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KILLED BROWNIAN MOTION WITH A PRESCRIBED LIFETIME
DISTRIBUTION AND MODELS OF DEFAULT

BY BORIS ETTINGER, STEVEN N. EVANS1 AND ALEXANDRU HENING

Princeton University, University of California and University of Oxford

The inverse first passage time problem asks whether, for a Brownian mo-
tion B and a nonnegative random variable ζ , there exists a time-varying bar-
rier b such that P{Bs > b(s),0 ≤ s ≤ t} = P{ζ > t}. We study a “smoothed”
version of this problem and ask whether there is a “barrier” b such that
E[exp(−λ

∫ t
0 ψ(Bs − b(s)) ds)] = P{ζ > t}, where λ is a killing rate param-

eter, and ψ :R → [0,1] is a nonincreasing function. We prove that if ψ is
suitably smooth, the function t �→ P{ζ > t} is twice continuously differen-

tiable, and the condition 0 < − d logP{ζ>t}
dt

< λ holds for the hazard rate of ζ ,
then there exists a unique continuously differentiable function b solving the
smoothed problem. We show how this result leads to flexible models of de-
fault for which it is possible to compute expected values of contingent claims.

1. Introduction. Investors are exposed to credit risk, or counterparty risk, due
to the possibility that one or more counterparties in a financial agreement will
default, that is, not honor their obligations to make certain payments. Counterparty
risk has to be taken into account when pricing a transaction or portfolio, and it is
necessary to model the occurrence of default jointly with the behavior of asset
values.

The default time is sometimes modeled as the first passage time of a credit
index process below a barrier. Black and Cox [2] were among the first to use this
approach. They define the time of default as the first time the ratio of the value
of a firm and the value of its debt falls below a constant level, and they model
debt as a zero-coupon bond and the value of the firm as a geometric Brownian
motion. In this case, the default time has the distribution of the first-passage time
of a Brownian motion (with constant drift) below a certain barrier.

Hull and White [6] model the default time as the first time a Brownian motion
hits a given time-dependent barrier. They show that this model gives the correct
market credit default swap and bond prices if the time-dependent barrier is chosen
so that the first passage time of the Brownian motion has a certain distribution
derived from those prices. Given a distribution for the default time, it is usually
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impossible to find a closed-form expression for the corresponding time-dependent
barrier, and numerical methods have to be used.

We adopt a perspective similar to that of Hull and White [6]. Namely, we model
the default time as

τ := inf
{
t > 0 :λ

∫ t

0
ψ

(
Ys − b(s)

)
ds > U

}
,(1.1)

where the diffusion Y is some credit index process, U is an independent mean one
exponentially distributed random variable, 0 ≤ ψ ≤ 1 is a suitably smooth, nonin-
creasing function with limx→−∞ ψ(x) = 1 and limx→+∞ ψ(x) = 0, and λ > 0 is
a rate parameter. Then

P{τ > t} = E

[
exp

(
−λ

∫ t

0
ψ

(
Ys − b(s)

)
ds

)]
.(1.2)

The random time τ is a “smoothed-out” version of the stopping time of Hull and
White; instead of killing Y as soon at it crosses some sharp, time-dependent bound-
ary, we kill Y at rate λψ(y − b(t)) if it is in state y ∈R at time t ≥ 0. That is,

lim
�t↓0

P
{
τ ∈ (t, t + �t) | (Ys)0≤s≤t , τ > t

}
/�t = λψ

(
Yt − b(t)

)
.

When the credit index value Yt is large, corresponding to a time t when the coun-
terparty is in sound financial health, the killing rate λψ(Yt −b(t)) is close to 0 and
default in an ensuing short period of time is unlikely, whereas the killing rate is
close to its maximum possible value, λ, when Yt is low and default is more proba-
ble. Note that if we consider a family of [0,1]-valued, nonincreasing functions ψ

that converges to the indicator function of the set {x ∈ R :x < 0} and λ tends to ∞,
then the corresponding stopping time τ converges to the Hull and White stopping
time inf{t > 0 :Yt < b(t)}.

The hazard rate of the random time τ is

P{τ ∈ dt | τ > t}
dt

:= lim
�t↓0

P{τ ∈ (t, t + �t)}
�tP{τ > t}

= lim
�t↓0

P{λ ∫ t
0 ψ(Ys − b(s)) ds ≤ U ≤ λ

∫ t+�t
0 ψ(Ys − b(s)) ds}

�tP{λ ∫ t
0 ψ(Ys − b(s)) ds ≤ U}(1.3)

= lim
�t↓0

E[e−λ
∫ t

0 ψ(Ys−b(s)) ds − e−λ
∫ t+�t

0 ψ(Ys−b(s)) ds]
�tE[exp(−λ

∫ t
0 ψ(Ys − b(s)) ds)]

= λE[ψ(Yt − b(t)) exp(−λ
∫ t

0 ψ(Ys − b(s)) ds)]
E[exp(−λ

∫ t
0 ψ(Ys − b(s)) ds)] .
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On the other hand, suppose that ζ is a nonnegative random variable with survival
function t �→ G(t) := P{ζ > t}. Writing g for the derivative of G, the correspond-
ing hazard rate is

− g(t)

G(t)
= − d

dt
logG(t).

As a result, a necessary condition for a function b to exist such that the correspond-
ing random time τ has the same distribution as ζ is that

0 < −g(t) < λG(t), t ≥ 0.(1.4)

We show in Theorem 2.1 that if Y is a Brownian motion with a given suitable
random initial condition, assumption (1.4) holds, and the survival function G is
twice continuously differentiable, then there is a unique differentiable function b

such that the stopping time τ has the same distribution as ζ . In particular, we
establish that the function b can be determined by solving a system consisting
of a parabolic linear PDE with coefficients depending on b and a nonlinear ODE
for b with coefficients depending on the solution of the PDE. Note from (1.2) that
changing the function b on a set with Lebesgue measure zero does not affect the
distribution of τ , and so we have to be careful when we talk about the uniqueness
of b. This minor annoyance does not appear if we restrict to continuous b.

In Theorem 4.1 we give an analogue of the existence part of the above result
when ψ is the indicator of the set {x ∈ R :x < 0}.

Having proven the existence and uniqueness of a barrier b, we consider the
pricing of certain contingent claims in Section 5. For simplicity, we take the asset
price (Xt)t≥0 to be a geometric Brownian motion

dXt

Xt

= μdt + σ dWt,

where W is a standard Brownian motion. We take the credit index (Yt )t≥0 to be
given by

dYt = dBt ,

where B is another standard Brownian motion, and take the default time to be given
by (1.1), where the exponential random variable U is independent of the asset
price X and the credit index Y . We assume that the Brownian motions W and B

are correlated; that is, that their covariation is [B,W ]t = ρt for some constant ρ ∈
[−1,1]. We consider claims with a payoff of the form F(XT )1{τ > T } for some
fixed maturity T . We show how it is possible to compute conditional expected
values such as

E
[
F(XT )1{τ > T } | (Xs)0≤s≤t , τ > t

]
.

In Section 6 we report the results of some experiments where we solved the
PDE/ODE system for the barrier b numerically. Finally, in Section 7, we follow [4]
to demonstrate how it is possible to use market data on credit default swap prices
to determine the survival function G.



4 B. ETTINGER, S. N. EVANS AND A. HENING

1.1. The FPT and IFPT problems. We end the this Introduction with a brief
discussion of the literature dealing with first passage times of diffusions across
time-dependent barriers.

Consider a Brownian motion (Bt )t≥0 defined on a filtered probability space
(	,P,F, (Ft )t≥0) which satisfies the usual conditions. Define the diffusion
(Yt )t≥0 via the SDE

dYt = μ(Yt , t) dt + σ(Yt , t) dBt ,

where we assume that the coefficients μ :R×R+ →R and σ :R×R+ →R+ are
such that the SDE has a unique strong solution.

For a Borel function b :R+ → R := R ∪ {±∞}, the first passage time of the
diffusion process Y below the barrier b is the stopping time

τ̃ = inf
{
t > 0 :Yt < b(t)

}
.(1.5)

The following two problems related to this notion have been discussed in the liter-
ature.

The first passage time problem (FPT): For a given barrier b :R+ → R, compute
the survival function G of the first time that X goes below b; that is, find

G(t) := P{τ̃ > t}, t ≥ 0.(1.6)

The inverse first passage time problem (IFPT): For a given survival function G,
does there exist a barrier b such that G(t) = P{τ̃ > t} for all t ≥ 0?

A large class of first passage time problems may be solved within a PDE frame-
work. Let u(x, t) = ∂

∂x
P{Yt ≤ x, τ̃ > t} be the sub-probability density of the diffu-

sion Y killed at τ̃ . Then, by the Kolmogorov forward equation, u satisfies⎧⎪⎨
⎪⎩

ut (x, t) = 1
2

(
σ 2u

)
xx − (μu)x, x > b(t), t > 0,

u(x, t) = 0, x ≤ b(t), t > 0,
u(x,0) = f (x), x ∈ R,

(1.7)

where f is the probability density of Y0. For nice enough functions b this system
has a unique solution, and we can express the survival probability as

G(t) = P{τ̃ > t} =
∫ ∞
b(t)

u(x, t) dx, t ≥ 0.

