
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2013, Vol. 49, No. 3, 817–838
DOI: 10.1214/12-AIHP480
© Association des Publications de l’Institut Henri Poincaré, 2013

Scale-free percolation

Maria Deijfena,1, Remco van der Hofstadb,2 and Gerard Hooghiemstrac

aDepartment of Mathematics, Stockholm University, 106 91 Stockholm, Sweden. E-mail: mia@math.se
bDepartment of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

E-mail: rhofstad@win.tue.nl
cDIAM, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands. E-mail: g.hooghiemstra@tudelft.nl

Received 5 July 2011; revised 30 January 2012; accepted 31 January 2012

Abstract. We formulate and study a model for inhomogeneous long-range percolation on Z
d . Each vertex x ∈ Z

d is assigned
a non-negative weight Wx , where (Wx)x∈Zd are i.i.d. random variables. Conditionally on the weights, and given two pa-
rameters α,λ > 0, the edges are independent and the probability that there is an edge between x and y is given by pxy =
1 − exp{−λWxWy/|x − y|α}. The parameter λ is the percolation parameter, while α describes the long-range nature of the model.
We focus on the degree distribution in the resulting graph, on whether there exists an infinite component and on graph distance
between remote pairs of vertices.

First, we show that the tail behavior of the degree distribution is related to the tail behavior of the weight distribution. When the
tail of the distribution of Wx is regularly varying with exponent τ − 1, then the tail of the degree distribution is regularly varying
with exponent γ = α(τ − 1)/d. The parameter γ turns out to be crucial for the behavior of the model. Conditions on the weight
distribution and γ are formulated for the existence of a critical value λc ∈ (0,∞) such that the graph contains an infinite component
when λ > λc and no infinite component when λ < λc. Furthermore, a phase transition is established for the graph distances between
vertices in the infinite component at the point γ = 2, that is, at the point where the degrees switch from having finite to infinite
second moment.

The model can be viewed as an interpolation between long-range percolation and models for inhomogeneous random graphs,
and we show that the behavior shares the interesting features of both these models.

Résumé. Nous définissons et étudions un modèle de percolation inhomogènes à longue portée sur Z
d . A chaque site x ∈ Z

d est
assigné un poids positif Wx , où les (Wx)x∈Zd sont des variables aléatoires indépendantes et identiquement distribuées. Condition-
nellement aux poids et étant donnés deux paramètres α,λ > 0, les arêtes sont indépendantes et la probabilité qu’il existe un lien
entre x et y est pxy = 1 − exp{−λWxWy/|x − y|α}. Le paramètre λ est le paramètre de percolation tandis que α caractérise la por-
tée des interactions. Nous étudierons la distribution des degrés dans le graphe résultant et l’existence éventuelle d’une composante
infinie ainsi que la distance de graphe entre deux sites éloignés.

Nous montrons d’abord que la queue de la distribution des degrés est liée à la queue de la distribution des poids. Quand la queue
de la distribution de Wx est à variation régulière d’indice τ − 1, alors la queue de la distribution des degrés est à variation régulière
d’indice γ = α(τ − 1)/d. Le paramètre γ s’avère crucial pour décrire le modèle. Des conditions sur la distribution des poids et de
γ sont formulées pour l’existence d’une valeur critique λc ∈ (0,∞) telle que le graphe contienne une composante infinie quand
λ > λc et aucune composante infinie quand λ < λc. De plus, une transition de phase est établie pour la distance dans le graphe de
la composante infinie au point γ = 2, c’est à dire au point où les degrés n’ont plus de second moment fini.

Notre modèle peut être vu comme une interpolation entre la percolation à longue portée et des modèles de graphes aléatoires
inhomogènes. Nous montrons qu’il possède les caractéristiques des deux modèles précédents.
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1. Introduction

The field of percolation has been very active the last few decades with important progress on questions concerning for
instance the appearance and uniqueness of an infinite component and the decay of connectivity functions. In parallel,
the area of random graphs has developed from dealing mainly with simple models with little structure to studying
more complex models aimed at describing real-world networks. A particular class of graph models that has received
substantial attention consists of inhomogeneous random graphs, where the edge probabilities are defined in terms of
weights that are associated to the vertices. In the current paper, we combine the above two fields by introducing a
model for spatial inhomogeneous random graphs on Z

d with long-range edges and vertex weights. Many real-world
networks have heavy-tailed degree distributions, which cannot be achieved in the standard long-range percolation
model. Further, in many real-world networks, spatial distance plays an important role, and this geometrical aspect
has so far been neglected in the majority of the random graph literature on the subject. The notion of inhomogeneous
graphs, with i.i.d. vertex weights moderating how attractive vertices are, is a natural and simple way of combining
heavy-tailed degrees with a translation invariant percolation setting. Finally, there are also theoretical reasons for being
interested in the proposed model. Indeed, various types of random processes in random environments have received
substantial recent attention, a typical question being how the randomness in the environment affects the properties of
the process. Our model fits into this framework in that it can be viewed as a graph constructed in a random environment
(for more details, see below).

As for the results, we characterize the degree structure in the graph, determine when there is a non-trivial percola-
tion threshold and prove a phase transition for the graph distance at the point where the variance of the degrees goes
from being finite to infinite. Such a phase transition has already been established for several non-spatial models, and
the fact that it appears also in the presence of spatial influence gives further support to the belief that it is a universal
feature.

We define our model on the lattice Z
d , where the integer d ≥ 1 denotes the dimension. Let each vertex x ∈ Z

d be
equipped with a weight Wx , where (Wx)x∈Zd are independent and identically distributed (i.i.d.). Conditionally on the
weights (Wx)x∈Zd , the edges in the graph are independent and the probability that there is an edge between x and y is
defined by

pxy = 1 − e−λWxWy/|x−y|α (1.1)

for α,λ ∈ (0,∞). We say that the edge (x, y) is occupied with probability pxy and vacant otherwise. The parameter
α > 0 describes the long-range nature of our model, while we think of λ > 0 as a percolation parameter. Naturally, the
model for fixed λ > 0 and weights (Wx)x∈Zd is the same as the one for λ = 1 and (

√
λWx)x∈Zd , so there might appear

to be some redundancy in the parameters of the model. However, we view the the weights (Wx)x∈Zd as creating
a random environment in which we study the percolative properties of the model. Thus, we think of the random
variables (Wx)x∈Zd as fixed once and for all and we change the percolation configuration by varying λ. We can thus
view our model as percolation in a random environment given by the weights (Wx)x∈Zd .

The choice of weight variables

The distribution of the weight variables (Wx)x∈Zd is clearly very important for the properties of the model. When the
weight variables have unbounded support, vertices with very high vertex weight will be present. These vertices play
a special role, as they are much more likely to have a large number of edges emerging from them, that is, vertices
with high weight tend to have high degrees. In many real-world networks, such vertices with high degrees are present.
These form the hubs of the network and often play a crucial role in the functionality of the network. Therefore, we are
particularly interested in settings where the weights are heavy tailed.

Our model has close links both to long-range percolation (arising when Wx ≡ 1 for every x ∈ Z
d ) and to inho-

mogeneous random graphs (arising when we consider the model on a fixed number of vertices {1, . . . , n} and when
|x − y|α in (1.1) is replaced by a simple factor n). We next discuss these models in more detail.
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Long-range percolation

In long-range percolation, in the most common setup, two vertices x, y ∈ Z
d are connected by an edge with a prob-

ability that decays like λ|x − y|−α , for some parameters α,λ > 0, as |x − y| → ∞, and the occupation statuses of
different edges are independent random variables. In d = 1, the percolation properties of the model depend on the
value of α: If α < 1, the graph is almost surely connected [27], if α ∈ (1,2), the graph contains an infinite component
as soon as the nearest-neighbor edge probability is large enough [25] and, if α > 2, the graph contains only finite
components. For α = 2, the behavior is the same as for α ∈ (1,2) when λ > 1 while there are only finite components
when λ < 1; see [1]. Uniqueness of an infinite component in any d ≥ 1 follows from the main result in [18]. In d ≥ 2,
there is a non-trivial critical value, since already the nearest-neighbor connections are sufficient for the possibility of
an infinite component. The attention there focuses on the effect of the long-range connections on the critical behavior
and on the properties of the infinite component.

