]; see also [27].

THEOREM 1.1. Set

C̃Rt := CRt − t

2−1t1/3 , ÑEt = NEt − t

2−1t1/3 .(4)

We have

P
{
C̃Rt ≤ x, ÑEt ≤ x′}

(5)

= P{C̃Rt < x}P{ÑEt < x′}+ F ′(x)F ′(x′)
t2/3 + O

(
t−1).
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This, together with a tail estimate, implies the asymptotics of the covariance.

COROLLARY 1.1. The covariance of CRt and NEt satisfies

Cov(CRt ,NEt ) = 1
4 + O

(
t−1/3).(6)

Hence, the correlation is asymptotically

ρ(CRt ,NEt ) = 1

σ 2t2/3 + O
(
t−1),(7)

where σ 2 = 1.6077810345 . . . is the variance of F(x); cf. page 862 of [12].

We can also interpret CRt and NEt as “height” and “depth” of certain noninter-
secting random walks. See Section 2 below.

We may apply the de-Poissonization argument [33] to (5) to find a result for the
joint distribution of crn and nen. However, intuitively, for fixed n and M ∈ Mn,
any (i, j) ∈ M that is used to form the maximal crossing of M cannot be used for
the maximal nesting of M . This indicates a negative correlation of crn and nen for
a fixed n, contrary to the positive correlation of CRt and NEt found in the above
corollary. This is verified for small n by direct computation: Table 1 shows ex-
act calculation of the covariance and correlation of crn and nen for small values
of n. For large n, a sampling of 5000 pseudo-random matchings of [5000] yielded
the sample covariance of c̃r2500 and ñe2500 equal to −0.0420258 . . . . Therefore,
a naive substitution of t by

√
2n in (5) only yields the following weaker result.

A further analysis is needed to obtain the correction terms in the asymptotic be-
havior of crn and nen. A heuristic explanation for the positive correlation of the
Poissonized random matchings is that when CRt is large, it most likely due to
fact that the size of the matching is large, and hence the maximal nesting of the
matching is also likely to be large.

TABLE 1
The exact correlation and covariance of crn and nen for complete matchings of [2n] for the first few

nontrivial n’s. Note that both statistics are strictly negative

[2n] #Mn Cov(crn,nen) Cor(crn,nen)

4 3 −1/9 −1/2
6 15 −0.137777777 −0.418918919
8 105 −0.129614512 −0.362983698

10 945 −0.132998516 −0.331342276
12 10395 −0.143259767 −0.309871555
14 135135 −0.151180948 −0.293696032
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COROLLARY 1.2. Set

c̃rn := crn − √
2n

2−1(2n)1/6 , ñen = nen − √
2n

2−1(2n)1/6 .(8)

For each x, x′ ∈ R,

P
{
c̃rn ≤ x, ñen ≤ x′}= P{c̃rn < x}P{ñen < x′}+ O

(√
logn

n1/6

)
.(9)

We compare Theorem 1.1 with the result of [11] on the joint distribution of
the extreme eigenvalues of Gaussian unitary ensemble (GUE). Let λ

(n)
max and λ

(n)
min

denote the largest and the smallest eigenvalues of n × n GUE. Setting

λ̃(n)
max := 21/2n1/6(λ(n)

max − √
2n
)
, λ̃

(n)
min := 21/2n1/6(λ(n)

min + √
2n
)
,(10)

it was shown in [11] that

P
{
λ̃(n)

max ≤ x, λ̃
(n)
min ≤ x′}

(11)

= P
{
λ̃(n)

max < x
}
P
{
λ̃

(n)
min < x′}+ F ′

GUE(x)F ′
GUE(x′)

4n2/3 + O
(
n−4/3),

where FGUE is the GUE Tracy–Widom distribution function defined by

FGUE(x) := exp
[∫ ∞

x
u(s) ds

]
.(12)

It is interesting to study the joint distribution of the extreme eigenvalues of Gaus-
sian orthogonal ensemble (GOE) and compare the result with (5). This will be
done in a separate paper. It might also be interesting to see if the error term of (5)
can be improved to O(t−4/3) as in (11), but we do not pursue this in this paper.

1.2. Marginal distribution. We also evaluate the second order term in the
asymptotics expansion of the marginal distributions of CRt and NEt explicitly.
Let [a] denote the largest integer less than or equal to a.

THEOREM 1.2. For x ∈ R and t > 0, define xt by

xt := [t + 2−1xt1/3] − t

2−1t1/3 + 1

t1/3 .(13)

For each x ∈ R,

P{C̃Rt ≤ x} = P{ÑEt ≤ x}
(14)

= F(xt ) − 1

20t2/3

[
4F ′′(x) + 1

3
x2F ′(x)

]
+ O

(
t−1).



4364 J. BAIK AND R. JENKINS

Note that since P{CRt ≤ x} has the same value for x ∈ [�, � + 1) for a given
integer �, it is natural that the leading term F(xt ) of (194) is expressed in terms
of xt , which contains [t + 2−1xt1/3].

In addition to this integral part correction, there is an additional shift by t−1/3

from x in the definition of xt . This is responsible for the absence of the term of
order t−1/3 in the expansion (194). For classical ensembles in random matrix the-
ory, there are several papers that showed that a fine scaling can remove such a term
(which looks like a natural term to be present.) See [24] for the Laguerre unitary
ensemble, [37] for Jacobi unitary and orthogonal ensembles, [43] for the Laguerre
orthogonal ensemble and [38] for Gaussian unitary and orthogonal ensembles.
A similar result was obtained recently for random growth models and intersect-
ing particle systems in [25], including the height of the so-called PNG model with
flat initial condition. It is well known that this is precisely the length of the longest
decreasing subsequence of random fixed-point-free involution and hence NEt . The
result of [25] in the context of this paper is that P{ÑEt ≤ x} = F(xt ) + O(t−2/3).
The above result finds the term of order O(t−2/3) explicitly.

As in the joint distribution, the evaluation of the second order term of P{c̃rn ≤ x}
does not immediately follow from the de-Poissonization argument in [33]. It re-
mains an open problem to evaluate the the error terms of P{c̃rn ≤ x} asymptoti-
cally.

1.3. Toeplitz minus Hankel with a discrete symbol. Set

Gk,j (t) :=
∞∑

n=0

gk,j (n)
t2n

(2n)! ,(15)

where gk,j (n) := #{M ∈ Mn : crn(M) ≤ k,nen(M) ≤ j} so that

P{CRt ≤ k,NEt ≤ j} =
∞∑

n=0

P{crN ≤ k,neN ≤ j |N = n}P{N = n}
(16)

= e−t2/2Gk,j (t).

An explicit determinantal formula of Gk,j (t) was obtained in [15] which we de-
scribe now.

Stanley had shown earlier that matchings are in bijection with oscillating
tableaux of empty shape and of length 2n; see Section 5 of [15]. This was fur-
ther generalized to a bijection between partitions of a set and so-called vacillating
tableaux in [15]. In the same paper, it was shown that the maximal crossing (resp.,
nesting) of a partition equals the maximal number of rows (resp., columns) in any
partitions appearing in the corresponding vascillating tableau.

Since an oscillating tableau can be thought of as a walk in the chamber of the
affine Weyl group C̃n, gk,j (n) equals the number of walks with n steps from (j, j −
1, . . . ,2,1) to itself in the chamber 0 < xj < · · · < x2 < x1 < j +k+1 where each
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step is a unit coordinate vector or its negative in Z
j . The number of such walks was

evaluated by Grabnier in [31] using the Gessel–Viennot method of evaluation of
nonintersecting paths. This result implies (see the displayed equation before (5.3)
in [15]) that

Gk,j (t) = det

[
1

m

2m−1∑
r=0

sin
(

πra

m

)
sin
(

πrb

m

)
e2t cos(πr/m)

]j

a,b=1

,(17)

where

m := j + k + 1.(18)

We prove Theorem 1.1 by analyzing the determinant (17) asymptotically. For
this purpose, we first re-formulate the determinant slightly. By writing the product
of the sine functions in terms of a sum of two cosine functions and noting the
realness of the entries, we find that

Gk,j (t) = det[ha−b − ha+b]ja,b=1,(19)

where

h� := 1

2m

2m−1∑
r=0

e−iπr�/me2t cos(πr/m).(20)

This is the determinant of a Toeplitz matrix minus a Hankel matrix. This struc-
ture is important in the asymptotic analysis. An interesting feature of the above
determinant is that the measure for the Toeplitz determinant is not an absolutely
continuous measure but a discrete measure.

Let ω := eπi/m be the primitive 2mth root of unity. Define the discrete measure

dμm(z) := 1

2m

2m−1∑
r=0

et(z+z−1)δωr (z)(21)

on the circle. Let πn,m(z) be the monic orthogonal polynomial of degree n with
respect to dμm, defined by the conditions∮

|z|=1
z−�πn,m(z) dμm(z) = 0, 0 ≤ � < n.(22)

We emphasize the dependence on m since later we will use the notation πn,∞
to denote the case when “m = ∞;” the orthogonal polynomials with respect to
the absolutely continuous measure et(z+z−1) dz

2πiz
. Note that dμm depends on the

parameter t and hence πn,m(z) also depends on t . When we wish to emphasize
this dependence on t , we write πn,m(z; t).

The fact that the t-dependence of the measure is from the factor et(z+z−1) im-
plies the following basic formula, which is proved in Section 3 below. Recall
from (18) that m := j + k + 1.
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PROPOSITION 1.1. We have

log P{CRt ≤ k,NEt ≤ j}
(23)

=
∫ t

0
π2j+1,m(0; τ) dτ +

∫ t

0

∫ s

0
Qm

j (τ ) dτ ds,

where

Qm
j (τ ) := −(π2j,m(0; τ)π2j+2,m(0; τ) + ∣∣π2j+1,m(0; τ)

∣∣2)
(24)

+ π2j,m(0; τ)π2j+2,m(0; τ)
∣∣π2j+1,m(0; τ)

∣∣2.
We obtain the asymptotics π2j+�,m(0, τ ) for � = 0,1,2 by using the associ-

ated discrete version of the Riemann–Hilbert problem; see, for example, [6]. See
Sections 4, 5 and 6 below.

We compare the analysis of this paper based on the formula (23) with the anal-
ysis of the determinant of a similar Toeplitz minus Hankel matrix in [9]. Even
though the determinant in [9] was for continuous measure (which is precisely the
one for the marginal distribution of NEt ; see Section 3 below), the basic structure
of the matrix is the same; a Toeplitz minus a Hankel matrix. Denoting the ma-
trix by Dj , the approach of [9] was to write Dj = D∞

∏∞
n=j

Dn

Dn+1
where D∞ is

the strong Szegö limit, which exists in that particular case, and analyze Dn/Dn+1,
which can be evaluated from the Riemann–Hilbert problem for the nth orthogo-
nal polynomial. For our case, since the measure is discrete, the strong Szegö limit
does not apply. Indeed Dn = 0 for all large enough n. Then alternatively one can
still analyze Dj by expressing Dj = D0

∏j
n=1

Dn

Dn−1
as was done in [3]. However,

this expression is more subtle to analyze since log(Dn/Dn+1) is not small when n

is small (indeed it grows as n decreases when t is proportional to j ) and this re-
quires careful cancellations of the terms in the product. Though this was done for
the leading term in [3], the evaluation of the lower terms in the asymptotic ex-
pansion in this method becomes more complicated. A particularly useful point in
using formula (23) is that we only need to consider the so-called full band case
(and the transitional case when a gap and a saturated region are about to open
up) in the Riemann–Hilbert analysis. This makes the analysis much simpler, and
it becomes easier to evaluate the lower order terms. On the contrary, if we use
the expression Dj = D0

∏j
n=1

Dn

Dn−1
, then we need to consider both the so-called

void-band case and the saturation-band case, including the transitional cases, in
the Riemann–Hilbert analysis (and this is the reason for the need of cancellations
mentioned above.)

The continuous Riemann–Hilbert problem for πn,∞(z; t) was analyzed asymp-
totically to the leading term in [3, 4, 8]. We expand this work to the discrete
counterpart and moreover, we improve the analysis so that we compute explicit
formulae for the first three terms in the expansion of the solution in both the dis-
crete and continuous cases. As a technical note, we remark that we use a different
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local map for the so-called Painlevé parametrix related to the local problem for
the Riemann–Hilbert problem from the previous cases [4, 19]. We adapt the map
used in the recent paper [14] for a different parametrix, which seems to be use-
ful for further analysis in other Riemann–Hilbert problems. For the purpose of
this paper, we only analyze the full band case (and the transitional case) of the
discrete Riemann–Hilbert problem. The analysis for the full parameter set of the
discrete Riemann–Hilbert problem will be discussed somewhere else in the context
of Ablowitz–Ladik equations and Schur flows in integrable systems.

