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Previous algorithms for constructing regression tree models for longitu-
dinal and multiresponse data have mostly followed the CART approach. Con-
sequently, they inherit the same selection biases and computational difficul-
ties as CART. We propose an alternative, based on the GUIDE approach, that
treats each longitudinal data series as a curve and uses chi-squared tests of the
residual curve patterns to select a variable to split each node of the tree. Be-
sides being unbiased, the method is applicable to data with fixed and random
time points and with missing values in the response or predictor variables.
Simulation results comparing its mean squared prediction error with that of
MVPART are given, as well as examples comparing it with standard linear
mixed effects and generalized estimating equation models. Conditions for
asymptotic consistency of regression tree function estimates are also given.

1. Introduction. A regression tree model is a nonparametric estimate of a re-
gression function constructed by recursively partitioning a data set with the values
of its predictor X variables. CART [Breiman et al. (1984)] is one of the oldest
algorithms. It yields a piecewise-constant estimate by recursively partitioning the
data using binary splits of the form X ≤ c if X is ordinal, and X ∈ A if X is cat-
egorical. The impurity of a node t of the tree is defined as the sum of squared
deviations i(t) = ∑

(y − ȳt )
2, where ȳt is the sample mean of response variable

Y in t and the sum is over the y values in t . The split of t into subnodes tL and
tR that maximizes the reduction in node impurity i(t) − i(tL) − i(tR) is selected.
Partitioning continues until either the X or the y values are constant in a node, or
the node sample size is below a pre-specified threshold. Then the tree is pruned
with the help of an independent test sample or by cross-validation and the subtree
with the lowest estimated mean squared error is selected.

Several attempts have been made to extend CART to longitudinal and multire-
sponse data, often by using likelihood-based functions as node impurity measures.
The earliest attempt for longitudinal data seems to be Segal (1992), which uses the
likelihood of an autoregressive or compound symmetry model. If values are miss-
ing from the Y variable, parameter estimation is performed by the EM algorithm.
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Computational difficulties in estimating the covariance matrices limit the method
to data observed at equally-spaced time points. Abdolell et al. (2002) follow the
same approach, but use a likelihood-ratio test statistic as the impurity function.

Zhang (1998) extends the CART approach to multiple binary response vari-
ables, assuming there are no missing values in the Y variable. It uses as impurity
function the log-likelihood of an exponential family distribution that depends only
on the linear terms and the sum of second-order products of the responses. Zhang
and Ye (2008) extend this idea to ordinal responses by first transforming them to
binary-valued indicator functions. Again, the approach is hindered by the compu-
tational difficulties of having to compute covariance matrices at every node.

De’ath (2002) avoids the covariance computations by following the CART
algorithm exactly except for two simple modifications: the sample mean is re-
placed by the d-dimensional sample mean and the node impurity is replaced by
i(t) = ∑d

k=1 ik(t), where ik(t) is the sum of squared deviations about the mean
of the kth response variable in t . The algorithm is implemented in the R pack-
age MVPART [De’ath (2012)]. Larsen and Speckman (2004) adopt the same ap-
proach, but use the Mahalanobis distance as node impurity, with covariance matrix
estimated from the whole data set.

In a different direction, Yu and Lambert (1999) treat each longitudinal data vec-
tor as a random function or trajectory. Instead of fitting a longitudinal model to
each node, they first reduce the dimensionality of the whole data set by fitting each
data trajectory with a low-order spline curve. Then they use the estimated coeffi-
cients of the basis functions as multivariate responses to fit a regression tree model,
with the mean coefficient vectors as predicted values and standardized squared er-
ror as node impurity. They recover the predicted trajectory in each node by re-
constituting the spline function from the mean coefficient vector. They mention as
an alternative the use of principal component analysis to reduce the data dimen-
sion and then fitting a multivariate regression tree model to the largest principal
components.

A major weakness of CART is that its selection of variables for splits is biased
toward certain types of variables. Because a categorical X with m unique values
allows (2m−1 − 1) splits of the data and an ordinal X with n unique values al-
lows (n − 1) splits, categorical variables with many unique values tend to have
an advantage over ordinal variables in being selected [Loh and Shih (1997), Shih
(2004), Strobl, Boulesteix and Augustin (2007)]. This weakness is inherited by all
multivariate extensions of CART, including MVPART [Hsiao and Shih (2007)].
Further, because reductions in node impurity from splitting are based on observa-
tions without missing values, variables with fewer missing values are more likely
to yield larger reductions (and hence be selected for splitting) than those with more
missing values; see Section 5 below.

GUIDE [Loh (2002)] avoids selection bias by replacing CARTs one-step
method of simultaneously selecting the split variable X and split set with a two-
step method that first selects X and then finds the split set for the selected X. This
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approach makes it practicable for GUIDE to fit a nonconstant regression model in
each node.

The goal of this article is to extend GUIDE to multivariate and longitudinal re-
sponse variables. Section 2 briefly reviews the GUIDE variable selection method
for univariate response variables. Section 3 extends it to multivariate responses and
longitudinal data observed at fixed time points. The procedure is illustrated with
an application to a data set on the strength and viscosity of concrete. Section 4
compares the selection bias and prediction accuracy of our method with MVPART
in a simulation study. Section 5 deals with the problem of missing values, which
can occur in the predictor as well as the response variables. We propose a solution
and apply it to some data on the mental health of children that are analyzed in
Fitzmaurice, Laird and Ware (2004) with a generalized estimating equation (GEE)
approach. Section 6 further extends our method to longitudinal data with random
time points. We illustrate it with an example on the hourly wages of high school
dropouts analyzed in Singer and Willett (2003) with linear mixed effect (LME)
models. Section 7 compares the prediction accuracy of our method with that of
GEE and LME models in a simulation setting. Section 8 applies the ideas to simul-
taneously modeling two longitudinal series from a study on maternal stress and
child illness analyzed in Diggle et al. (2002) with GEE logistic regression. Sec-
tion 9 gives conditions for asymptotic consistency of the multivariate regression
tree function estimates and Section 10 concludes the article with some remarks.

2. Univariate GUIDE algorithm. The GUIDE algorithm for a univariate re-
sponse variable Y can fit a linear model in each node using one of several loss func-
tions. For our purposes here, it suffices to review the algorithm for least-squares
piecewise-constant models. The key idea is to split a node with the X variable
that shows the highest degree of clustering in the signed residuals from a constant
model fitted to the data in the node. If a predictor variable X has no effect on the
true regression mean function, a plot of the residuals versus X should not exhibit
systematic patterns. But if the mean is a function of X, clustering of the signed
residuals is expected.