As for the graph distance in long-range percolation, Benjamini et al. [3] show that d(0, x) is bounded as |x| → ∞
when α < d and Coppersmith et al. [15] show for a version of the model where all nearest-neighbor connections
are present that d(0, x) grows like log |x|/ log log |x| when α = d . Furthermore, conditionally on that 0 and x are in
the infinite component, Biskup [9] shows that d(0, x) grows like (log |x|)Δ for an explicit Δ > 1 when α ∈ (d,2d)

and Berger [5] shows that it grows at least like |x| when α > 2d . We mention also the model by Yukich [30], where
each point x ∈ Z

d is assigned an i.i.d. weight U
−p
x , with Ux uniformly distributed on [0,1] and with the parameter

p ∈ (1/d,∞), and two points x and y are then connected if and only if |x − y| ≤ min{U−p
x ,U

−p
y }. Since U

−p
x ≥ 1,

the graph is connected and Yukich shows that d(0, x) grows at most like log log |x| as |x| → ∞. The model is related
to the Poisson Boolean model on R

d ; see Section 6 for details.

Inhomogeneous random graphs

In inhomogeneous random graphs, the edges are conditionally independent, given some vertex weights. One example
is the Poissonian random graph [26], where each vertex i in a set of n vertices is assigned a random weight Wi and two
vertices i and j are then connected by an edge if a Poisson variable with mean WiWj/

∑n
k=1 Wk takes on a positive

value. We mention also the expected degree model by Chung and Lu [13,14] and the related generalized random
graph [12], which are in the same universality class as the Poissonian random graph model. The asymptotic degree
distributions in these graphs are determined by the distribution of the weights in that, if the weight distribution is
regularly varying, then the degree distribution varies regularly with the same exponent. As for the graph distance, the
above models have all been proved to have a phase transition at the point where the degrees go from having finite to
infinite second moment: The distances grow logarithmically when the degrees have finite second moment, and doubly
logarithmically when the second moment is infinite. This has also been established for the well-known configuration
model [32,33] and for preferential attachment models [16]. It is believed to be true for a large class of random graph
models. Finally, we mention that many of the above models are special cases of the very general model treated in the
seminal paper by Bollobás et al. [11].

Our model interpolates between long-range percolation and inhomogeneous random graphs in that it has both
geometry in a similar way as in long-range percolation, as well as vertex weights, in a similar way as for certain
inhomogeneous random graphs. The main message of this paper is that our model inherits the interesting features of
both models it interpolates between.

Organization and results

This paper is organized as follows. In Section 2, we characterize the tail behavior of the degree distribution. Take the
weight distribution to be regularly varying with exponent τ −1, that is, P(W > w) = w−(τ−1)L(w), where w 	→ L(w)

is slowly varying at infinity (recall that L(w) is slowly varying at infinity if L(wa)/L(w) → 1 as w → ∞ for any
a > 0). We show that the corresponding degree distribution is then regularly varying with exponent γ = α(τ − 1)/d ,
provided that α > d and γ > 1. Note that, when γ > 2, the degrees have finite variance, while when γ ∈ (1,2), the
degrees have finite mean, but infinite variance. Whether the degrees have infinite variance for γ = 2 depends on the
precise shape of the slowly varying function involved. When α ≤ d or γ ≤ 1, it is not hard to see that the model is
degenerate in the sense that all vertices will have infinite degree almost surely; see Theorem 2.1.
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In Sections 3 and 4, the percolation theoretical properties of the model are studied. To this end, we assume that
E[W ] = 1 as soon as the mean weight is finite and view λ > 0 as the percolation parameter. The critical value is
denoted λc. In Section 3, conditions are formulated on the degree distribution that guarantee that λc < ∞ and, in
Section 4, it is shown that λc > 0 if and only if the degrees have finite variance.

Section 5 investigates graph distances between vertices. Let d(x, y) denote the graph distance between x and y,
that is, the minimal number of occupied edges that form a path between x and y. When there is an infinite component
in the graph and 0 and x are both in this component, how does d(0, x) grow with |x|? We show that d(0, x) is at least
of the order log |x| when γ > 2, that is, when the degrees have finite variance, and exactly of the order log log |x|
when γ < 2, that is, when the degrees have infinite variance. This establishes a phase transition at the point where
γ = 2. We improve the lower bound on the distances for γ > 2 in the case where α > 2d to |x|ε for some ε > 0, which
mimics the results for long-range percolation. Indeed, there the distances are polylogarithmic when α ∈ (d,2d) and
polynomial when α > 2d .

The present work gives rise to many interesting further questions and, in Section 6, we give some suggestions.

2. Vertex degrees

Throughout the paper we assume that the edge probabilities (pxy)x,y∈Zd are as in (1.1), where the weights (Wx)x∈Zd

are i.i.d. In this section we relate the tail behavior of the degree distribution in our model to that of the weight
distribution. To this end, assume that the distribution F of the weights (Wx)x∈Zd has a regularly varying tail with
exponent τ − 1, that is, denoting by W a random variable with the same distribution as W0 and by F its distribution
function, we assume that

1 − F(w) = P(W > w) = w−(τ−1)L(w), (2.1)

where w 	→ L(w) is a function that varies slowly at infinity. Write Dx for the degree of x ∈ Z
d and note that, by

translation invariance, Dx has the same distribution as D0.
In this section, we prove two main results. Firstly, we show in Theorem 2.1 that, as soon as the weight of a vertex

is positive, its degree is almost surely infinite when α ≤ d or when both α > d and γ = α(τ − 1)/d ≤ 1. Secondly, in
Theorem 2.2, we show that the degrees have a power-law distribution with exponent γ = α(τ − 1)/d when α > d and
γ > 1.

Theorem 2.1 (Infinite degrees for α ≤ d or γ ≤ 1). Fix d ≥ 1.

(a) If α ≤ d , then P(D0 = ∞|W0 > 0) = 1.
(b) If the weight distribution satisfies

1 − F(w) ≥ cw−(τ−1), w ≥ 0, (2.2)

for some c > 0 and τ > 1 such that γ = α(τ − 1)/d ≤ 1, then P(D0 = ∞|W0 > 0) = 1.

Proof. Denote the minimum (respectively, maximum) of two real numbers x and y by x ∧ y (respectively, x ∨ y).
For x, y ∈ Z

d , recall that (x, y) is occupied if the edge between x and y is present in the graph. Using the bound
1 − e−x ≥ (x ∧ 1)/2, we get

∑
y �=0

P
(
(0, y) occupied|W0 = w

) ≥ 1

2

∑
y �=0

E

[
λwWy

|y|α ∧ 1

]
≥ λw

2

∑
y �=0

E[Wy1{Wy≤|y|αw−1}]
|y|α , (2.3)

where 1A denotes the indicator of the event A. As for (a), just note that clearly E[Wy1{Wy≤|y|αw−1}] → E[W ] as
|y| → ∞, implying that we can bound∑

y �=0

P
(
(0, y) occupied|W0 = w

) ≥ Cw
∑
y �=0

1

|y|α
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for some constant C > 0. If α ≤ d , then the sum in the bound diverges and, since the edges of the origin are inde-
pendent conditionally on W0, it then follows from the Borel–Cantelli lemma that P(D0 = ∞|W0 = w) = 1 for every
w > 0. This implies that P(D0 = ∞|W0 > 0) = 1.

As for (b), we may assume that α > d (since otherwise the conclusion follows from (a)). Note that, if α > d and
the weight distribution satisfies (2.2) with γ = α(τ − 1)/d ≤ 1, then τ ∈ (1,2]. Thus, E[Wy] = ∞ and we obtain that

E[Wy1{Wy≤s}] ≥ C′s2−τ .

Combining this bound with (2.3) yields∑
y �=0

P
(
(0, y) occupied|W0 = w

) ≥ C′′wτ−1
∑
y �=0

1

|y|α(τ−1)
.

By the argument above, we have P(D0 = ∞|W0 > 0) = 1 as soon as γ = α(τ − 1)/d ≤ 1. �

Theorem 2.2 (Power-law degrees for power-law weights). Fix d ≥ 1. Assume that the weight distribution satis-
fies (2.1) with α > d and γ = α(τ − 1)/d > 1. Then, there exists s 	→ �(s) which is slowly varying at infinity such
that

P(D0 > s) = s−γ �(s). (2.4)

Under the assumptions of the theorem, the degrees have finite mean, that is, γ = α(τ − 1)/d > 1. Furthermore, it
is easy to see that, for α > d , finite variance for the weights (i.e., τ > 3) implies finite variance for the degrees (i.e.,
γ > 2). Note however that the variance of the degrees may be finite even if the weights have infinite variance, since
for a given value of τ ∈ (2,3) we have γ > 2 if α is large enough.

