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Abstract. We consider a left-transient random walk in a random environment on Z that will be disturbed by cookies inducing a
drift to the right of strength 1. The number of cookies per site is i.i.d. and independent of the environment. Criteria for recurrence
and transience of the random walk are obtained. For this purpose we use subcritical branching processes in random environments
with immigration and formulate criteria for recurrence and transience for these processes.

Résumé. Nous considérons une marche aléatoire unidimensionnelle en environnement aléatoire qui est transiente à gauche. Cette
marche est modifiée par des cookies qui induisent une dérive vers la droite. Le nombre de cookies par site est i.i.d. et indépendant de
l’environnement. Des critères pour la récurrence et la transience de la marche sont obtenus. Pour cela, nous utilisons des processus
de branchement sous-critiques en environnement aléatoire avec immigration et nous formulons des critères de récurrence et de
transience pour ces processus.
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1. Introduction

We investigate random walks with random transition probabilities. Therefore, set Ω := ([0,1]N)Z with elements
ω = ((ω(x, i))i≥1)x∈Z. Suppose that elements from Ω are chosen at random according to a probability measure P

on Ω with corresponding expectation operator E. For fixed environment ω ∈ Ω and z ∈ Z define a nearest-neighbour
random walk (Sn)n≥0 on a suitable probability space Ω ′ with probability measure Pz,ω , which satisfies:

Pz,ω[S0 = z] = 1,

Pz,ω

[
Sn+1 = Sn + 1|(Sm)1≤m≤n

] = ω
(
Sn,#{m ≤ n: Sm = Sn}

)
,

Pz,ω

[
Sn+1 = Sn − 1|(Sm)1≤m≤n

] = 1 − ω
(
Sn,#{m ≤ n: Sm = Sn}

)
.

In this way ω(x, i) is the transition probability from x to x +1 upon the ith visit at site x. Furthermore let us denote the
so-called annealed or averaged probability measure by Px[·] := E[Px,ω[·]], with corresponding expectation operator
Ex . The process (Sn)n≥0 is called recurrent (transient) if Sn = 0 infinitely often (limn→∞ Sn ∈ {±∞}) P0-a.s.
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Fig. 1. Model of the random walk. If there are cookies at his current position z ∈ Z, the random walker removes one and makes a step to z + 1. If
there is no cookie he jumps to the right with probability pz and to the left with probability qz := 1 − pz .

In the case where for P-a.e. ω there exists a sequence (pz)z∈Z ∈ [0,1]Z such that ω(z, i) = pz for all i ≥ 1, z ∈ Z,
and (pz)z∈Z i.i.d. under P, (Sn)n≥0 is called a one-dimensional random walk in a random environment (RWRE). In
general, we refer the reader to [15,17] for results and information about RWRE, but give here the recurrence/transience
criteria for RWRE found in [15], Theorem (1.7).

Theorem RWRE (Solomon 1975). Consider an RWRE (Sn)n≥0 and assume that 0 ≤ pz < 1 for all z ∈ Z or 0 <

pz ≤ 1 for all z ∈ Z. Let E[logρ0] be well defined, where ρ0 := (1 − p0)p
−1
0 .

(i) If E[logρ0] < 0, then limn→∞ Sn = +∞ P0-a.s.
(ii) If E[logρ0] > 0, then limn→∞ Sn = −∞ P0-a.s.

(iii) If E[logρ0] = 0, then −∞ = lim infn→∞ Sn < lim supn→∞ Sn = ∞ P0-a.s.

We can see that the RWRE is a special case of a multi-excited (cookie) random walk (ERW) with infinitely many
cookies per site. In the ERW-model ω(z, i) is not restricted to be constant in i for all z ∈ Z P-a.s. Excited random
walks go back to the work of Benjamini and Wilson in [6]. Further studies of these processes and an extension to multi-
excited random walks have been made by Zerner in [18,19], by Basdevant/Singh in [4,5] and by Kosygina/Zerner in
[10]. In [18], Theorem 12, Zerner proves the following recurrence and transience criteria.

Theorem ERW (Zerner 2005). Assume that ω ∈ ([1/2,1]N)Z
P-a.s. and (ω(x, ·))x≥0 is stationary and ergodic

under P. Then, (Sn)n≥0 is recurrent if and only if E[∑i≥1(2ω(0, i) − 1)] ≤ 1.

In [10] Kosygina and Zerner discussed an ERW with a bounded number of cookies, i.e. ω(z, i) = 1/2 for all i > K

for all z P-a.s. for some constant K , and showed the following in [10], Theorem 1.

Theorem ERW (Kosygina, Zerner 2008). Let K ∈ N and ω(z, i) = 1/2 for all i > K for all z P-a.s. Assume that
(ω(z, ·))z∈Z is i.i.d., E[∏K

n=1 ω(0, n)] > 0 and E[∏K
n=1 (1 − ω(0, n))] > 0. If δ := E[∑K

n=1 (2ω(0, n) − 1)] ∈ [−1,1]
then (Sn)n≥0 is recurrent. If δ > 1 (δ < −1 respectively) then (Sn)n≥0 is transient to the right (left respectively).

The recurrence and transience criteria for the RWRE and for the ERW seem to be quite different. So the challenging
question arises whether one can find a unifying criterion. In the present paper we begin with a small step in our
undertaking and consider the following combination of these processes which we will call excited random walk in a
random environment (ERWRE for short). For an illustration of the model discussed in this paper see Fig. 1.

Consider an environment (pz)z∈Z ∈ (0,1)Z and put Mz cookies on every integer z ∈ Z. Now a nearest neighbour
random walk (Sn)n≥0 is started at 0 with the following transition probabilities. If the random walker comes to site z

and if there is still at least one cookie on this site, he removes one cookie and jumps to z + 1. Otherwise he makes a
step to the right with probability pz and to the left with probability qz := 1 − pz.

The cookies in our model have maximal strength and induce a drift to the right. On the other hand, an environment
(pz)z∈Z is assumed that makes an RWRE (i.e. without cookies) tend to −∞. So jump- and cookie-environment cause
a drift in opposite directions and the question naturally arises which drift is stronger in certain cases. We found criteria
for transience and recurrence of the process.

Let us define the number of cookies of strength 1 at site x ∈ Z by

Mx := sup
{
i ≥ 1: ω(x, j) = 1 ∀1 ≤ j ≤ i

}
with the convention sup∅ = 0. For further discussions we postulate the following.
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Assumption A.