To illustrate, consider some data generated from the model Y = X2
1 + ε, with

X1 and X2 independent U(−1.5,1.5), that is, uniformly distributed on the interval
(−1.5,1.5), and ε independent standard normal. Since the true regression function
does not depend on X2, a piecewise-constant model should split on X1 only. This
is easily concluded from looking at plots of Y versus X1 and X2, as shown in
Figure 1. In the plot of Y versus X1, the positive residuals are clustered at both ends
of the range of X1 and the negative residuals near the center. No such clustering is
obvious in the plot of Y versus X2.

GUIDE measures the degree of clustering by means of contingency table chi-
squared tests. In each test, the values of X are grouped into a small number of
intervals (indicated by the vertical dashed lines in Figure 1), with the groups form-
ing the rows and the residual signs forming the columns of the table. The end
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FIG. 1. Plots of Y versus X1 and X2 from data generated from the model Y = X2
1 + ε. The hori-

zontal line marks the sample mean of Y .

points are computed such that each interval has approximately the same number
of observations if X is uniformly distributed (see Algorithm 3.1 below for the def-
initions). Table 1 shows the table counts and the chi-squared p-values for the data
in Figure 1. If X is a categorical variable, its values are used to form the rows of
the table.

GUIDE selects the variable with the smallest chi-squared p-value to split the
node. Because the sample size in a node decreases with splitting, the p-values
are approximate at best. Their exact values are not important, however, as they
serve only to rank the variables for split selection. Similar p-value methods have
been used in classification tree algorithms, for example, F-tests [Loh and Shih
(1997)] and permutation tests [Hothorn, Hornik and Zeileis (2006)]. One benefit
from using p-values is lack of selection bias, at least for sufficiently large sample
sizes. This is due to the p-values being approximately identically distributed if all
the X variables are independent of Y .

After a variable is selected, the split set is found by exhaustive search to max-
imize the reduction in the sum of squared residuals. A side (but practically im-
portant) benefit is significant computational savings over the CART method of

TABLE 1
Contingency tables of X1 and X2 versus signs of residuals. Chi-squared

p-values are 0.005 and 0.404, respectively

− + − +
−∞ < X1 ≤ −0.84 5 17 −∞ < X2 ≤ −0.73 9 16
−0.84 < X1 ≤ −0.16 16 12 −0.73 < X2 ≤ 0.01 14 11
−0.16 < X1 ≤ 0.51 17 10 0.01 < X2 ≤ 0.75 9 16
0.51 < X1 < ∞ 6 17 0.75 < X2 < ∞ 12 13
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searching for the best split set for every X. The procedure is applied recursively to
construct an overly large tree. Then the tree is pruned using cross-validation as in
the CART algorithm and the subtree with the smallest cross-validation estimate of
mean squared error is selected.

3. Multiple response variables. We motivate our extension of GUIDE to
multiple response variables with an analysis of some data on the strength and vis-
cosity of concrete [Yeh (2007)] taken from the UCI Machine Learning Repository
[Asuncion and Newman (2007)]. There are 103 complete observations on seven
predictor variables (cement, slag, fly ash, water, superplasticizer (SP), coarse ag-
gregate and fine aggregate, each measured in kg per cubic meter) and three re-
sponse variables (slump and flow, in cm, and 28-day compressive strength in Mpa).
Slag and fly ash are cement substitutes. Slump and flow measure the viscosity of
concrete; slump is the vertical height by which a cone of wet concrete sags and
flow is the horizontal distance by which it spreads. The objective is to understand
how the predictor variables affect the values of the three response variables jointly.

Fitting a separate multiple linear regression model to each response is not en-
lightening, as the results in Table 2 show. Cement, fly ash, water and coarse aggre-
gate are all significant (at the 0.05 level) for strength. The signs of their coefficients
suggest that strength is increased by increasing the amounts of cement and fly ash
and decreasing that of water and coarse aggregate. Since no variable is significant
for slump, one may be further tempted to conclude that none is important for its
prediction. This is false, because a linear regression for slump with only water and
slag as predictors finds both to be highly significant. The problem is due to the
design matrix being quite far from orthogonal (see Figure 2). Therefore, it is risky
to interpret each regression coefficient by “holding the other variables constant.”
Besides, the main effect models are most likely inadequate anyway. Inclusion of
interaction terms, however, brings on other difficulties, such as knowing which

TABLE 2
Separate linear regression models, with p-values less than 0.05 in italics

Slump Flow Strength

Estimate p-value Estimate p-value Estimate p-value

(Intercept) −88.525 0.66 −252.875 0.47 139.782 0.052
Cement 0.010 0.88 0.054 0.63 0.061 0.008
Slag −0.013 0.89 −0.006 0.97 −0.030 0.352
Fly ash 0.006 0.93 0.061 0.59 0.051 0.032
Water 0.259 0.21 0.732 0.04 −0.233 0.002
SP −0.184 0.63 0.298 0.65 0.10 0.445
CoarseAggr 0.030 0.71 0.074 0.59 −0.056 0.045
FineAggr 0.039 0.64 0.094 0.51 −0.039 0.178
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FIG. 2. Plots of pairs of predictor variables for concrete data.

terms and of what order to add, which makes interpretation even more challeng-
ing.

Instead of controlling for the effects of other variables by means of an equation,
a regression tree model achieves a similar goal by dividing the sample space into
partitions defined by the values of the variables, thus effectively restricting the
ranges of their values. Figure 3 shows three GUIDE tree models, one for each
response variable, with predicted values beneath the terminal nodes. We see that
less slag and more water yield larger values of slump, more water yields larger
values of flow, and higher amounts of cement and fly ash produce the strongest
concrete. Although it is easier to interpret the tree structures than the coefficients
of the linear models, it is still nontrivial to figure out from the three trees how the
variables affect the response variables jointly. For example, the trees show that (i)
slump is least when slag > 137, (ii) flow is least when water ≤ 182 and slag > 66,
and (iii) strength is greatest when cement > 317 and fly ash > 115. We may thus
conclude that the intersection of these conditions yields the strongest and least
viscous concrete. But there are no observations in the intersection.

A single tree model that simultaneously predicts all three responses would not
have these difficulties. Ideally, such an algorithm would produce compact trees
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FIG. 3. Univariate GUIDE models for predicting slump (left), flow (middle) and strength (right) of
concrete. At each node, a case goes to the left subnode if and only if the stated condition is satisfied.
The predicted value is in italics below each terminal node.

with high predictive accuracy and without variable selection bias. The main hurdle
in extending GUIDE to multiple response variables is unbiased variable selection.
Once this problem is solved, the rest of the method follows with a simple modifi-
cation to the node impurity function.