In the remainder of this section, we prove Theorem 2.2. Write vd for the volume of the unit ball in R
d and let

	(·) denote the gamma function. The proof of Theorem 2.2 relies on the following characterization of the conditional
expected degree.

Proposition 2.3 (Asymptotic expected vertex degree). Assume that the weight distribution satisfies (2.1) with α > d

and γ > 1. Then∣∣E[D0|W0 = w] − ξwd/α
∣∣ ≤ C,

where ξ = λd/αvd	(1 − d
α
)E[Wd/α], with vd denoting the volume of a d-dimensional unit ball, and C = C(d) is a

constant.

We remark that if γ > 1, then τ − 1 = γ d/α > d/α, so that E[Wd/α] < ∞.

Proof of Proposition 2.3. Observe that, given W0, the degree D0 is a sum of independent indicators and

E[D0|W0 = w] =
∑
y �=0

(
1 − E

[
e−λwWy/|y|α ]) =

∑
y �=0

∫ ∞

0

(
1 − e−λwu/|y|α )dF(u).

We interchange the order of integration and summation and first compute the sum over y �= 0. To this end, write∑
y �=0

(
1 − e−λwu|y|−α ) =

∫
|y|>1

(
1 − e−λwu|y|−α )

dy + E1(u), (2.5)

where E1(u) is an error term that will be estimated below. A change of variables y = (λuw)1/αt yields that∫
|y|>1

(
1 − e−λwu|y|−α )

dy = (uwλ)d/α

∫
|t |>(uwλ)−1/α

(
1 − e−|t |−α )

dt

= (uwλ)d/α

∫
|t |>0

(
1 − e−|t |−α )

dt − E2(u), (2.6)
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where again E2(u) is an error term that will be dealt with below. Converting to polar coordinates followed by partial
integration and finally a change of variables yields that∫

|t |>0

(
1 − e−|t |−α )

dt = vd

∫ ∞

r=0

(
1 − e−r−α )

d
(
rd

) = vd

∫ ∞

r=0
rd d

(
e−r−α )

= −vd

∫ ∞

0
s−d/α d

(
e−s

) = vd	

(
1 − d

α

)
,

for α > d . Hence, provided that E[Wd/α] < ∞, which holds for γ > 1, we obtain

E[D0|W0 = w] = vd	

(
1 − d

α

)∫ ∞

0
(uwλ)d/α dF(u) +

∫ ∞

0

(
E1(u) − E2(u)

)
dF(u)

= ξwd/α +
∫ ∞

0

(
E1(u) − E2(u)

)
dF(u), (2.7)

where ξ = λd/αvd	(1 − d
α
)E[Wd/α].

It remains to bound the error terms. As for E1(u), since 1 − e−c|y|−α
is monotonically decreasing as |y| increases,

we can estimate

0 ≤ E1(u) =
∑
y �=0

(
1 − e−λwu|y|−α ) −

∫
|y|>1

(
1 − e−λwu|y|−α )

dy ≤ vd.

Moving on to E2(u), we have

E2(u) = (uwλ)d/α

∫
|t |≤(uwλ)−1/α

(
1 − e−|t |−α )

dt,

and a similar computation as the one following (2.6) yields

E2(u) = vd

{(
1 − e−uwλ

) + (uwλ)d/α

∫ ∞

uwλ

s−d/αe−s ds

}
.

For a ≤ 1 we have that∫ ∞

z

sa−1e−s ds ≤ za−1
∫ ∞

z

e−s ds = za−1e−z.

With −d/α = a − 1, it follows that

(uwλ)d/α

∫ ∞

uwλ

s−d/αe−s ds ≤ e−uwλ,

and hence 0 ≤ E2(u) ≤ vd . Combining these estimates with (2.7) yields∣∣E[D0|W0 = w] − ξwd/α
∣∣ ≤ vd. �

With Proposition 2.3 at hand we proceed to prove Theorem 2.2.

Proof of Theorem 2.2. We first give a heuristic argument. The tail of the degree distribution is obtained as

P(D0 > s) =
∫

P(D0 > s|W0 = w)dF(w). (2.8)
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It follows from Proposition 2.3 that

E[D0|W0 = w] = ξwd/α + O(1) (2.9)

as w → ∞. Since D0|W0 = w is a sum of independent indicators, it is reasonable to expect that P(D0 > s|W0 = w)

is well approximated by the indicator function

1{E[D0|W0=w]>s} ≈ 1{ξwd/α>s}.

This results in

P(D0 > s) ≈
∫ ∞

(s/ξ)α/d

dF(w) = [1 − F ]((s/ξ)α/d
) = s−α(τ−1)/d�(s),

where s 	→ �(s) is slowly varying at infinity.
To formalize the above, we adapt the proof of [30], Theorem 1.1. First, for fixed s, split the integral in (2.8) into

two parts:∫
P(D0 > s|W0 = w)dF(w) =

∫
I1

P(D0 > s|W0 = w)dF(w) +
∫

I2

P(D0 > s|W0 = w)dF(w), (2.10)

where I1 = [0,m(s)) and I2 = [m(s),∞), and where

m(s) =
(

s − s1/2 log s + O(1)

ξ

)α/d

. (2.11)

Using (2.9) and Bernstein’s inequality, as in [30], Theorem 1.1,

P(D0 > s|W0 = w) ≤ exp

{
− (s − E[D0|W = w])2

2E[D0|W = w] + 4s/3

}
≤ exp

{
− (

√
s log s + O(1))2

2s + 4s/3

}
for w ≤ m(s) and s large. Consequently, for each a > 0,

lim
s→∞ sa

∫
I1

P(D0 > s|W0 = w)dF(w) ≤ lim
s→∞ sae−(3/10)(log s)2(1+o(1)) = 0. (2.12)

This shows that the integral over I1 does not contribute to the possible regular variation of P(D0 > s). In order to
investigate the integral over I2, let Yw denote a random variable with the same distribution as D0|W0 = w, that is,

Yw
d= (D0|W0 = w). (2.13)

The first moment of Yw is characterized in (2.9) and a similar analysis as for the first moment yields

Var(Yw) = ξ ′wd/α + O(1),

where ξ ′ < ξ .
The proof of (2.4) is now completed in a slightly different way than in [30]. Define

G(t) =
∫

w>m(t)

P(Yw > t)dF(w), (2.14)

where the function m is defined by (2.11). Then, (2.12) shows that P(D0 > t) = G(t)+O(t−a) for any a > 0. Clearly,
P(D0 > s) is a monotone function on (0,∞) and hence (2.4) follows if we show that

lim
t→∞

P(D0 > st)

P(D0 > t)
= s−γ ,
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on a dense set A ⊂ (0,∞); see [17], Section VIII.8. By (2.10) and (2.12) this in turn follows if we can deduce that

lim
t→∞

G(st)

G(t)
= s−γ

for s ∈ (0,∞). To this end, we note that, clearly,

G(t) ≤ 1 − F
(
m(t)

)
.

Further, for each ε > 0, we have

G(t) ≥
∫

w>(1+ε)m(t)

P(Yw > t)dF(w) = 1 − F
(
(1 + ε)m(t)

) −
∫

w>(1+ε)m(t)

P(Yw ≤ t)dF(w),

and, by Chebyshev’s inequality and the fact that E[Yw] > t(1 + ε/2) for t > 0 sufficiently large, we obtain that

P(Yw ≤ t) ≤ Var(Yw)

(E[Yw] − t)2
≤ C/(tε) = o(1)

uniformly in w > (1 + ε)m(t) as t → ∞. Hence, since

lim
t→∞

m(ts)

m(t)
= (s/ξ)α/d ,

we arrive at

lim
t→∞

G(ts)

G(t)
= lim

t→∞
1 − F(m(ts))

1 − F(m(t))
= lim

t→∞
1 − F((st/ξ)α/d)

1 − F((t/ξ)α/d)
= s−α(τ−1)/d . �

3. Percolation – finiteness of the critical value

In the following sections, we investigate the percolation properties of our model. We take pxy as in (1.1) where α > 0
is fixed and view λ > 0 as the percolation parameter. When the weights (Wx)x∈Zd have finite mean, we can, without
loss of generality, assume that they are normalized so that E[W ] = 1.