A.1 It holds P-a.s. that for all x ∈ Z there exists px ∈ (0,1) such that ω(x, i) = px for all i > Mx .
A.2 (pz)z∈Z is identically distributed and {pz,Mz, z ∈ Z} is independent under P.
A.3 E[| log(ρ0)|] < ∞ and E[log(ρ0)] > 0 where ρx := (1 − px)p

−1
x for x ∈ Z.

A.4 P[Mx = ∞] = 0 and P[Mx = 0] > 0 for all x ∈ Z.

Recall that A.3 implies that an RWRE is left-transient, i.e. Sn → −∞ a.s. The goal of this paper is to show the
following recurrence and transience criteria.

Theorem 1.1. Let Assumption A hold and assume that (pz,Mz)z∈Z is i.i.d. and E[p−1
0 ] < ∞.

(i) If E[(logM0)+] < ∞, then limn→∞ Sn = −∞ P0-a.s.
(ii) If E[(logM0)+] = ∞ and if lim supt→∞(t · P[logM0 > t]) < E[logρ0], then Sn = 0 infinitely often P0-a.s.

(iii) If lim inft→∞(t · P[logM0 > t]) > E[logρ0], then limn→∞ Sn = +∞ P0-a.s.

In [4,5,10,18,19] the random walker steps to the right or to the left with equal probability at sites without cookies.
Furthermore, the number of cookies per site is bounded in [4,5,10]. In the case of ERWs in two and higher dimen-
sions, Holmes investigates in [8] the velocity, allowing infinitely many cookies, and discusses a question of “which
drift wins?” for a certain subclass of models, so-called “excited against the tide” walks. Schapira considers in his
unpublished paper [13] a model similar to the one used in this paper, where the cookies induce a positive drift and the
walker gets a negative drift on sites without cookies. But the number of cookies per site is still bounded. The novelty
in our model is that the number of cookies per site is not necessarily bounded and that we allow a random environment
for the transition probabilities on sites without cookies. However, cookies of maximal strength are considered only.

For the proof of Theorem 1.1 a well-known relationship between branching processes and random walks is used.
This method also has been employed in [4,5,10]. In our case we have to deal with a subcritical branching process in a
random environment with immigration and we also intend to prove a recurrence/transience criterion for this process.
As can be seen in our further discussion there is some similarity to random difference equations.

Since the late 1960s several authors worked on branching processes in random environments (BPRE for short), for
example Athreya, Karlin, Smith and Wilkinson in [1,2,14]. In [12] Pakes proved some recurrence/transience criteria
for subcritical branching processes with immigration, but without a random environment. The results presented in our
paper differ from the ones in [12], mainly because of the extension to a random environment, but also if we assumed
fixed environments.

Let us now give the structure of this paper in a few words. Section 2 is dedicated to subcritical branching processes
in random environments with immigration. In Section 3 we consider the model with cookies on the positive integers
only. The process with cookies on the negative integers only will be discussed in Section 4. Finally, Theorem 1.1 is
proven in Section 5 and examples are given for the different cases of this theorem.

2. Transience and recurrence of subcritical branching processes in a random environment with immigration

For information about branching processes in general we refer to [3]. In our paper we deal with the following Smith–
Wilkinson model extended by immigration, see also [2] and [3], VI.5 and VI.7.1:

Definition 2.1. Let Λ denote the set of probability generating functions (p.g.f.) that is isomorphic to the set of prob-
ability distributions on N0 and let ϑ be a probability distribution on N0. Let {ξ (j)

i ,Mn, i, j, n ∈ N} be a family of
N0-valued random variables on a suitable probability space with sample space Λ′ equipped with a set of measures
{Qϕ,ϕ ∈ ΛN} such that for every fixed environment ϕ = (ϕj )j∈N ∈ ΛN the family {ξ (j)

i ,Mn, i, j, n ∈ N} is indepen-

dent, (ξ
(j)
i )i∈N is identically distributed with p.g.f. ϕj for j ∈ N and (Mn)n∈N is identically ϑ -distributed under Qϕ .

We call (Zn)n≥0, defined by Z0 = 1 and

Zn := ξ
(n)
1 + · · · + ξ

(n)
Zn−1

+ Mn

a branching process with immigration.
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Let ν denote a probability measure on Λ and ϕ be randomly chosen according to Q̃ := ⊗Nν on ΛN with corre-
sponding expectation operator Ẽ. Now we define the annealed measure by Q[·] := Ẽ[Qϕ[·]], by EQ its expectation
operator and call (Zn)n≥0 a BPRE with immigration under Q.

In the above definition ξ
(n)
i gives the number of progeny of the ith member of generation n−1, and Mn the number

of immigrants in generation n. All members in a generation reproduce according to the same offspring distribution.
Due to our further discussion, especially in Section 3, we use the same notation for immigrants as for cookies. Note
that (ϕn,Mn)n∈N is identically distributed and {ϕn,Mn,n ∈ N} is independent under Q. Furthermore, we remark that
(Zn)n≥0 is a time-homogeneous Markov chain under Q. In order to speak about recurrence and transience of the
process it is assumed that the BPRE with immigration is irreducible under Q.

Let us set Eϕ for the expectation operator corresponding to Qϕ and μn(ϕ) := Eϕ[ξ (n)
1 ] for the expected number of

offspring produced by a single member of generation n−1. Analogously to the literature, we call (Zn)n≥0 subcritical,
critical or supercritical, if EQ[logμ1] < 0,= or >0 respectively. This is due to the fact that under the first two
assumptions, a BPRE without immigration is mortal, whereas under the third assumption this process can explode,
see [14], Theorem 3.1 or [3], VI. 5.5. Note the analogy to Theorem RWRE(i)–(iii), see also [10], Remark 2.

Let us now give criteria for recurrence and transience of a subcritical BPRE with immigration in Theorems 2.2
and 2.3. We remark that these criteria are similar to the ones for random difference equations found in [9], Theo-
rem 3.1.

Theorem 2.2. Let (Zn)n≥0 be a BPRE with immigration according to Definition 2.1. Suppose that EQ[| log(μ1)|] <

∞, EQ[log(μ1)] < 0, EQ[μ−θ
1 ] < ∞ for some θ > 0 and EQ[Varϕ(ξ

(1)
1 ) · μ−2

1 ] < ∞.
If lim inft→∞(t · Q[logM1 > t]) > EQ[log(μ−1

1 )], then (Zn)n≥0 is transient.