Lee (2005) proposes one extension, applicable to ordinal X variables only, that
fits a GEE model to the data in each node. It classifies each observation into one
of two groups according to the sign of its average residual, d−1 ∑d

k=1 ε̂ik , where
ε̂ik is the residual of the ith observation for the kth response variable. Then a two-
sample t-test is performed for each X and the one with the smallest p-value is
selected to split the node. The split point is a weighted average of the X values in
the two groups. If the smallest p-value exceeds a pre-specified threshold, splitting
stops.

Lee’s solution is deficient in several respects. First, the p-value threshold is hard
to specify, because it depends on characteristics of the data set, such as the number
and type of variables and the sample size. Second, it is inapplicable to categorical
predictor variables. Third, it is inapplicable to data with missing predictor or re-
sponse values. Finally, for the ultimate goal of clustering the response vectors into
groups with similar patterns, classifying them into two groups by the signs of their
average residuals is potentially ineffective, because two response vectors can have
very dissimilar patterns and yet have average residuals with the same sign.

A more effective extension can be obtained by working with the residual sign
vectors instead. Let (Y1, Y2, . . . , Yd) be the d response variables. At each node, we
fit the data with the sample mean vector and compute the residual vectors. Since
each residual can have a positive or nonpositive sign, there are 2d possible patterns
for the residual sign vector. To determine if a predictor variable X is independent
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of the residual pattern, we form a contingency table with the sign patterns as the
columns and the (grouped, if X is not categorical) values of X as the rows and find
the p-value of the chi-squared test of independence. Specific details are given in
the algorithm below. Other aspects of the method are the same as in the univariate
GUIDE, except for the node impurity function being the sum of (normalized, if
desired) squared errors.

ALGORITHM 3.1. Split variable selection at each node t :

(1) Find ȳ = (ȳ1, . . . , ȳd), where ȳk is the mean of the nonmissing values of the
kth response variable in t .

(2) Define the sign vector Z = (Z1,Z2, . . . ,Zd) such that Zk = 1 if Yk > ȳk and
Zk = −1 if Yk ≤ ȳk . If Yk is missing, the user can choose either Zk = 1 or
Zk = −1 (default), with the same choice used for all nodes.

(3) Main effect tests. Do this for each X variable:
(a) If X is not categorical, group its values into m intervals. Let x̄ and s denote

the sample mean and standard deviation of the nonmissing values of X

in t . If the number of data points is less than 5 × 2d+2, set m = 3 and
define the interval end points to be x̄ ± s

√
3/3. Otherwise, set m = 4 and

define the interval end points as {x̄, x̄ ± s
√

3/2}.
(b) If X is categorical, use its categories to form the groups.
(c) Create an additional group for missing values if X has any.
(d) Form a contingency table with the 2d patterns of Z as columns and the

X-groups as rows, and compute the p-value of the chi-squared test of
independence.

(4) If the smallest p-value is less than 0.05/d , select the associated X variable
and exit.

(5) Otherwise, do these interaction tests for each pair of variables Xi,Xj :
(a) If Xi is noncategorical, split its range into two intervals Ai1 and Ai2 at its

sample mean. If Xi is categorical, let Aik denote the singleton set contain-
ing its kth value. Do the same for Xj .

(b) Define the sets Bk,m = {(xi, xj ) :xi ∈ Aik, xj ∈ Ajm}, for k,m = 1,2, . . . .
(c) Form a contingency table with the Z patterns as columns and {Bk,m} as

rows and compute its p-value.
(6) If the smallest p-value from the interaction tests is less than 0.05/{d(d − 1)},

select the associated pair of predictors.
(7) Otherwise, select the X with the smallest main effect p-value from step (4).

The value of m in step (3)(a) is chosen to keep the row-dimension of the table as
small as possible without sacrificing its ability to detect patterns. The interval end
points are chosen so that if X has a uniform distribution, each interval has roughly
the same number of observations. If d = 1, these definitions reduce to those in the
univariate GUIDE algorithm [Loh (2009), page 1716].
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TABLE 3
Contingency table formed by cross-tabulating residual signs vs. water groups

Z1 − − − − + + + +
Z2 − − + + − − + +
Z3 − + − + − + − +

Water ≤ 185.5 5 16 0 0 1 4 6 2
185.5 < Water ≤ 208.8 6 2 1 0 4 1 14 13
Water > 208.8 3 2 1 1 0 0 13 8

If a noncategorical variable is selected in step (4), the split X ≤ c is found by
searching over all midpoints c of consecutive order statistics to minimize the total
sum of squared deviations of the the two subnodes. If X is a categorical variable,
the search for a split of the form X ∈ A can be computationally daunting if X takes
many values. To obtain a quick but approximate solution, we create a classification
variable from the Z patterns in each node and then use the method described in
Loh [(2009), the Appendix] for classification trees to find the set A. We also use
the procedures in Loh (2009) to find the split set if a pair of variables is selected in
step (6).

For the concrete data, the values of each X variable are grouped into three
intervals. Table 3 shows the contingency table formed by the residual signs and
the groups for water, which has the smallest chi-squared p-value of 8 × 10−5.
The top half of Figure 4 shows the tree model after pruning by ten-fold cross-
validation. We will use the description “multivariate GUIDE” to refer to this
method from now on. Predicted values of the response variables are shown by
the heights of the bars in the figure. The strongest and most viscous concrete is
obtained with water ≤ 182 kg/m3 and coarse aggregate ≤ 960 kg/m3. This is con-
sistent with these two variables having negative coefficients for strength in Ta-
ble 2. The tree model also shows that the combination of water > 182 kg/m3,
cement > 180 kg/m3 and fly ash > 117 kg/m3 yields concrete that is almost as
strong but least viscous. Thus, it is possible to make strong concrete with low
or high viscosity. The combination predicting concrete with the least strength
is water > 182 kg/m3 and cement ≤ 180 kg/m3. The MVPART [De’ath (2012)]
model is shown in the bottom half of Figure 4. Its first split is the same as that of
GUIDE, but the next two splits are on slag.

To compare the prediction accuracy of the methods, we first normalize the val-
ues of the three response variables to have zero mean and unit variance and then
apply leave-one-out cross-validation to estimate their sum of mean squared predic-
tion errors of the pruned trees, where the sum is over the three response variables.
The results are quite close, being 1.957, 2.097 and 2.096 for univariate GUIDE,
multivariate GUIDE and MVPART, respectively. As we will see in the next sec-
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FIG. 4. Multivariate GUIDE (top) and MVPART (bottom) models for the concrete data. Sample
sizes are beneath and predicted values (slump, flow and strength, resp.) are on the left of each node.
Barplots show the predicted values in the terminal nodes of the trees.
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tion, univariate trees tend to have lower prediction error than multivariate trees if
the response variables are uncorrelated and higher prediction error when the latter
are correlated. In this example, slump and flow are highly correlated (cor = 0.91)
but each is weakly correlated with strength (−0.22 and −0.12, resp.). Thus, there
is a cancellation effect.