Denote the resulting random graph by G(λ,α) and write x ←→ y to denote the event that there is a path of
occupied edges between x and y in G(λ,α). Denote by C(x) = {y: x ←→ y} the component of x, and by |C(x)| the
number of vertices in C(x). The percolation density is defined as

θ(λ) = P
(∣∣C(0)

∣∣ = ∞)
,

and the critical percolation value λc is defined as

λc = inf
{
λ: θ(λ) > 0

}
.

See [10,19] for general introductions to percolation. It follows from the general uniqueness result in [18] that G(λ,α)

contains almost surely at most one infinite component. Under what conditions on α and on the degree distribution is
there a non-trivial phase transition in the sense that λc ∈ (0,∞)? Note to begin with that it follows from Proposition 2.1
that λc = 0 for α ≤ d or α > d and γ ≤ 1, that is, when α ≤ d or γ ≤ 1 the graph percolates for all λ > 0. Hence we
shall henceforth restrict to the case α > d and γ > 1. The following theorem gives sufficient conditions for λc < ∞
so that the model percolates for large enough λ.

Theorem 3.1 (Finiteness of the critical value). Assume that α > d and that γ > 1.

(a) If P(W = 0) < 1, then λc < ∞ in d ≥ 2.
(b) If α ∈ (1,2] and P(W = 0) < 1, then λc < ∞ in d = 1.
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(c) If α > 2 and the weight distribution satisfies

1 − F(w) ≤ cw−(τ−1), w ≥ 0, (3.1)

for some c > 0 and τ > 1 such that γ = α(τ − 1)/d > 2, then λc = ∞ in d = 1.

In d ≥ 2, we hence have λc < ∞ as soon as the weights are not almost surely equal to 0, while in d = 1, the
behavior is different for α ≤ 2 and α > 2.

The proof of part (a) uses the result from [23] concerning domination of r-dependent random fields by product
measures, where a random field (Xz)z∈Zd is said to be r-dependent if for any two sets A,B ⊂ Z

d at l∞-distance at
least r from each other we have that (Xz)z∈A is independent of (Xz)z∈B . The version we need is as follows.

Theorem 3.2 (Liggett, Schonmann and Stacey (1997)). For each d ≥ 2 and r ≥ 1 there exists a pc = pc(d, r) < 1
such that the following holds. For any r-dependent random field (Xz)z∈Zd satisfying P(Xz = 1) = 1−P(Xz = 0) ≥ p,
with p > pc, the 1’s in (Xz)z∈Zd percolate almost surely.

Theorem 3.2 is formulated in terms of sites rather than edges or bonds. It is a classical result that any bond perco-
lation model can be formulated in terms of a site percolation model, see e.g. [19].

Proof of Theorem 3.1. We begin with (a). Let C0 ⊂ R be the cube with side 2n + 1 centered at the origin and
partition Z

d into cubes defined by translates of C0. Write r = r(n, d) for the largest Euclidean distance between two
vertices in neighboring cubes (that is, in cubes that share a side). Furthermore, for a given cube C in the partition,
let xC ∈ Z

d be the vertex with maximal weight in C, fix w > 0 such that P(W ≥ w) > 0 and say that C is good if
WxC

≥ w. Let Mn be a random variable with the same distribution as WxC
. Note that, if two nearest-neighbor cubes

are both good, then the probability that the edge between their respective vertices with maximal weight is occupied in
G(λ,α) is at least 1 − e−λw2/rα

. Hence it suffices to show that a site-bond percolation model on Z
d where sites are

alive independently with probability P(Mn ≥ w) and edges are added independently between alive nearest-neighbor
vertices with probability 1 − e−λw2/rα

percolates for large n. To this end, say that a vertex z ∈ Z
d is open if it is alive

and if all the 2d edges to its nearest-neighbors are present in the resulting configuration, and let Xz = 1 precisely
when z is open. Note that this defines a 3-dependent random field and that

P(Xz = 1) ≥ P(Mn ≥ w)2d+1(1 − e−λw2/rα )2d
.

The first factor can be made arbitrarily close to 1 by picking n large and the second factor can then be made arbitrarily
close to 1 by taking λ large. Hence, if n is large enough then, by Theorem 3.2, we can make P(Xz = 1) large enough
to guarantee that the open vertices percolates.

Part (b) is a direct consequence of the results proved in [25]: Fix w such that P(W ≥ w) > 0 and say that a
vertex x ∈ Z

d is alive if Wx ≥ w (and dead otherwise). Clearly the edge configuration stochastically dominates a
configuration with independent edges between alive vertices and pxy = 1 − e−λw2/|x−y|α . It is shown in [25] that, for
α ∈ (1,2], this model percolates in d = 1 for large λ.

As for (c), we adapt the argument in [27]. We start by giving the proof when E[W ] < ∞. For x ∈ Z, let Ax be the
event that no vertex y ≤ x is connected to any vertex z > x. The sequence (1Ax )x∈Z is stationary with common mean
P(A0). For n ≥ 1, write A

(n)
0 for the event that none of the n edges (0, n), (−1, n − 1), . . . , (−n + 1,1) is present in

the graph. By the conditional independence of the edges given (Wx)x∈Zd , we have that

P(A0) = E

[ ∞∏
n=1

P
(
A

(n)
0 |(Wx)x∈Z

)]

= E

[
exp

{
−

∞∑
n=1

λ

nα
(W0Wn + · · · + W−n+1W1)

}]
.
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Since e−x is a convex function, it follows from Jensen’s inequality and the fact that (Wx)x∈Z are i.i.d. with mean 1
that

P(A0) ≥ exp

{
−

∞∑
n=1

λ

nα
E[W0Wn + · · · + W−n+1W1]

}
= exp

{
−λ

∞∑
n=1

1

nα−1

}
.

Hence, P(A0) > 0 when α > 2. The ergodic theorem applied to the sequence (1Ax )x∈Z then gives that infinitely many
of the Ax ’s occur almost surely, implying that all components are finite. This completes the proof of part (c) when
E[W ] < ∞.

In the general case, we have that

P(A0) = E

[
exp

{
−λ

∞∑
i,j≥0:(i,j) �=(0,0)

W−iWj

(j + i)α

}]
> 0 (3.2)

precisely when the double sum is finite a.s. We bound

∞∑
i,j≥0:(i,j) �=(0,0)

W−iWj

(j + i)α
≤ Z1Z2, (3.3)

where

Z1 =
∞∑

j=0

Wj

(j ∨ 1)α/2
, Z2 =

∞∑
i=0

W−i

(i ∨ 1)α/2
. (3.4)

The random variables Z1 and Z2 have the same distribution, so that we only need to check that Z1 < ∞ a.s. Then, the
remainder of the proof can be completed as in the case where E[W ] < ∞.

We continue to prove that Z1 < ∞ a.s. when γ > 2. Take ai = i(1+ε)/(τ−1) for some ε > 0. Then, the events
{Wi > ai} occur only finitely often, since

P(Wi > ai) = 1 − F(ai) ≤ ca
−(τ−1)
i = ci−(1+ε), (3.5)

which is summable in i. Then, we split Z1 = Y1 + Y2, where

Y1 ≡
∞∑

j=0

(Wj ∧ aj )

(j ∨ 1)α/2
, Y2 ≡

∞∑
j=1

(Wj − aj )1{Wj >aj }
(j ∨ 1)α/2

. (3.6)

The sum in the definition of Y2 contains only finitely many terms a.s., and is thus finite a.s. Further, note that

E
[
(Wj ∧ x)

] ≤
x∑

y=1

(
1 − F(y)

) ≤ c

x∑
y=1

y−(τ−1) ≤ cy2−τ , (3.7)

and hence

E[(Wj ∧ aj )]
(j ∨ 1)α/2

≤ ca2−τ
j (j ∨ 1)−α/2 ≤ c(j ∨ 1)−α/2+(1+ε)(2−τ)/(τ−1). (3.8)

When γ = α(τ − 1) > 2, we have that −α/2 + (2 − τ)/(τ − 1) < −1. Therefore, we can take ε > 0 so small that
−α/2 + (1 + ε)(2 − τ)/(τ − 1) < −1, which makes Y1 have finite mean. In particular, it is finite a.s. �

4. Percolation – positivity of the critical value

In this section we show that λc > 0 if and only if the degrees have finite variance. We give the proof in two subsections.
First we show that there is no percolation for small λ when the degrees have finite variance and then that there is
percolation for all λ > 0 when the variance of the degrees is infinite.
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4.1. The critical value is positive for finite-variance degrees

Recall from Section 2 that, if the weight tail P(W > w) varies regularly with exponent τ − 1, then the degree tail
P(D0 > s) varies regularly with exponent γ = α(τ − 1)/d . In this section we show that λc > 0 when γ > 2, that is,
when the degrees have finite variance. Recall that we assume throughout that α > d . As pointed out after Theorem 2.2,
finite variance for the weights then implies finite variance for the degrees, but the degrees may have finite variance
also if the weights have infinite variance. We first prove that λc > 0 in the case when the weights have finite variance.
The proof is slightly simpler in that case and gives an explicit lower bound for λc. We then extend the arguments to
cover also the case when γ > 2 but τ ∈ (2,3).