This approach is used in [10, 14] to get closed form solutions for some classes
of boundaries. An integral equation technique is used in [11–14] to find the
derivative g(t) = G′(t) in the FPT problem for a Brownian motion. Writing
�(z) := ∫ ∞

z
1√
2π

exp(−x2

2 ) dx, the derivative g satisfies a Volterra integral equa-
tion of the first kind of the form

�

(
b(t)√

t

)
= −

∫ t

0
�

(
b(t) − b(s)√

t − s

)
g(s) ds.



KILLED BROWNIAN MOTION 5

This and other such integral equations can be used to find g numerically.
Shiryaev is generally credited with introducing the IFPT problem in 1976 (we

have not been able to find an explicit reference). Most authors have investigated
numerical methods for finding the boundary. Details can be found in [6–8, 15]. It
is shown in [1] that for sufficiently smooth boundaries the density u(x, t) and the
boundary b(t) are a solution of the following free boundary problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = 1

2

(
σ 2u

)
xx − (μu)x, x > b(t), t > 0,

u(x, t) = 0, x ≤ b(t), t > 0,
u(x,0) = f (x), x ∈ R,

G(t) =
∫ ∞
b(t)

u(x, t) dx, t ≥ 0,

(1.8)

where f is again the probability density of Y0. The existence and uniqueness of a
viscosity solution of (1.8) is established in [3] along with upper and lower bounds
on the asymptotic behavior of b. That paper also shows that this b does in fact
produce a boundary that gives the survival function G. To our knowledge it has
not be proven that a strong solution to the system (1.8) exists, nor that there is a
smooth b solving the IFPT.

A variation of the IFPT is studied in [4, 5]. There the barrier is fixed at zero
(i.e., b ≡ 0), and it is the volatility parameter σ(·, ·), that is, allowed to vary. The
authors show that this problem admits an explicit solution for every differentiable
survival function.

2. Global existence and uniqueness. Suppose for the remainder of this pa-
per that Yt := Y0 + Bt , where (Bt )t≥0 is a standard Brownian motion, and Y0 is
a random variable, independent of B and with density f ∈ C2(R). In this case,
(1.2) is

G(t) =
∫
R

E

[
exp

(
−λ

∫ t

0
ψ

(
x + Bs − b(s)

)
ds

)]
f (x) dx,

which, by time reversal, becomes

G(t) =
∫
R

E

[
exp

(
−λ

∫ t

0
ψ

(
x + Bt−s − b(s)

)
ds

)
f (x + Bt)

]
dx.

Set

u(x, t) := E

[
exp

(
−λ

∫ t

0
ψ

(
x + Bt−s − b(s)

)
ds

)
f (x + Bt)

]
.(2.1)

That is, u is the sub-probability density of Y killed at the random time τ . It is well
known that if u is smooth enough, then u is the unique solution of the PDE{

ut(x, t) = 1
2uxx(x, t) − λψ

(
x − b(t)

)
u(x, t), x ∈ R, t > 0,

u(x,0) = f (x), x ∈ R.
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Any solution to this PDE satisfies

lim
x→±∞u(x, t) = lim

x→±∞ux(x, t) = 0, t > 0.(2.2)

Our question as to whether we can find a “barrier” b giving us the survival func-
tion G is now equivalent to whether the system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ut (x, t) = 1

2
uxx(x, t) − λψ

(
x − b(t)

)
u(x, t), x ∈R, t > 0,

u(x,0) = f (x), x ∈R,∫
R

u(x, t) dx = G(t), t ≥ 0,

(2.3)

has solutions (u, b). Differentiating the third equation from (2.3) with respect to t

and then using the first equation together with an integration by parts, we get that

−g(t) = λ

∫
R

ψ
(
x − b(t)

)
u(x, t) dx,(2.4)

where we recall that g(t) = G′(t). A second differentiation in t followed by an-
other integration by parts yields

g′(t) − λ2
∫
R

ψ2(
x − b(t)

)
u(x, t) dx

= λ

∫
R

ψx

(
x − b(t)

)
u(x, t)b′(t) dx − λ/2

∫
R

ψ
(
x − b(t)

)
uxx(x, t) dx

(2.5)
= λ

∫
R

ψx

(
x − b(t)

)
u(x, t)b′(t) dx + λ/2

∫
R

ψx

(
x − b(t)

)
ux(x, t) dx

= λ

∫
R

ψx

(
x − b(t)

)
u(x, t)b′(t) dx − λ/2

∫
R

ψxx

(
x − b(t)

)
u(x, t) dx.

Note that (2.5) may be rearranged to give an ODE for b of the form b′(t) =
(b(t), t), where the function  is constructed from the function u (which,
of course, depends in turn on b). Re-writing this integral equation in the form
b(t) = b(0) + ∫ t

0 (b(s), s) ds leads to the following theorem, our main result.

THEOREM 2.1. Suppose the following:

• The survival function G is twice continuously differentiable with first and second
derivatives g and g′ and 0 < −g(t) < λG(t) for all t ≥ 0 for some constant
λ > 0.

• The initial density f satisfies
∫
R

f (x) dx = 1, f (x) > 0 for all x ∈ R, f ∈
C2(R), and the functions f , f ′, f ′′ are bounded.

• The function ψ is nonincreasing and belongs to C3(R), and for some h > 0,
ψ(x) = 1 for x ≤ −h and ψ(x) = 0 for x ≥ h.
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Then, there exists a unique continuously differentiable function b : [0,∞) → R

such that the following three equations hold:

G(t) =
∫
R

E

[
exp

(
−λ

∫ t

0
ψ

(
x + Bu − b(u)

)
du

)]
f (x) dx,(2.6)

−g(t) = λ

∫
R

E

[
exp

(
−λ

∫ t

0
ψ

(
x + Bu − b(u)

)
du

)
(2.7)

× ψ
(
x + Bt − b(t)

)]
f (x) dx

and

b(t) = b(0)

+
∫ t

0

(
g′(s) − λ2 ∫

R
E[ψ2(x + Bs − b(s))e−λ

∫ s
0 ψ(x+Br−b(r)) dr ]f (x) dx

λ
∫
R
E[ψx(x + Bs − b(s))e−λ

∫ s
0 ψ(x+Br−b(r)) dr ]f (x) dx

(2.8)

+ λ/2
∫
R
E[ψxx(x + Bs − b(s))e−λ

∫ s
0 ψ(x+Br−b(r)) dr ]f (x) dx

λ
∫
R
E[ψx(x + Bs − b(s))e−λ

∫ s
0 ψ(x+Br−b(r)) dr ]f (x) dx

)
ds

for all t ≥ 0.

PROOF. From now on we assume for ease of notation that λ = 1. The modi-
fications necessary for general λ are straightforward. The proof will be via a se-
quence of lemmas, all of them assuming the hypotheses of Theorem 2.1 (with
λ = 1). We start with the following simple observation.

LEMMA 2.2. Suppose that

G(t) =
∫
R

u(x, t) dx

for some continuous function u :R × R+ → R such that u(x, t) > 0 for x ∈ R,
t ≥ 0. Then, for each t ≥ 0 there exists a unique b(t) ∈ R such that

−g(t) =
∫
R

ψ
(
x − b(t)

)
u(x, t) dx.

PROOF. Set

F(t, z) =
∫
R

ψ(x − z)u(x, t) dx.

Then

lim
z→−∞F(t, z) =

∫
R

u(x, t) dx = G(t),

lim
z→+∞F(t, z) = 0
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and, by assumption,

0 < −g(t) < G(t).

Furthermore, F is continuous and strictly decreasing in z. So, by the intermediate
value property, we can find a unique b(t) ∈ R such that F(t, b(t)) = −g(t). �

LEMMA 2.3 (Global uniqueness). Suppose there exist continuous functions
b1, b2 such that equations (2.6), (2.7) and (2.8) are satisfied for b = b1 and b = b2.
Then b1(t) = b2(t) for all t ≥ 0.

PROOF. Recall that we are assuming λ = 1 to simplify notation.
Suppose that b1 and b2 are two continuous solutions of (2.6), (2.7) and (2.8). It

follows from Lemma 2.2 and (2.7) that b1(0) = b2(0). Set V := inf{t ≥ 0 :b1(t) =
b2(t)}, and suppose that V < ∞.