A determinantal formula of the marginal distribution P{NEt ≤ j} can be ob-
tained from the joint distribution by taking k → ∞ while keeping j fixed. Then
we find a Toeplitz minus a Hankel determinant with symbol et(z+z−1). Here too,
the factor of et(z+z−1) in the limiting measure implies a formula for the marginal
distribution analogous to (23). See Section 3 below.

The Toeplitz determinant with symbol et(z+z−1) is known to be describe the
distribution of the length of the longest increasing subsequence of a random per-
mutation [29]. By using a formula similar to (23), the analysis of this paper implies
the following result.

1.4. Longest increasing subsequence of random permutation. Consider the
symmetric group Sn of permutations of size n and equip it with the uniform proba-
bility. Let ln(π) denote the length of the longest increasing subsequence of π ∈ Sn.
Let N1 be a Poisson random variable with parameter t2 and let Lt denotes lN1 . It
was shown in [4] that Lt−2t

t1/3 converges to the GUE Tracy–Widom distribution (12).
We evaluate the next term of the asymptotic expansion explicitly.

THEOREM 1.3. For each x ∈ R,

P

{
Lt − 2t

t1/3 ≤ x

}
(25)

= FGUE
(
x(t))− 1

10t2/3

[
F ′′

GUE(x) + 1

6
x2F ′

GUE(x)

]
+ O

(
t−1),

where

x(t) := [2t + xt1/3] − 2t

t1/3 .(26)

The study in [25] also considered the height of the so-called PNG model with
the droplet initial condition, which is distributed precisely as Lt , and showed that
the above distribution function is FGUE(x(t))+O(t−2/3). The above theorem eval-
uates the error term explicitly.

For the Gaussian unitary ensemble, Choup [17, 18] evaluated the distribution
of the largest eigenvalue explicitly up to the term of order O(n−2/3) which corre-
sponds to the term of order t−2/3 in the above expansion. It would be interesting
to compare the term in the above theorem with the formula of [17, 18].
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1.5. Organization of paper. In Section 2, we consider a nonintersecting ran-
dom process that gives rise to CRt and NEt . Proof of Proposition 3 is given in Sec-
tion 3. The Riemann–Hilbert problem is introduced in Section 4, and is analyzed
asymptotically in Sections 5 and 6. Theorem 1.1 and Corollary 1.1 are proved in
Secton 7, and Theorems 1.2 and 1.3 are proved in Section 8. We prove Corol-
lary 1.2 in Section 9 using a de-Poissonization argument. Finally, the Riemann–
Hilbert problem for the Painlevé II equations that are needed to model the local
parametrix of the Riemann–Hilbert problem for orthogonal polynomials are dis-
cussed in Section 10.

2. Height and depth of nonintersecting continuous-time simple random
walks. In Section 1.3 we discussed a relation between crn and nen and a walk
in the chamber {0 < xj < · · · < x2 < x1 < j + k + 1} of the affine Weyl group C̃n.
In this section, we give an interpretation of CRt and NEt in terms of the “height”
and “depth” of continuous-time simple random walks.

Let N+(τ ) and N−(τ ) be two independent Poisson processes of rate 1 and let
Z(τ) := N+(τ )−N−(τ ) be a continuous-time simple random walk. Then Z(τ) is
an Z-valued Markov process with the transition probability ps(a, b) = ps(a − b)

where pt(a) = e−2t ∑
n∈Z

t2n+a

n!(n+a)! = pt(−a) for a ∈ Z. Here we used the conven-
tion that 1/n! ≡ 0 if n < 0. Set

φ(z) := ∑
a∈Z

(
e−2tpt (a)

)
z−a = et(z+z−1).(27)

Then we have

pt(a) = e−2tφ−a = e−2tφa, φa :=
∮
|z|=1

z−aφ(z)
dz

2πiz
.(28)

Let Zi(τ ), i = 0,1,2, . . . , be independent copies of Z(τ), and consider the in-
finite system of processes Xi(τ) = Zi(τ ) − i, i = 0,1,2, . . . . Fix a number t > 0.
We will consider the process conditioned on the event that (a) Xi(t) = Xi(0) for
all i and (b) Xi(τ) do not intersect in time [0, t], that is, X0(τ ) > X1(τ ) > · · · for
all τ ∈ [0, t]. A precise interpretation will be given below. Such nonintersecting
continuous-time simple random walks have been studied, for example, in [1, 2,
41].

Define the “height” K := maxτ∈[0,t] X0(τ ) and define the “depth” J as the
smallest index such that Xi(τ) = i for all τ ∈ [0, t] and for all i = J,J + 1, . . . ,

in other words, only the top J processes moved in the interval [0, t]. We are inter-
ested in the joint distribution of J and K conditional of the above event satisfying
(a) and (b).

Precisely, fix N ∈ N and let AN and BN be the events defined as

AN := {
Xi(t) = Xi(0) = −i, i = 0,1, . . . ,N − 1

}
,(29)

BN := {
X0(τ ) > X1(τ ) > · · · > XN−1(τ ) ≥ −N + 1, τ ∈ [0, t]}.(30)
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The condition that XN−1(τ ) ≥ −N + 1 for all τ ∈ [0, t] is natural because J is
likely to be a finite number and by definition of J , XJ−1(τ ) ≥ XJ−1(0) for all
τ ∈ [0, t]. The joint distribution of K and J is interpreted as

P(k, j) := lim
N→∞ P(K ≤ k, J ≤ j |AN ∩ BN).(31)

LEMMA 2.1. Let K and J be the “height” and “depth,” respectively, defined
above. Then

P(k, j) = e−t2/2Gk,j (t),(32)

where Gk,j (t) is given in (19).

PROOF. We first evaluate P(AN ∩ BN). The condition that Xi(τ) > −N ,
i = 0, . . . ,N − 1, implies that Xi(τ) has an absorbing boundary at −N . Since
the transition probability of Xi with an absorbing boundary at −N is pt(a, b) −
pt(−2N − a, b), the Karlin–McGregor formula [40] of nonintersecting probabil-
ity applied to continuous-time simple random walks (see, e.g., [1, 2]) implies then
that

P(AN ∩ BN) = det
[
pt(−a,−b) − pt(−2N + a,−b)

]N−1
a,b=0

(33)
= e−2tN det[φa−b − φa+b]Na,b=1.

Second, we evaluate P({K ≤ k, J ≤ j}∩AN ∩BN). We assume that N is large
so that N ≥ j . By the definition of K and J , the desired probability equals P(C ∩
D) where C and D are independent events defined as follows. C is the event that the
top j processes, X0(τ ), . . . ,Xj−1(τ ), satisfy the two conditions (a) Xi(t) = Xi(0)

for all i = 0, . . . , j − 1 and (b) −j + 1 ≤ Xj−1(τ ) < · · · < X0(τ ) ≤ k for all τ ∈
[0, t], that is, the j nonintersecting paths are not absorbed at the boundaries −j and
k +1. D is the event that Xi(τ) = −i for all i = j, j +1, . . . ,N −1 and for all τ ∈
[0, t], that is, the bottom N −j processes stay put during the interval [0, t]. Clearly,
P(D) = (e−2t )N−j . On the other hand, from the Karlin–McGregor formula again,
P(C) = det[p̂t (−a,−b)]j−1

a,b=0 where p̂t (a, b) is the transition probability of Z(τ)

in the presence of the absorbing walls at −j and k + 1 in time t . It is easy to see
that

p̂t (a, b) = ∑
n∈Z

[
pt(a + 2nm,b) − pt(−2j − a + 2nm,b)

]
,(34)

where m := j + k + 1. Now consider the identity z−aφ(z) =∑
n∈Z φa+nz

n. Set
ω := eπi/m. By inserting z = ωr , r = 0,1, . . . ,2m − 1 and summing over r , we
find that

2m−1∑
r=0

(
ωr)−a

φ
(
ωr)= 2m

∑
n∈Z

φa+2mn, ω := eπi/m.(35)
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FIG. 3. A nonintersecting continuous-time simple random walks (left) and its dual walk (right).

Hence from (28), (34) becomes

p̂t (a, b) = e−2t (ha−b − h−a−b+2j ),(36)

where

ha :=
∮
|z|=1

z−a dμm(z), dμm(z) := 1

2m

2m−1∑
r=0

φ(z)δωr (z).(37)

Hence, for N ≥ j ,

P
({K ≤ k, J ≤ j} ∩ AN ∩ BN

)= e−2tN det[ha−b − ha+b]ja,b=1.(38)

The strong Szegö limit theorem for Toeplitz minus Hankel determinants (see,
e.g., [10]) implies that for the function φ(z) in (27), det[φa−b −φa+b]Na,b=1 → et2/2

as N → ∞. Therefore, from (33) and (38) we find that

P(j, k) = lim
N→∞

det[ha−b − ha+b]ja,b=1

det[φa−b − φa+b]Na,b=1

= e−t2/2 det[ha−b − ha+b]ja,b=1.(39)

This is (32). �

Hence K and J have the same joint distribution as CRt and NEt . This noninter-
secting process interpretation of CRt and NEt provides some useful information.
As an example, note that the process considered above has a natural dual process;
see Figure 3. In the dual process the roles of K and J are reversed: the depth is K

and height is J in the dual process. It follows that K and J , and hence CRt and
NEt , are symmetrically distributed.

In various nonintersecting processes, including the above model, the top curve is
shown to converge, after appropriate scaling, to the Airy process in the long-time,
many-walker limit; see, for example, [34, 36]. Then it is natural to think that the
leading fluctuation term of K is given by the maximum of the Airy process. It is a
well-known fact that the maximum of the Airy process is distributed as the GOE
Tracy–Widom distribution. This was first proved indirectly in [35]. A direct proof
was only recently obtained in [20]. (See also [44] for the distribution of the location
of the maxima.) Hence the leading term F(x) in (194) is as expected. Moreover,
when t becomes large, it is plausible to expect that the fluctuation of the top curve
of the original process (whose max is K) and the fluctuation of the bottom curve
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of the dual process (whose min is −J ) become independent at least to the leading
order. The leading term of Theorem 1.1 is natural from this. Theorem 1.1 evaluates
the second term of the asymptotic expansion of their joint distribution.

For a family of finitely many nonintersecting walks, it is interesting to con-
sider the maximum of the top curve and the minimum of the bottom curve. It is
curious to check if the joint distribution of them would have the same expansion
as in Theorem 1.1. This will be considered elsewhere. Finally, we mention that
the asymptotics of the distribution of the width of nonintersecting processes was
studied recently in [7].

3. Proof of Proposition 1.1. In this section, we give a proof of Proposi-
tion 1.1. We also obtain similar formulas for the marginal distributions of CRt

and NEt , and for the distribution of Lt . They are stated at the end of this section.
Let dρ be a (either continuous or discrete) measure on the unit circle and define

a new measure dρ(z; t) which depends on a parameter t as

dρ(z; t) := et(z+z−1) dρ(z).(40)

Measure (21), associated to the joint distribution of CRt ,NEt , is certainly of this
form, but the following algebraic steps apply to general dρ.

Let

h�(t) :=
∮
|z|=1

z−� dρ(z; t).(41)

We are interested in finding a simple formula for the second derivative of the
Toeplitz determinant Tn(t) and the Toeplitz–Hankel determinant Hn(t) [see (19)]
associated to the measure dρ(z; t),

Tn(t) := det
[
ha−b(t)

]n
a,b=1, Hn(t) = det

[
ha−b(t) − ha+b(t)

]n
a,b=1.(42)

We assume that when dρ is a discrete measure, n is smaller than the number of
points in the support of dρ.

Let πn(z; t) = zn + · · · , n = 0,1,2, . . . , be the monic orthogonal polynomials
defined by the conditions

〈
πn, z

�〉 := ∮
|z|=1

πn(z; t)z� dρ(z; t) = 0, 0 ≤ � < n.(43)

Set

Nn(t) := 〈πn,πn〉 = 〈
πn, z

n〉.(44)

Then it is well known that (see, e.g., Sections 2 and 3 of [8] for the second identity)

Tj (t) =
j−1∏
n=0

Nn(t), Hj (t) =
j∏

n=1

N2n(t)
(
1 − π2n(0; t))−1

.(45)
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Define (see [49])

π∗
n (z; t) := znπn

(
z−1; t)= 1 + an−1z + · · · + a1z

n−1 + πn(0; t)zn.(46)

This polynomial satisfies the orthogonality properties〈
π∗

n , zk 〉= Nnδk,0, k = 0,1, . . . , n.(47)

Recall the Szegö recurrence relations [49],

πn+1(z) = zπn(z) + πn+1(0)π∗
n (z),

(48)

zπn(z) = Nn

Nn+1

(
πn+1(z) − πn+1(0)π∗

n+1(z)
)
.