Proof. The proof will be divided into two parts. First, we discuss a random difference equation Xn for n ∈ N0, and
show that Q[⋂n≥1{Xn > n2}] > 0. The second part consists in coupling (Xn)n≥0 and the subcritical BPRE with
immigration in order to show that Qϕ[limn→∞ Zn = ∞] > 0 for Q-a.e. ϕ.

First, let us define some constants. We write

x := EQ

[
log

(
μ−1

1

)]
> 0

and choose c1 < ∞, c2 > 1 and c3 > 1 such that

lim inf
t→∞

(
t · Q[logM1 > t]) > c1 > log c2 + c3x > 0.

Furthermore, let ε ∈ (0, c1 − (log c2 + c3x)) and define

γ := c1

ε + log c2 + c3x
> 1.

We choose 0 < l < 1 such that (1 − l)γ > 1.
In order to make use of a convergence property, set

T := inf

{
k ∈ N: ∀n ≥ k:

1

n

n∑
m=1

logμm ≥ −c3x

}
.

Then, T < ∞ Q-a.s. by the law of large numbers. A result about large deviations under the assumption EQ[μ−θ
1 ] < ∞,

see [7], p. 71, gives

Q

[
n∑

m=1

logμ−1
m > nc3x

]
≤ e−n·c
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for some c > 0. This implies

EQ

[
T 1/l

] =
∑
n≥1

Q[T = n] · n1/l ≤
∑
n≥1

Q

[
n−1∑
m=1

logμ−1
m > (n − 1)c3x

]
· n1/l < ∞. (1)

We begin now with a random difference equation defined by X0 := 0 and

Xn+1 := αn+1Xn + Mn+1,

with αn := μnc
−1
2 < μn. Induction yields

Xn = αn · · ·α2M1 + αn · · ·α3M2 + · · · + αnMn−1 + Mn.

We follow [9] in setting

Wn := M1 + α1M2 + α1α2M3 + · · · + α1 · · ·αn−1Mn

for n ∈ N. Since (ϕ1,M1), . . . , (ϕn,Mn) are exchangeable, the law of Xn and the law of Wn are the same, in particular

Q
[
Xn ≤ n2] = Q

[
Wn ≤ n2] for all n ∈ N. (2)

Our first goal is to show that

Q
[
lim inf
n→∞

{
Xn > n2}] = 1. (3)

Therefore, let us start with a discussion of Wn:

Q
[
Wn ≤ n2] = Q

[
Wn ≤ n2, T ≥ nl

] + Q
[
Wn ≤ n2, T < nl

] ≤ Q
[
T ≥ nl

] + Q
[
Wn ≤ n2, T < nl

]
, (4)

and by definition of αi and T :

Q
[
Wn ≤ n2, T < nl

] ≤ Q

[ ⋂
nl≤i<n

{
Mi+1 ≤ n2(α1 · · ·αi)

−1}, T < nl

]

≤ Q

[ ⋂
nl≤i<n

{
Mi+1 ≤ n2(c2 · ec3x

)i}
, T < nl

]

≤ Q

[ ⋂
nl≤i<n

{
Mi+1 ≤ n2(c2 · ec3x

)i}]

=
∏

nl≤i<n

Q
[
M1 ≤ n2(c2 · ec3x

)i]

= exp

( ∑
nl≤i<n

log
(
1 − Q

[
M1 > n2(c2ec3x

)i]))

≤ exp

(
−

∑
nl≤i<n

Q
[
M1 > n2(c2ec3x

)i])
. (5)

According to lim inft→∞(t · Q[logM1 > t]) > c1, we get for n large enough∑
nl≤i<n

Q
[
M1 > n2(c2ec3x

)i]
>

∑
nl≤i<n

c1

2 logn + i(log c2 + c3 · x)
≥

∑
nl≤i<n

c1

iε + i(log c2 + c3 · x)

≥ γ
(
log(n) − (

log
(
nl

) + 1
))

. (6)
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Thus, combining (5) with (6) yields for n large enough

Q
[
Wn ≤ n2, T < nl

] ≤ e−γ ·log(n1−l ) · eγ ≤ n(l−1)·γ · eγ .

And finally we get by (2) and (4)∑
n≥1

Q
[
Xn ≤ n2] ≤

∑
n≥1

(
Q

[
T 1/l ≥ n

] + Q
[
Wn ≤ n2, T < nl

])
< ∞

since
∑

n≥1 n(l−1)·γ < ∞ and
∑

n≥1 Q[T 1/l ≥ n] ≤ EQ[T 1/l] < ∞, see (1).
Thus, by the Borel–Cantelli Lemma, we obtain (3). This implies

Qϕ

[⋂
n≥1

{
Xn > n2}] > 0 for Q-a.e. ϕ, (7)

since for Q-a.e. ϕ there exist n0 ∈ N and x0 > n2
0 such that Xn0 = x0 and Xn > n2 for each n ≥ n0 + 1 with positive

probability under Qϕ . On the other hand, the assumptions of the theorem give that Xj > j2 for each 1 ≤ j < n0 and
Xn0 ≥ x0 with positive probability.

Our next objective is to couple (Xn)n≥0 and BPRE with immigration. Therefore, recall Definition 2.1 for the
branching process (Zn)n≥0. If we couple these processes, the increments of the difference equation correspond to
the immigrants in the BPRE and the multiplication with αn to the expected number of descents of one individual in
generation n − 1, multiplied by c−1

2 . Our goal is to show that Qϕ[⋂n≥1{Zn ≥ Xn > n2}] > 0 for Q-a.e. ϕ.
We define for n ∈ N0

Bn :=
n⋂

j=1

{Zj ≥ Xj } ∩
⋂
k≥1

{
Xk > k2}.

Then, we get for Q-a.e. ϕ,

Qϕ[Zn < Xn,Bn−1] =
∑

k>(n−1)2

Qϕ[Zn < Xn,Zn−1 = k,Bn−1]

≤
∑

k>(n−1)2

Qϕ

[
μn · k −

k∑
i=1

ξ
(n)
i > (μn − αn) · k,Zn−1 = k,Bn−1

]

=
∑

k>(n−1)2

Qϕ

[
μn · k −

k∑
i=1

ξ
(n)
i >

(
1 − c−1

2

)
μn · k

]
· Qϕ[Zn−1 = k,Bn−1].