Define f̃ ∈ C2(R) by

f̃ (y) dy :=
∫
R

E
[
1{x + BV ∈ dy}e− ∫ V

0 ψ(x+Br−b(r)) dr]f (x) dx,

where b(t) = b1(t) = b2(t) for 0 ≤ t ≤ V . Define functions b̃i :R+ → R, i = 1,2,
by b̃i (t) = bi(V + t), t ≥ 0. Then b̃1(0) = b̃2(0) = b(V ), and

b̃i(t) = b̃i(0)

+
∫ t

0

(
g′(s + V ) − ∫

R
E[ψ2(x + Bs − b̃i (s))e

− ∫ s
0 ψ(x+Br−b̃i (r)) dr ]f̃ (x) dx∫

R
E[ψx(x + Bs − b̃i (s))e

− ∫ s
0 ψ(x+Br−b̃i (r)) dr ]f̃ (x) dx

+ 1/2
∫
R
E[ψxx(x + Bs − b̃i (s))e

− ∫ s
0 ψ(x+Br−b̃i (r)) dr ]f̃ (x) dx∫

R
E[ψx(x + Bs − b̃i (s))e

− ∫ s
0 ψ(x+Br−b̃i (r)) dr ]f̃ (x) dx

)
ds.

Fix ε > 0, and set

K := min
i=1,2

inf
0≤s≤ε

∫
R

E
[
ψx

(
x + Bs − b̃i (s)

)
e− ∫ s

0 ψ(x+Br−b̃i (r)) dr]f̃ (x) dx > 0.

By the triangle inequality, for 0 ≤ t ≤ ε,∣∣b̃1(t) − b̃2(t)
∣∣ ≤ I + II + III,

where

I := K−2
∫ t

0

∣∣g′(s + V )
∣∣ ∫

R

E
[∣∣ψx

(
x + Bs − b̃2(s)

)
e− ∫ s

0 ψ(x+Br−b̃2(r)) dr

− ψx

(
x + Bs − b̃1(s)

)
e− ∫ s

0 ψ(x+Br−b̃1(r)) dr
∣∣]

× f̃ (x) dx ds,
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II := K−2
∫ t

0

∫
R

E
[
ψ2(

x + Bs − b̃1(s)
)
e− ∫ s

0 ψ(x+Br−b̃1(r)) dr]f̃ (x) dx

×
∫
R

E
[∣∣ψx

(
x + Bs − b̃2(s)

)
e− ∫ s

0 ψ(x+Br−b̃2(r)) dr

− ψx

(
x + Bs − b̃1(s)

)
e− ∫ s

0 ψ(x+Br−b̃1(r)) dr
∣∣]f̃ (x) dx ds

+ K−2
∫ t

0

∫
R

E
[∣∣ψ2(

x + Bs − b̃1(s)
)
e− ∫ s

0 ψ(x+Br−b̃1(r)) dr

− ψ2(
x + Bs − b̃2(s)

)
e− ∫ s

0 ψ(x+Br−b̃2(r)) dr
∣∣]f̃ (x) dx

×
∫
R

E
[∣∣ψx

(
x + Bs − b̃1(s)

)
e− ∫ s

0 ψ(x+Br−b̃1(r)) dr
∣∣]f̃ (x) dx ds

and

III := 1

2
K−2

∫ t

0

∫
R

E
[∣∣ψxx

(
x + Bs − b̃1(s)

)
e− ∫ s

0 ψ(x+Br−b̃1(r)) dr
∣∣]f̃ (x) dx

×
∫
R

E
[∣∣ψx

(
x + Bs − b̃2(s)

)
e− ∫ s

0 ψ(x+Br−b̃2(r)) dr

− ψx

(
x + Bs − b̃1(s)

)
e− ∫ s

0 ψ(x+Br−b̃1(r)) dr
∣∣]f̃ (x) dx ds

+ 1

2
K−2

∫ t

0

∫
R

E
[∣∣ψxx

(
x + Bs − b̃1(s)

)
e− ∫ s

0 ψ(x+Br−b̃1(r)) dr

− ψxx

(
x + Bs − b̃2(s)

)
e− ∫ s

0 ψ(x+Br−b̃2(r)) dr
∣∣]f̃ (x) dx

×
∫
R

E
[∣∣ψx

(
x + Bs − b̃1(s)

)∣∣e− ∫ s
0 ψ(x+Br−b̃1(r)) dr]f̃ (x) dx ds.

Consider the integrand in I. Note that∣∣ψx

(
x + Bs − b̃2(s)

)
e− ∫ s

0 ψ(x+Br−b̃2(r)) dr

− ψx

(
x + Bs − b̃1(s)

)
e− ∫ s

0 ψ(x+Br−b̃1(r)) dr
∣∣

≤ ∣∣ψx

(
x + Bs − b̃2(s)

)∣∣∣∣e− ∫ s
0 ψ(x+Br−b̃2(r)) dr − e− ∫ s

0 ψ(x+Br−b̃1(r)) dr
∣∣

+ e− ∫ s
0 ψ(x+Br−b̃1(r)) dr

∣∣ψx

(
x + Bs − b̃2(s)

) − ψx

(
x + Bs − b̃1(s)

)∣∣
≤ ‖ψx‖L∞s‖ψx‖L∞ sup

0≤r≤s

∣∣b2(r) − b1(r)
∣∣ + ‖ψxx‖L∞ sup

0≤r≤s

∣∣b2(r) − b1(r)
∣∣.

Similar arguments for the integrands in II and III using the boundedness and
global Lipschitz properties of ψ , ψx and ψxx establish that, for a suitable con-
stant C,

sup
0≤s≤t

∣∣b̃1(s) − b̃2(s)
∣∣ ≤ C

∫ t

0
sup

0≤r≤s

∣∣b̃1(r) − b̃2(r)
∣∣ds
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for 0 ≤ t ≤ ε. It follows from Grönwall’s inequality that b̃1(t) = b̃2(t) for
0 ≤ t ≤ ε, and so b1(t) = b2(t) for 0 ≤ t ≤ V + ε, contrary to the definition of V

and the assumption that V is finite. �

LEMMA 2.4 (Global existence). Define S to be the supremum of the set of T

such that equations (2.6), (2.7) and (2.8) have a continuous solution on [0, T ].
Then S = +∞.

PROOF. Suppose to the contrary that S < +∞. From Lemma 2.3, the equa-
tions have a unique solution on [0, S). By time-reversal, equation (2.6) is equiva-
lent to

G(t) =
∫
R

E

[
exp

(
−

∫ t

0
ψ

(
x + Bt−u − b(u)

)
du

)
f (x + Bt)

]
dx.(2.9)

Similarly, (2.7) is equivalent to

−g(t) =
∫
R

E

[
exp

(
−

∫ t

0
ψ

(
x + Bt−u − b(u)

)
du

)
(2.10)

× ψ
(
x − b(t)

)
f (x + Bt)

]
dx.

For 0 ≤ t < S put

u(x, t) := E

[
exp

(
−

∫ t

0
ψ

(
x + Bt−u − b(u)

)
du

)
f (x + Bt)

]
.(2.11)

Consider t1 < t2 < · · · ↑ S. It follows from the continuity of the sample paths
of B that as tn ↑ S

exp
(
−

∫ tn

0
ψ

(
x + Btn−u − b(u)

)
du

)
f (x + Btn)

→ exp
(
−

∫ S

0
ψ

(
x + BS−u − b(u)

)
du

)
f (x + BS)

almost surely for each x ∈ R, and so

u(x, tn) → E

[
exp

(
−

∫ S

0
ψ

(
x + BS−u − b(u)

)
du

)
f (x + BS)

]
=: u(x,S).

Because

u(x, t) ≤ E
[
f (x + Bt)

]
,

it follows from dominated convergence that∫
R

u(x,S) dx = lim
n

∫
R

u(x, tn) dx = lim
n

G(tn) = G(S).
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Also,

lim
n

∫
R

ψ
(
x − b(tn)

)
u(x, tn) dx = − lim

n
g(tn) = −g(S).

Because 0 < −g(S) < G(S) and

u(x,S) ≥ e−S
E

[
f (x + BS)

]
> 0, x ∈ R,

there is, by Lemma 2.2, a unique b∗ ∈ R such that∫
R

ψ
(
x − b∗)

u(x,S) dx = −g(t).

We claim that b(tn) → b∗. If this was not the case, then, by passing to a subse-
quence we would have b(tn) converging to some other extended real c and hence,
by dominated convergence,

−g(t) = − lim
n

g(tn)

= lim
n

∫
R

ψ
(
x − b(tn)

)
u(x, tn) dx

=
∫
R

ψ(x − c)u(x, S) dx,

contradicting the definition of b∗ [where we used the natural definitions
ψ(−∞) := 1, ψ(+∞) := 0]. Using dominated convergence in (2.8) we get that
there exists a continuous b such that all three equations hold on [0, S].

All we need to do now is show that we can extend the existence from [0, S] to
[0, S + δ] for some δ > 0. This amounts to proving existence on [0, δ] starting at
a different initial condition—replacing the original probability density f by the
density of the probability measure∫

R

E

[
exp

(
−

∫ S

0
ψ

(
x + Bu − b(u)

)
du

)
,BS ∈ •

]
f (x) dx/G(S).