The second relation, when we compare the coefficients of zn+1, gives rise to the
relation

Nn+1

Nn

= 1 − ∣∣πn+1(0)
∣∣2.(49)

We now derive differential equations for πn(0; t) and Nn(t). All the differ-
entiations are with respect to t , and we use the notation f ′ for d

dt
f . By dif-

ferentiating the formula 〈πn, z
k〉 = 0, k = 0, . . . , n − 1, we obtain, by noting

d
dt

et (z+z−1) = (z + z−1)et (z+z−1), that 〈π ′
n, z

k〉 + 〈πn, z
k+1 + zk−1〉 = 0. Then by

using the orthogonality conditions, we find that〈
π ′

n, z
k 〉= 0, k = 1, . . . , n − 2,〈

π ′
n,1
〉= −〈πn, z

−1〉= −〈zπn,1〉 = πn+1(0)Nn,(50) 〈
π ′

n, z
n−1〉= −〈πn, z

n〉= −Nn,

where the last equality in the second condition above follows from the first recur-
rence in (48). From these relations, we conclude that, for n ≥ 1,

π ′
n(z; t) = Nn(t)

Nn−1(t)

(
πn+1(0; t)π∗

n−1(z; t) − πn−1(z; t)).(51)

This can be checked by taking the difference and noting that the difference is a
polynomial of degree at most n − 1 and is orthogonal to zk , k = 0,1, . . . , n − 1.
Evaluating (51) at z = 0, we obtain, using (49), for n ≥ 1,

π ′
n(0; t) = (

πn+1(0; t) − πn−1(0; t))(1 − ∣∣πn(0; t)∣∣2).(52)

This equation is related to the Ablowitz–Ladik equations and the Schur flows; see,
for example, [30, 45].

We also differentiate Nn(t) = 〈πn,πn〉 and obtain

N ′
n = 2

〈
π ′

n,πn

〉+ 2〈zπn,πn〉 = 〈2zπn,πn〉.(53)
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Using the first recurrence of (48),

〈zπn,πn〉 = 〈πn+1, πn〉 − πn+1(0)
〈
πn,π

∗
n

〉= −πn+1(0)πn(0)
〈
πn, z

n〉.(54)

Hence, we obtain, for n ≥ 0,

N ′
n(t) = −2πn+1(0; t)πn(0; t)Nn(t).(55)

We now evaluate the logarithmic derivatives of Tj and Hj . From (45) and (55),
we find that

(
logTj (t)

)′ = j−1∑
n=0

Nn(t)

Nn(t)
= −2

j−1∑
n=0

πn(0; t)πn+1(0; t).(56)

We take one more derivative. By using (52), for n ≥ 1,(
πn(0)πn+1(0)

)′ = Pn+1 − Pn,(57)

where Pn := |πn(0)|2+πn−1(0)πn+1(0)(1−|πn(0)|2). For n = 0, (π0(0)π1(0))′ =
π ′

1(0) = (π2(0) − 1)(1 − |π1(0)|2) = P1 − 1. Hence from a telescoping sum, we
obtain

1
2

(
log
(
e−t2

Tj (t)
))′′

(58)
= −(πj−1(0)πj+1(0) + ∣∣πj (0)

∣∣2)+ πj−1(0)πj+1(0)
∣∣πj (0)

∣∣2.
We now consider Hj(t) in (45). By taking the log derivative and using (52),

(55) and π0(z) = 1,

(
logHj(t)

)′ = j∑
n=1

[
N ′

2n

N2n

+ π ′
2n(0)

1 − π2n(0)

]
= π2j+1(0) −

2j∑
n=0

πn(0)πn+1(0).(59)

From (56), we find that(
logHj(t)

)′ = π2j+1(0) + 1
2

(
logT2j+1(t)

)′
.(60)

Proposition 1.1 is proven from (16), (19), (58) and (60) by noting that
πn(0;0) = 0 for all n ≥ 1, and Tj (0) = 1 and Hj(0) = 1 for all j ≥ 1.

The marginal distribution of NEt is obtained from (16) by taking the limit
k → ∞. Then by taking m → ∞ in (19), we find that P{NEt ≤ j} = e−t2/2G∞,j

where G∞,j (t) is same as (19) where the measure μm in (21) is replaced by

dμ∞(z) := et(z+z−1) dz

2πiz
.(61)

Then the above computation applies that

log P{NEt ≤ j} =
∫ t

0
π2j+1,∞(0; τ) dτ +

∫ t

0

∫ s

0
Q∞

j (τ ) dτ ds,(62)
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where πn,∞(z; t)) is the monic orthogonal polynomial of degree n with respect
to the measure (61), and Q∞

j (τ ) is same as (43) with πn,m(z; τ) replaced by
πn,∞(z; τ). Due to the symmetry, P{CRt ≤ j} = P{NEt ≤ j}.

Finally, it is well known [29, 46] that for the length Lt of the Poissonized ran-
dom permutation defined in Section 1.4, P{Lt ≤ �} = e−t2

T�(t), where Tj (t) is the
determinant of the � × � Toeplitz matrix (42) with respect to measure (61). Hence
we have

log P{Lt ≤ �} = 2
∫ t

0

∫ s

0
Q∞

(�−1)/2(τ ) dτ ds.(63)

4. Orthogonal polynomial Riemann–Hilbert problems. We prove Theo-
rems 1.1 and 1.2 by deriving asymptotic expansions of πn,m(0; τ) and πn,∞(0; τ),
n = 2j,2j + 1,2j + 2, τ ∈ (0, t), in the joint limit t, j,m → ∞ such that given
any fixed x, x ′ ∈ R,

j = t + x

2
t1/3, k = t + x′

2
t1/3, m = j + k + 1.(64)

The jumping off point for our analysis is the fact that πn,m(z; t) and πn,∞(z; t) can
be recovered from the solution of the following discrete and continuous measure
Riemann–Hilbert problems, respectively.

RIEMANN–HILBERT PROBLEM 4.1 FOR DISCRETE OPS. Find a 2 × 2 ma-
trix Y(z; t, n,m) with the following properties:

(1) Y(z; t, n,m) is an analytic function of z for z ∈ C \ {ωr}2m−1
r=0 where ωr :=

ωr and ω := eiπ/m.
(2) Y(z; t, n,m) = [I + O(1/z)]znσ3 as z → ∞.
(3) At each ωr , Y(z; t, n,m) has a simple pole satisfying the residue relation

Resz=ωr Y(z; t, n,m) = lim
z→ωr

Y(z; t, n)

(
0 − z

2m
z−net (z+z−1)

0 0

)
.(65)

As is well known (see, e.g., [27], [6]), and may be verified directly, the solution
Y(z; t;n,m) is given by

Y(z; t;n,m) =
(

πn,m(z; t) ∗
−π∗

n−1,m(z; t)/Nn−1,m ∗
)

,(66)

where we recall that π∗
n,m is the reverse polynomial defined by (46) and

Y12(z; t, n,m) = − 1

2m

2m−1∑
r=0

πn,m(ωr; t)ω−n+1
r et (ωr+ω−r )

z − ωr

,

Y22(z; t, n,m) = 1

2m

2m−1∑
r=0

N−1
n−1,mπ∗

n−1,m(ωr; t)ω−n+1
r et (ωr+ω−r )

z − ωr

.
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Hence, using the OP properties listed in (43)–(48) we can easily check that

Y(0; t, n,m) =
(

πn,m(0) Nn,m

−1/Nn−1,m πn,m(0)

)
.(67)

Note that the generic (2,2)-entry would be πn,m(0) but as our weight et(z+z−1) is
real πn,m(0) = πn,m(0).

The continuous RHP can be thought of as a limit of the discrete case when m,
the number of points in the support of the measure, goes to infinity.

RIEMANN–HILBERT PROBLEM 4.2 FOR CONTINUOUS OPS. Find a 2 × 2
matrix Y∞(z; t, n) with the following properties:

(1) Y∞(z; t, n) is an analytic function of z for z ∈ C \ �, � := {z : |z| = 1}
oriented counterclockwise.

(2) Y∞(z; t, n) = [I + O(1/z)]znσ3 as z → ∞.
(3) Y∞ takes continuous boundary values Y∞+ and Y∞− as z → � from the

left/right, respectively, satisfying the relation

Y∞+ (z; t, n) = Y∞− (z; t, n)

(
1 z−net (z+z−1)

0 1

)
, z ∈ �.(68)

The solution Y∞ is related to the orthogonal polynomials πn,∞ with respect to
the measure μ∞ (61), and we have

Y∞(0; t, n,m) =
(

πn,∞(0) Nn,∞
−1/Nn−1,∞ πn,∞(0)

)
.(69)

Precisely, this continuous Riemann–Hilbert problem was analyzed asymptoti-
cally in [4, 6, 8]. The steepest-descent analysis for discrete Riemann–Hilbert prob-
lem was studied for general discrete measure on the real line in [6]. Both works
expand upon the continuous weight case studied in [21, 22]. In the course of prov-
ing Theorems 1.1 and 1.2 we improve these results as follows: we expand the anal-
ysis of [6] to the case when a gap and saturated region of the equilibrium measure
(see the discussion below) are about to open up, and we compute explicit formulas
for the first three terms in the expansion of the solution in both the discrete and
continuous cases extending the results of [4, 6, 8] where only leading terms were
calculated.

One of the key steps in the steepest-descent analysis of Riemann–Hilbert prob-
lems is the introduction of the so-called g-function. For the Riemann–Hilbert prob-
lem 4.1 for discrete orthogonal polynomials, the g-function is given by g(z) =∫
|s|=1 log(z−s) dμ(s) where dμ(s) is the so-called equilibrium measure satisfying

0 ≤ dμ(s) ≤ 2m
n

ds
2πis

; see, for example, [6]. The upper-constraint dμ(s) ≤ 2m
n

ds
2πis

is due to the fact that the weight is discrete. The support of dμ consists of three
types of intervals, voids (where dμ = 0), bands [where 0 < dμ(s) < 2m

n
ds

2πis
] and

saturations [where dμ(s) = 2m
n

ds
2πis

].
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For the continuous Riemann–Hilbert problem, the upper-constraint for the equi-
librium is not present, and there are no saturations. For the Riemann–Hilbert Prob-
lem 4.2, it was shown in [4] that with γ = n

2t
,1 the support of the equilibrium

measure consists of the entire unit circle when γ > 1, and consists of single void
and band intervals, with the void set centered about z = −1, when γ < 1.

In the discrete Problem 4.1 the solution Y now depends on the three parame-
ters (t, n,m) and as we shall see in Section 5, the equilibrium measure’s support
depends critically on the two parameters

γ = n

2t
and γ̃ = 2m − n

2t
.(70)

As each of these parameters passes through the critical value γcrit = 1 a transition
occurs in the support of the equilibrium measure.

It turns out that to prove Theorems 1.1–1.3, we only need to evaluate
Y(0; t, n,m) in two regimes: the “exponentially small regime”

n ≥ 2t (1 + δ), 2m − n ≥ 2t (1 + δ)(71)

for a fixed δ > 0, and the “Painlevé regime”

2t − Lt1/3 ≤ n ≤ 2t (1 + δ), 2t − Lt1/3 ≤ 2m − n ≤ 2t (1 + δ)(72)

for fixed L > 0 and δ > 0. In the “exponential” case γ, γ̃ ≥ 1 + δ and the equi-
librium measure is supported on the whole of �, while in the “Painlevé” case
γ, γ̃ ∈ [1 − L

2 t−2/3,1 + δ] and the equilibrium measure is in the transitional re-
gion where a void and saturation region are beginning to open at z = −1 and
z = 1, respectively. As such we never need to consider cases in which either a
void or saturation have fully opened, and we restrict our attention to the full band
(and the transitional) case only, focusing on obtaining the three lower-order terms
of the asymptotic expansion explicitly. In this case the g-function is explicit, and
the transformations of the Riemann–Hilbert problem will be all stated explicitly
without mentioning the g-function in the subsequent sections.