Now, Chebyshev inequality implies

Qϕ

[
μn · k −

k∑
i=1

ξ
(n)
i >

(
1 − c−1

2

)
μn · k

]
≤ Varϕ(

∑k
i=1 ξ

(n)
i )

(1 − c−1
2 )2 · μn(ϕ)2 · k2

≤ Varϕ(ξ
(n)
1 )

(1 − c−1
2 )2 · μn(ϕ)2 · k .

Thus, we have

Qϕ[Zn < Xn,Bn−1] <
Varϕ(ξ

(n)
1 )

(1 − c−1
2 )2 · μn(ϕ)2 · (n − 1)2

· Qϕ[Bn−1]



644 E. Bauernschubert

and therefore∑
n∈N

Qϕ[Zn < Xn|Bn−1] < ∞ Q-a.s. (8)

according to assumption EQ[Varϕ(ξ
(1)
1 ) · μ−2

1 ] < ∞ and [11], Theorem 4.2.1. It is easy to see that for all n ≥ 1 and
Q-a.e. ϕ Qϕ[Zn < Xn|Bn−1] < 1. Now we conclude from (7) and (8) that

Qϕ

[⋂
n∈N

{Zn ≥ Xn}
∣∣∣ ⋂
k∈N

{
Xk > k2}] =

∏
n∈N

Qϕ[Zn ≥ Xn|Bn−1] > 0.

Combining this with (7) we can assert that for Q-a.e. ϕ

Qϕ

[
lim

n→∞Zn = ∞
]

≥ Qϕ

[⋂
n∈N

{Zn ≥ Xn}
∣∣∣ ⋂
k∈N

{
Xk > k2}] · Qϕ

[⋂
k∈N

{
Xk > k2}] > 0.

Therefore,

Q
[

lim
n→∞Zn = ∞

]
= EQ

[
Qϕ

[
lim

n→∞Zn = ∞
]]

> 0

which completes the proof. �

The following theorem gives a criterion for recurrence.

Theorem 2.3. Let (Zn)n≥0 be a BPRE with immigration according to Definition 2.1 with Q[Mn = 0] > 0 and
ϕ1(0) > 0 Q-a.s. Suppose that EQ[| log(μ−1

1 )|] < ∞ and EQ[log(μ−1
1 )] > 0.

If lim supt→∞(t · Q[logM1 > t]) < EQ[log(μ−1
1 )], then (Zn)n≥0 is recurrent.

Proof. We will show that
∑

n≥0 Q[Zn = 0] = ∞, which is equivalent to the recurrence of the process since (Zn)n∈N0

is a time-homogeneous Markov chain under Q. For the proof we use a second well-known definition for a BPRE with
immigration, illustrated in Fig. 2, and employ the exchangeability of (ϕk,Mk)1≤k≤n under Q for n ∈ N.

Equivalently to Definition 2.1 the BPRE with immigration can also be defined by

Zn =
n∑

j=0

Zn−j (j), n ∈ N0,

where for j ∈ N0, (Zn(j))n∈N0 is an ordinary BPRE characterized by offspring p.g.f. (ϕn+j )n∈N with Z0(0) = 1 and
Z0(j) = Mj for j ≥ 1. Furthermore, the BPREs have to be independent under conditioning on ϕ, see [3], p. 250. For
an explanation see Fig. 2.

For the moment let us fix n ∈ N. We exchange (ϕ1,M1) by (ϕn,Mn), (ϕ2,M2) by (ϕn−1,Mn−1), . . . , (ϕn,Mn) by
(ϕ1,M1) and define Z′

0(0) = 1 and

Z′
n =

n∑
j=0

Z′
n−j (j),

where Z′
n−j (j) uses the exchanged random vectors (ϕi,Mi)1≤i≤n, i.e. the distribution of Z′

n−j (j) is given by
ϕn−j (ϕn−j−1(· · ·ϕ1(s) · · ·))Mn−j+1 – whereas the distribution of Zn−j (j) is given by ϕj+1(ϕj+2(· · ·ϕn(s) · · ·))Mj

– and Z′
0(j) = Mn−j+1. Exchangeability of (ϕk,Mk)1≤k≤n thus implies

Q[Zn = 0] = Q
[
Z′

n = 0
]

for all n ∈ N.
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Fig. 2. BPRE with immigration. The figure shows a realization of the first generations of the BPREs (Zn(j))n∈N0 , j ∈ {0, . . . ,3}. The p.g.f. ϕi

for reproduction is written on the left side. Summation over the nth row gives Zn .

The task is now to show that∑
n≥0

Q
[
Z′

n = 0
] = ∞.

Therefore let us examine Qϕ[Z′
n = 0]. The strategy is the following:

In the first generations a high value of immigration is allowed – knowing that the size of the population becomes
small, when the time passes by, since we consider a subcritical branching process – whereas later, when we come
closer to the generation to be examined, there are only few people permitted to immigrate.

Choose c > 0 such that lim supt→∞(t · Q[logM1 > t]) < c < EQ[log(μ−1
1 )]. Thus, we obtain for large t ∈ R,

Q[M1 > t] <
c

log t
< 1. (9)

We consider some γ > 1 such that γ · c < EQ[log(μ−1
1 )] and define for k ∈ N

ck := eγ ck > 1.

Note that the lines of descent are independent under conditioning on ϕ and that

Qϕ

[
Z′

j (n − j) = 0,Z′
0(n − j) ≤ cj

] ≥ ϕj

(
ϕj−1

(· · ·ϕ1(0) · · ·))cj · Qϕ

[
Z′

0(n − j) ≤ cj

]
for 1 ≤ j ≤ n. Hence, we get for every n ∈ N,

Qϕ

[
Z′

n = 0
] ≥ Qϕ

[
n∑

j=0

Z′
n−j (j) = 0,

n−1⋂
j=0

{
Z′

0(j) ≤ cn−j

}]

= Qϕ

[
Z′

0(n) = 0
] ·

n−1∏
j=0

Qϕ

[
Z′

n−j (j) = 0,Z′
0(j) ≤ cn−j

]

≥ Q[M1 = 0] ·
n∏

j=1

ϕj

(
ϕj−1

(· · ·ϕ1(0) · · ·))cj ·
n−1∏
j=1

Q[Mj+1 ≤ cj ]

=: an. (10)

Since an > 0 Q-a.s., we are able to consider for n ≥ 2

an

an−1
= ϕn

(
ϕn−1

(· · ·ϕ1(0) · · ·))cn · Q[Mn ≤ cn−1]. (11)
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In the case of subcritical BPREs, convexity implies, see e.g. [1], p. 1853,

ϕn

(
ϕn−1

(· · ·ϕ1(0)
)) ≥ 1 − μ1 · · ·μn.