This will follow if we can establish the local existence, that is, the existence for
some δ > 0, of a solution of the following PDE/ODE system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũt (x, t) = 1

2
ũxx(x, t) − ψ

(
x − b̃(t)

)
ũ(x, t), x ∈ R,0 < t < δ,

ũ(x,0) = u(x,S)/G(S), x ∈R,

b̃(0) = b(S),

b̃′(t) = (g(S + t) + g′(S + t))/G(S) − ∫
R
[ψ2(x − b̃(t)) − ψ(x − b̃(t))]ũ(x, t) dx∫

R
ψx(x − b̃(t))ũ(x, t) dx

− 1/2
∫
R

ψx(x − b̃(t))ũx(x, t) dx∫
R

ψx(x − b̃(t))ũ(x, t) dx
, 0 < t < δ.
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We note that the expression for b̃′(t) is not the analogue of the one for b′(t) that
arises immediately from differentiating (2.8), which in turn arose from rearrang-
ing (2.5) and integrating. However, adding 0 = ∫

R
ψ(x − b(t))u(x, t) dx − g(t) to

the right-hand side of (2.5) and then solving for b′(t) leads to an expression of this
form. Note that

u(x,S) = E

[
exp

(
−

∫ S

0
ψ

(
x + BS−u − b(u)

)
du

)
f (x + BS)

]
> 0

and, by dominated convergence, that u(·, S) ∈ C2(R) with ‖u(·, S)‖L∞(R),
‖ux(·, S)‖L∞(R), ‖uxx(·, S)‖L∞(R) all finite. Therefore, we can apply Theo-
rem 3.14 below to get that there is a time δ > 0 and a unique pair ũ, b̃ satisfying
the PDE/ODE system above with ũ twice continuously differentiable in x on R

and once continuously differentiable in t on [0, δ], that is, ũ ∈ C2
x(R)C1

t ([0, δ]),
and with b̃ ∈ C1([0, δ]). Thus, we have proven that we have a unique continu-
ous b satisfying equations (2.6), (2.7) and (2.8) on [0, S + δ]. This contradicts the
maximality of S. As a result, S = ∞ and we are done. �

This completes the proof of Theorem 2.1. �

REMARK 2.5. Theorem 3.14 below gives local in time existence and unique-
ness of solutions to the system (2.3). However, we require the global uniqueness
result Lemma 2.3 because it is not a priori clear that all the solutions to equations
(2.6)–(2.8) are solutions to the system (2.3).

REMARK 2.6. It follows from the (2.8), the smoothness assumptions on G,
the smoothness assumptions on ψ , the smoothness assumptions on f and the as-
sumption that f is everywhere positive that the function b has a finite right deriva-
tive at 0. In the standard inverse first passage problem, the analogous property for
the boundary often fails (e.g., when the lifetime distribution is exponential).

As a corollary we get the global existence and uniqueness of the PDE/ODE
system.

COROLLARY 2.7. Suppose that the conditions of Theorem 2.1 hold. Then the
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = 1

2
uxx(x, t) − ψ

(
x − b(t)

)
u(x, t),

u(x,0) = f (x), x ∈ R,

−g(0) =
∫
R

ψ
(
x − b(0)

)
f (x) dx,

b′(t) = g(t) + g′(t) − ∫
R
[ψ2(x − b(t)) − ψ(x − b(t))]u(x, t) dx∫
R

ψx(x − b(t))u(x, t) dx

− 1/2
∫
R

ψx(x − b(t))ux(x, t) dx∫
R

ψx(x − b(t))u(x, t) dx
, t > 0,

(2.12)
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has a unique solution (u, b) ∈ C2
x(R)C1

t (R+) × C1
t (R+).

3. Local existence and uniqueness. We now consider the PDE/ODE sys-
tem (2.12). We have already used the standard notation Fx and Fxx to denote
the first and second derivatives of a function F of one variable or the first and
second partial derivatives with respect to the variable x of a function F of sev-
eral variables. Because we repeatedly deal with the function (x, t) �→ ψ(x −b(t)),
it will be convenient to recycle notation and define a function ψb :R × R+ → R

by ψb(x, t) = ψ(x − b(t)). We will then set ψx,b := ∂xψb and ψxx,b := ∂xxψb.
We will continue to use the notation ψx and ψxx with its old meaning, but there
should be no confusion between the different objects ψb and ψx . Similarly, we
set φ := ψ2 − ψ = −ψ(1 − ψ) and put φb(x, t) = φ(x − b(t)). Finally, for two
functions f , g and fixed t ≥ 0 define 〈f , g〉 = ∫

R
f (x, t)g(x, t) dx.

In the notation we have introduced, we wish to consider the system
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = 1

2
uxx(x, t) − ψ

(
x − b(t)

)
u(x, t), x ∈R, t > 0,

u(x,0) = f (x), x ∈R,
b(0) = b0,

b′(t) = g(t) + g′(t) − 〈φb,u〉 − 1/2〈ψx,b, ux〉
〈ψx,b, u〉 , t > 0,

(3.1)

for some b0 ∈ R. [In the proof of Theorem 2.1 we choose b0 to satisfy −g(0) =∫
R

ψ(x − b0)f (x) dx, but we may take an arbitrary value for b0 and still obtain a
local existence and uniqueness result.]

We have assumed in the statement of Theorem 2.1 that f ∈ C2(R) and ψ ∈
C3(R) with ‖ψ‖L∞ = 1, ‖ψ‖L∞ =: B , ‖ψxx‖L∞ =: C, and ‖ψxxx‖L∞ =: F for
finite constants B , C, F . Furthermore, we have assumed for some h > 0 that
ψ(x) = 1 for x ≤ −h, that ψ(x) = 0 for x ≥ h and that ψ ≥ 0 and ψx ≤ 0 for
all x ∈ R. Set

∫
R

|ψx(x)|dx =: D, and note that 0 < D < ∞. It is immediate that
‖φ‖L∞ ≤ 1 and ‖φx‖L∞ = ‖ψx(1−2ψ)‖L∞ ≤ ‖ψx‖L∞ = B . Moreover, the func-
tions φ and φx are supported on [−h,h] and 0 <

∫
R

|φ(x)|dx =: E < ∞.

DEFINITION 3.1. For T > 0, let (LT ,‖ · ‖T ) be the Banach space consisting
of pairs of functions (u, b) such that u ∈ C2

x(R)Ct ([0, T ]), b ∈ C([0, T ]) and∥∥(u, b)
∥∥
T := ‖u‖L∞

x (R)L∞
t ([0,T ])

+ ‖ux‖L∞
x (R)L∞

t ([0,T ]) + ‖uxx‖L∞
x (R)L∞

t ([0,T ])
(3.2)

+ ‖b‖L∞([0,T ])
< ∞.
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DEFINITION 3.2. Given constants M , N , P , A, L > 0, b0 ∈ R and T > 0,
define the closed subset �T

MNPALb0
⊂ LT by

�T
MNPALb0

:=
{
(u, b) ∈ LT :

‖u‖L∞
x L∞

t ([0,T ]) ≤ M,

‖ux‖L∞
t ([0,T ])L∞

x
≤ N,

‖uxx‖L∞
t ([0,T ])L∞

x
≤ P,(3.3)

b(0) = b0,

‖b‖L∞([0,T ]) ≤ A/2,

inf
x∈[−A,A],t∈[0,T ]u(x, t) ≥ L

}
.

The following is the main result of this section.

THEOREM 3.3. Suppose that the assumptions of Theorem 2.1 hold. Suppose
also that the constants M , N , P , A, L > 0 and b0 ∈ R are such that:

• |b0| ≤ A/4,
• f (x) ≥ 4L > 0 for x ∈ [−A,A],
• ‖f ‖L∞(R) ≤ M/2,
• ‖fx‖L∞(R) ≤ N/2,
• ‖fxx‖L∞(R) ≤ P/2.

Then for T > 0 sufficiently small, there is a contractive map � : �T
MNPALb0

→
�T

MNPALb0
defined by �(v, b) = (u, c), where⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = 1

2
uxx(x, t) − ψ

(
x − b(t)

)
v(x, t), x ∈ R, t > 0,

u(x,0) = f (x), x ∈ R,

c′(t) = g(t) + g′(t) − 〈φb, v〉 − 1/2〈ψx,b, vx〉
〈ψx,b, v〉 , 0 < t ≤ T ,

c(0) = b0.

(3.4)

We will prove Theorem 3.3 in a series of lemmas. Each lemma will assume the
hypotheses of Theorem 3.3 and the bounds established in the previous lemmas.

REMARK 3.4. Since f is continuous and positive, for any A > 0 there exists
L > 0 such that f (x) ≥ 4L for x ∈ [−A,A]. Therefore, we are not restricting the
possible values of b(0) by the above assumptions. We will also assume without
loss of generality that h ≤ A/4.



KILLED BROWNIAN MOTION 15

LEMMA 3.5 (Boundedness of u). Suppose that (u, c) = �((v, b)), with
(v, b) ∈ �T

MNPALb0
. Then, there exists a time T > 0 such that

‖u‖L∞
x L∞

t ([0,T ]) ≤ M.