4. Selection bias and prediction accuracy. We carried out some simulation
experiments to further compare the variable selection bias and prediction accuracy
of GUIDE and MVPART. To show the selection bias of MVPART, we took the
concrete data as a population distribution and drew bootstrap samples from it of
the same size (n = 103). Then we randomly permuted the values in each predictor
variable to render it independent of the response variables. An unbiased algorithm
now should select each variable with the same probability 1/7 = 0.143 to split the
root node. The left panel of Figure 5 shows the estimated selection probabilities
for GUIDE and MVPART from 5000 simulation trials. The estimates for GUIDE
are all within two simulation standard errors of 1/7 but those of MVPART are not:
they are roughly proportional to the number of unique values of the variables in
the data, namely, 80, 63, 58, 70, 32, 92 and 90 for cement, slag, fly ash, water, SP,
coarse aggregate and fine aggregate, respectively.

To demonstrate the bias of MVPART toward selecting variables with more split
sets, we added two independent predictor variables, C2 and C20, where Ck denotes
a multinomial variable with equal probabilities on k categories. Variable C2 allows
only one split but variable C20 has 219 − 1 = 524,287 splits. An unbiased method

FIG. 5. Estimated probabilities (based on 5000 simulation trials) that each predictor variable is
selected to split the root node when all are independent of the response variables. Standard errors are
less than 0.005. Variable Ck is multinomial with equal probabilities on k categories. The horizontal
line marks the level for unbiased selection.
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now should select each variable with probability 1/9 = 0.111. The results, based
on 5000 simulation trials, are shown in the right panel of Figure 5. GUIDE is again
essentially unbiased (within simulation error), but MVPART selects C20 more than
86% of the time and C2 only 10 out of 5000 times.

To compare the prediction accuracies of MVPART and univariate and multivari-
ate GUIDE, we use three simulation scenarios, with each having seven predictor
variables and three response variables. The values of the response variables are
generated by the equation Yk = μk + ε, k = 1,2,3, where the ε are independent
normal variables with mean 0 and variance 0.25. The three scenarios are as fol-
lows:

(μ1,μ2,μ3) = (X1,X2,X3),(4.1)

(μ1,μ2,μ3) = (X1 + X2,X1 + X2,X1 + X2),(4.2)

(μ1,μ2,μ3) =
{

(1,−1,0), X1X2 > 0,
(0,0,1), X1X2 ≤ 0.

(4.3)

Scenarios (4.1) and (4.2) are standard linear regression models. Univariate GUIDE
should be most accurate in scenario (4.1), because each mean response depends on
a different predictor variable. The same may not be true for scenario (4.2), where
a multivariate regression tree may be able to utilize the joint information among
the response variables. Scenario (4.3) has a piecewise-constant tree structure, but
it can be challenging due to the absence of main effects.

Two simulation experiments were performed. In the first experiment, vari-
ables X1, . . . ,X7 are mutually independent U(−0.5,0.5). For each scenario, 100
training samples are generated in each simulation trial and a pruned regression
tree model (using the CART pruning method) constructed by each method. One
hundred independent test values (X1j ,X2j , . . . ,X7j ), j = 1, . . . ,100, are gener-
ated to evaluate the models. Let (μ1j ,μ2j ,μ3j ) denote the mean response val-
ues for the j th test sample, (μ̂1j , μ̂2j , μ̂3j ) denote their predicted values, and
MSE = ∑100

j=1
∑3

i=1(μ̂ij − μij )
2/100 denote the estimated mean squared error.

The upper half of Table 4 shows the average values of MSE and their standard
errors over 1000 simulation trials. The average numbers of terminal nodes are also
shown (for the univariate GUIDE method, this is the sum of the number of terminal
nodes of the separate trees). As expected, univariate GUIDE is more accurate than
the multivariate tree methods in scenario (4.1), where the means are unrelated.
On the other hand, multivariate GUIDE is more accurate in scenarios (4.2) and
(4.3) because it can take advantage of the relationships among the response vari-
ables. The accuracy of MVPART is close to that of multivariate GUIDE, except in
scenario (4.3), where it has difficulty detecting the interaction effect. The higher
accuracy of multivariate GUIDE here is due to the interaction tests in step (5) of
Algorithm 3.1.
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TABLE 4
Estimated mean squared error (MSE) and number of terminal nodes (Nodes) using 100 training
samples in 1000 simulation trials. Standard errors of MSE in parentheses. “Univariate GUIDE”

refers to the model with a separate tree for each response variable

Univariate GUIDE Multivariate GUIDE MVPART

Scenario MSE × 102 Nodes MSE × 102 Nodes MSE × 102 Nodes

X1, . . . ,X7 are independent U(−0.5,0.5)

(4.1) 14.1 (0.1) 5.7 21.9 (0.1) 3.4 22.2 (0.1) 3.1
(4.2) 35.1 (0.2) 8.3 24.2 (0.2) 4.5 22.3 (0.2) 4.5
(4.3) 33.0 (0.5) 11.8 12.3 (0.4) 4.2 68.8 (0.7) 2.7

X1, . . . ,X6 are N(0,V ), X7 is independent U(−0.5,0.5)

(4.1) 47.2 (0.3) 13.7 156.0 (0.7) 6.4 128.4 (0.6) 13.0
(4.2) 198.0 (1.2) 22.5 206.1 (1.4) 6.3 158.2 (1.2) 10.9
(4.3) 48.0 (0.6) 11.3 15.5 (0.5) 4.4 68.2 (0.8) 3.6

In the second experiment, we generated (X1, . . . ,X6) as multivariate normal
vectors with zero mean and covariance matrix

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 r r 0 0
0 1 0 0 r r

r 0 1 r 0 0
r 0 r 1 0 0
0 r 0 0 1 r

0 r 0 0 r 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and r = 0.5. Thus, (X1,X3,X4) is independent of (X2,X5,X6). As in the previ-
ous experiment, X7 is independent U(−0.5,0.5). The results, given in the bottom
half of the table, are quite similar to those in the first experiment, except in scenario
(4.1), where MVPART has lower MSE than multivariate GUIDE, and in scenario
(4.2), where univariate GUIDE has lower MSE than multivariate GUIDE. Notably,
the average number of terminal nodes in the MVPART trees is about twice the av-
erage for multivariate GUIDE in these two scenarios. The larger number of nodes
suggest that the trees may be splitting on the wrong variables more often. But
because these variables are correlated with the correct ones and because of the
effectiveness of pruning, the MSEs are not greatly increased.