There are many interesting related problems in which one needs an asymptotic
description of the πn,m for a whole range of degrees n; one such example which we
plan to study in the future is the Ablowtiz–Ladik equations. There we will fully
describe the structure of the equilibrium measure in the full range of parameter
space.

The analyses of the discrete and continuous Riemann–Hilbert problems have
strong similarities, and we analyze them simultaneously. The important fact, which
we clarify in Sections 6.2–6.3, is that in the discrete Riemann–Hilbert problem we
can partition the solution into terms that come from (two) continuous Riemann–
Hilbert problems which correspond to the marginal distributions and the remaining
“joint” terms which contribute only to the joint distribution.

1This is actually the inverse of the parameter appearing in [4] which we find more convenient to
work with presently.
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FIG. 4. The contours and regions used to define the map Y �→ Q. The contours �in and �out can
be deformed as necessary provided they do not intersect �.

5. The exponentially small regime. The first steps of the steepest-descent
analysis are the same for both the exponentially small regime and the Painlevé
regime. We begin by first considering parameters (n,m, t) in the “exponentially
small regime” (71),

n ≥ 2t (1 + δ), 2m − n ≥ 2t (1 + δ)

for fixed δ > 0. We assume that δ < 1/2; see the discussion before (90).
We begin our analysis of RHP 4.1 by first introducing a transformation Y �→ Q

such that the new unknown Q has no poles. Let � denote the unit circle and let �in
and �out denote positively oriented simple closed contours enclosing the origin
such that �in ⊂ {z : |z| < 1} and �out ⊂ {z : |z| > 1}; let �+ and �− denote the
nonempty open sets enclosed between � and �in and � and �out, respectively;
see Figure 4. Define

Q(z) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y(z)

⎛
⎝1

z2m

z2m − 1
z−net (z+z−1)

0 1

⎞
⎠ , z ∈ �+,

Y(z)

⎛
⎝1

1

z2m − 1
z−net (z+z−1)

0 1

⎞
⎠ , z ∈ �−.

(73)

The triangular factors introduced in the above definition have poles at each ωr ,
and the residues are such that the new unknown Q(z) has no poles, but is now
piecewise holomorphic. Note that the residue of each triangular factor at each z =
ωr is the same since z2m = 1 at z = ωr . Two different extensions of Q as above
were introduced in [39]; see also [6]. By explicit computation Q(z) satisfies

RIEMANN–HILBERT PROBLEM 5.1 FOR Q(Z). Find a 2 × 2 matrix Q(z)

such that:

(1) Q(z) is analytic in C \ (� ∪ �in ∪ �out).
(2) Q(z) = [I + O(1/z)]znσ3 as z → ∞.
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(3) Along each jump contour Q+(z) = Q−(z)VQ(z) where

VQ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 z−net (z+z−1)

0 1

)
, z ∈ �,

⎛
⎝1

−z2m

z2m − 1
z−net (z+z−1)

0 1

⎞
⎠ , z ∈ �in,

⎛
⎝1

1

z2m − 1
z−net (z+z−1)

0 1

⎞
⎠ , z ∈ �out.

(74)

Once we transforms a RHP with poles to a “continuous” RHP as Q, the next step
is to introduce a “g-function.” However, for the above RHP, when the parameters
are in the regimes (71) and (72), it turns out that the g-function is simple and
explicit. We proceed by explicitly defining

S(z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q(z)

(
etz 0
0 e−tz

)(
0 −1
1 0

)
, |z| < 1,

Q(z)

(
z−netz−1

0
0 zne−tz−1

)
, |z| > 1.

(75)

Clearly Y(0) = S(0)(
0 1

−1 0) and S(z) = I + O(z−1) for large z. Calculating the
new jump matrices, we arrive at the following problem for S(z).

RIEMANN–HILBERT PROBLEM 5.2 FOR S(z). Find a 2 × 2 matrix-valued
function S(z) such that:

(1) S(z) is analytic for z ∈ C \ (� ∪ �in ∪ �out).
(2) S(z) = I + O(1/z) as z → ∞.
(3) The boundary values of S(z) satisfy the jump relation S+(z) = S−(z)VS(z)

where

VS(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

(−1)ne−2tθ 1

)(
1 −(−1)ne2tθ

0 1

)
, z ∈ �,

( 1 0
−1

1 − z2m
e−2tφ 1

)
, z ∈ �in,

⎛
⎝1

1

1 − z−2m
e2tφ

0 1

⎞
⎠ , z ∈ �out,

(76)

where

θ(z;γ ) := 1

2

(
z − z−1)+ γ log(−z), γ := n

2t
,

(77)

φ(z; γ̃ ) := 1

2

(
z − z−1)− γ̃ log z, γ̃ := 2m − n

2t
.
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Here the log is defined on the principal branch.

Now we assume that the parameters are in regime (71). Note that for any eiα ∈
�, θ(eiα) ∈ iR. Also note that writing z = reiα , we have d

dr
[Re θ(reiα;γ )]r=1 =

cosα + γ ≥ −1 + γ ≥ δ > 0 and d2

dr2 [Re θ(reiα;γ )]r=1 = −r3 cosα − γ r−2 ≤
r−3 − γ r−2 < 0 if r > γ −1. Hence Re θ(reiα;γ ) ≤ (−1 + γ )(r − 1) for r ∈
(γ −1,1) and for all α ∈ (−π,π ]. Therefore, for a given δ > 0, there exist 0 < r1 <

r2 < 1 and c > 0 such that Re[ 1
γ
θ(reiα;γ )] ≤ −c for all r ∈ [r1, r2], α ∈ (−π,π ]

and for the parameters (n,m, t) in the regime (71). Note that this implies that

∣∣e2tθ(z;γ )
∣∣= enRe[(1/γ )θ(reiα;γ )] ≤ e−cn, r1 ≤ |z| ≤ r2(78)

for parameters (n,m, t) in the regime (71).
Similarly, Re[ 1

γ̃
φ(1

r
eiα; γ̃ )] ≤ −c for all r ∈ [r1, r2], α ∈ (−π,π ] and for the

parameters (n,m, t) in the regime (71). This can be easily seen by noting that
φ(z;γ ) = θ(−z−1;γ ). Hence

∣∣e2tφ(z;γ̃ )
∣∣= e(2m−n)Re[(1/γ )θ(reiα;γ )] ≤ e−c(2m−n),

1

r1
≤ |z| ≤ 1

r2
(79)

for parameters (n,m, t) in the regime (71).
Let Cin,−1,Cin,1,Cout,1 and Cout,−1 be the contours as depicted in Figure 5 such

that Cin,−1 and Cin,1 lie in the annulus r1 < |z| < r2 and Cout,1 and Cout,−1 lie in
the annulus 1

r1
< |z| < 1

r2
. Make now the following change of variables which

FIG. 5. Lens contours and regions in the definition of T(z).
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moves the oscillations on � into regions of exponential decay.

T(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(z)

(
1 (−1)ne2tθ

0 1

)
, z ∈ �+,0,

S(z)

(
1 (−1)ne2tθ

0 1

)(
1 0

−e−2tφ 1

)
, z ∈ �+,1,

S(z)

(
1 0

(−1)ne−2tθ 1

)
, z ∈ �−,0,

S(z)

(
1 0

(−1)ne−2tθ 1

)(
1 −e2tφ

0 1

)
, z ∈ �−,1,

S(z), elsewhere.

(80)

Note that Y(0) = T(0)(
0 1

−1 0). Explicitly calculating the new jumps, the new un-
known T(z) satisfies the following problem:

RIEMANN–HILBERT PROBLEM 5.3 FOR T(Z). Find a 2 × 2 matrix-valued
function T(z) satisfying the following properties:

(1) T(z) is analytic in C \ (�in ∪ �out ∪ Cin,±1 ∪ Cout,±1).
(2) T(z) = I + O(1/z) as z → ∞.
(3) The boundary values of T(z) satisfy the jump relation T+(z) = T−(z)VT (z)

where

VT (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −(−1)ne2tθ

0 1

)
, z ∈ Cin,−1,(

1 0
(−1)ne−2tθ 1

)
, z ∈ Cout,−1,(

1 0
−e−2tφ 1

)
, z ∈ Cin,1,(

1 e2tφ

0 1

)
, z ∈ Cout,1,⎛

⎝ 1 0
−e−2tφ

1 − z2m
1

⎞
⎠ , z ∈ �in,−1,

⎛
⎝1

−(−1)ne−2tθ

1 − z2m

0 1

⎞
⎠(1 − z2m

)−σ3, z ∈ �in,1,

(
1 − z−2m)−σ3

⎛
⎝ 1 0

(−1)ne−2tθ

1 − z−2m
1

⎞
⎠ , z ∈ �out,1,

⎛
⎝1

1

1 − z−2m
e2tφ

0 1

⎞
⎠ , z ∈ �out,−1.

(81)
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Then from (78) and (79), we find that VT (z) = I + O(e−c max{n,2m−n}) uni-
formly for z on the contour. Hence we obtain the following result.

PROPOSITION 5.1. Let Y(z; t, n,m) be the solution to the RHP (4.1). For any
δ > 0, there exists a constant c > 0 such that, if

n ≥ 2t (1 + δ), 2m − n ≥ 2t (1 + δ),(82)

then

Y(0; t, n,m)

(
0 −1
1 0

)
= I + O

(
e−c max{n,2m−n}).(83)

In particular,

πn,m(0; t) = O
(
e−c max{n,2m−n}).(84)

6. Painlevé regime. We now consider the parameters (n,m, t) in regime (72),

2t − Lt1/3 ≤ n ≤ 2t (1 + δ), 2t − Lt1/3 ≤ 2m − n ≤ 2t (1 + δ)(85)

for fixed L > 0 and δ > 0. We assume that δ < 1/2; see the discussion before (90).
Let S(z) be same as in the previous section. When γ ∈ [1 − δ,1 + δ], esti-

mate (78) does not hold any more. However, it is easy to check using a similar
calculation as before that the exponential decay still holds in an annular sector
away from the point z = −1. [Note that the (double) critical point of θ(z;1) is
z = −1.] More precisely, one can check that given δ ∈ (0,1), there exist positive
constants α1 ≥ O(δ1/2) > 0 and ρ1 ≥ O(δ1/2) such that if γ ∈ [1 − δ,1 + δ], then
|e2θ(z;γ )| < 1 for z in the annular sector Sin,−1 := {z = reiα :ρ1 < r < 1, |α| <

π − α1}. Moreover, if z is in a compact subset of Sin,−1, then there exists c > 0
such that |e2θ(z;γ )| ≤ e−c uniformly in γ ∈ [1 − δ,1 + δ]; see Figure 6.

Similarly, from the symmetry φ(z;γ ) = θ(−z−1;γ ), under the same assump-
tions, |e2φ(z;γ̃ )| < 1 for z in the annular sector Sout,1 := {z = 1

r
eiα :ρ1 < r <

FIG. 6. The sign of Re θ(z;γ ) for values of γ near γcrit = 1. Note the sign change near z = −1 on
either side of the transition.
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1, α1 ≤ |α| ≤ π}. Note the change of the condition on the angle from Sin,−1;
the (double) critical point of φ(z;1) is z = 1. As before, if z is in a compact
subset of Sout,1, then there exists c > 0 such that |e2φ(z;γ )| ≤ e−c uniformly in
γ ∈ [1 − δ,1 + δ].

Now define T by (80) as before. In doing so, we take Cin,1 and Cin,−1 to lie in
the annulus ρ1 < |z| < 1, and take Cout,1 and Cout,−1 to lie in the annulus 1 < |z| <
1/ρ1. Then the jump matrix in (81) satisfies

VT (z) = I + O
(
e−ct )(86)

uniformly for γ, γ̃ ∈ [1− δ,1+ δ] and for z in all the contours except for (Cin,−1 ∪
Cout,−1) ∩ {| arg(z)| > π − α1} and (Cin,1 ∪ Cout,1) ∩ {| arg(z)| < α1}. The parts of
the contour where (86) is not valid are handled by introducing local parametrix
that can be solved by the RHP for the Painlevé II equation; see Section 10. Such a
“Painlevé parametrix” was introduced in the analysis of [4] on a similar orthogonal
polynomials but with a continuous weight. A drawback of the analysis of [4] was
that the parametrix was solved asymptotically rather than exactly as in other cases
such as [21, 22]. The exactly matching Painlevé parametrix was constructed later
in [19]. The construction of [19] requires, in the context of this paper, that γ ∈
[1 − Lt−2/3,1 + Lt−2/3]. In a recent paper [14], a different approach to the exact
construction of the Painlevé parametrix was introduced. This construction has the
advantage that it works for all γ (and γ̃ ) in regime (72).