Theorem 4.1 (Positivity of the critical value for finite-variance weights). Assume that E[W 2] < ∞. Then, θ(λ) = 0
for every λ < 1/(E[W 2]∑x �=0 |x|−α), that is,

λc ≥ 1
/(

E
[
W 2]∑

x �=0

|x|−α

)
.

Proof. Since E[W ] = 1 < ∞, every vertex has a.s. bounded degree. As a result, the event {|C(0)| = ∞} implies that,
for every n ≥ 1, there is a path of distinct occupied edges of length at least n starting from the origin. Thus,

θ(λ) = P
(∣∣C(0)

∣∣ = ∞) ≤
∑

(x1,...,xn)

P
(
(0, x1), (x1, x2), . . . , (xn−1, xn) occupied

)
=

∑
(x1,...,xn)

E
[
P
(
(0, x1), (x1, x2), . . . , (xn−1, xn) occupied|(Wx)x∈Zd

)]
,

where the sum is over (x1, . . . , xn) ∈ (Zd)n such that every vertex occurs at most once in the path (0, x1, . . . , xn). We
call such paths self-avoiding paths. By the conditional independence of the edges given the weights, we have that

P
(
(0, x1), (x1, x2), . . . , (xn−1, xn) occupied|(Wx)x∈Zd

) =
n∏

i=1

pxi−1,xi
,

where pxy is defined in (1.1) and, by convention, x0 = 0. Therefore,

θ(λ) ≤
∑

(x1,...,xn)

E

[
n∏

i=1

pxi−1,xi

]
.

We next use the fact that 1 − e−x ≤ x to conclude that

px,y ≤ λWxWy/|x − y|α. (4.1)

It follows that

θ(λ) ≤
∑

(x1,...,xn)

E

[
n∏

i=1

λWxi−1Wxi
/|xi−1 − xi |α

]

= λn
∑

(x1,...,xn)

(
n∏

i=1

1

|xi−1 − xi |α
)

E

[
W0Wxn

n−1∏
i=1

W 2
xi

]
.

Since every vertex occurs at most once in the path (0, x1, . . . , xn) and (Wx)x∈Zd are i.i.d. with mean 1, we have that

E

[
W0Wxn

n−1∏
i=1

W 2
xi

]
= E[W ]2

E
[
W 2]n−1

.
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Further, by translation invariance,

∑
(x1,...,xn)

n∏
i=1

1

|xi−1 − xi |α ≤
(∑

x �=0

1

|x|α
)n

.

As a result,

θ(λ) ≤ E[W ]2

E[W 2]
(

λE
[
W 2]∑

x �=0

1

|x|α
)n

.

Thus, when λ < 1/(E[W 2]∑x �=0 |x|−α), the right-hand side converges to 0 as n → ∞, which implies that θ(λ) = 0.
�

We relax the assumption in Theorem 4.1 to finite variance for the degrees, that is, γ > 2.

Theorem 4.2 (Positivity of the critical value for finite-variance degrees). Assume that there exists τ > 1 and c > 0
such that

1 − F(x) = P(W > x) ≤ cx−(τ−1), x ≥ 0, (4.2)

with γ = α(τ − 1)/d > 2. Then, θ(λ) = 0 for small λ > 0, that is, λc > 0.

Proof. The proof is an adaptation of the proof of Theorem 4.1. Instead of (4.1) we use the bound

px,y ≤ (
λWxWy/|x − y|α ∧ 1

)
.

As a result,

θ(λ) ≤
∑

(x1,...,xn)

E

[
n∏

i=1

(
λWxi−1Wxi

/|xi−1 − xi |α ∧ 1
)]

.

By Cauchy–Schwarz’s inequality and the independence of (Wx)x∈Zd we obtain

E

[
n∏

i=1

(
λWxi−1Wxi

/|xi−1 − xi |α ∧ 1
)]2

≤ E

[�n/2�∏
i=1

(
λWx2i−1Wx2i

/|x2i−1 − x2i |α ∧ 1
)2

]

× E

[�n/2�∏
i=1

(
λWx2i−2Wx2i−1/|x2i−2 − x2i−1|α ∧ 1

)2

]

=
n∏

i=1

E
[(

λWxi−1Wxi
/|xi−1 − xi |α ∧ 1

)2]
.

Therefore,

θ(λ) ≤
∑

(x1,...,xn)

n∏
i=1

g
(|xi−1 − xi |α/λ

)1/2
,
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where we define

g(u) = E
[
(W1W2/u ∧ 1)2].

By translation invariance,

θ(λ) ≤
(∑

x �=0

g
(|x|α/λ

)1/2
)n

.

We continue by investigating the asymptotics of u 	→ g(u) for u → ∞:

Lemma 4.3 (Asymptotics of g). When the distribution function F satisfies (4.2) for some τ > 1, then there exists a
constant C > 0 such that

g(u) ≤ C(1 + logu)u−((τ−1)∧2).

Proof. Let H denote the distribution function of W1W2, where W1 and W2 are two independent copies of a random
variable W with distribution function F . When F satisfies (4.2), then it is not hard to see that there exists a C > 0
such that

1 − H(u) ≤ C(1 + logu)u−(τ−1). (4.3)

Indeed, assume that F has a density f (w) = cw−τ , for w ≥ 1. Then

1 − H(u) =
∫ ∞

1
f (w)[1 − F ](u/w)dw.

Clearly, 1 − F(w) = c′w−(τ−1) for w ≥ 1 and 1 − F(w) = 1 otherwise. Substitution of this yields

1 − H(u) = cc′
∫ u

1
w−τ (u/w)−(τ−1) dw + c

∫ ∞

u

w−τ ≤ C(1 + logu)u−(τ−1).

When F satisfies (4.2), then W1 and W2 are stochastically upper bounded by W ∗
1 and W ∗

2 with distribution function
F ∗ satisfying 1 − F ∗(w) = cw−(τ−1), and the claim in (4.3) follows from the above computation.

Let V = W1W2, so that V has distribution function H . We complete the proof of Lemma 4.3 by bounding

E
[
(V/u ∧ 1)2] ≤ 1 − H(u) + u−2

∫ u

1
2v

[
1 − H(v)

]
dv ≤ C(logu + 1)u−(τ−1)∧2,

where, in the last inequality, we distinguish between the case τ > 3, in which
∫ ∞

0 2v[1 − H(v)]dv < ∞, and τ ∈
(1,3]. �

Lemma 4.3 yields

θ(λ) ≤
(

Cλ(τ−1)/2
∑
x �=0

(
log

(|x|α/λ
) + 1

)1/2|x|−α[(τ−1)∧2]
)n

≤
(

Cλ(τ−1)/4
∑
x �=0

(
log |x|α + 1

)1/2|x|−α[(τ−1)∧2]/2

)n

,

where the last inequality holds when λ < 1 is small enough to ensure that λ(τ−1)/2(1 − logλ) ≤ 1. Now,∑
x �=0(log |x|α + 1)1/2|x|−α[(τ−1)∧2]/2 < ∞ when α[(τ − 1) ∧ 2]/d > 1. Since α > d , for τ < 3 we find as con-
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dition that γ = α(τ − 1)/d > 2. Thus, when λ is also so small that

Cλ(τ−1)/4
∑
x �=0

(
log |x|α + 1

)1/2|x|−α(τ−1)/2 < 1,

we have that θ(λ) = 0. This completes the proof of Theorem 4.2. �

4.2. The critical value is zero for infinite-variance degrees

In this section we will investigate the case when γ < 2, so that the degrees have infinite variance. As we will show,
the critical value equals zero in this case.