Choose ε > 0 such that γ · c + EQ[logμ1] + ε < 0 and let

T := inf

{
k ∈ N: ∀n ≥ k:

1

n

∑
1≤m≤n

logμm ≤ EQ[logμ1] + ε

}
.

By the law of large numbers, T < ∞ Q-a.s. For every N ∈ N we obtain on {T ≤ N} for n ≥ N ,

ϕn

(
ϕn−1

(· · ·ϕ1(0) · · ·))cn ≥ (1 − μn · · ·μ1)
cn

≥ (
1 − en(EQ[logμ1]+ε)

)cn

≥ 1 − en(γ ·c+EQ[logμ1]+ε). (12)

Applying (9) yields

Q[Mn ≤ cn−1] ≥ 1 − 1

γ (n − 1)
for n large enough. (13)

Thus, we get from (11), (12) and (13) an

an−1
≥ 1 − 1

n−1 for n large enough and finally, by a criterion of Raabe and
(10), ∑

n≥0

Qϕ

[
Z′

n = 0
] = ∞ on {T ≤ N}

for any N ∈ N and hence Q-a.s. Therefore, we can conclude∑
n≥0

Q[Zn = 0] =
∑
n≥0

Q
[
Z′

n = 0
] =

∑
n≥0

EQ

[
Qϕ

[
Z′

n = 0
]] = ∞.

�

3. Random walk in a random environment with cookies on the positive integers

We now return to the random walk (Sn)n≥0. This section deals with the case where cookies are only allowed on
the positive integers. For its discussion a well-known connection between branching processes with migration and
excited random walks is used. This idea was also employed in [4,5,10] for a simple symmetric random walk disturbed
by cookies. For detailed explanations we refer to [10].

In our case, an analogous relation between a subcritical BPRE with immigration and the ERWRE is obtained. The
purpose of this connection is to prove a recurrence and transience criterion for (Sn)n≥0.

Proposition 3.1. Let Assumption A hold. Assume P[Mz = 0] = 1 for all z ∈ −N0, (pn,Mn)n∈N i.i.d. and E[p−1
0 ] <

∞.

(i) If lim inft→∞(t · P[logM1 > t]) > E[logρ0], then P0[limn→∞ Sn = +∞] > 0.
(ii) If lim supt→∞(t · P[logM1 > t]) < E[logρ0], then P0[limn→∞ Sn = +∞] = 0.

Let us first derive the connection to BPRE with immigration and state some useful results. We denote the hitting
time of k ∈ Z by

Tk := inf{n ∈ N: Sn = k}.

Lemma 3.2. Let Assumption A hold. Assume P[Mz = 0] = 1 for all z ∈ −N0 and (pn,Mn)n∈N i.i.d. Then
P0[limn→∞ Sn ∈ {±∞}] = 1.
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Proof. We first show that P0,ω[−∞ < lim supn→∞ Sn < +∞] = 0 for P-a.e. ω ∈ Ω by using the strong Markov prop-
erty for the process Hn := (Sm)0≤m≤n and Borel–Cantelli. Assume that there exists z ∈ Z with lim supn→∞ Sn = z.
Then z is visited infinitely many times. But so is z + 1 since pz(ω) > 0. This is a contradiction.

Similar considerations show that P0,ω[−∞ < lim infn→∞ Sn < +∞] = 0 for P-a.e. ω.
Finally, we claim that P0,ω[lim infn→∞ Sn = −∞, lim supn→∞ Sn = +∞] = 0 for P-a.e. ω. This holds since –

under the assumptions of the lemma – the environments on sites z ≤ 0 satisfy case (ii) of Theorem RWRE. Hence, we
have P0,ω[T1 = ∞] > 0. �

A relation between an RWRE and a BPRE without immigration has already been remarked in [10], Remark 2. We
show that our model of an ERWRE can be associated with a BPRE with immigration. Consider k ∈ N. Then, it holds
for P-a.e. ω ∈ Ω that on the event {Tk < T0 < ∞} the random walk has to do Mk steps from k to k + 1 after its first
visit in k until all cookies are removed and until it gets a chance to return to k − 1. Further steps from k to k + 1 can
be regarded as the number of successes in coin tossing prior to the first failure with an unfair coin of probability pk to
succeed.

Let X
(j)
i , i ∈ N, j ∈ Z, be a family of independent ±1-valued random variables on Ω ′, such that

Pz,ω

[
X

(j)
i = 1

] = ω(j, i) and Pz,ω

[
X

(j)
i = −1

] = 1 − ω(j, i).

Following [10], the ERWRE can be realized recursively by

Sn+1 = Sn + X
(Sn)
#{m≤n:Sm=Sn} for n ≥ 0.

We call the events {X(j)
i = 1} a success and {X(j)

i = −1} a failure and define

ξ
(k)
j := #

{
successes in

(
X

(k)
i

)
i>Mk

between the (j − 1)th and the j th failure
}
,

V0 := 1,

Vk := ξ
(k)
1 + · · · + ξ

(k)
Vk−1

+ Mk.

Then, if Assumption A and (pn,Mn)n∈N i.i.d. hold, we obtain by Definition 2.1 that (Vk)k≥0 is a BPRE with immi-
gration under P1, with immigrants (Mk)k≥1 and progeny given by (ξ

(j)
i )i,j∈N, where ξ

(j)
i has geometric distribution

geoN0
(1 − pj ), i.e. P1,ω[ξ (j)

i = n] = pj (ω)n · (1 − pj (ω)) for P-a.e. ω.
For the formalization of the connection let us define analogously to [10]

U0 := 1 and Uk := #{n ≥ 0: n < T0, Sn = k,Sn+1 = k + 1},
where Uk denotes the number of upcrossings from k to k + 1 before the return to 0 for k ∈ N. Analogously to Eqs (14)
and (15) in [10] the following connection between Uk and Vk can be formulated and proven.