5. Missing values. Missing values in the predictor variables do not present
new challenges, as the method in univariate GUIDE can be used as follows [Loh
(2009)]. If X has missing values, we create a “missing” group for it and carry out
the chi-squared test with this additional group. Besides allowing all the data to be
used, this technique can detect relationships between the missing patterns of X and
the values of the response variables.
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The search for a split set for a categorical X with missing values is no different
from that for a categorical variable without missing values, because missing values
are treated as an additional category. But if X is noncategorical and has missing
values, we need to find the split point and a method to send cases with missing val-
ues through the split. For the first task, all splits at midpoints between consecutive
order statistics of X are considered. All missing X values are temporarily imputed
with the mean of the nonmissing values in the node. Because the sample mean
usually belongs to the node with the greater number of observations, this typically
sends the missing values to the larger node. The best among these splits is then
compared with the special one that sends all missing values to one node and all
nonmissing values to the other, and the one yielding the greater impurity reduction
is selected.

Our approach to split selection is different from that of MVPART, which uses
the CART method of searching for the split that maximizes the reduction in total
sum of squared errors among the observations nonmissing in the split variable. As
a consequence, MVPART has a selection bias toward variables with fewer missing
values. This can be demonstrated using the procedure in Section 4, where we take
bootstrap samples of the concrete data and randomly permute its predictor values.
Figure 6 shows the selection probabilities before and after 80% of the values in
FineAggr are made randomly missing, based on 5000 simulation trials. Variations
in the GUIDE probabilities are all within three simulation standard errors of 1/7,
but those of MVPART are not. More importantly, there is a sharp drop in the se-
lection probability of FineAggr due to missing values.

FIG. 6. Estimated probabilities (from 5000 simulation trials) of variable selection when all vari-
ables are independent of the response variables. Standard errors are less than 0.005. The horizontal
line marks the probability for unbiased selection.
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Missing values in a univariate response variable do not cause problems, because
those observations are routinely omitted. But if the response is multidimensional,
it is wasteful to omit an observation simply because one or more responses are
missing, as MVPART and the methods of Abdolell et al. (2002) and Zhang (1998)
require. Segal (1992) allows missing responses in longitudinal data, but only if the
variable is continuous, is observed at equally-spaced time points, and the data in
each node are fitted with an autoregressive or compound symmetry model. In our
approach, if there are missing values in some but not all response variables, step (2)
of Algorithm 3.1 takes care of them by giving the user the choice of Zk = −1 or
Zk = 1 for missing Yk . For split set selection, we compute the mean response for
each Yk from the nonmissing values in the node and the sum of squared errors
from the nonmissing Yk values only.

To illustrate these ideas, consider a data set from a survey of the mental health
of 2501 children, analyzed in Fitzmaurice, Laird and Ware (2004), Section 16.5.
One purpose of the survey was to understand the influence of parent status (single
vs. not single) and child’s physical health (good vs. fair or poor) on the prevalence
of externalizing behavior in the child. Each child was assessed separately by two
“informants” (a parent and a teacher) on the presence or absence (coded 1 and 0,
resp.) of delinquent or aggressive externalizing behavior. All the parent responses
were complete, but 1073 children (43%) did not have teacher responses.

For child i, let Yij = 1 if the j th informant (where j = 1 refers to parent and
j = 2 to teacher) reports externalizing behavior, and Yij = 0 otherwise. Assuming
that the Yij are missing at random and the covariance between the two responses is
constant, Fitzmaurice et al. use a generalized estimating equation (GEE) method
to simultaneously fit this logistic regression model to the two responses:

log
{
P(Yij = 1)/P (Yij = 0)

} = β0 + β1x1ij + β2x2ij + β3x3ij + β13x1ij x3ij .

Here x1ij = 1 if j = 1 and 0 otherwise, x2ij = 1 if the parent is single and 0
otherwise, and x3ij = 1 if the child’s health is fair or poor and 0 otherwise.

Table 5 shows the estimated coefficients from Fitzmaurice, Laird and Ware
(2004), page 438. It suggests that a report of externalizing behavior is more likely

TABLE 5
Estimated GEE model for children’s mental health data, from Fitzmaurice,

Laird and Ware (2004), page 438

Variable Estimate SE Z

Intercept −1.685 0.100 −16.85
Parent informant (X1) −0.467 0.118 −3.96
Single parent status (X2) 0.611 0.108 5.68
Fair or poor child health (X3) 0.146 0.135 1.08
Informant × child health (X1X3) 0.452 0.157 2.87
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FIG. 7. Multivariate GUIDE tree model for children’s mental health data. A case goes to the left
branch at each intermediate node if and only if the condition on its left is satisfied. Sample sizes are
given beneath the terminal nodes. The barplots below them give the proportions of parents (P) and
teachers (T) reporting externalizing behavior and the proportions missing teacher responses.

if the informant is a teacher or the parent is single. The significant interaction im-
plies that the probability is further increased if the informant is a parent and the
child has fair or poor health.

The multivariate GUIDE model, using Zk = −1 for missing Yk values in step (2)
of Algorithm 3.1, is shown in Figure 7. It splits first on child health and then
on single parent status. (The model using Zk = 1 for missing Yk splits first on
single parent status and then on child health, but its set of terminal nodes is the
same.) The barplots below the terminal nodes compare the predicted proportions
(means of Yij ) of the parents and teachers who report externalizing behavior and
the proportions of missing teacher responses. The interaction effect in the GEE
model can be explained by the barplots: parent reports of externalizing behavior
are less frequent than teacher reports except when the child’s health is not good
and the parent is not single. The main effect of single parent status is also clear:
both parent and teacher reports are more frequent if the parent is single. Further,
children of single parents are more likely to be missing teacher reports. Figure 8
shows the MVPART tree, which splits only once, on single parent status. One
reason for its brevity is that it ignores data from the 1073 children that do not have
teacher responses.