Theorem 4.4 (Critical value equals zero for infinite-variance degrees). Assume the existence of τ > 1 and c > 0
such that the weight distribution F satisfies

1 − F(x) = P(W > x) ≥ cx−(τ−1), x ≥ 0. (4.4)

Furthermore, assume that α > d and γ = α(τ − 1)/d < 2. Then, θ(λ) > 0 for every λ > 0, that is, λc = 0.

Proof. Clearly, it suffices to show that θ(λ) > 0 as soon as λ > 0. To this end, write Ck ⊂ R
d for the cube with side

2k + 1 centered at the origin and let Sk = Ck \ Ck−1 (with S1 = C1). Define

Mk = 2−dk/(τ−1) max
y∈Zd∩Sk

Wy.

Then, for small ε > 0, we have

P
(
Mk < 2−εk

) = F
(
2k(d/(τ−1)−ε)

)cd2dk ≤ (
1 − c′2k(ε(τ−1)−d)

)cd2dk ≤ e−c′
d2kε(τ−1)

,

and it follows from a Borel–Cantelli argument that P(Mk ≥ 2−εk for all k ≥ 1) > 0. Now, for k ≥ 1, let xk be the
vertex with maximum weight in Sk , so that Wxk

= 2dk/(τ−1)Mk , and let x0 = 0. Define

E = {
Mk ≥ 2−εk for all k ≥ 1 and (x0, x1) occupied

}
and note that P(E) > 0. We have

P
(∣∣C(0)

∣∣ = ∞) ≥ P(E) · P
(∣∣C(0)

∣∣ = ∞|E)
≥ P(E) · P

(
(xk, xk+1) occupied for all k ≥ 0|E)

≥ P(E) · E

[ ∞∏
k=1

pxk,xk−1

∣∣∣E]

≥ P(E) · E

[ ∞∏
k=1

(
1 − exp

{
− λWxk

Wxk−1

|xk − xk−1|α
})∣∣∣E]

≥ P(E) ·
∞∏

k=1

(
1 − exp

{
−λ22kd/(τ−1)2−2εk

cd2kα

})

= P(E) ·
∞∏

k=1

(
1 − exp

{−λc′
d2k(2d/(τ−1)−α−2ε)

})
.

Then, if γ < 2, we have 2d/(τ − 1) − α > 0 and can hence pick ε > 0 small so that 2d/(τ − 1) − α − 2ε > 0. The
product above is then strictly positive and it follows that P(|C(0)| = ∞) > 0 for all λ > 0, as desired. �
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5. Distances

For x ∈ Z
d , write d(0, x) for the graph distance between 0 and x, that is, d(0, x) is the minimum number of edges

that form a path from 0 to x. If 0 and x are not connected, then we define d(0, x) = ∞. In this section we show that,
conditionally on 0 and x being connected, the distance d(0, x) is of order log log |x| as |x| → ∞ when the degrees
have infinite variance and λ > λc. When the degrees have a finite variance on the other hand, then d(0, x) is at least
of order log |x| when α > d and at least of order |x|ε for some ε > 0 when α > 2d .

5.1. Doubly logarithmic asymptotics for infinite-variance degrees

We start by proving a loglog upper bound when the degrees have infinite variance. Recall from Section 4.2 that, when
the degrees have infinite variance, the graph contains a unique infinite component. Denote this component by C∞.

Theorem 5.1 (Doubly logarithmic upper bound on distances for infinite-variance degrees). Assume that there
exists τ > 1 and c > 0 such that (4.4) holds and such that γ = α(τ − 1)/d ∈ (1,2). Finally, assume that λ > 0. Then,
for every η > 0,

lim|x|→∞ P

(
d(0, x) ≤ (1 + η)

2 log log |x|
| log(γ − 1)|

∣∣0, x ∈ C∞
)

= 1.

In the proof we need the following lemma:

Lemma 5.2. Assume that there exists τ > 1 and c > 0 such that (4.4) holds and such that γ = α(τ − 1)/d ∈ (1,2).
Then, for y ∈ Z

d ,

P(y ∈ C∞|Wy ≥ w) → 1 as w → ∞.

Proof. The proof is an adaption of the proof of Theorem 4.4 and we formulate it for y = 0. Write C1(w) ⊂ R
d for

the cube with side 2w1/α + 1 centered at the origin and, for k ≥ 2, let Ck(w) ⊂ R
d be the cube with side wb(2k + 1)

centered at the origin, where b > 1 will be defined later. Let Sk(w) = Ck(w) \ Ck−1(w), with S1(w) = C1(w), and
define

Mk(w) = (
w2k

)−d/(τ−1) max
y∈Zd∩Sk(w)

Wy.

Then, for small ε > 0,

P
(
Mk < 2−εk

) = F
((

w2k
)d/(τ−1)2−kε

)cdwdb2dk ≤ (
1 − c′w−d2k(ε(τ−1)−d)

)cdwdb2dk ≤ e−c′
dwd(b−1)2kε(τ−1)

,

and hence P(Mk ≥ 2−εk for all k ≥ 1) → 1 as w → ∞ if b > 1. For k ≥ 1, let xk be the vertex with maximum weight
in Sk(w), so that Wxk

= (w2k)d/(τ−1)Mk , and let x0 = 0. Also define

E = {
Mk ≥ 2−εk for all k ≥ 1 and (x0, x1) occupied

}
.

If W0 ≥ w and M1 ≥ 2−ε , then

P
(
(x0, x1) occupied

) ≥ 1 − eλcdwd/(τ−1) → 1 as w → ∞. (5.1)

Hence P(E|W0 ≥ w) → 1 as w → ∞. As in the proof of Theorem 4.4, we obtain that

P
(∣∣C(0)

∣∣ = ∞|W0 ≥ w
) ≥ P(E|W0 ≥ w) · P

(∣∣C(0)
∣∣ = ∞|E)

≥ P(E|W0 ≥ w) ·
∞∏

k=1

(
1 − exp

{−λcd2k(2d/(τ−1)−α−2ε)w2d/(τ−1)−bα
})

.
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Again, if γ < 2, we have 2d/(τ − 1) − α > 0 and can hence pick ε > 0 small so that 2d/(τ − 1) − α − 2ε > 0.
Furthermore, if γ < 2, we can also pick b > 1 such that 2d/(τ − 1) − bα > 0 (just take b ∈ (1,2/γ ). If follows that
P(|C(0)| = ∞|W0 ≥ w) → 1 as w → ∞, as desired. �

Proof of Theorem 5.1. Throughout this proof c1, c2, . . . denote strictly positive constants. Let (Wi)
n
i=1 be an i.i.d.

collection of weight variables. When the weight distribution F satisfies (4.4), it is easy to see that, for any δ ∈ (0,1),
we can bound

P

(
max

1≤i≤n
Wi ≤ n(1−δ)/(τ−1)

)
≤

(
1 − c

n1−δ

)n

≤ e−cnδ

. (5.2)

Take x ∈ Z
d with |x| large and let b ∈ (0,1) be a constant whose value will be specified later. For i = 0,1,2 . . . , write

B̃(x, bi) for the ball with radius |x|bi
/4 centered at the point at distance |x|bi

/2 from 0 on the line segment from 0 to
x, and let zi ∈ Z

d be the (random) vertex in B̃(x, bi) with maximal weight. Define z′
i analogously to zi , but emanating

from x instead of 0, that is, write B̃ ′(x, bi) for the ball with radius |x|bi
/4 centered at the point at distance |x|bi

/2
from x on the line segment from x to 0, and take zi ∈ Z

d to be the vertex in B̃ ′(x, bi) with maximal weight. Note that
z0 = z′

0. We have

P

(
k−1⋃
i=0

{
(zi, zi+1) not occupied

}) ≤
k−1∑
i=0

E
[
e−λWzi

Wzi+1 /|zi−zi+1|α ].
Using (5.2) and the fact that the number of points in Z

d ∩ B̃(x, bi) is of the order |x|dbi
, this can be bounded by

k−1∑
i=0

(
exp

{
−c1|x|dbi (τ−1)−1(1−δ)|x|dbi+1(τ−1)−1(1−δ)

|x|αbi

}
+ exp

{−c|x|δdbi })
,

where the exponent in the first term simplifies to

−c1|x|bi [d(τ−1)−1(1−δ)(1+b)−α].