Lemma 3.3. Let Assumption A hold and assume (pn,Mn)n∈N i.i.d. It holds a.s. under P1:

Uk = Vk · 1{Vj >0 ∀0≤j<k} for all k ≥ 1 on {T0 < ∞},
Uk ≤ Vk for all k ≥ 1 on {T0 = ∞}.

The indicator function ensures the equality after the first return to 0 of the random walker or, equivalently, the first
time the population became extinct.

Let us use the same definition of recurrence from the right as in [10], p. 1962.

Definition 3.4. The ERWRE is called recurrent from the right, if the first excursion to the right of 0, if there is any, is
P0-a.s. finite, i.e. P1[T0 < ∞] = 1.

Now the connection between ERWRE and BPRE with immigration can be formulated in the following way.
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Lemma 3.5. Let Assumption A hold and assume (pn,Mn)n∈N i.i.d. The ERWRE (Sn)n≥0 is recurrent from the right
if and only if (Vk)k≥0 is recurrent, i.e. P1[∃k ∈ N: Vk = 0] = 1.

Proof. The definition of Uk , Lemma 3.2 and Lemma 3.3 yield

{T0 = ∞} P1= {Uk > 0 ∀k ≥ 1} P1⊆ {Vk > 0 ∀k ≥ 1}. (14)

On the other hand we get by Lemma 3.3 and (14) that

P1[Vk > 0 ∀k ≥ 1, T0 < ∞] = P1[Uk > 0 ∀k ≥ 1, T0 < ∞] = 0

and hence

{Vk > 0 ∀k ≥ 1} P1⊆ {T0 = ∞}.
Now, the lemma follows since

P1[T0 = ∞] = P1[Vk > 0 ∀k ≥ 1] = 1 − P1[∃k ∈ N: Vk = 0]. �

Lemma 3.6. Let Assumption A hold. Assume P[Mz = 0] = 1 for all z ∈ −N0 and (pn,Mn)n∈N i.i.d. If (Sn)n≥0 is
recurrent from the right, then all excursions are P0-a.s. finite and P0-a.s. there are only finitely many.

Proof. The first statement follows directly from the monotonicity of the branching process with respect to the number
of immigrants (Mn)n≥0 since there are less cookies for the second recursion than for the first and so forth. For the
second statement assume that there exist infinitely many excursions to the right with positive probability. Then Sn

visits site 1 infinitely many times with positive probability. This is a contradiction to Lemma 3.2. �

Lemma 3.7. Let Assumption A hold. Assume P[Mz = 0] = 1 for all z ∈ −N0 and (pn,Mn)n∈N i.i.d. If (Sn)n≥0
is recurrent from the right, then P0[limn→∞ Sn = −∞] = 1. If (Sn)n≥0 is not recurrent from the right, then
P0[limn→∞ Sn = +∞] > 0.

Proof. If the ERWRE is recurrent from the right, then according to Lemma 3.6 all excursions are P0-a.s. fi-
nite and there are only finitely many. Therefore, we get P0[limn→∞ Sn = +∞] = 0 and, applying Lemma 3.2,
P0[limn→∞ Sn = −∞] = 1.

If (Sn)n≥0 is not recurrent from the right, the corresponding BPRE with immigration is transient by Lemma 3.5,
i.e. P1[∃k ∈ N: Vk = 0] < 1, and hence

0 < P1[Vk > 0 ∀k ≥ 1] = P1[T0 = ∞] ≤ P1

[
lim

n→∞Sn = +∞
]
.

The lemma follows. �

Lemmata 3.7 and 3.5 finally show

Proposition 3.8. Let Assumption A hold. Assume P[Mz = 0] = 1 for all z ∈ −N0 and (pn,Mn)n∈N i.i.d. If (Vk)k≥0 is
recurrent, then P0[limn→∞ Sn = −∞] = 1. If (Vk)k≥0 is transient, then P0[limn→∞ Sn = +∞] > 0.

The above results enable us to prove Proposition 3.1:

Proof of Proposition 3.1. The BPRE with immigration (Vk)k≥0 that corresponds to (Sn)n≥0 is given by immigrants
(Mn)n≥1 and offspring distribution geoN0

(1 − pj ), j ∈ N. Therefore, given an environment ω ∈ Ω , the expected
number of offspring produced by a single particle in the (j − 1)th generation is

μj (ω) := E0,ω

[
ξ

(j)

1

] = pj (ω)

1 − pj (ω)
= ρ−1

j (ω).
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It is easily checked that the assumptions of Theorems 2.2 and 2.3 are satisfied. Hence, the proof is completed by
combining these theorems and Proposition 3.8. �

4. Random walk in a random environment with cookies on the negative integers

In this section we put cookies of maximal strength on the negative integers only and prove the following proposition
for the ERWRE.

Proposition 4.1. Let Assumption A hold and assume P[Mn = 0] = 1 for all n ∈ N0 and (pz,Mz)z∈−N i.i.d.

(i) If E[(logM−1)+] < ∞, then limn→∞ Sn = −∞ P0-a.s.
(ii) If E[(logM−1)+] = ∞, then lim infn→∞ Sn = −∞ and lim supn→∞ Sn = +∞ P0-a.s.

The process can be illustrated by running against a wall and being thrown back. The random walk starts in 0
and, according to the environment, is pushed more or less to the left side, i.e. towards the negative integers, see
Theorem RWRE(ii). But on this side it encounters sites with cookies, that push it back to the right, like a wall that it
can’t pass. Every time it returns to this site – it will return, since a left-transient environment is considered – the wall
becomes smaller until it is all gone and the process can jump further left. Naturally, the question arises how tall the
walls have to be in order to make the random walker return to 0 between spotting and destroying a wall and in which
cases this happens infinitely many times. First, let us state that each negative integer, or each wall, will be reached by
(Sn)n≥0.

Lemma 4.2. Let Assumption A hold. Assume P[Mn = 0] = 1 for all n ∈ N0 and (pz,Mz)z∈−N i.i.d. Then Tk < ∞
P0-a.s. for all k ∈ −N.