6. Longitudinal data. Algorithm 3.1 is directly applicable to longitudinal
data as long as they are observed on a fixed grid and the number of grid points is
small. Since these conditions may be too restrictive, we show here how to modify
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FIG. 8. MVPART tree model for children’s mental health data. A case goes to the left branch at each
intermediate node if and only if the condition on its left is satisfied. Sample sizes are given beneath
the terminal nodes. The barplots give the proportions of parents (P) and teachers (T) reporting
externalizing behavior and the proportions missing teacher responses in the terminal nodes. The
model uses only the cases with nonmissing response values.

the algorithm for broader applicability. To motivate and explain the changes, con-
sider a longitudinal study on the hourly wage of 888 male high school dropouts
(246 black, 204 Hispanic, 438 white), whose observation time points as well as
their number (1–13) varied across individuals. Singer and Willett [(2003), Sec-
tion 5.2.1] fit a linear mixed effect (LME) model to the natural logarithm of hourly
wage (wage) to these data. They choose the transformation partly to overcome
the range restriction on hourly wage and partly to satisfy the linearity assumption.
Their model is

E log(wage) = β0 + β1hgc+ β2exper+ β3black+ β4hisp

+ β5exper× black+ β6exper× hisp(6.1)

+ b0 + b1exper,

where hgc is the highest grade completed, exper is the number of years (to the
nearest day, after labor force entry), black = 1 if a subject is black and 0 other-
wise, hisp= 1 if a subject is Hispanic and 0 otherwise, and b0 and b1 are subject
random effects. The fixed-effect estimates in Table 6 show that hgc and exper

TABLE 6
Fixed-effect estimates for linear mixed effect model (6.1) fitted to high school dropout data

Value Std. error DF t-value p-value

(Intercept) 1.382 0.059 5511 23.43 0.000
hgc 0.038 0.006 884 5.94 0.000
exper 0.047 0.003 5511 14.57 0.000
black 0.006 0.025 884 0.25 0.804
hisp −0.028 0.027 884 −1.03 0.302
exper × black −0.015 0.006 5511 −2.65 0.008
exper × hisp 0.009 0.006 5511 1.51 0.131
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are statistically significant, as is the interaction between exper and black. The
main and interaction effects of hisp are not significant.

Let Yij denote the response of the ith subject at the j th observation time uij .
To render Algorithm 3.1 applicable to varying numbers and values of uij , we first
divide the range of the uij values into d disjoint intervals, U1,U2, . . . ,Ud , of equal
length, where d is user selectable. Then we replace steps (1) and (2) of the algo-
rithm with these two steps:

(1) At each node, apply the lowess [Cleveland (1979)] method to the data points
(uij , Yij ) to estimate the mean of the Yij values with a smooth curve S(u).

(2) Define Zk = 1 for subject i if the number of observations with Yij >

S(uij ) is greater than or equal to the number with Yij ≤ S(uij ), for uij ∈ Uk ,
k = 1,2, . . . , d . Otherwise, define Zk = −1. (By this definition, Zk = −1 if there
are no observations in Uk .)

With these changes, we can fit a regression tree model to the wage data. Since
our method is not limited by range restrictions on Yij or linearity assumptions,
we fit the model to untransformed hourly wage, using hgc and race as split
variables, exper as the time variable, and d = 3. Figure 9 shows the lowess curve
for the data at the root node and a sample trajectory for each of the eight possible
values of (Z1,Z2,Z3). Figure 10 gives the pruned tree, which has five terminal
nodes. The first split is on race; if race = white, the node is further split
on hgc ≤ 9. Lowess curves for the five terminal nodes are drawn below the tree.

FIG. 9. Trajectories of eight high school individuals. The solid curve is the lowess fit to all the
subjects. The signs in the plot titles are the signed values of (Z1,Z2,Z3), where Zk = 1 if the
number of observations above the lowess curve is greater than the number below the curve in the kth
time interval, and Zk = −1 otherwise.
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FIG. 10. Multivariate GUIDE tree for high school dropout data on top; lowess-smoothed estimates
of mean hourly wage by leaf node on bottom. At an intermediate node, a case goes to the left branch
if and only if the given condition is satisfied; sample sizes are given beneath the terminal nodes.

Contrary to the finding in Singer and Willett [(2003), page 149] that the trajectories
of Hispanic and White subjects cannot be distinguished statistically, we see that
Hispanics tend to have slightly lower hourly wage rates than Whites. In addition,
the slope of the mean trajectory for Blacks with hgc ≤ 9 appears to decrease
after 4 years of experience, contradicting the exponential trend implied by the
logarithmic transformation of wage in the linear mixed model.

7. GEE and LME versus GUIDE. A simulation experiment was performed
to compare the prediction accuracies of GEE, GUIDE and LME. Two simulation
models are used, each with five independent predictor variables, X1,X2, . . . ,X5,
uniformly distributed on (−1,1). Longitudinal observations are drawn at d equally
spaced time points, u = 1,2, . . . , d , with d = 10. The models are

Yu = 1 + X1 + X2 + 2X1X2 + 0.5u + b0 + b1u + εu(7.1)

and

Yu = 2.5I (X1 ≤ 0) + 0.5u + b0 + b1u + εu,(7.2)

where b0 ∼ N(0,0.52) and b1 ∼ N(0,0.252) are random effects, εu is standard
normal, and all are mutually independent. The fitted model in both cases is

Yu = β0 + β1X1 + β2X2 + · · · + β5X5 + β6u + b0 + b1u + εu
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TABLE 7
Estimated mean squared errors for LME, GEE and GUIDE with standard errors

LME GEE GUIDE

Model (7.1) 1.00 ± 0.01 1.12 ± 0.01 1.27 ± 0.03
Model (7.2) 0.49 ± 0.01 0.60 ± 0.01 0.12 ± 0.01

and the parameters, β0, β1, . . . , β6, are estimated using the R packages lme4 [Bates
(2011)] and geepack [Yan, Højsgaard and Halekoh (2012)] for LME and GEE,
respectively, with GEE employing a compound symmetry correlation structure.
Model (7.1) is almost perfect for LME and GEE except for the interaction term
and model (7.2) is almost perfect for GUIDE except for the terms linear in u.

For each simulation trial, a training set of two hundred longitudinal data series
are generated from the appropriate simulation model. Estimates f̂ (u, x1, x2, . . . ,

x5) of the conditional mean E(yu|x1, x2, . . . , x5) are obtained for each method on a
uniform grid of m = 65 = 7776 points (xi1, xi2, . . . , xi5) ∈ (−1,1)5 and the mean
squared error

MSE = (dm)−1
m∑

i=1

d∑
u=1

{
f̂ (u, xi1, xi2, . . . , xi5) − E(yu|xi1, xi2, . . . , xi5)

}2

recorded. Table 7 shows the average values of the MSE and their estimated stan-
dard errors from 200 simulation trials. There is no uniformly best method. LME
is best in model (7.1) and GUIDE is best in model (7.2). Because it makes fewer
assumptions, GEE has a slightly higher MSE than LME in both models.