PROOF. Using Duhamel’s formula [see (8.2)],

∣∣u(x, t)
∣∣ =

∣∣∣∣∣
∫
R

G(y, t)f (x − y)dy

−
∫ t

0

∫
R

G(x − y, t − s)ψc(s)(y)v(y, s) dy ds

∣∣∣∣∣
≤

∫
R

G(y, t)f (x − y)dy

+
∫ t

0

∫
R

G(x − y, t − s)
∣∣ψc(s)(y)

∣∣∣∣v(y, s)
∣∣dy ds

≤ M/2
∫
R

G(y, t) dy + M

∫ t

0

∫
R

G(x − y, t − s) dy ds

≤ M/2 + Mt

≤ M

when t ≤ 1
2 , where

G(x, t) := 1√
2πt

e−x2/2t , x ∈ R, t > 0. �

LEMMA 3.6 (Boundedness of ux). Suppose that (u, c) = �((v, b)) with
(v, b) ∈ �T

MNPALb0
. Then there exists a time T > 0 such that

‖ux‖L∞
t ([0,T ])L∞

x
≤ N.

PROOF. Since ux solves⎧⎨
⎩

(
∂t − ∂xx

2

)
ux = −ψx,cv − ψcvx, x ∈ R, t > 0,

ux(x,0) = fx(x),

we have via Duhamel’s formula that

∣∣ux(x, t)
∣∣ =

∣∣∣∣∣
∫
R

G(y, t)fx(x − y)dy

+
∫ t

0

∫
R

G(x − y, t − s)(−ψx,cv − ψcvx)(y, s) dy ds

∣∣∣∣∣



16 B. ETTINGER, S. N. EVANS AND A. HENING

≤
∫
R

G(y, t)
∣∣fx(x − y)

∣∣dy

+
∫ t

0

∫
R

G(x − y, t − s)|ψx,c|
∣∣v(y, s)

∣∣dy ds

+
∫ t

0

∫
R

G(x − y, t − s)
∣∣ψ(

y − c(s)
)∣∣∣∣vx(y, s)

∣∣dy ds

≤ N

2
+ MB

∫ t

0

∫
R

G(x − y, t − s) dy ds

+ N

∫ t

0

∫
R

G(x − y, t − s) dy ds

≤ N

2
+ MBt + Nt.

Thus

‖ux‖L∞
t ([0,T ])L∞

x
≤ N

2
+ (MB + N)T ≤ N,

whenever T ≤ T ∗, where

T ∗ = N

2(MB + N)
. �

LEMMA 3.7 (Boundedness of uxx). Suppose that (u, c) = �((v, b)) with
(v, b) ∈ �T

MNPALb0
. Then, there exists a time T > 0 such that

‖uxx‖L∞
t ([0,T ])L∞

x
≤ P.

PROOF. Noting that uxx solves⎧⎨
⎩

(
∂t − ∂xx

2

)
uxx = −ψxx,cv − 2ψx,cvx − ψcvxx, x ∈R, t > 0,

uxx(x,0) = fxx(x),

analogous manipulations to those from Lemma 3.6 yield the result. �

LEMMA 3.8 (Lower bound for u and boundedness of c′ and c). Suppose that
(u, c) = �((v, b)) with (v, b) ∈ �T

MNPALb0
. Then, there exists a time T > 0 such

that

u ≥ L on x ∈ [−A,A], t ∈ [0, T ](3.5)

and c(t) ∈ [−A/2,A/2] for t ∈ [0, T ].
PROOF. Recall that b(0) ∈ [−A/4,A/4]. Then it is immediate that∣∣∣∣∣

∫
R

ψx

(
x − b(t)

)
v(x, t) dx

∣∣∣∣∣ =
∣∣∣∣∣
∫
R

ψx(y)v
(
y + b(t)

)
dy

∣∣∣∣∣ ≥ DL,

(3.6)
t ∈ [0, T ],
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because on the support [−h,h] of ψx we have y ∈ [−h,h] ⊆ [−A/4,A/4] which
together with the bound on b(t) implies y + b(t) ∈ [−A,A]. Therefore, v(y +
b(t)) ≥ L for t ∈ [0, T ] which, since ψx ≤ 0, yields∫

R

ψx(y)v
(
y + b(t)

)
dy ≤ L

∫
R

ψx(y) dy = −LD < 0, t ∈ [0, T ].

We see from these bounds that

∣∣c′(t)
∣∣ ≤ sup[0,t](|g + g′|) + ME + ND/2

LD

and, by integrating,

∣∣c(t)∣∣ ≤ ∣∣c(0)
∣∣ + sup[0,t](|g + g′|) + ME + ND/2

LD
t.

Thus, there is T > 0 such that for t ∈ [0, T ],∣∣c(t)∣∣ ∈ [−A/2,A/2].
Using the assumptions, equation (8.2) gives

u(x, t) =
∫
R

G(y, t)f (x − y)dy −
∫ t

0

∫
R

G(x − y, t − s)ψc(s)(y)v(y, s) dy ds

≥ 4L

∫ x+A

x−A
G(y, t) dy − M

∫ t

0

∫
R

G(x − y, t − s) dy ds

≥ 4L

∫ x+A

x−A
G(y, t) dy − Mt.

If 0 ≤ x ≤ A, then x − A ≤ 0 and x + A ≥ A > 0, so for small enough t we have
∫ x+A

x−A
G(y, t) dy ≥

∫ A

0
G(y, t) dy ≥ 1

3
.

If −A ≤ x < 0, then x + A ≥ 0 and x − A ≤ −A < 0. So, for small enough t ,
∫ x+A

x−A
G(y, t) dy ≥

∫ 0

−A
G(y, t) dy ≥ 1

3
.

Therefore, there exists a time T > 0 such that whenever t ∈ [0, T ] and x ∈
[−A,A],

u(x, t) ≥ 4
3L − Mt ≥ L. �

LEMMA 3.9. For a sufficiently small time T > 0, the set �T
MNPALb0

is mapped
into itself by �.
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PROOF. The above lemmas provided the necessary bounds. Now, note that
if we start with (v, b) ∈ �T

MNPALb0
, then we first get the function c from the last

two equations in (3.4) by simply integrating. The integration is well defined be-
cause the denominator is bounded in absolute value below by DL > 0 and the
numerator is bounded above. Thus c ∈ C1([0, t]). Next, having c in hand we get
the function u from the first two equations of (3.4). We note that, by Duhamel’s
formula, the function u has actually more than the desired smoothness, namely,
u ∈ C2

x(R)C1
t ([0, T ]). �

LEMMA 3.10. Suppose that (v1, b1), (v2, b2) ∈ �T
MNPALb0

. Set (u1, c1) =
�((v1, b1)) and (u2, c2) = �((v2, b2)). For any ε > 0 there exists T > 0 such
that

‖c2 − c1‖L∞
t ([0,T ]) ≤ ε

∥∥(v2, b2) − (v1, b1)
∥∥
T .(3.7)

PROOF. Note that the functions c1, c2 satisfy⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c′
1(t) = g(t) + g′(t) − 〈φb1, v1〉 − 1/2〈ψx,b1, ∂xv1〉∫

R
〈ψx,b1, v1〉 , t > 0,

c′
2(t) = g(t) + g′(t) − 〈φb2, v2〉 − 1/2〈ψx,b2, ∂xv2〉∫

R
〈ψx,b2, v2〉 , t > 0.

(3.8)

Subtracting the two equations gives

c′
2(t) − c′

1(t)

= [
g(t) + g′(t)

]( 〈ψx,b1, v1〉 − 〈ψx,b1, v2〉
〈ψx,b1, v1〉〈ψx,b2, v2〉 + 〈ψx,b1, v2〉 − 〈ψx,b2, v2〉

〈ψx,b1, v1〉〈ψx,b2, v2〉
)

+ (〈φb1, v1〉 − 〈φb2, v1〉)〈ψx,b2, v2〉
〈ψx,b1, v1〉〈ψx,b2, v2〉 + (〈φb2, v1〉 − 〈φb2, v2〉)〈ψx,b2, v2〉

〈ψx,b1, v1〉〈ψx,b2, v2〉
+ (〈φb2, v2〉 − 〈φb1, v2〉)〈φb2, v2〉

〈ψx,b1, v1〉〈ψx,b2, v2〉 + (〈φb1, v2〉 − 〈φb1, v1〉)〈φb2, v2〉
〈ψx,b1, v1〉〈ψx,b2, v2〉

+ (〈ψx,b1, ∂xv1〉 − 〈ψx,b2, ∂xv1〉)〈ψx,b2, v2〉
2〈ψx,b1, v1〉〈ψx,b2, v2〉

+ (〈ψx,b2, ∂xv1〉 − 〈ψx,b2, ∂xv2〉)〈ψx,b2, v2〉
2〈ψx,b1, v1〉〈ψx,b2, v2〉

+ (〈ψx,b2, v2〉 − 〈ψx,b1, v2〉)〈ψx,b2, ∂xv2〉
2〈ψx,b1, v1〉〈ψx,b2, v2〉

+ (〈ψx,b1, v2〉 − 〈ψx,b1, v1〉)〈ψx,b2, ∂xv2〉
2〈ψx,b1, v1〉〈ψx,b2, v2〉 .
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Using the fact that the functions ψ , ψx and φ are Lipschitz, that v1 and v2 are
bounded, and that their first derivatives are bounded, we find that

∥∥c′
2 − c′

1
∥∥
L∞

t ([0,T ]) ≤ sup[0,T ] |g + g′|‖v1 − v2‖L∞
x L∞

t ([0,T ])
L2D2

+ sup[0,T ] |g + g′|MC(A + 2h)‖b2 − b1‖L∞
t ([0,T ])

L2D2

+ DM2B(A + 2h)‖b2 − b1‖L∞
t ([0,T ])

L2D2

+ DME‖v2 − v1‖L∞
x L∞

t ([0,T ])
L2D2

+ EM2B(A + 2h)‖b2 − b1‖L∞
t ([0,T ])

L2D2

+ ME2‖v2 − v1‖L∞
x L∞

t ([0,T ])
L2D2

+ NMDC(A + 2h)‖b2 − b1‖L∞
t ([0,T ])

2L2D2

+ MD2‖∂xv2 − ∂xv1‖L∞
x L∞

t ([0,T ])
2L2D2

+ NMDC(A + 2h)‖b2 − b1‖L∞
t ([0,T ])

2L2D2

+ ND2‖v2 − v1‖L∞
x L∞

t ([0,T ])
2L2D2 .