We seek a global parametrix in the form

A(z) =
⎧⎨
⎩

A1(z), z ∈ U1,
A−1(z), z ∈ U−1,
I, elsewhere,

(87)

where U±1 are sufficiently small, fixed size, neighborhoods of ±1. Later we will fix
the size of U±1 first and then choose δ small enough so that U−1 contains (Cin,−1 ∪
Cout,−1) ∩ {| arg(z)| > π − α1} and U1 contains (Cin,1 ∪ Cout,1) ∩ {| arg(z)| < α1}
so that (86) is valid for all z in the contour of T except for in U±1.

6.1. Local models near 1 and −1. In order to construct exactly matching para-
metrices A±1, we need to introduce Langer transformations which map the local
phase functions θ and φ to the Painlevé phase (213) in U−1 and U1, respectively.

The phase θ(z;γ ) is analytic in z in the neighborhood |z + 1| < 1 (and entire in
γ ) and admits the expansion

θ(z;γ ) = (1 − γ )(z + 1) + 1 − γ

2
(z + 1)2 + 3 − 2γ

6
(z + 1)3

(88)
+ O

(
(z + 1)4).

At the critical value γ = 1 the expansion degenerates to a cubic at leading order;
for values of γ near 1 the cubic unfolds either into three real or one real and two
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complex roots near z = −1. The double critical point–double root of θ ′(z;1)–
unfolds into a pair of simple critical points near z = −1,

dθ

dz
= 0 ⇒ z± = −γ ±

√
γ 2 − 1.(89)

Note that the relation φ(z; γ̃ ) = −θ(−z; γ̃ ) implies that φ admits a similar expan-
sion about z = 1 with the same structure.

As the cubic coefficient in (88) is bounded away from zero (note that γ ≤ 1 +
δ < 3/2) we make use of a classical result of [16] to introduce new parameters
a(γ ) and b(γ ) such that the relation

4
3f (z;γ )3 + a(γ )f (z;γ ) + b(γ ) = −iθ(z;γ ), z ∈ U−1(90)

defines an invertible conformal mapping f = f (z) from a sufficiently small, γ -
independent, neighborhood U−1 onto f (U1) such that the parameters a and b de-
pend continuously on γ near 1. It was shown in [16] (see also [28]) that there
exist δ1 > 0 and a γ -independent neighborhood U−1 such that the above map is
conformal in U−1 for all γ ∈ [1 − δ1,1 + δ1] if the critical points f± = ±√−a/2
of the left-hand side, seen as a function of f , correspond to the critical points z±
of θ(z;γ ). This means that the left-hand side of (90) evaluated at f = f± should
equal to the right-hand side of (90) evaluated at z = z±. These two conditions
determine parameters a and b as

b(γ ) = −i

2

[
θ(z+;γ ) + θ(z−;γ )

]
,

(91) (−a(γ )
)3/2 = 3i

2

(
θ(z+;γ ) − θ(z−;γ )

)
.

Since θ(z+;γ ) = −θ(z−;γ ) =
√

γ 2 − 1 − γ log(γ +
√

γ 2 − 1), we have

b(γ ) = 0.(92)

There are three choices of branch of a(γ ). We choose the branch so that

a(γ ) = −[3i
(√

γ 2 − 1 − γ log
(
γ +

√
γ 2 − 1

))]2/3(93)

satisfies the power series expansion

a(γ ) = 2(γ − 1) − 1
15(γ − 1)2 + O

(
(γ − 1)3).(94)

To verify this, it is useful to note that d2

dγ 2 [
√

γ 2 − 1 − γ log(γ +
√

γ 2 − 1)] =
−(γ 2 − 1)−1/2. With this choice of a, we have

f (z;γ ) = i(γ − 1)

a
(z + 1) + i(γ − 1)

2a
(z + 1)2

(95)

+ 1

6i

(
3 − 2γ

a
− 8

(γ − 1)3

a4

)
(z + 1)3 + O

(
(z + 1)4).
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Inserting (94), we obtain

f (z;γ ) = i

2
(z + 1)

[
1 + 1

2
(z + 1) + 7

20
(z + 1)2 + O

(
(z + 1)3)]

+ i

60
(γ − 1)(z + 1)

[
1 + 1

2
(z + 1) + O

(
(z + 1)2)](96)

+ O
(
(γ − 1)2(z + 1)

)
.

Define the rescaled coordinates (Langer coordinates) ζ = ζ(z;γ ) = t1/3f (z;γ )

for z ∈ U−1, and set

s = s(γ ) = t2/3a(γ ).(97)

Then [see (213)]

tθ(z;γ ) = i
(4

3ζ 3 + sζ
)= iθPII(ζ, s), z ∈ U−1.(98)

We note from (94) that for the parameters (n,m, t) in regime (72),

s(γ ) ≥ −2L(99)

for all large enough t . We also have

s(γ ) = 2t2/3(γ − 1) − (2t2/3(γ − 1))2

60
t−2/3 + O

(
t2/3(γ − 1)3).(100)

We introduce similar coordinates in U1. This can be easily achieved by noting
the symmetry φ(z, γ̃ ) = −θ(−z, γ̃ ). We set U1 = −U−1 and define f (z; γ̃ ) :=
−f (−z; γ̃ ) for z ∈ U1. Then we find, with the same choice of a and b,

4
3f (z; γ̃ )3 + a(γ̃ )f (z; γ̃ ) = −iφ(z; γ̃ ), z ∈ U1.(101)

Defining ζ = ζ(z;γ ) = t1/3f (z;γ ), z ∈ U−1 and s = s(γ ) = t2/3a(γ ) as before,
we obtain

tφ(z; γ̃ ) = i
(4

3ζ(z; γ̃ )3 + s(γ̃ )ζ(z; γ̃ )
)= iθPII(ζ, s), z ∈ U−1.(102)

Note the symmetry

ζ(z; γ̃ ) = −ζ(−z; γ̃ ), z ∈ U1.(103)

We take δ such that δ < min{1/2, δ1} where δ1 we introduced in defining f

in (90). Then consider the parameters (n,m, t) satisfying (72).
Consider the image of U−1 under the map z �→ ζ(z;γ ). From (96), we find that

there exists δ2 > 0 such that for γ ∈ [1 − δ2,1 + δ2], ζ(U−1;γ ) contains a disk
centered at 0 and of radius ≥ O(t1/3) in the ζ -plane. The same holds for ζ(U1; γ̃ ).
Note that from (96), the image contours ζ(C−1,in/out) are oriented left-to-right and
the image contours ζ(C1,in/out) are oriented right-to-left as depicted in Figure 7.



CROSSING AND NESTING 4385

FIG. 7. Images of the contours near z = ±1 under ζ .

We now use ζ to map the local contours and jump matrices inside U±1 onto
the jumps of the Painlevé parametrix, RHP 10.1. We locally deform, if necessary,
the contours C±1,in/out so that the image contours ζ(C±1,in/out ∩ U±1) become the
rays �i , i = 1,3,4,6 described in (206), and we extend C±1,in/out ∩ (U−1 ∪ U1)

to the rest of C±1,in/out so that estimate (86) holds for z on the contour outside
of U±1. The exact shape of the contours are not important. Reorienting the image
contours, if necessary, to go from left-to-right and using (98) and (102) the image
contours and jumps are, up to a conjugation by a constant matrix, exactly those of
the Painlevé parametrix, RHP 10.1.

Let �(ζ, s) be the solution of the Painlevé II model problem, RHP 10.1. Set
σ2 = (0 −i

i 0

)
and recall that σ3 = (1 0

0 1

)
. Taking into account the orientation of

ζ(C±1,in/out ∩ U±1), we define the local models

A−1(z) = A−1(z;γ ) := σ2σ
n
3 �
(
ζ(z;γ ); s(γ )

)
σn

3 σ2, z ∈ U−1,
(104)

A1(z) = A1(z; γ̃ ) := σ2�
(
ζ(z; γ̃ ); s(γ̃ )

)
σ2, z ∈ U1.

Note from symmetries (214) and (103) that these two models are related as

A1(z, γ̃ ) = σ1σ
n
3 A−1(−z, γ̃ )σ n

3 σ1, z ∈ U1.(105)

From (98) and (102), A±1(z) satisfies the same jump condition as T(z) in U±1,
respectively.

Define the ratio of the global parametrix to the exact problem T(z),

R(z) = T(z)A−1(z).(106)

Then R(z) has no jumps inside U±1, but gains jumps on the positively oriented
boundaries ∂U±1. Let �0

R = �in ∪ �out ∪ Cin,±1 ∪ Cout,±1 \ (U1 ∪ U−1); see Fig-
ure 8. Then R satisfies the following problem:

RIEMANN–HILBERT PROBLEM 6.1 FOR R(z). Find a 2×2 matrix R(z) such
that:

(1) R(z) is analytic in C \ �R where �R = �0
R ∪ ∂U1 ∪ ∂U−1.
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FIG. 8. The jump contours for the residual R(z). The dashed lines represent contours on which the
jumps are exponentially near identity.

(2) R(z) → I as z → ∞.
(3) The boundary values of R satisfy the jump relation R+ = R−VR where

VR(z) =
⎧⎨
⎩

A1(z)
−1, z ∈ ∂U1,

A−1(z)
−1, z ∈ ∂U−1,

VT (z), z ∈ �0
R .

(107)

The jumps of R(z) are now everywhere uniformly near identity. In fact, for the
parameters (n,m, t) in regime (72), it follows from (86),

‖VR − I‖L∞(�0
R) = O

(
e−ct ),(108)

and from (104) and (216) that (recall that ζ(U±1;γ ) contains a disk of radius
≥ O(t1/3) for all γ ∈ [1 − δ,1 + δ])

‖VR − I‖L∞(U±1) = O
(
t−1/3).(109)

(We will use a better estimate for the latter below.) The above estimates establish
that R falls into the class of small norm RHPs for any sufficiently large t . Let
C− :L2(�R) → L2(�R) denote the usual Cauchy projection operator and define

CVR
[f ](z) := C−

[
f (w)(VR − I )

]= 1

2πi

∫
�R

f (w)(VR(w) − I )

(w − z)−
dw(110)

and

KR[f ](z) := 1

2πi

∫
�R

f (w)(VR(w) − I )

(w − z)
dw,(111)

which maps f ∈ L2(�R) to an analytic function in C \ �R . Then as C− is a
bounded L2 operator whose operator norm is uniformly bounded (see, e.g., [13])
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and the contours �R are finite length, it follows that ‖CVR
‖L2→L2 = O(t−1/3) for

large t which guarantees the existence of a unique solution to (1 − CVR
)μ = I .

Once the existence of μ(z) is established, it follows immediately from the general
theory of RHPs that

R(z) := I + KR[μ](z) = I + 1

2πi

∫
�R

μ(w)(VR(w) − I )

w − z
dw(112)

is the solution of RHP 6.1.
Unfolding the series of transformations Y �→ Q �→ S �→ T �→ R we have

Y(0) = R(0)
( 0
−1

1
0

)
, and from (67) it follows that

πn,m(0; t) = −R12(0; t, n,m) = R21(0; t, n,m).(113)

We now evaluate R(0; t, n,m) explicitly for the first three terms in the asymp-
totic expansion. But we first consider the corresponding RHP for the continuous
weight in the next subsection. We will compare the discrete weight problem to the
continuous weight problem.