Fix b ∈ (γ − 1,1), and then take δ small so that d(τ − 1)−1(1 − δ)(1 + b)−α > 0. Using the fact that
∑k−1

i=1 e−|x|bi =
Θ(e−|x|bk−1

) as k → ∞, we can hence bound

P

(
k−1⋃
i=0

{
(zi, zi+1) not occupied

}) ≤ c2 exp
{−c3

(|x|bk−1)c4
}

for large k. By symmetry, the same bound applies to P(
⋃k−1

i=0 {(z′
i , z

′
i+1) not occupied}).

Now fix ε > 0. Take A = A(ε) large so that c2e−c3A
c4 ≤ ε and then choose k such that |x|bk = A, that is,

k = log log |x| + log logA

| logb| .

Then

P
(
both (zi , zi+1) and

(
z′
i , z

′
i+1

)
occupied for all i = 0, . . . , k − 1

) ≥ 1 − 2ε.

On the event that all (zi, zi+1) and (z′
i , z

′
i+1) are occupied, we have that

d(0, x) ≤ 2k + d(0, zk) + d
(
z′
k, x

)
,
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where |zk| ≤ |x|bk ≤ A and similarly |x − z′
k| ≤ A. Furthermore, Lemma 5.2 implies that

P
(∣∣C(z0)

∣∣ = ∞) ≥ 1 − ε if |x| is large.

If the component of z0 = z′
0 is infinite and all (zi , zi+1) and (z′

i , z
′
i+1) are occupied, then also zk, z

′
k ∈ C∞. If also

0 ∈ C∞, we conclude that 0 and zk are in the same component and, since |zk| ≤ A, the graph distance between 0 and
zk is then a proper random variable. Hence, for any κ > 0, we have that P(d(0, zk) ≤ κ log log |x|) ≥ 1 − ε when |x|
is large. Similarly, if x ∈ C∞, we have that P(d(z′

k, x) ≤ κ log log |x|) ≥ 1 − ε when |x| is large. It follows that

lim|x|→∞ P

(
d(0, x) ≤ 2(1 + η/2) log log |x|

| logb|
∣∣∣0, x ∈ C∞

)
≥ (1 − 3ε)(1 − 2ε).

The proof is completed by taking b close enough to γ − 1 to ensure that

1 + η/2

| logb| ≤ 1 + η

| log(γ − 1)| . �

We continue by proving that, for γ ∈ (1,2), typical distances really are of the order log log |x|.

Theorem 5.3 (Doubly logarithmic lower bound on distances for infinite-variance degrees). Assume that there
exists τ > 1 and c > 0 such that (4.4) holds and such that γ = α(τ − 1)/d ∈ (1,2). Finally, assume that λ > 0. Then,
for every η > 0,

lim|x|→∞ P

(
d(0, x) ≥ (1 − η)

2 log log |x|
| log(κ)|

)
= 1,

where κ = γ − 1 when τ ∈ (1,2] and κ = α/d − 1 when τ > 2.

When τ ∈ (1,2], we see that the constants in Theorems 5.1–5.3 agree, so that we obtain convergence in probability:

Corollary 5.4 (Doubly logarithmic distances for infinite-variance degrees and infinite-mean weights). Assume
that there exists τ ∈ (1,2] and c > 0 such that (2.1) holds and such that γ = α(τ − 1)/d ∈ (1,2). Finally, assume that
λ > 0. Then, conditionally on 0 ←→ x, we have for every η > 0 that

d(0, x)

log log |x|
P−→ 2

| log(γ − 1)| .

Proof. By Potter’s Theorem [8], for every ε > 0, there exist constants cε and Cε such that for all x sufficiently large,

cεw
−(τ−1+ε) ≤ 1 − F(w) ≤ Cεw

−(τ−1−ε). (5.3)

The result follows from Theorems 5.1–5.3 and the fact that κ = γ − 1 for τ ∈ (1,2]. �

Proof of Theorem 5.3. Define

Sn(x) = sup
{|x − y|: d(x, y) ≤ n

}
, (5.4)

to be the distance between x and the furthest point y ∈ Z
d that can be reached via at most n edges. Then, clearly,

P
(
d(0, x) ≤ 2n

) ≤ P
(
Sn(x) ≥ |x|/2

) + P
(
Sn(0) ≥ |x|/2

) = 2P
(
Sn(0) ≥ |x|/2

)
, (5.5)

where the last equality follows from translation invariance. Now, for any s ≤ t , we obtain the recursive bound

P
(
Sn(0) ≥ t

) ≤ P
(
Sn−1(0) ≥ s

) + P
(
Sn−1(0) < s,Sn(0) ≥ t

)
, (5.6)
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where, using Boole’s inequality, we can further bound

P
(
Sn−1(0) < s,Sn(0) ≥ t

) = P
(∃u,v, satisfying: |u| ≤ s and |v| ≥ t such thatu ←→ v

)
≤

∑
u,v:|u|≤s,|v|≥t

E[pu,v] ≤
∑

u,v:|u|≤s,|v|≥t

E

[(
λWuWv

|u − v|α ∧ 1

)]

≤
∑

u,v:|u|≤s,|v|≥t

g1

( |u − v|α
λ

)
, (5.7)

where

g1(u) = E

[(
W1W2

u
∧ 1

)]
. (5.8)

It follows quite easily from the statement in Lemma 4.3, that there exists a constant C > 0 such that

g1(u) ≤ C(1 + logu)u−((τ−1)∧1). (5.9)

By a computation, similar to the one in the proof of Proposition 2.3 we find that

P
(
Sn−1(0) < s,Sn(0) ≥ t

) ≤ C
∑

u,v:|u|≤s,|v|≥t

|u − v|−α((τ−1)∧1)
(
1 + log |u − v|α/λ

)
≤ K|s|d |t |d−α[(τ−1)∧1]+η,

where η > 0 may be taken arbitrarily small and compensates the log-term. Recall the definition of κ in the theorem.
Fix A ≥ 1 to be large, and take δ > 0 so that κ − δ ∈ (0,1). Then take t = A(κ−δ)−n

and s = A(κ−δ)−(n−1)
, so that

s = tκ−δ , and

K|s|d |t |d−α[(τ−1)∧1]+η = K|t |d−α[(τ−1)∧1]+(κ−δ)d = K
(
A(κ−δ)−n)−ζ (5.10)

with

ζ = α
[
(τ − 1) ∧ 1

] − d − (κ − δ)d − η > 0, (5.11)

since κ = α[(τ − 1) ∧ 1]/d − 1. Combining (5.6) with these bounds yields the explicit recursion

P
(
Sn(0) ≥ A(κ−δ)−n) ≤ P

(
Sn−1(0) ≥ A(κ−δ)−(n−1)) + K

(
A(κ−δ)−n)−ζ

. (5.12)

As a result we obtain that

P
(
Sn(0) ≥ A(κ−δ)−n) ≤ P

(
S1(0) ≥ A1/(κ−δ)

) +
n∑

k=2

KA−ζ(κ−δ)−k

, (5.13)

which can be made small by choosing A ≥ 1 large enough.

Finally, by (5.5) and when n = (1 − η)
log log |x|
| log(κ)| , then A(κ−δ)−n ≤ |x|/2, and we conclude that P(d(0, x) ≤ 2n) =

o(1). �

5.2. Lower bounds on distances for finite-variance degrees

We begin by establishing a general logarithmic lower bound valid for γ > 2.
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Theorem 5.5 (Logarithmic lower bound on distance for finite variance degrees). Assume that there exists τ > 1
and c > 0 such that (4.2) holds and that γ = α(τ − 1)/d > 2. Then, there exists an η > 0 such that

lim|x|→∞ P
(
d(0, x) ≥ η log |x|) = 1.