Integrating and recalling that c1(0) = c2(0) = b0 leads to∣∣∣∣
∫ t

0

(
c′

2(s) − c′
1(s)

)
ds

∣∣∣∣ = ∣∣c2(t) − c1(t) − (
c2(0) − c1(0)

)∣∣
≤

∫ t

0

∣∣c′
2(s) − c′

1(s)
∣∣ds

≤ t
∥∥c′

2 − c′
1
∥∥
L∞

t ([0,t]).

Hence,

‖c2 − c1‖L∞
t ([0,T ]) ≤ T

∥∥c′
2 − c′

1
∥∥
L∞

t ([0,T ])

and by the above bound on ‖c′
2 −c′

1‖L∞
t ([0,T ]) for any ε > 0 we can choose T small

enough that

‖c2 − c1‖L∞
t ([0,T ]) ≤ ε

∥∥(v2, b2) − (v1, b1)
∥∥
T . �
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LEMMA 3.11. Suppose that (v1, b1), (v2, b2) ∈ �T
MNPALb0

. Set (u1, c1) =
�((v1, b1)) and (u2, c2) = �((v2, b2)). For any ε > 0 there exists T > 0 such
that

‖u2 − u1‖L∞
x L∞

t ([0,T ]) ≤ ε
∥∥(v2, b2) − (v1, b1)

∥∥
T .(3.9)

PROOF. The following equations hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂t − ∂xx

2

)
u1 = −ψ

(
x − c1(t)

)
v1, x ∈ R, t > 0,

(
∂t − ∂xx

2

)
u2 = −ψ

(
x − c2(t)

)
v2, x ∈ R, t > 0,

u1(x,0) = f (x), x ∈ R,

u2(x,0) = f (x), x ∈ R.

(3.10)

By Duhamel’s formula we have

u1 = G ∗ (f δt=0) + G ∗ (−ψc1v1)(3.11)

and

u2 = G ∗ (f δt=0) + G ∗ (−ψc2v2),(3.12)

where we recall that ∗ denotes convolution on R+ ×R. Subtracting the two equa-
tions gives

u1 − u2 = G ∗ (
(ψc2 − ψc1)v1 + ψc2(v2 − v1)

)
.

Bounding in terms of the sup norm and using the fact that∣∣ψ(
x − c1(t)

) − ψ
(
x − c2(t)

)∣∣ ≤ ‖ψx‖L∞
x

∣∣c1(t) − c2(t)
∣∣,

we have∣∣u1(x, t) − u2(x, t)
∣∣

≤
∫ t

0

∫
R

G(x − y, t − s)
∣∣ψc1(y, s) − ψc2(y, s)

∣∣∣∣v1(y, s)
∣∣dy ds

+
∫ t

0

∫
R

G(x − y, t − s)
∣∣ψc2(y, s)

∣∣∣∣v2(y, s) − v1(y, s)
∣∣dy ds

≤ ‖ψx‖L∞
x

‖v1‖L∞L∞
t ([0,T ])‖c1 − c2‖L∞

x
t + ‖ψ‖L∞

x
‖v1 − v2‖L∞

x L∞
t ([0,t])t

= BM‖c1 − c2‖L∞
x

t + ‖v1 − v2‖L∞
x L∞

t ([0,t])t.

Thus,

‖u1 − u2‖L∞
x L∞

t ([0,T ]) ≤ B‖c1 − c2‖L∞
x

T + ‖v1 − v2‖L∞
x L∞

t ([0,T ])T ,

so for small enough T we see that (3.9) holds. �
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LEMMA 3.12. Suppose that (v1, b1), (v2, b2) ∈ �T
MNPALb0

. Set (u1, c1) =
�((v1, b1)) and (u2, c2) = �((v2, b2)). For any ε > 0 there exists T > 0 such
that

‖∂xu1 − ∂xu2‖L∞
x L∞

t ([0,T ]) ≤ ε
∥∥(v2, b2) − (v1, b1)

∥∥
T .(3.13)

PROOF. Differentiating (3.10) with respect to x,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂t − ∂xx

2

)
∂xu1(x, t) = −ψx,c1(x, t)v1(x, t) − ψc1(x, t) ∂xv1(x, t),

x ∈R, t > 0,(
∂t − ∂xx

2

)
∂xu2(x, t) = −ψx,c2(x, t)v2(x, t) − ψc2(x, t) ∂xv2(x, t),

x ∈R, t > 0,

∂xu1(x,0) = fx(x), x ∈ R,

∂xu2(x,0) = fx(x), x ∈ R.

(3.14)

Via Duhamel’s formula,

∂xu1 = G ∗ (fxδt=0)
(3.15)

+ G ∗ (−ψx

(· − c1(·))v1 − ψ
(· − c2(·)) ∂xv1

)
and

∂xu1 = G ∗ (fxδt=0)
(3.16)

+ G ∗ (−ψx

(· − c2(·))v2 − ψ
(· − c2(·)) ∂xv2

)
.

Subtracting and rearranging,

(∂xu1 − ∂xu2)(x, t)

=
∫ t

0

∫
R

G(x − y, t − s)
[
ψx,c2v2(y, s) − ψx,c1v1(y, s)

]
dy ds

+
∫ t

0

∫
R

G(x − y, t − s)
[
ψc2 ∂xv2(y, s) − ψc1 ∂xv1(y, s)

]
dy ds

=
∫ t

0

∫
R

G(x − y, t − s)
[
ψx,c2v2(y, s) − ψx,c2v1(y, s)

]
dy ds

+
∫ t

0

∫
R

G(x − y, t − s)
[
ψx,c2v1(y, s) − ψx,c1v1(y, s)

]
dy ds

+
∫ t

0

∫
R

G(x − y, t − s)
[
ψc2 ∂xv2(y, s) − ψc2 ∂xv1(y, s)

]
dy ds

+
∫ t

0

∫
R

G(x − y, t − s)
[
ψc2 ∂xv1(y, s) − ψc1 ∂xv1(y, s)

]
dy ds.
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Using estimates similar to those in the proof of Lemma 3.11,

‖∂xu1 − ∂xu2‖L∞
x L∞

t ([0,T ])
≤ BM‖v2 − v1‖L∞

x L∞
t ([0,T ])T + CM‖c2 − c1‖L∞

t ([0,T ])T
+ ‖∂xv2 − ∂xv1‖L∞

x L∞
t ([0,T ])T + BN‖c2 − c1‖L∞

t ([0,T ])T
= BMT ‖v2 − v1‖L∞

x L∞
t ([0,T ]) + (CM + BN)T ‖c2 − c1‖L∞

t ([0,T ])
+ T ‖∂xv2 − ∂xv1‖L∞

x L∞
t ([0,T ]),

so for T small we recover (3.13). �

LEMMA 3.13. Suppose that (v1, b1), (v2, b2) ∈ �T
MNPALb0

. Set (u1, c1) =
�((v1, b1)) and (u2, c2) = �((v2, b2)). For any ε > 0 there exists T > 0 such
that

‖∂xxu1 − ∂xxu2‖L∞
x L∞

t ([0,T ]) ≤ ε
∥∥(v2, b2) − (v1, b1)

∥∥
T .(3.17)

PROOF. Differentiating (3.10) twice with respect to x,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂t − ∂xx

2

)
∂xxu1 = −ψxx,c1v1 − 2ψx,c1 ∂xv1 − ψc1 ∂xxv1,

x ∈R, t > 0,(
∂t − ∂xx

2

)
∂xxu2 = −ψxx,c2v2 − 2ψx,c2 ∂xv2 − ψc2 ∂xxv2,

x ∈R, t > 0,

∂xxu1(x,0) = fxx(x), x ∈ R,

∂xxu2(x,0) = fxx(x), x ∈ R.