6.2. Analysis of the continuous weight problem. A streamlined version of the
above procedure reducing the discrete problem, RHP 4.1, to small-norm form can
be used to study the continuous weight problem, RHP 4.2. Using the same g-
function used in the discrete case, we define Y∞ �→ S∞ as in (75), replacing Q
with Y∞. The new RHP for S∞ features the single phase θ(z;γ ) defined by (77)
which we recall has a critical value at z = −1. In the “exponentially small regime”
(71) estimate (78) holds and just as in Proposition 5.1, we have in the end

πn,∞(0; t) = O
(
e−cn) for (n, t) satisfying (71).(114)

In the Painlevé regime (72), by introducing a simplified version of transforma-
tion (80), using only the factors appearing in �±,0 to open lenses, one defines
a transformation S∞ �→ T∞. The problem for T∞ is then approximated by a
parametrix which is identity outside a neighborhood U−1 of z = −1 and inside U−1
is approximated by the same model as the discrete case, A−1(z) defined by (104).
The result is a small norm problem R∞ for the continuous case where

R∞(z) = I + 1

2πi

∫
�R∞

μ∞(w)(VR∞(w) − I )

w − z
dw,(115)

where

VR∞(z) =
{

A−1(z)
−1, z ∈ ∂U−1,

I + O
(
e−ct

)
, z ∈ �∞

R \ ∂U−1.
(116)

Moreover, the continuous weight orthogonal polynomial π∞
n (0) is given by

πn,∞(0; t) = −R∞
12(0; t, n) = R∞

21(0; t, n) for (n, t) satisfying (72).(117)
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6.3. Expansion of R(0). In this section we calculate the asymptotic expansion
of

R(0) = I + KR[μ](0) = I + 1

2πi

∫
�R

μ(w)(VR(w) − I )

w
dw(118)

up to order O(t−1). We begin by representing μ using its Nuemann series expan-
sion,

μ(z) = I +
∞∑

k=1

(CR)k[I ],(119)

which, due to (108) and (109), convergences uniformly and absolutely. In
both (118) and (119), the dominant contribution to the integral comes from
the boundaries ∂U±1. In fact, denoting by P0 the projection operator onto
�R \ (∂U−1 ∪ ∂U1), we find from (108) that ‖CRP0‖L2(�R)→L2(�R) = O(e−ct )

and ‖KRP0‖L2(�R)→L2(�R) = O(e−ct ).
Denoting by P±1 the projection operator onto ∂U±, respectively, define C±1 :=

CRP±1 and K±1 := KRP±1: for any f ∈ L2(�R),

C±1[f ](z) = 1

2πi

∮
∂U±1

f (w)(VR(w) − I )

(w − z)−
dw, z ∈ �R,

(120)

K±1[f ](z) = 1

2πi

∮
∂U±1

f (w)(VR(w) − I )

(w − z)
dw, z /∈ �R.

Then we find

R(0) = I + (K−1 + K1)[μ](0) + O
(
e−ct ),(121)

where

μ(z) = I +
∞∑

k=1

(C−1 + C1)
k[I ](z) + O

(
e−ct ).(122)

Recall s(γ ) defined in (97). Introduce the shorthand s = s(γ ) and s̃ = s(γ̃ ).
Using (216), (217) and (104) we have

VR(z) − I

(123a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(s)

t1/3f (z;γ )
+ ϕ2(s)

t2/3f (z;γ )2 + ϕ3(s)

t−1f (z;γ )3 + O
(

e−c0|s|3/2

t4/3

)
,

z ∈ ∂U−1,

φ1(s̃)

t1/3f (z; γ̃ )
+ φ2(s̃)

t2/3f (z; γ̃ )2 + φ3(s̃)

t−1f (z; γ̃ )3 + O
(

e−c0|s|3/2

t4/3

)
,

z ∈ ∂U1,
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with

ϕ1(s) = 1

2i

[ −u(s) −(−1)nq(s)

(−1)nq(s) u(s)

]
,

ϕ2(s) = 1

(2i)2

⎡
⎢⎣

1

2
u(s)2 − 1

2
q(s)2 (−1)n

(
q(s)u(s) − q ′(s)

)
(−1)n

(
q(s)u(s) − q ′(s)

) 1

2
u(s)2 − 1

2
q(s)2

⎤
⎥⎦ ,(123b)

ϕ3(s) = 1

(2i)3

[
α(s) (−1)nβ(s)

−(−1)nβ(s) −α(s)

]

and

φk(s̃) = σn
3 ϕk(s̃)σ

n
3 , k = 1,2,3,(123c)

where q is defined by (210) and u, α and β are defined in (216c)–(216e).
It follows from inserting the above expansions into (121) and (122) that each

iteration of C1 or C−1 introduces a factor of t−1/3; thus we are led to an expansion
of the form.

R(0) = I +
N∑

k=1

R(k)t−k/3 + O
(

e−c0|s|3/2

t (N+1)/3

)
,(124)

where R(1) := t1/3(K1[I ](0) + K−1[I ](0)),

R(k) := tk/3
∑

�τ∈{−1,1}k−1

(K1 + K−1)C�τ [I ](0), k ≥ 2.(125)

Here C�τ is a multi-index understood as follows: given �τ = (τ1, τ2, . . . , τk) ∈
{−1,1}k we define C�τ := Cτ1Cτ2 · · ·Cτk

. Though we have suppressed the depen-
dence, each R(k) is a function of t . Moreover, since both s and the coefficients in
the expansion (95) depend on γ , each R(k) = O(1) with an expansion in powers
of t−1/3.

At each order we can split the composition of Cauchy integrals into three parts.
Define

R
(k)
1 = tk/3K1C

k−1
1 [I ](0),

R
(k)
−1 = tk/3K−1C

k−1
−1 [I ](0),(126)

R
(k)
X = R(k) − R

(k)
1 − R

(k)
−1.

Note that from definition, R
(1)
X = 0. Intuitively, the first two “pure” terms contain

the expansions of the continuous weight polynomials related to the marginal distri-
butions while the last term contains the “cross” terms. This can be made concrete
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as follows. Let R±1(0) and RX(0) denote the sum of each type of contribution to
R(0),

Rp(0) := I +
∞∑

k=1

R
(k)
p

tk/3 , p = 1,−1,X.(127)

Clearly, R1(0) and R−1(0) are the values at origin of normalized Riemann–
Hilbert problems whose jump conditions are

(R−1)+(z) = (R−1)−(z)A−1(z, γ )−1, z ∈ ∂U−1,
(128)

(R1)+(z) = (R1)−(z)A1(z, γ̃ )−1, z ∈ ∂U1.

Recalling (115) and (116) we see that R−1(z) and R∞(z; t, n) have the same jump
condition up to the exponentially small contributions from �R∞ \ ∂U−1. Hence

R∞(0; t, n) = [
I + O

(
e−ct )]R−1(0).(129)

Also from (105), the jump of R1(z) is same as that of σ1σ
n
3 R∞(0, t,2m−n)σn

3 σ1,
and hence we find that

σ1σ
n
3 R∞(0, t,2m − n)σn

3 σ1 = [
I + O

(
e−ct )]R1(0).(130)

Therefore, from (117) it follows that

πn,∞(0; t) = −(R−1)12(0) + O
(
e−ct ),

(131)
π2m−n,∞(0; t) = (−1)n(R1)12(0) + O

(
e−ct ),

and hence from (113), (124) and (127), we find that

πn,m(0; t) = πn,∞(0) − (−1)nπ2m−n,∞(0) − (RX)12(0) + O
(
e−ct

)
.(132)

From (127), we now need to evaluate R
(k)
p ,p = −1,1,X, k = 1,2,3. This

calculation is a straightforward but lengthy application of residue calculus. We
summarize the result of the calculations which follow directly from the defini-
tions (126), (120), (123), making use of the expansions (95) and (100). It is helpful
to note that the symmetry (105) between A1 and A−1 implies that

K1 = T K(γ �→γ̃ )
−1 T , C1 = T C

(γ �→γ̃ )
−1 T ,(133)

where K(γ �→γ̃ )
−1 and C

(γ �→γ̃ )
−1 denote K−1 and C−1 with γ replaced by γ̃ , respec-

tively, and T is the operator defined by

Tf (z) := σ1σ
n
3 f (−z)σn

3 σ1.(134)

In particular, note that T I = I , R
(k)
1 = T R

(k)
−1|γ→γ̃ .

Let Err and Ẽrr denote any terms satisfying

Err = O
(
e−c0|s(γ (τ ))|3/2)

, Ẽrr = O
(
e−c0|s(γ̃ (τ ))|3/2)

.(135)
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Denoting by [A,B] and {A,B} the commutator and anti-commutator of matri-
ces A and B , respectively, we find from an explicit evaluation that [making use
of (217)]

R
(1)
−1 = 2i

(
1 − 1

30
(γ − 1)

)
ϕ1(s) − (2i)3

20t2/3 ϕ3(s)

+ (|γ − 1|2 + t−2/3|γ − 1| + t−1)Err,
(136a)

R
(1)
1 = −2i

(
1 − 1

30
(γ̃ − 1)

)
φ1(s̃) + (2i)3

20t2/3 φ3(s̃)

+ (|γ̃ − 1|2 + t−2/3|γ̃ − 1| + t−1)Ẽrr,

R
(2)
−1 = (2i)2

2
ϕ1(s)

2 − (2i)3ϕ1(s)ϕ2(s)

20t1/3 + (2i)3ϕ2(s)ϕ1(s)

10t1/3

+ (|γ − 1| + t−2/3)Err,
(136b)

R
(2)
1 = (2i)2

2
φ1(s̃)

2 + (2i)3σ1(s̃)φ2(s̃)

20t1/3 − (2i)3φ2(s̃)ϕ1(s̃)

10t1/3

+ (|γ̃ − 1| + t−2/3)Ẽrr,

R
(3)
−1 = 3(2i)3

20
ϕ1(s)

3 + (|γ − 1| + t−1/3)Err,
(136c)

R
(3)
1 = −3(2i)3

20
φ1(s̃)

3 + (|γ̃ − 1| + t−1/3)Ẽrr,

R
(2)
X = −(2i)2

2

{
ϕ1(s), φ1(s̃)

}

− (2i)3

4

([
ϕ2(s), φ1(s̃)

]+ [ϕ1(s), φ2(s̃)
])

t−1/3(137a)

+ (|γ − 1| + t−2/3)Err + (|γ̃ − 1| + t−2/3)Ẽrr,

R
(3)
X = (2i)3

4

{
ϕ1(s)φ1(s̃)

}(
φ1(s̃) − ϕ1(s)

)
(137b)

+ (|γ − 1| + t−1/3)Err + (|γ̃ − 1| + t−1/3)Ẽrr.

Recall that R
(1)
X = 0. Note that{
ϕ1(s), φ1(s̃)

}= 2
(
u(s)u(s̃) − (−1)nq(s)q(s̃)

)
I.(138)

From (131) and (132) using (123) and (136)–(137), we obtain the following:
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PROPOSITION 6.1. Set

g1(y, ỹ) := 1
2

(
u′(y)q(ỹ) + u(y)q ′(ỹ)

)
,

(139)
g2(y, ỹ) := 1

2

(
q(y)u′(ỹ) + q ′(y)u(ỹ)

)
.

Let πn,m(z) be the orthogonal polynomial given in (67). Let πn,∞(z) be the orthog-
onal polynomial given in (69). There exists δ > 0 such that for any fixed L > 0, if

2t − Lt1/3 ≤ n ≤ 2t (1 + δ), 2t − Lt1/3 ≤ 2m − n ≤ 2t (1 + δ),(140)

then there exists constants c0 > 0 and t0 > 0 such that

πn,m(0; t)
= πn,∞(0; t) − (−1)nπ2m−n,∞(0; t)

(141)

+ g1(s(γ ), s(γ̃ )) − (−1)ng2(s(γ ), s(γ̃ ))

t

+ O
((

t−4/3 + t−2/3|γ − 1| + t−2/3|γ̃ − 1|)e−c0(|s(γ )|3/2+|s(γ̃ )|3/2))
for all t ≥ t0, where

γ := n

2t
, γ̃ := 2m − n

2t
(142)

and s(u) is defined in (97) which satisfies [see (100)]

s(u) = 2t2/3(u − 1) − (2t2/3(u − 1))2

60
t−2/3 + O

(
t2/3(u − 1)3).(143)

We also have the following:

PROPOSITION 6.2. For t ≥ t0,

(−1)nπn,∞(0; t) = 1

t1/3 q
(
s(γ )

)(
1 − γ − 1

30

)
+ 1

t
h
(
s(γ )

)
(144)

+ O
((

t−4/3 + t−2/3|γ − 1|)e−c0|s(γ )|3/2)
,

where

h(y) := 1
5u(y)q ′(y) − 1

5q3 − 1
20yq(y).(145)

7. Proof of Theorem 1.1 and Corollary 1.1. We now evaluate the asymp-
totics of P{CRt ≤ k,NEt ≤ j} when

j = [
t + 2−1xt1/3], k = [

t + 2−1x′t−1/3],(146)
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where x, x′ ∈ R are fixed, and [a] denotes the largest integer no larger than a. We
define xt and x′

t by

xt := (2j + 1) − 2t

t1/3 , x′
t := (2k + 1) − 2t

t1/3(147)

so that

2j + 1 = 2t + xt t
1/3, 2k + 1 = 2t + x′

t t
1/3.(148)

Then xt = x + O(t−1/3) and x′
t = x′ + O(t−1/3).