Proof. If all cookies are removed we get a left-transient RWRE, i.e. an RWRE that tends to −∞ P0-a.s., by Theo-
rem RWRE(ii). Now the lemma is proven by induction. For k = −1 the statement is the same as for a left-transient
RWRE. Therefore, it is true. Let it hold for k ∈ −N. Then, we get for P-a.e. ω,

P0,ω[Tk−1 < ∞] = P0,ω

[
Tk < ∞, inf{n ∈ N: STk+n = k − 1} < ∞] = 1

since (STk+n)n≥0 acts like an RWRE on sites larger than k. Therefore, it returns to k at least Mk(ω)-times and reaches
k − 1 afterwards as well. �

Let z ∈ Z. We define for m ∈ N with −m < z

Am(z) := {
after the first visit in −m the walk (Sn)n≥0 reaches −m − 1 before z

}
.

Note that there are a.s. no cookies on the positive integers and by the first visit in −m all cookies on sites larger than
−m have been removed. Since E[logρ0] > 0 and by Theorem RWRE(ii), the random walker returns to −m from
every excursion to the right after his first visit in −m P0,ω-a.s. for P-a.e. ω. Therefore,

{Sn = z infinitely often}c P0= {Sn < z eventually} P0=
⋃

k>(0∨−z)

⋂
m≥k

Am(z), (15)

where {·}c denotes the complement of set {·}.
By the strong Markov property (An(z))n∈N is independent under P0,ω for P-a.e. ω ∈ Ω and thus, by (15) and

Borel–Cantelli,

P0,ω[Sn = z infinitely often] =
{

0 if
∑

n>(0∨−z) P0,ω

[
Ac

n(z)
]
< ∞,

1 if
∑

n>(0∨−z) P0,ω

[
Ac

n(z)
] = ∞.

(16)

To get some criteria for convergence or divergence of this sum, we first have a closer look at an ordinary RWRE.
The next lemma can be deduced from [17], Eq. (2.1.4).
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Lemma 4.3. Let z ∈ Z, k ∈ N with −k < z. The quenched probability for an RWRE with start in −k to hit −k − 1
before z is

1 − 1

1 + ∑k
l=−z+1

∏k
j=l ρ−j

.

This result will be employed to prove the following lemma.

Lemma 4.4. Let Assumption A hold. Assume P[Mn = 0] = 1 for all n ∈ N0 and (pz,Mz)z∈−N i.i.d. For z ∈ Z and
for P-a.e. ω ∈ Ω the following holds:

(i) If
∑

n>(0∨−z) P0,ω[Ac
n(z)] = ∞, then

∑
n∈N

M−n(ω)
∏n−1

j=1 ρ−1
−j (ω) = ∞.

(ii) If
∑

n∈N
M−n(ω)e−Cn = ∞ for some C > E[logρ0] > 0, then

∑
n>(0∨−z) P0,ω[Ac

n(z)] = ∞.

Proof. Let z ∈ Z. Lemma 4.3 implies for n > (0 ∨ −z)

P0,ω

[
An(z)

] =
(

1 − 1

1 + ∑n−1
l=−z+1

∏n−1
j=l ρ−j

)M−n
(

1 − 1

1 + ∑n
l=−z+1

∏n
j=l ρ−j

)
. (17)

According to the law of large numbers, we can state for some ε > 0 and P-a.e. ω that for n large enough

1∏n
j=−z+1 ρ−j

= e(−∑n
j=−z+1 logρ−j ) ≤ e−ε(n+z) (18)

and consequently

∑
n>(0∨−z)

1∏n
j=−z+1 ρ−j

< ∞. (19)

Let us fix such an environment ω ∈ Ω and let n0(ω) ∈ N with n0(ω) > −z such that (18) holds for all n ≥ n0(ω).
Then, we have for n ≥ n0(ω) by (17) that

P0,ω

[
An(z)

] ≥
(

1 − 1∏n−1
j=−z+1 ρ−j

)M−n

·
(

1 − 1∏n
j=−z+1 ρ−j

)

≥
(

1 − M−n∏n−1
j=−z+1 ρ−j

)
·
(

1 − 1∏n
j=−z+1 ρ−j

)

and therefore,

∑
n≥n0(ω)

P0,ω

[
Ac

n(z)
] ≤

∑
n≥n0(ω)

(
1 −

(
1 − M−n∏n−1

j=−z+1 ρ−j

)
·
(

1 − 1∏n
j=−z+1 ρ−j

))

=
∑

n≥n0(ω)

(
1∏n

j=−z+1 ρ−j

+ M−n∏n−1
j=−z+1 ρ−j

(
1 − 1∏n

j=−z+1 ρ−j

))

≤
∑

n≥n0(ω)

(
1∏n

j=−z+1 ρ−j

+ M−n∏n−1
j=−z+1 ρ−j

)
.

Hence, the first statement of the lemma follows by (19).
For the second part let C > E[logρ0] > 0. Due to (17), we get for n ∈ N, n > −z

P0,ω

[
An(z)

] ≤
(

1 − 1

ρz · · ·ρ−n+1 · ∑n−1
j=−z ρ−1

z · · ·ρ−1
−j

)M−n

.
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By (19) and by applying the law of large numbers, there are P-a.s. constants c, c̃ > 0 such that for large n,

P0,ω

[
An(z)

] ≤ (
1 − e(−∑n−1

j=−z logρ−j ) · c)M−n

≤ (
1 − c · e−C(n+z)

)M−n

= ((
1 − c · e−z · e−Cn

)eCn)M−ne−Cn

≤ e−c̃M−ne−Cn

.

The second assertion of the lemma is obtained by the equivalence of∏
n∈N

an > 0 ⇔
∑
n∈N

(1 − an) < ∞

if 0 < an ≤ 1 for all n ≥ 1. �

In order to prove Proposition 4.1, we have to deal with random power series. An application of [11], Theorem 5.4.1
yields for our case the following result.

Lemma 4.5. If E[(logM−1)+] = ∞, then
∑

n≥1 M−nx
n = ∞ P-a.s. for every x > 0.

If E[(logM−1)+] < ∞, then
∑

n≥1 M−nx
n < ∞ P-a.s. for 0 < x < 1.

Gathering the results above we get Proposition 4.1.

Proof of Proposition 4.1. Let E[(logM−1)+] < ∞. Lemma 4.5 and (18) yield

∑
n∈N

M−n∏n−1
j=1 ρ−j

< ∞ P-a.s.