Proof. We follow the proof of Theorem 4.2, and obtain

P
(
d(0, x) = n

) ≤
∑

(x1,...,xn−1)

n∏
i=1

g
(|xi−1 − xi |α/λ

)1/2
, (5.14)

where we adopt the convention that x0 = 0 and xn = x. Define

h(x) = (
log |x| + 1

)|x|−α((τ−1)/2∧1)

for x �= 0 and h(0) = 0. Then, using the bound in Lemma 4.3 and the fact that the sum in (5.14) acts like a convolution,
the right-hand side of (5.14) can be bounded by

P
(
d(0, x) = n

) ≤ (
Cλ(τ−1)/2)n

h∗n(x),

where h∗n denotes the n-fold convolution of h with itself. Now, it is easy to see that

h∗n(x) ≤ n
(

sup
y:|y|≥|x|/n

h(y)
)(∑

u �=0

h(u)

)n−1

. (5.15)

Indeed, to see (5.15), we note that

h∗n(x) =
∑

x1+···+xn=x

n∏
i=1

h(xi). (5.16)

When x1 + · · · + xn = x, there must be (at least one) xi with |xi | ≥ |x|/n. We bound that factor by supy:|y|≥|x|/n h(y),
and sum out over the remaining xj for j �= i, noting that sum is now unrestricted.

When n ≤ η log |x|, we can define κ > 0 such that

sup
y:|y|≥|x|/n

h(y) ≤ C′(log |x|)κ |x|−α((τ−1)/2∧1).

Furthermore,
∑

u �=0 h(u) < ∞ when γ = α(τ − 1)/d > 2. As a result, we obtain that

P
(
d(0, x) = n

) ≤ n
(
Cλ((τ−1)/2∧1)

)n(log |x|)κ |x|−α((τ−1)/2∧1),

which is bounded by |x|−ε when n ≤ η log |x| with η > 0 sufficiently small. This is true for any n ≤ η log |x|, so

P
(
d(0, x) ≤ η log |x|) ≤ |x|−ε,

and the proof of Theorem 5.5 is completed. �

We next improve the above result to a polynomial lower bound when α > 2d .

Theorem 5.6 (Polynomial lower bound on distance for finite variance degrees when α > 2d). Assume that there
exists τ > 1 and c > 0 such that (4.2) holds, that γ = α(τ − 1)/d > 2 and that α > 2d . Then, for every ε < d((γ ∧
α/d) − 2)/(1 + d(γ − 1)), we have

lim|x|→∞ P
(
d(0, x) ≥ |x|ε) = 1.
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Proof. We follow the proof of Theorem 5.3, that is, (5.5)–(5.9), and start by investigating P(Sn(0) ≥ t). Now, for
t → ∞ and n = o(t), we bound

P
(
Sn(0) ≥ t

) ≤ P
(
S1(0) ≥ t/n

) +
n−1∑
k=1

P
(
Sk(0) ≤ tk/n,Sk+1(0) ≥ t (k + 1)/n

)

= o(1) +
n−1∑
k=1

∑
u,v:|u|≤tk/n,|v|≥t (k+1)/n

g1
(|u − v|α/λ

)

≤ o(1) + K

n−1∑
k=1

(tk/n)d(t/n)−α[(τ−1)∧1]+d+η ≤ o(1)n1+α[(τ−1)∧1]−d td[(2−γ∧α/d)]+η, (5.17)

where η > 0 can be taken arbitrarily small. This is o(1) when n ≤ tε , where

ε < d
(
(γ ∧ α/d) − 2

)
/
(
1 + d(γ − 1)

)
. (5.18)

According to (5.5), we have

P
(
d(0, x) ≤ 2n

) ≤ P
(
Sn(0) ≥ |x|/2

)
,

and hence P(d(0, x) ≤ |x|ε) = o(1) for every ε satisfying (5.18). �

6. Further work

In this paper, we have studied degrees, percolation and distances in a long-range percolation model with i.i.d. vertex
weights. Using relatively simple tools, we have carved out the phase diagram by identifying appropriate bounds on
degrees, critical values and distances as a function of the model parameters. Our model has power-law degrees, small-
(and even ultra-small-) world behavior, with spatial connections on various spatial scales, and its properties depend
in an intricate way on the number of finite moments of its degree distribution. The model shares many interesting
features of both inhomogeneous random graphs having power-law degrees, and long-range percolation. We remark
that, while we have assumed that the edge probabilities has the precise form in (1.1), it is not hard to see that our
results extend to settings where pxy = h(λWxWy/|x − y|α), for some function x 	→ h(x) for which x/2 ≤ h(x) ≤ x,

whenever x ∈ [0,1]. In the random graph setting, this is established in [11,22].
There are a number of questions about the studied model that deserve further investigation. In this section we

mention some of them.

Distances

We have given a logarithmic lower bound on the graph distance when γ > 2 and α > d , a polynomial lower bound
when γ > 2 and α > 2d , and doubly logarithmic asymptotics when γ < 2. These bounds, though, leave much room
for improvement. When γ ∈ (1,2) and τ > 2, it would be of interest to find the constant in front of the log log |x|. Is
this constant 2/| log(γ − 1)| or 2/| log(α/d − 1)| or something in between? Is the behavior for γ > 2 and α ∈ (d,2d)

really poly-logarithmic, as it is in the deterministic case (see [9], where Biskup proves that distances for long-range
percolation are Θ((log |x|)Δ+o(1)), with Δ = 1/ log2(2d/α))? When γ > 2 and α > 2d , can we identify the exponent
μ such that d(0, x) = |x|μ+o(1) whenever 0 and x are in the infinite component?

Diameter in infinite mean case

In [3], it has been proved that, for long-range percolation with infinite mean degrees (that is, when Wx is constant and
α < d), then the diameter of the infinite component is equal to �d/(d −α)�. The proof crucially relies on the notion of
the stochastic dimension for random relations in the lattice. It would be of interest to investigate whether the diameter
of the infinite component is bounded also in our model when γ = α(τ − 1)/d < 1.
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Critical behavior

The most interesting phenomena in percolation models can be found close to the critical value. A central question is
if the percolation function θ(λ) is continuous. See [19] and [10] for the rich history of this problem. In [4], it is shown
that the percolation function is continuous when α ∈ (d,2d). Is this also true in our model? Further, percolation in
two dimensions has received tremendous attention in the past years, due to the connection to conformal invariance,
see e.g. [28]. In particular, the percolation function is continuous, and many critical exponents are identified on the
triangular lattice. The continuity of the percolation function extends to many finite-range percolation models in d = 2.
Is the percolation function λ 	→ θ(λ) also continuous for our model? Further, how do the critical exponents depend
on the randomness in the medium? In [21], the mean-field behavior of long-range percolation is investigated, and it is
shown that when d > 3((α − d) ∧ 2), the model has mean-field critical exponents. This raises the question what the
upper-critical dimension in the presence of vertex weights is.

Critical behavior on the torus

In random graph theory, there is recently a substantial interest in the critical behavior of inhomogeneous random
graphs of so-called rank-1, that is, the setting of our model on the complete graph. See e.g. [6,7,20,29,31] for the
relevant results. In this setting, we see that the critical behavior when γ > 3 is similar to that of the Erdős–Rényi
random graph as identified in [2], while, for γ ∈ (2,3), it is rather different (see [6,31]). This raises the question
whether also for our inhomogeneous percolation model, the critical behavior is different for γ > 3 and for γ ∈ (2,3).
To best compare the situations of (non-spatial) inhomogeneous random graphs and their spatial counterparts, it would
be useful to examine the setting on a finite torus. Our model on the torus is translation invariant, and has a unique
critical value above which the largest connected component contains a positive proportion of the vertices. It would be
interesting to investigate the critical behavior of this spatial finite inhomogeneous random graph.

Continuum analogues

A continuum analogue of long-range percolation, known as the random connection model, is described in [24]. There,
the vertex set is taken to be the points of a Poisson process on R

d and two vertices x and y are connected by an edge
with a probability given by a function g of their separation |x −y|. An inhomogeneous version of this model is known
as the Poisson Boolean model, or continuum percolation. Each Poisson point x is then assigned a random radius Rx

and two points x and y are connected if |x − y| ≤ Rx + Ry . Results on these models revolve around the existence of
non-trivial critical intensity for the underlying Poisson process. There are no results so far on graph distances. It would
be of interest to study a continuum version of the model in the setting of the current paper. This would constitute an
alternative inhomogeneous formulation of the random connection model.
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