From Proposition 1.1, we have

log P{CRt ≤ k,NEt ≤ j}
(149)

=
∫ t

0
π2j+1,m(0; τ) dτ +

∫ t

0

∫ s

0
Qm

j (τ ) dτ ds,

where

Qm
j (τ ) = −Rm

j (τ ) − S m
j (τ ) + Rm

j (τ )S m
j (τ )(150)

and

Rm
j (τ ) := π2j,m(0; τ)π2j+2,m(0; τ), S m

j (τ ) := ∣∣π2j+1,m(0; τ)
∣∣2.(151)

From Proposition 5.1 [substituting τ for t in (84)], we find that the above in-
tegrals away from the interval [(1 − ε)t, t], for any fixed ε > 0, are exponentially
small in t ,

log P{CRt ≤ k,NEt ≤ j}
(152)

=
∫ t

t (1−ε)
π2j+1,m(0; τ) dτ +

∫ t

t (1−ε)

∫ s

t (1−ε)
Qm

j (τ ) dτ ds + O
(
e−ct ).

We can take ε > 0 small enough so that Proposition 6.1 is applicable to
π2j+�,m(0; τ) for � = 0,1,2 and τ ∈ [(1 − ε)t, t].

Now by the same argument, we have

log P{NEt ≤ j}
(153)

=
∫ t

t (1−ε)
π2j+1,∞(0; τ) dτ +

∫ t

t (1−ε)

∫ s

t (1−ε)
Q∞

j (τ ) dτ ds + O
(
e−ct )

and

log P{CRt ≤ k}
(154)

=
∫ t

t (1−ε)
π2k+1,∞(0; τ) dτ +

∫ t

t (1−ε)

∫ s

t (1−ε)
Q∞

k (τ ) dτ ds + O
(
e−ct ).

Consider

log P{CRt ≤ k,NEt ≤ j} − log P{NEt ≤ j} − log P{CR ≤ k}.(155)



4394 J. BAIK AND R. JENKINS

We first consider the three single integrals. From (141) applied to n = 2j + 1
and t replaced by τ , we have∫ t

t (1−ε)

[
π2j+1,m(0; τ) − π2j+1,∞(0; τ) − π2k+1,∞(0; τ)

]
dτ

=
∫ t

t (1−ε)

1

τ

[
g1
(
s
(
γ (τ)

)
, s
(
γ̃ (τ )

))+ g2
(
s
(
γ (τ)

)
, s
(
γ̃ (τ )

))]
dτ(156)

+ O
(∫ t

t (1−ε)

(
τ−4/3 + τ−2/3∣∣γ (τ) − 1

∣∣)e−c0|s(γ (τ ))|3/2
dτ

)
,

where

γ (τ) := 2j + 1

2τ
, γ̃ (τ ) := 2k + 1

2τ
.(157)

Changing the integration variable τ �→ η as

τ = t − 2−1ηt1/3,(158)

the integral involving g1 in (156) becomes

1

2t2/3

∫ 2εt2/3

0
g1
(
s
(
γ (τ)

)
, s
(
γ̃ (τ )

)) dη

1 − 2−1ηt−2/3 .(159)

Note that from (100),

s
(
γ (τ)

)= (xt + η) + O
(
η2t−2/3),

(160)
s
(
γ̃ (τ )

)= (
x′
t + η

)+ O
(
η2t−2/3).

Also note that from its definition, g1(x0 + η, x′
0 + η) is integrable for η ∈ [0,∞)

for any fixed x0, x
′
0 ∈ R. Thus, we obtain that integral (159) equals

1

2t2/3

∫ ∞
0

g1
(
xt + η, x′

t + η
)
dη + O

(
t−4/3).(161)

The integral involving g2 in (156) equals the same integral with g1 replaced by g2.
On the other hand, it is easy to see that the error term in (156) is

O
(
t1/3

∫ ∞
0

t−4/3(1 + |xt + η|)e−c0|xt+η|3/2
dη

)
= O

(
t−1).(162)

Thus, replacing xt and x′
t by x and x′, which incurs an error of order O(t−1/3),

(156) equals

1

2t2/3

∫ ∞
0

[
g1
(
x + η, x′ + η

)+ g2
(
x + η, x′ + η

)]
dη + O

(
t−1).(163)

Now inserting definition (139), we can perform the integration, and we find
that (156) equals

−1

4t2/3

[
u(x)q

(
x′)+ q(x)u

(
x′)]+ O

(
t−1).(164)
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We now consider the part of (155) that comes from the three double integrals.
We need to evaluate Qm

j (τ ) − Q∞
j (τ ) − Q∞

k (τ ). Setting

γ ±(τ ) := 2j + 1 ± 1

2τ
= γ (τ) ± 1

2τ
,(165)

we see from (100) that

s
(
γ ±(τ )

)= s
(
γ (τ)

)± 1

τ 1/3 + O
(
t−1/3(γ (τ) − 1

))
.(166)

Let us set

ξ := s
(
γ (τ)

)
, ξ̃ := s

(
γ̃ (τ )

)
(167)

to ease the notational burden. Then, (144) implies, using (217), that

π2j+1±1,∞(0; τ) = −π2j+1,∞(0; τ) ± q ′(ξ)
1

τ 2/3 + 1

2
q ′′(ξ)

1

τ
(168)

+ τ−4/3Error,

where throughout the rest of this section we use the notation Error to denote any
term satisfying

Error = O
((

1 + τ 2/3∣∣γ (τ) − 1
∣∣)e−c0|s(γ (τ ))|3/2)

(169)
+ O

((
1 + τ 2/3∣∣γ̃ (τ ) − 1

∣∣)e−c0|s(γ̃ (τ ))|3/2)
.

Note that ∫ t

t (1−ε)

∫ t

t (1−ε)
Errordτ ds = O

(
t2/3).(170)

Also, note that from (144), (168) implies, in particular, that

π2j+1±1,∞(0; τ) = q(ξ) + τ−2/3Error,(171)

and clearly asymptotics (168) and (171) also hold when j is replaced by k and ξ

is replaced by ξ̃ .
From (141),∣∣π2j+1,m(0; τ)

∣∣2 − ∣∣π2j+1,∞(0; τ)
∣∣2 − ∣∣π2k+1,∞(0; τ)

∣∣2
= 2π2j+1,∞(0; τ)π2k+1,∞(0; τ)

(172)

+ 2

τ

[
g1(ξ, ξ̃ ) + g2(ξ, ξ̃ )

][
π2j+1,∞(0; τ) + π2k+1,∞(0; τ)

]
+ τ−5/3Error.
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Thus, from (144),

S m
j (τ ) − S ∞

j (τ ) − S ∞
k (τ )

= 2π2j+1,∞(0; τ)π2k+1,∞(0; τ)(173)

− 2

τ 4/3

[
g1(ξ, ξ̃ ) + g2(ξ, ξ̃ )

][
q(ξ) + q(ξ̃ )

]+ τ−5/3Error.

Similarly, using (141) and (171), we obtain

Rm
j (τ ) − R∞

j (τ ) − R∞
k (τ )

= −π2j,∞(0; τ)π2k,∞(0; τ) − π2j+2,∞(0; τ)π2k+2,∞(0; τ)(174)

+ 2

τ 4/3

[
g1(ξ, ξ̃ ) − g2(ξ, ξ̃ )

][
q(ξ) − q(ξ̃ )

]+ τ−5/3Error

and

Rm
j (τ )S m

j (τ ) − R∞
j (τ )S ∞

j (τ ) − R∞
k (τ )S ∞

k (τ )
(175)

= −2

τ 4/3 q(ξ)q(ξ̃ ) + τ−5/3Error.

Therefore, since

π2j,∞(0; τ)π2k,∞(0; τ) + π2j+2,∞(0; τ)π2k+2,∞(0; τ)

− 2π2j+1,∞(0; τ)π2k+1,∞(0; τ)(176)

= 1

τ 4/3

[
q(ξ)q ′′(ξ̃ ) + q ′′(ξ)q(ξ̃ ) + 2q ′(ξ)q ′(ξ̃ )

]+ τ−5/3Error,

we obtain, by using the definition of g1, g2 and by using the fact that q2 = u′ and
2qq ′ = u′′, that

Qm
j (τ ) − Q∞

j (τ ) − Q∞
k (τ ) = 1

τ 4/3 U (ξ, ξ̃ ) + τ−5/3Error,(177)

where ξ := s(γ (τ )), ξ̃ := s(γ̃ (τ )) are defined in (167), and we have set

U (ξ, ξ̃ ) := u′′(ξ)u(ξ̃ ) + 2u′(ξ)u′(ξ̃ ) + u(ξ)u′′(ξ̃ )
(178)

+ q ′′(ξ)q(ξ̃ ) + 2q ′(ξ)q ′(ξ̃ ) + q(ξ)q ′′(ξ̃ ).

We insert (177) into the integral∫ t

t (1−ε)

∫ t

t (1−ε)

[
Qm

j (τ ) − Q∞
j (τ ) − Q∞

k (τ )
]
dτ ds,(179)

and evaluate it by changing variables τ �→ η, τ = t − 2−1ηt1/3 and s �→ ζ , s =
t − 2−1ζ t1/3, as was done for the single ingtegrals. Noting that

U (ξ + η, ξ̃ + η) := d2

dη2

[
u(ξ + η)u(ξ̃ + η) + q(ξ + η)q(ξ̃ + η)

]
,(180)
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the integral can be evaluated, and we find that (179) equals

1

4t2/3

[
u(x)u

(
x′)+ q(x)q

(
x′)]+ O

(
t−1).(181)

The error term O(t−1) follows from (170).
Combining (164) and (181), we obtain

log
[

P{C̃Rt ≤ x, ÑEt ≤ x′}
P{C̃Rt ≤ x}P{ÑEt ≤ x′}

]
(182)

= [q(x) − u(x)][q(x′) − u(x′)]
4t2/3 + O

(
t−1).

This completes the proof of Theorem 1.1. We note that here the error term is
uniform for x, x′ in a compact subset of R (actually in any semi-infinite interval
[x0,∞).)

Corollary 1.1 follows if we show that Cov(C̃Rt , ÑEt ) = t−2/3 + O(t−1). This
is obtained from Theorem 1.1 by using the dominated convergence theorem if
we have tail estimates of P{C̃Rt ≤ x, ÑEt ≤ x′} − P{C̃Rt < x}P{ÑEt < x′} as
|x|, |x′| → ∞ since

∫∞
−∞ x dF ′(x) = −1. The tail as x, x′ → +∞ can be obtained

from the analysis of this paper. For the other limits, we need an extension of the
analysis of this paper, but we skip the details in this paper. See [4, 5] for a similar
question about the convergence of moments using Toeplitz determinant.

8. Proof of Theorems 1.2 and 1.3. Here we evaluate the asymptotics of the
marginal distributions P{CRt ≤ j} for j as given by (146). We reuse as much
as possible the calculations in the previous section. Note that by symmetry we
have P{NEt ≤ j} = P{CRt ≤ j}. In the process of computing the marginal we will
compute as a by-product asymptotics for P{Lt ≤ �} along the way.

Our starting point is to introduce the change of variables

τ = t − 2−1(η − xt )t
1/3, s = t − 2−1(ζ − xt )t

1/3(183)

into (153) where, as in the previous section, xt is given by (148). Note that this
change of variables differs from (158) by a shift. Making the substitution we have,
with j and k defined by (146) [recall (148)],

log P{NEt ≤ j} = I1 + I2 + O
(
e−ct ),

(184)
log P{Lt ≤ 2j + 1} = 2I1 + O

(
e−ct ),

where

I1 = t2/3

4

∫ xt+2εt2/3

xt

∫ xt+2εt2/3

ζ
Q∞

j (τ ) dη dζ,

(185)

I2 = t1/3

2

∫ xt+2εt2/3

xt

π2j+1,∞(0; τ) dη.
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From (63), there is an analogous formula for log P{Lt ≤ 2j}, and the analysis
below applies to this case too without many changes. We skip the details for this
case.

In order to compute expansions of the above integrals, we need more detailed
calculations than the previous section. Inserting (183) into (157), we have

γ (τ) = 1 + 1
2ηt−2/3 + 1

4

(
η2 − ηxt

)
t−4/3 + O

(
η3t−2).(186)

Then (143), with t replaced by τ , becomes

s
(
γ (τ)

)= η + ( 3
20η2 − 1

6ηxt

)
t−2/3 + O

(
η3t−4/3).(187)

Inserting these into (144) we have

−π2j+1,∞(0; τ)

= 1

t1/3 q(η) + 1

t

[
h(η) +

(
3

20
η − 1

6
xt

)(
q(η) + ηq ′(η)

)]
(188)

+ O
(
t−4/3Error

)
,

and it follows from (150), (151) (when m = ∞), and (a slight improvement of)
(168) that

Q∞
j (τ )

= −2t−2/3q(η)2

− t−4/3[4q(η)h(η) + (3
5η − 2

3xt

)(
ηq ′(η)q(η) + q(η)2)+ q(η)q ′′(η)(189)

− q ′(η)2 − q(η)4]
+ O

(
t−5/3Error

)
.