8. Time-varying covariates and multiple series. Our approach requires all
predictor variables to be fixed with respect to time. An example where there is
a time-varying covariate is the Mothers’ Stress and Children’s Morbidity study
reported in Alexander and Markowitz (1986) and analyzed in Diggle et al. (2002),
Chapter 12. In this study, the daily presence or absence of maternal stress and
child illness in 167 mother-child pairs was observed over a four-week period. The
children ranged in age from 18 months to 5 years. Time-independent variables,
measured at the start of the study, are mother’s marital and employment status
(both binary), education level and health (both ordinal with 5 categories), child’s
race and sex (both binary), child’s health (ordinal with 5 categories) and household
size (3 or fewer vs. more than 3 people). Diggle et al. (2002) use GEE logistic
regression models to answer the following questions:

(1) Is there an association between mother’s employment and child illness?
(2) Is there an association between mother’s employment and stress?
(3) Does mother’s stress cause child illness or vice versa?
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FIG. 11. Average and smoothed frequencies of mother’s stress by employment and child health.

For predicting child illness, their GEE model shows that day (since enrollment),
mother’s marital status, child’s health and race, and household size are statistically
significant, but mother’s employment is not. Our method gives a trivial tree with
no splits after pruning, suggesting that no variable other than day has predictive
power. For predicting mother’s stress, their GEE model finds that day, mother’s
health, marital status and education, child’s health, household size and the interac-
tion between day and employment are significant. Our pruned tree has two termi-
nal nodes, separating children that have very good health from those that do not.
Figure 11 shows plots of the observed and lowess-smoothed mean frequencies of
mother’s stress, grouped by mother’s employment status (left) and by child health
as found by our tree model (right). The curves defined by employment cross over,
lending support to the significance of the day-employment interaction effect found
in the GEE model. The large separation between the two curves defined by child’s
health, on the other hand, indicates a large main effect.

On the third question of whether mother’s stress causes child’s illness or vice
versa, Diggle et al. (2002) find, by fitting GEE models with lagged values of stress
and illness as additional predictors, that the answer can be both. They conclude that
there is evidence of feedback, where a covariate both influences and is influenced
by a response. Instead of trying to determine which is the cause and which is the
effect, we fit a regression tree model that simultaneously predicts mother’s stress
and child’s illness by concatenating the two series into one long series with 56 ob-
servations. Choosing d = 8 (four intervals each for stress and illness), we obtain
the results in Figure 12, which shows that mother’s health and household size are
the most important predictors. The plots below the tree confirm that mother’s stress
(dashed curves) and child’s illness (solid curves) vary together. More interesting
is that the two responses do not decrease monotonically with time. In particular,
when mother’s health is fair or worse and household size is three or less, the fre-
quencies of mother’s stress and child’s illness tend to decrease together in the first
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FIG. 12. Multivariate GUIDE model for simultaneously predicting maternal stress and child
health. A case goes to the left branch at each intermediate node if and only if the condition on
its left is satisfied. The number beneath each terminal node is the sample size. The plots below the
tree show the observed and smoothed daily mean frequencies of mother’s stress and child’s illness.

half and increase together in the second half of the study period. This behavior is
ruled out by the GEE model of Diggle et al. (2002). We are thus reminded that
the statistical significance of the terms in a parametric model always depends on
the model being correctly specified. If the specification is correct, the parametric
approach will often possess greater sensitivity; otherwise important features of the
data may be undetected.

9. Asymptotic consistency. We give some conditions for asymptotic consis-
tency of the regression function estimates, as the training sample size increases, for
multiresponse and longitudinal data models. The conditions generalize those for
univariate responses in Chaudhuri et al. (1994, 1995), Chaudhuri and Loh (2002)
and Kim et al. (2007). We assume that there is a true regression function g(x, u),
where x is a vector of predictor variable values in a compact set, u is the ob-
servation time in a compact set U , and supu,x |g(x, u)| < ∞. The training data
consist of vectors (yij ,xi , uij ), i = 1, . . . ,M and j = 1, . . . ,mi , where yij is the
observed response of subject i at time uij ∈ U , xi is the corresponding x value,
and yij = g(xi , uij ) + εij . The εij ’s are assumed to have zero mean, constant (fi-
nite) variance and to be independent of uij for all i and j . This setup applies to
the multiresponse model as well, because it can be treated as a longitudinal model
with fixed time points. Let N = ∑M

i=1 mi denote the total number of data points
and let TN denote the collection of terminal nodes of a regression tree obtained by
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partitioning the data by its x values. Given (x∗, u∗), let t∗ denote the terminal node
containing x∗.

9.1. Multiresponse and longitudinal data with fixed time points. Assume that
U is a finite set. Let δ(TN) = mint∈TN ,u∈U |{(i, j) : xi ∈ t, uij = u}| denote the
smallest number of data points per time point across all terminal nodes. Define
I ∗
N = {(i, j) : xi ∈ t∗, uij = u∗} and let kN denote the number of elements in I ∗

N .
Assume further that the following conditions hold:

(A1) The εij are mutually independent for all i and j .

(A2) δ(TN)
P→ ∞ as N → ∞.

(A3) For each u ∈ U , supt∈TN
supx1,x2∈t |g(x1, u) − g(x2, u)| P→ 0 as N → ∞.

Condition (A2) ensures that there are sufficient observations in each terminal node
for consistent estimation. Condition (A3) requires the function to be sufficiently
smooth; it implies that for each u ∈ U , g(x, u) is uniformly continuous w.r.t. x
in each t ∈ TN . In other words, (A3) assumes that the partitioning algorithm is
capable of choosing the right splits so that within each node, the mean response
curves are close to each other.

The regression estimate of g(x∗, u∗) is

ĝ
(
x∗, u∗) = k−1

N

∑
(i,j)∈I∗

N

yij

= k−1
N

∑
(i,j)∈I∗

N

{
g(xi , uij ) + εij

}

= k−1
N

∑
(i,j)∈I∗

N

{
g
(
xi , u

∗) + εij

}

by definition of I ∗
N . Therefore,

∣∣ĝ(
x∗, u∗) − g

(
x∗, u∗)∣∣ ≤ k−1

N

∣∣∣∣ ∑
(i,j)∈I∗

N

{
g
(
xi , u

∗) − g
(
x∗, u∗)}∣∣∣∣ + k−1

N

∣∣∣∣ ∑
(i,j)∈I∗

N

εij

∣∣∣∣.
Condition (A3) implies that the first term on the right-hand side of the inequality

converges to zero in probability. Condition (A2) implies that kN
P→ ∞, which

together with the independence and constant variance assumptions on εi imply

that the second term converges to zero as well. Therefore, ĝ(x∗, u∗) P→ g(x∗, u∗)
as N → ∞ at every (x∗, u∗).