Lemma 4.4(i) implies
∑

n>(0∨−z) P0,ω[Ac
n(z)] < ∞ and therefore, by (15) and (16), P0[Sn < z eventually] = 1 for all

z ∈ Z. Hence, limn→∞ Sn = −∞ P0-a.s.
Let C > E[logρ0]. If E[(logM−1)+] = ∞, then

∑
n∈N

M−ne−Cn = ∞ P-a.s. according to Lemma 4.5. Therefore,∑
n>(0∨−z) P0,ω[Ac

n(z)] = ∞ is obtained P-a.s. for all z ∈ Z by Lemma 4.4(ii). Hence, (Sn)n≥0 hits each z ∈ Z

infinitely many times P0-a.s., see (16), and the proposition follows. �

5. Excited random walk in random environment

Let us now prove our main Theorem 1.1 about recurrence and transience of a random walk in a left-transient random
environment with cookies of strength 1.

Proof of Theorem 1.1. The results from Sections 3 and 4 are employed even though the environments ω are not
exactly the same. If we consider excursions to the right of 0, we apply Section 3, as long as cookies on negative
integers have no influence on the behaviour of the random walker. In the case where the behaviour of the walker on
the negative integers is studied we use Section 4 since the cookies on the right side of 0 can be neglected in that case.

Let E[(logM0)+] < ∞. Proposition 4.1(i) gives us the following for P-a.e. ω. If we remove all cookies on the
positive integers then limn→∞ Sn = −∞ P0,ω-a.s. On the other hand, E[(logM0)+] < ∞ implies lim supt→∞(t ·
P[logM0 > t]) = 0 since

E
[
(logM0)+

] =
∫ ∞

0
P[logM0 > t]dt

≥
∑
n∈N

(tn − tn−1) · P[logM0 > tn] ≥ 1

2

∑
n∈N

tn · P[logM0 > tn]
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for every sequence (tn)n≥1 with tn − tn−1 ≥ 1
2 tn > 0. Hence, every excursion to the right is P0,ω-a.s. finite for P-a.e.

ω by Proposition 3.1(ii), Lemma 3.7 and Lemma 3.6. Therefore, all cookies on positive sites that are visited by the
random walker are removed. Consequently, the ERWRE tends to −∞ P0,ω-a.s. for P-a.e. ω.

We turn to the second case. Excursions to the left of 0 depend only on the environment left of 0, i.e. on
((ω(x, i))i∈N)x∈−N. Since E[(logM0)+] = ∞, every excursion to the left is P0-a.s. finite and the ERWRE returns
to 0 by Proposition 4.1(ii). On the other hand, excursions to the right only depend on the environment right of 0.
Since lim supt→∞(t · P[logM0 > t]) < E[log(ρ0)], every excursion to the right is P0-a.s. finite by Proposition 3.1(ii),
Lemma 3.7 and Lemma 3.6. Hence, the process returns to 0 infinitely many times P0-a.s.

In the last case, we have E[(logM0)+] = ∞. Since cookies only enforce the drift to the right E[(logM0)+] = ∞
implies that P0[lim supn→∞ Sn = +∞] = 1 by Proposition 4.1(ii). By the assumption lim inft→∞(t ·P[logM0 > t]) >

E[log(ρ0)] and by Proposition 3.1(i), we obtain P0[Sn → +∞] > 0. Furthermore, we also have P0[Sn → +∞,B] > 0,
where B := {Sn > S0 ∀n ≥ 1}.

Applying Lévy’s 0–1 law, we get with the canonical filtration (Fn)n≥0 of (Sn)n≥0 for P-a.e. ω

P0,ω[Sn → ∞|FTj
] j→∞−→ 1{Sn→∞} P0,ω-a.s. (20)

Furthermore, we see that for all j ∈ N

P0,ω[Sn → ∞|FTj
] ≥ P0,ω[Sn → ∞, STj +k > j ∀k ∈ N|FTj

] = Pj,ω[Sn → ∞,B]. (21)

The environment (ω(z, ·))z∈Z is i.i.d. under P. Thus, the ergodic theorem yields

1

m + 1

m∑
j=0

Pj,ω[Sn → +∞,B] m→∞−→ E
[
P0,ω[Sn → +∞,B]] > 0 P-a.s. (22)

As a consequence, we get for P-a.e. ω that Pj,ω[Sn → +∞,B] > ε for infinitely many j and for some ε > 0. Finally,
(20), (21) and (22) yield that 1{Sn→∞} = 1 P0,ω-a.s. for P-a.e. ω and therefore, P0[Sn → +∞] = 1. �

Remark 5.1. Theorem 1.1 is still correct if P[M0 = ∞] > 0 and P[M0 = 0] > 0 instead of Assumption A.4.

In conclusion, we give some examples for the three cases of Theorem 1.1. They have been motivated by and
adapted from [16], Theorem 1.

Example 5.2. Let the assumptions of Theorem 1.1 be satisfied and require λ,β > 0. We set

P[M0 ≥ k] := 1

(1 + β logk)λ
for k ≥ 2, k ∈ N,

P[M0 = 1] := 0,

P[M0 = 0] := 1 − 1

(1 + β log 2)λ
.

Now the following cases can be derived.

(i) If λ > 1, then P0[limn→∞ Sn = −∞] = 1.
(ii) If λ < 1, then P0[limn→∞ Sn = +∞] = 1.

(iii) If λ = 1 and β · E[logρ0] < 1, then P0[limn→∞ Sn = +∞] = 1. If λ = 1 and β · E[logρ0] > 1, then
P0[Sn = 0 infinitely often] = 1.

Proof. These results are due to Theorem 1.1 and due to the following calculations.
In the first case we have E[(logM0)+] ≤ ∑

k∈N0
P[logM0 ≥ k] < ∞ since λ > 1.

To prove the second case, note that P[logM0 ≥ t] ≥ (1 + β log(et + 1))−λ for t ≥ 0 and therefore
lim inft→∞ tP[logM0 ≥ t] = ∞ if λ < 1.

Finally, if λ = 1 we obtain that E[(logM0)+] ≥ ∑
k∈N

P[logM0 ≥ k] = ∞ and limt→∞ tP[logM0 ≥ t] = 1
β

. Ac-
cording to the value of β the ERWRE tends to +∞ or is recurrent P0-a.s. �
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