Here h is as given in (145). In both the above formulas the Error term is as de-
fined in (169), and we recall that its integral introduces terms of order O(t2/3).
Now using the identity q4 = u + (q ′)2 − ηq2 and using the fact that q2 = u′,
2qq ′ = u′′ and q ′′ = ηq + 2q3, it is direct to check that the terms in square
brackets in (188) and (189) can be expressed as perfect derivatives. We find
that

−π2j+1,∞(0; τ) = 1

t1/3 q(η) + 1

t
U1(η) + O

(
t−4/3Error

)
,

(190)

Q∞
j (τ ) = − 2

t2/3 u′(η) − 1

t4/3 U2(η) + O
(
t−5/3Error

)
,

where

U1(η) := 1

5

d

dη

[
u(η)q(η) − q ′(η) + 1

12
(9η − 10xt )ηq(η)

]
,

(191)

U2(η) := 1

5

d2

dη2

[
u(η)2 − q(η)2 + 1

6
(9η − 10xt )ηu(η)

]
.
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Inserting this formula into (185) and (184), we obtain with x(t) and xt defined
by (26) and (13), respectively,

log P
{
Lt ≤ 2t + t1/3x

}
= logFGUE

(
x(t))(192)

− 1

10t2/3

[
u(x)2 − q(x)2 − 1

6
x2u(x)

]
+ O

(
t−1)

and

log P
{
NEt ≤ t + 2−1t1/3x

}= logF(xt ) + E(x)

t2/3 + O
(
t−1),(193)

where E = E(x) equals

E := 1
20

[−(u(x) − q(x)
)2 + 2

(
u′(x) − q ′(x)

)+ 1
6x2(u(x) − q(x)

)]
.(194)

It is easy to check that 20E(x)F (x) = −4F ′′(x)− 1
3x2F ′(x) and (u(x)2 −q(x)2 −

1
6x2u(x))FGUE(x) = F ′′

GUE(x) + 1
6x2F ′

GUE(x).2 Theorems 1.2 and 1.3 follow im-
mediately.

9. Proof of Corollary 1.2. For a sequence {an}∞n=0, consider its Poissoniza-
tion

φ(t) := e−t2
∞∑

n=0

(t2)n

n! an.(195)

A de-Poissonization lemma is that if (a) 0 ≤ an ≤ 1 and (b) an+1 ≤ an for all n,
then we have for s ≥ 1 and n ≥ 2,

φ(
√

μn) − 1

ns
≤ an ≤ φ(

√
νn) + 1

ns
,(196)

where

μn := n + 2
√

sn logn, νn = n − 2
√

sn logn.(197)

Lemma 2.5 of [33] is stated for the case when s = 2, but the proof can be modified
in a straightforward way to obtain the above estimates.

The de-Poissonization lemma can be applied to an := P{crn ≤ k,nen ≤ j} due
to the following lemma.

LEMMA 9.1. For each n ≥ 0, and k, j ≥ 0,

P{crn+1 ≤ k,nen+1 ≤ j} ≤ P{crn ≤ k,nen ≤ j}.(198)

2We would like to thank Craig Tracy for pointing out these relations. Relations like these and many
others can be found in [47].
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PROOF. Since P{crn ≤ k,nen ≤ j} = gk,j (n)

(2n−1)!! , where

gk,j (n) := #
{
M ∈ Mn : crn(M) ≤ k,nen(M) ≤ j

}
,(199)

we need to show that gk,j (n + 1) ≤ (2n + 1)gk,j (n). The set Mn+1 of complete
matchings of [2(n + 1)] is the union of (2n + 1) disjoint subsets M�

n+1, � =
1, . . . ,2n + 1, where M�

n+1 is the set of complete matchings of [2(n + 1)] such
that 1 is paired with � [i.e., (1, �) is an element of the matching]. By removing the
two vertices 1 and �, and then relabeling the vertices, there is a trivial bijection f� :
M�

n+1 �→ Mn. Clearly, crn+1(M) ≥ crn(f�(M)) and nen+1(M) ≥ nen(f�(M)) for
M ∈ M�

n+1. This implies that gk,j (n + 1) ≤ (2n + 1)gk,j (n). �

Hence, since [see (16)]

P{CRt ≤ k,NEt ≤ j} = e−t2/2
∞∑

n=0

(t2/2)n

n! P{crn ≤ k,nen ≤ j},
(200)

P{CRt ≤ k} = e−t2/2
∞∑

n=0

(t2/2)n

n! P{crn ≤ k},

we find that for each s ≥ 1, n ≥ 2 and j, k ≥ 0,

P{crn ≤ k,nen ≤ j} − P{crn ≤ k}P{nen ≤ j}
≤ P{CR√

2νn
≤ k,NE√

2νn
≤ j}(201)

− P{CR√
2μn

≤ k}P{NE√
2μn

≤ j} + 4n−s .

When k = √
2n + 2−1x(2n)1/6 and j = √

2n + 2−1x′(2n)1/6, from Theorem 1.1,
the right-hand side of (201) is less than or equal to

P{CR√
2νn

≤ k}P{NE√
2νn

≤ j} − P{CR√
2μn

≤ k}P{NE√
2μn

≤ j}
(202)

+ 4n−s + O
(
n−1/3).

Now we use Theorem 1.2 to estimate each of the above probabilities. Note that
√

2n + 2−1x(2n)1/6 − √
2νn

2−1(2νn)1/6 = x + 4
√

sn logn

(2n)1/6 + O
(√

logn

n1/2

)
.(203)

When νn is replaced by μn, then the first plus sign on the right-hand side is changed

to the minus sign. From this, it follows that (202) is bounded above by O(
√

logn

n1/6 )+
4n−s . The lower bound is similar. Thus we obtain Corollary 1.2.
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10. A model RHP: Painlevé II. Consider the coupled pair of differential
equations for 2 × 2 matrix �(ζ, s),

i
d�

dζ
= (

4ζ 2 + s
)[σ3,�] +

(
2q2 4iζq − 2r

4iζq + 2r −2q2

)
�,(204a)

i
d�

ds
= −ζ [σ3,�] +

(
0 iq

iq 0

)
�,(204b)

where σ3 denotes the Pauli matrix
(1

0
0

−1

)
and [∗,∗] is the commutator [A,B] =

AB − BA. The compatibility condition for this overdetermined system is that
q = q(s) satisfy Painlevé II q ′′ = sq + 2q3 and r = q ′(s). This is a repre-
sentation of the Lax-pair for Painlevé II equation introduced by Flaschka and
Newell [26].

Any solution of (204a) is an entire function of ζ . Let Sj , j = 1, . . . ,6 denote
the sectors

Sj =
{
ζ ∈ C :

2j − 3

6
π < arg(ζ ) <

2j − 1

6
π

}
,(205)

and let �j denote the outwardly oriented boundary rays (see Figure 9)

�j =
{
ζ ∈ C : arg(ζ ) = 2j − 1

6
π

}
.(206)

There exists a unique solution �j of (204a) such that

�j = I + O
(
ζ−1) as ζ → ∞ in Sj ,(207)

and constants aj , j = 1, . . . ,6 such that for ζ ∈ �j

�j+1(ζ ) = �j(ζ )

(
1 0

aj e
−2i((4/3)ζ 3+sζ ) 1

)
, j odd,

(208)

�j+1(ζ ) = �j(ζ )

(
1 aj e

2i((4/3)ζ 3+sζ )

0 1

)
, j even.

FIG. 9. The contours �j and regions Sj defining �(ζ, s).
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Additionally, the constants aj satisfy

aj+3 = aj , a1a2a3 + a1 + a2 + a3 = 0.(209)

The parameters aj depend parametrically on s, q and r ; in [26] Flaschka and
Newell showed that the isomonodromic deformations, that is, the variations of
these parameters that keep the Stokes multipliers aj constant, are given by solu-
tions of the Painlevé II equation q ′′(s) = sq + 2q(s)3 and r(s) = q ′(s).

Our particular interest is in the Hastings–McLeod solution of Painlevé II [32],
which is the unique solution such that

q(s) = Ai(s)
(
1 + o(1)

)
as s → ∞,

(210)

q(s) ∼
√

− s

2
as s → −∞.

Let �(ζ ; s) be the solution of (204a) with parameters s, q = q(s) and r = q ′(s),
where q(s) is the Hastings–McLeod solution, and let P denote the set of poles of
q (of which there are infinitely many). Then �(ζ, s) is defined and analytic for
ζ ∈ C \ (C1 ∪ C2) and s ∈ C \ P . It is known that there are no poles of q on the
real line [32]. The Stokes multiplier for the Hastings–McLeod solution are

a1 = 1, a2 = 0, a3 = −1.(211)

If we reverse the orientation of �3 and �4 and define C1 = �1 ∪ �3 and C2 =
�4 ∪ �6 (see Figure 10), then �(ζ ; s) solves the following RHP:

RIEMANN–HILBERT PROBLEM 10.1 (PII MODEL RHP). Find a 2 × 2 ma-
trix �(ζ ; s) with the following properties:

(1) �(ζ ; s) is an analytic function of ζ for ζ ∈ C \ (C1 ∪ C2).
(2) �(ζ ; s) = I + O(ζ−1) as ζ → ∞ and bounded as ζ → 0.
(3) The boundary values �±(ζ ; s) satisfy the jump conditions⎧⎪⎪⎪⎨

⎪⎪⎪⎩
�+(ζ ; s) = �−(ζ ; s)

(
1 0

e2iθPII 1

)
, ζ ∈ C1,

�+(ζ ; s) = �−(ζ ; s)
(

1 −e−2iθPII

0 1

)
, ζ ∈ C2,

(212)

FIG. 10. The contours defining RHP 10.1 related to the Hastings–McLeod solution of Painlevé II.
The contours can be deformed to the dashed lines without changing the problem statement.
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where

θPII = θPII(ζ, s) = 4
3ζ 3 + sζ .(213)

We make two observations which we will need later. First, the symmetries
−C1 = C2 and θPII(−ζ, s) = −θPII(ζ, s) imply that the solution �(ζ, s) of
RHP 10.1 satisfies the symmetry

�(−ζ, s) = σ1�(ζ, s)σ1, σ1 :=
(

0 1
1 0

)
.(214)

The second fact is that � admits a uniformly expansion in the limit as ζ → ∞ as
described in [23]. Specifically, we have

�(ζ ; s) = I + ψ1(s)

ζ
+ ψ2(s)

ζ 2 + ψ3(s)

ζ 3 + O
(
ζ−4).(215)

The error term O(ζ−4) here depends on s. For our purpose, we need the depen-
dence on s for s bounded below. An analysis similar to Section 6 of [23] shows
that given s0 > 0, there exists a constant c0 > 0 such that

�(ζ ; s) = I + ψ1(s)

ζ
+ ψ2(s)

ζ 2 + ψ3(s)

ζ 3 + O
(

e−c0|s|3/2

ζ 4

)
.(216a)

The moments ψj(s) can be calculated recursively from inserting the expansion
into (204b). The first three moments are

ψ1(s) = 1

2i

[−u(s) q(s)

−q(s) u(s)

]
,

ψ2(s) = 1

(2i)2

[ 1
2u(s)2 − 1

2q(s)2 q(s)u(s) − q ′(s)
q(s)u(s) − q ′(s) 1

2u(s)2 − 1
2q(s)2

]
,(216b)

ψ3(s) = 1

(2i)3

[
α(s) −β(s)

β(s) −α(s)

]
,

where

u(s) =
∫ s

∞
q(ξ)2 dξ,(216c)

α(s) = q(s)2u(s)

2
− u(s)3

6
+ logF(s)2 −

∫ s

∞
q ′(ξ)2 dξ,(216d)

β(s) = q ′(s)u(s) − q(s)

(
s + q(s)2

2
+ u(s)2

2

)
.(216e)

We note that the asymptotic analysis of the RHP for the Painlevé equation implies
that for a given s0 > 0,

ψj(s) = O
(
e−c0|s|3/2)

, j = 1,2,3,(217)

where c0 can be taken as the same constant in the error term of (216a).
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