(3.18)

Duhamel’s formula and similar manipulations to Lemmas 3.11 and 3.12 give

‖∂xxu1 − ∂xxu2‖L∞
x L∞

t ([0,T ])
≤ CM‖v2 − v1‖L∞

t ([0,T ])L∞
x

T

+ FM‖c2 − c1‖L∞
t ([0,T ])T

+ 2B‖∂xv2 − ∂xv1‖L∞
x L∞

t ([0,T ])T
+ 2CN‖c2 − c1‖L∞

t ([0,T ])T
+ ‖∂xxv2 − ∂xxv1‖L∞

x L∞
t ([0,T ])T

+ BP‖c2 − c1‖L∞
t ([0,T ])T

= CMT ‖v2 − v1‖L∞
x L∞

t ([0,T ])
+ 2BT ‖∂xv2 − ∂xv1‖L∞

x L∞
t ([0,T ])

+ T ‖∂xxv2 − ∂xxv1‖L∞
x L∞

t ([0,T ])
+ (FM + 2CN + BP)T ‖c2 − c1‖L∞

t ([0,T ]),
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so when T > 0 is small, (3.17) holds. �

THEOREM 3.14 (Local existence and uniqueness). Suppose that the condi-
tions of Theorem 2.1 hold. Then, there exists a time T > 0 such that the system⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = 1

2
uxx(x, t) − ψ

(
x − b(t)

)
u(x, t), x ∈ R, t > 0,

u(x,0) = f (x), x ∈ R,

b′(t) = g(t) + g′(t) − 〈φb,u〉 − 1/2〈ψx,b, ux〉
〈ψx,b, u〉 , t > 0,

b(0) = b0,

has a unique solution (u, b) ∈ C2
x(R)C1

t ([0, T ]) × C1([0, T ]).
PROOF. Note there exist strictly positive constants A,M,N and P such that

b0 ∈ [−A
4 , A

4 ], f (x) ≥ L > 0, when x ∈ [−A,A], ‖f ‖L∞(R) ≤ M , ‖fx‖L∞(R) ≤
N/2, and ‖fx‖L∞(R) ≤ P/2. Putting all the estimates from the above lemmas to-
gether we have that, if 0 < ε < 1 is fixed, then for T > 0 small enough,∥∥(u2, c2) − (u1, c1)

∥∥ ≤ ε
∥∥(v2, b2) − (v1, b1)

∥∥.
Thus there exists a T > 0 such that the map � :�T

MNPALb0
→ �T

MNPALb0
is a con-

traction. Since �T
MNPALb0

is a closed subset of the Banach space LT , the contrac-
tion mapping theorem gives that there exists a unique fixed point, that is, a pair
(u, b) ∈ C2

x(R)Ct ([0, T ]) × C([0, T ]) with b(0) = b0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t) = 1

2
uxx(x, t) − ψ

(
x − b(t)

)
u(x, t),

u(x,0) = f (x),

b′(t) = g(t) + g′(t) − 〈φb,u〉 − 1/2〈ψx,b, ux〉
〈ψx,b, u〉 ,

b(0) = b0.

(3.19)

We can now argue that our fixed point (u, b) has more smoothness than it seems
a priori. The third equation in (3.19) implies that b must be continuously differen-
tiable with a bounded derivative. This, together with the first equation from (3.19)
then tells us that u has a continuous derivative in time. Therefore, we must have
(u, b) ∈ C2

x(R)C1
t ([0, T ]) × C1([0, T ]). �

COROLLARY 3.15. Assume the hypotheses of Theorem 3.14 and the extra
conditions ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G(0) =
∫
R

f (x) dx,

−g(0) =
∫
R

ψ
(
x − b(0)

)
f (x) dx,

0 < −g(t) < G(t), t ∈ [0, T ].
(3.20)
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Then, there exists a time T > 0 such that the system
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut (x, t) = 1

2
uxx(x, t) − ψ

(
x − b(t)

)
u(x, t), x ∈R, 0 < t < T ,

u(x,0) = f (x), x ∈R,

G(t) =
∫
R

u(x, t) dx, t ∈ [0, T ],

has a unique solution (u, b) :R× [0, T ] →R. Furthermore, u ∈ C2
x(R)C1

t ([0, T ])
and b ∈ C1([0, T ]).

PROOF. First note that by Lemma 2.2 we have that b(0) is uniquely de-
termined. From Theorem 3.14 we have that there exist unique u, b with u ∈
C2

x(R)C1
t ([0, T ]) and b ∈ C1([0, T ]) satisfying the PDE and having everywhere

in [0, T ]

b′(t) = g(t) + g′(t) − 〈φb,u〉 − 1/2〈ψx,b, ux〉
〈ψx,b, u〉 .

Set F(t) := G(t) − ∫
R

u(x, t) dx and note that the first two conditions
from (3.20) yield, together with the PDE, Ft(0) = F(0) = 0. The function F be-
longs to C1([0, T ]), and Ft belongs to C([0, T ]). The above equation for b′ is
equivalent, after using the PDE, to

Ftt (t) − Ft(t) = 0, t ∈ [0, T ].
Integrating and using the fundamental theorem of calculus, we get

Ft(t) − F(t) = Ft(0) − F(0) = 0, t ∈ [0, T ].
The unique solution to this differential equation is F(t) = Cet for some constant
C ∈ R. This together with F(0) = 0 yields F(t) = 0 for t ∈ [0, T ]. Thus

G(t) =
∫
R

u(x, t) dx, t ∈ [0, T ].

Then, taking a derivative and using the PDE,

−g(t) =
∫
R

ψ
(
x − b(t)

)
u(x, t) dx, t ∈ [0, T ].

Because |ψ(x)| ≤ 1 for x ∈ R, ψ = 0 for x ≥ h and u(x, t) > 0, we see that

0 <

∫
R

ψ
(
x − b(t)

)
u(x, t) dx = −g(t) <

∫
R

u(x, t) dx = G(t). �
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4. Discontinuous killing. Next, we consider the existence of a barrier when
killing is done nonsmoothly. That is, we ask whether there exists a function b such
that, for a given G,

G(t) =
∫
R

E

[
exp

(
−

∫ t

0
1(−∞,0]

(
x + Bu − b(u)

)
du

)
f (x)

]
dx.(4.1)

Note that
∫ t

0 1(−∞,0](x + Bu − b(u)) du is the time during the interval [0, t] spent
by a Brownian motion started at x below the barrier b.

THEOREM 4.1. There exists a function b such that, for a given, twice continu-
ously differentiable G satisfying 0 < −g(t)/G(t) < 1, t ≥ 0, equation (4.1) holds
for all t ≥ 0.

PROOF. Let φ be a smooth decreasing function supported on [0,1] with∫
R

φ(x) dx = 1. Put

ψ
ε
(x) =

∫ ∞
x

φ
(
(y − ε)/ε

)
(1/ε) dy

and

ψε(x) =
∫ ∞
x

φ(y/ε)(1/ε) dy,

so that

ψ
ε
(x) ≤ 1{x ≤ 0} ≤ ψε.(4.2)

Note also that

ψ
ε
(x) increases with ε for all x(4.3)

and

ψε(x) decreases with ε for all x.(4.4)

Let bε and bε be the two barriers corresponding to ψ
ε
(x) and ψε . The existence

and uniqueness of these two barriers follows by Theorem 2.1. From (4.2) we have
that

bε(t) ≤ bε(t)

for all t and from (4.3), (4.4) that

bε(t) is increasing in ε for each t

and

bε(t) is decreasing in ε for each t.
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Put

b∗(t) = lim
ε↓0

bε(t)

and

b∗(t) = lim
ε↓0

bε(t).

Then

b∗(t) ≤ b∗(t)(4.5)

and both of these functions give a stopping time with the correct distribution for
the case where ψ is the indicator of (−∞,0]. Because of (4.5), it must be the case
that b∗(t) = b∗(t) for Lebesgue almost all t . �

5. Pricing claims. Suppose that the asset price (Xt)t≥0 is a geometric Brow-
nian motion given by

dXt

Xt

= μdt + σ dWt,(5.1)

where (Wt)t≥0 is a standard Brownian motion. We model default using a diffusion
(Yt )t≥0, where

dYt = dBt ,(5.2)

with (Bt )t≥0 another standard Brownian motion. We assume that the Brownian
motions W and B are correlated with correlation −1 ≤ ρ ≤ 1; that is, the cross-
variation of the two processes satisfies

[B,W ]t = ρt, t ≥ 0.

We can assume without loss of generality that for two independent Brownian mo-
tions B ′,B ′′ we have ⎧⎨

⎩
Wt = B ′

t ,

Bt = ρB ′
t +

√
1 − ρ2B ′′

t .

In the following we will look at pricing contingent claims with a fixed maturity
T > 0 and payoff of the form

F(XT )1{τ > T }
for the random time

τ := inf
{
t > 0 :λ

∫ t

0
ψ

(
Ys − b(s)

)
ds > U

}
,

where U is an independent exponentially distributed random variable with mean
one.
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Note that

E
x[

F(XT )1{τ > T }] = E
x

[
F(XT ) exp

(
−λ

∫ T

0
ψ

(
Ys − b(s)

)
ds

)]
.