9.2. Longitudinal data with random time points. Suppose now that U is a
compact interval and that the uij ’s are random. Let K(u) ≥ 0 be a kernel func-
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tion with bandwidth hN . The estimate of g(x, u) at (x∗, u∗) is

ĝ
(
x∗, u∗) =

∑
xi∈t∗

∑mi

j=1 K{h−1
N (uij − u∗)}yij∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)} .

Let nN denote the smallest number of data points in the terminal nodes of the tree.
Assume that the following conditions hold:

(B1) The uij values are independent and identically distributed and their density
function f (u) is positive everywhere and does not depend on the xi values,
for all i and j .

(B2) supt∈TN
sup{|g(x1, u) − g(x2, u)| :u ∈ U,x1,x2 ∈ t} P→ 0 as N → ∞.

(B3) The density function of uij is positive everywhere in U and:
(i)

∫ |K(u)|du < ∞,
(ii) lim|u|→∞ uK(u) = 0,

(iii) nN
P→ ∞, hN

P→ 0 and nNhN
P→ ∞ as N → ∞.

(B4) The error vectors εi = (εi1, . . . , εimi
)′ are independent between subjects. For

each i, εi has a covariance matrix with elements σijk such that σijk = σ 2 for
j = k and maxi m

−1
i

∑
j �=k σijk ≤ A for some positive constant A.

Condition (B1) ensures that the value of u∗ is not constrained by the value of x∗.
Condition (B2) is a stronger version of (A3) and condition (B3) is a standard re-
quirement for consistency of kernel estimates. Condition (B4) ensures that the cor-
relations between the random errors are small.

Write

ĝ
(
x∗, u∗) − g

(
x∗, u∗)

=
∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}{yij − g(x∗, u∗)}∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}

=
∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}{g(xi , uij ) + εij − g(x∗, u∗)}∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}

=
∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}{g(x∗, uij ) − g(x∗, u∗)}∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}

+
∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}{g(xi , uij ) − g(x∗, uij )}∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}

+
∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}εij∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)}

= J1 + J2 + J3 (say).



REGRESSION TREES 519

Define the local polynomial estimator (which depends on uij ’s but not on the val-
ues of x1, . . . ,xM )

ḡ
(
x∗, u∗) =

∑
xi∈t∗

∑mi

j=1 K{h−1
N (uij − u∗)}g(x∗, uij )∑

xi∈t∗
∑mi

j=1 K{h−1
N (uij − u∗)} .

Then J1 = ḡ(x∗, u∗) − g(x∗, u∗) P→ 0 by condition (B3) [Härdle (1990), page 29]

and J2
P→ 0 by condition (B2).

Note that (NhN)−1 ∑
xi∈t∗

∑mi

j=1 K{h−1
N (uij − u∗)} P→ f (u∗)

∫
K(z)dz, where

f (u) is the density function of the uij . Conditions (B1) and (B4) imply

E

[
(NhN)−1

∑
xi∈t∗

mi∑
j=1

K
{
h−1

N

(
uij − u∗)}

εij

]2

= (NhN)−2
∑

xi∈t∗
σ 2miE

[
K2{

h−1
N

(
ui1 − u∗)}]

+ (NhN)−2
∑

xi∈t∗

[
EK

{
h−1

N

(
ui1 − u∗)}]2 ∑

j �=k

σijk

≤ σ 2N−1h−2
N E

[
K2{

h−1
N

(
ui1 − u∗)}]

+ A(NhN)−2[
EK

{
h−1

N

(
ui1 − u∗)}]2 ∑

xi∈t∗
mi

= σ 2(NhN)−1f
(
u∗) ∫

K2(z) dz + AN−1
{∫

K(z)dz

}2

+ o(1)

→ 0.

It follows that J3
P→ 0 and, hence, ĝ(x∗, u∗) P→ g(x∗, u∗) as N → ∞.

10. Concluding remarks. Previous algorithms for fitting regression trees to
multiresponse and longitudinal data typically follow the CART approach, with
various likelihood-based node impurity functions. Although straightforward, this
strategy has two disadvantages: the algorithms inherit the variable selection bi-
ases of CART and are constrained by computational difficulties due to maximum
likelihood and covariance estimation at every node of the tree.

To avoid these problems, we have introduced an algorithm based on the uni-
variate GUIDE method that does not have selection bias and does not require
maximization of likelihoods or estimation of covariance matrices. Unbiasedness
is obtained by selecting the split variable with contingency table chi-squared tests,
where the columns of each table are defined by the patterns of the data trajectories
relative to the mean trajectory and the rows are defined by the values of a predictor
variable. The mean trajectory is obtained by applying a nonparametric smoother
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to the data in the node. For split set selection and for tree pruning, the node im-
purity is defined as the total, over the number of response variables, of the sum
of (optionally normalized) squared errors for each response variable. Correlations
among longitudinal response values are implicitly accounted for by the smoothing
and the residual trajectory patterns.

Because no assumptions are made about the structure of the model in each node,
it is quite possible that our method is less powerful than other tree methods in
situations where the assumptions required by the latter are satisfied. (These as-
sumptions, such as autoregressive models, are hard to justify because they need
to be satisfied within random partitions of the data.) What we lose in sensitivity,
though, we expect to gain in robustness. Besides, the simplicity of our smooth-
ing and means-based approach lends itself more easily to asymptotic analysis.
Further, as is evident from the longitudinal data examples, plots of the smoothed
mean trajectories in the terminal nodes provide a visual summary of the data that
is more realistic than the necessarily more stylized summaries of parametric or
semi-parametric models.

Our approach should not be regarded, however, as a substitute for parametric
and semi-parametric methods such as GEE and LME for longitudinal data. Be-
cause the latter methods assume a parametric model for the mean response func-
tion, they permit parametric statistical inference, such as significance tests and
confidence intervals, to be performed. No such inference is possible for regression
tree models, as there are no model parameters in the traditional sense. Regression
tree models are simply approximations to the unknown response functions, what-
ever they may be, and are meant for descriptive and prediction purposes. Although
GEE and LME models can be used for prediction too, their constructions are based
on significance tests, unlike tree models which are focused on prediction error. In
applications where the sample size and number of predictor variables are small
and the model is correctly specified, GEE and LME will always be more pow-
erful than tree methods, due to the extra information provided by the parametric
model. But if the sample size or the number of predictor variables is large, it can
be challenging to select the right parametric model. It is in such situations that a
regression tree model can be quite useful because it provides a relatively simple
and interpretable description of the data. The fitted tree model can serve a vari-
able selection purpose as well, by identifying a subset of predictor variables for
subsequent parametric modeling, if desired.

The proposed method is implemented in the GUIDE software which can be
obtained from www.stat.wisc.edu/~loh/guide.html.
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