More generally, we will be interested in expressions of the form

E
x[

F(XT )1{τ > T } | (Xs)0≤s≤t , τ > t
]

= E
x

[
F(XT ) exp

(
−λ

∫ T

t
ψ

(
Ys − b(s)

)
ds

) ∣∣∣ (Xs)0≤s≤t , τ > t

]
,

which we interpret as the price of the payoff at time 0 ≤ t ≤ T given that default
has not yet occurred.

Consider the Markov process Z = (X,Y,V ), where X, Y are as above, and V is
a process that, when started at v is at v + t after t units of time, that is, Vt = V0 + t .
The generator of Z is

A = (1/2)σ 2x2D2
x + μxDx + (1/2)D2

y + ρσxDxDy + Dv.

We want to compute

E
(x,y)[F(XT )e− ∫ T

0 λψ(Ys−b(s)) ds] = E
(x,y,0)[F(XT )e− ∫ T

0 λψ(Ys−b(Vs)) ds].
The Feynman–Kac formula says that the solution to the PDE{

Dtu(x, y, v, t) = Au(x, y, v, t) − λψ
(
y − b(v)

)
u(x, y, v, t),

u(x, y, v,0) = F(x),
(5.3)

satisfies

E
(x,y)

[
F(XT ) exp

(
−

∫ T

0
λψ

(
Ys − b(s)

)
ds

)]
= u(x, y,0, T ).

Thus, if we assume the Brownian motion Y has a random starting point Y0 with
density f , that is, independent of (Yt − Y0)t≥0, then

E
x

[
F(XT ) exp

(
−

∫ T

0
λψ

(
Ys − b(s)

)
ds

)]
=

∫
R

u(x, y,0, T )f (y) dy.

Using this and the Markov property, one can find the function K(x, y, t) satisfying

K(Xt,Yt , t)

= E
x

[
F(XT ) exp

(
−λ

∫ T

t
ψ

(
Ys − b(s)

)
ds

) ∣∣∣ (Xs)0≤s≤t , (Ys)0≤s≤t , τ > t

]
.

The price at time t , given that we know the history of the price process Xt and that
default has not happened up to time t , is

E
[
F(XT )1{τ > T } | (Xs)0≤s≤t , τ > t

]
= E

[
K(Xt,Yt , t) | (Xs)0≤s≤t , τ > t

]
= E[K(Xt,Yt , t)1{τ > t} | (Xs)0≤s≤t ]

E[1{τ > t} | (Xs)0≤s≤t ] .
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It follows from the SDE for X that

B ′
t = Wt = 1

σ

[
logXt − logX0 +

(
σ 2

2
− μ

)
t

]
,

so if we observe the asset price X, then we can reconstruct the standard Brownian
motion B ′. On the other hand,

Xt = X0 exp
(
σB ′

t −
(

σ 2

2
− μ

)
t

)
.

Now,

E
[
K(Xt,Yt , t)1{τ > t} | (Xs)0≤s≤t

]
= E

[
K

(
X0 exp

(
σB ′

t −
(

σ 2

2
− μ

)
t

)
, Y0 + ρB ′

t +
√

1 − ρ2B ′′
t , t

)

× 1
{∫ t

0
ψ

(
Y0 + ρB ′

s +
√

1 − ρ2B ′′
s − b(s)

)
ds ≤ U

} ∣∣∣ X0,
(
B ′

s

)
0≤s≤t

]
.

We therefore want to be able to compute for a function c :R+ →R the conditional
expected value

E

[
K

(
X0 exp

(
σc(t) −

(
σ 2

2
− μ

)
t

)
, Y0 + ρc(t) +

√
1 − ρ2B ′′

t , t

)

× 1
{∫ t

0
ψ

(
Y0 + ρc(s) +

√
1 − ρ2B ′′

s − b(s)
)
ds ≤ U

} ∣∣∣ X0

]

= E

[
K

(
X0 exp

(
σc(t) −

(
σ 2

2
− μ

)
t

)
, Y0 + ρc(t) +

√
1 − ρ2B ′′

t , t

)

× exp
(
−

∫ t

0
ψ

(
Y0 + ρc(s) +

√
1 − ρ2B ′′

s − b(s)
)
ds

) ∣∣∣ X0

]

with (B ′′
t )t≥0 a standard Brownian motion independent of X0. We can do this using

Feynman–Kac.
The denominator in the formula for the price at time t is a special case of the

numerator we have just calculated with K ≡ 1, and it can be dealt with in the same
way.

We have thus observed that computing the price of a contingent claim reduces
to solving certain PDEs with coefficients depending on the path of the asset price.

6. Numerical results. In this section we present the results of some numeri-
cal experiments. We solved the PDE/ODE system (2.12) using the pseudo-spectral
implicit-explicit fourth order Runge–Kutta scheme ARK4(3)6L[2]SA-ERK, tak-
ing 8192 nodes and period 16, developed in [9]. For the function ψ we used the
Fejér kernel of order 512 applied to the indicator of the set {x ∈R :x < 0}; in other
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words ψ is the Cesàro sum of the truncated Fourier series of order 512 of the indi-
cator of the set {x ∈ R :x < 0}. The time horizon was taken to be T = 8, the initial
distribution of the credit index process Y was taken to be normal [Y0 ∼ N(0, σ 2)

with standard deviation σ = 0.25], and the time to default was taken to have an
exponential distribution [G(t) = e−νt with rates ν = 0.0625,0.125,0.25,0.5].

For the first experiment, we fix the killing parameter to λ = 1. We show the re-
sulting barriers b in Figure 1. We also show the relative error between the survival
function G(t) and the numerically computed value of

∫
R

u(x, t) dx [recall (2.3)],

FIG. 1. This figure displays the results of the numerical experiments described in Section 6. We
fix the standard deviation for the initial distribution of the credit index process Y to be σ = 0.25
and the killing parameter to be λ = 1. The first row gives the barriers for the rate parameters
ν = 0.0625,0.125,0.25,0.5 of the exponential default time distribution. The first (resp., second)
panels in the second row give the relative errors between the actual survival function values G(t)

[resp., the actual hazard function values −g(t)/G(t)] and the numerically computed ones; see the
text for details.
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FIG. 2. In this figure we fixed the standard deviation to σ = 0.25 and the rate parameter to
ν = 0.125. The first row gives the barriers for the killing parameters λ = 1,10,50,200. The first
and second panels in the second row give the relative errors for the survival function (resp., the
hazard function).

and the relative error between the hazard rate −g(t)/G(t) and the numerically
computed value of

∫
R

ψ(x − b(t))u(x, t) dx/
∫
R

u(x, t) dx [recall (2.4)].
For the second experiment, we take the exponential rate to be ν = 0.125 and

the standard deviation to be σ = 0.25. We look at the graphs for when the killing
parameter is λ = 1,10,50,200. The barriers, together with the relative errors in
the survival functions and hazard rates are given in Figure 2.

7. Calibrating the default distribution using CDS rates. For the sake of
completeness, we review briefly the scheme proposed in [4] for determining the
distribution of the time to default.

A credit default swap (CDS) is a contract between two parties. The buyer of
the swap makes a number of predetermined payments until the moment of default.
The seller is liable to pay the unrecovered value of the underlying bond in the event
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of a default before maturity. Normalizing the notional value of the bond to 1, the
seller’s contingent payment is 1 − R, where R ∈ (0,1) is the recovery rate, which
we take to be constant. The premium payments are made at a set of times {ti}. The
maturities are a subset of the premium payment times; that is, they are of the form
T0 = 0, Tj = tk(j), j = 1, . . . , n. For j = 1, . . . , n there is an upfront premium π0

j

and a running premium rate π1
j (having accrual factors δi ). Denote the price at

time zero of a zero coupon risk-free bond with maturity tj by p0(tj ). It follows
from standard nonarbitrage arguments that

π0
j + π1

j

k(j)−1∑
i=k(j−1)

δip0(ti)G(ti)

(7.1)

= (1 − R)

k(j)∑
i=k(j−1)+1

p0(ti)
(
G(ti−1) − G(ti)

)
,

where G(t) = P{τ > t} is the tail of the distribution of the time to default.
Suppose now that the default distribution has piecewise constant hazard rate;

that is, that

G(t) = exp
(
−

∫ t

0
h(s) ds

)
, t ≥ 0,

where h(s) = hi for s ∈ [Ti, Ti+1). Given the market data (π0
1 , π1

1 ), (π0
2 , π1

2 ), . . .

we can find, using equation (7.1), the constants h0, h1, . . . .

We use the following procedure to find the barrier b. Set ν = h0 and G(t) =
e−νt . Given the initial density f , which we can choose to be any strictly positive
function f , that is, twice continuously differentiable with bounded f , f ′ and f ′′,
we want to find a barrier such that for 0 ≤ t ≤ T = T1 we have

e−νt = E

[∫
R

f (x) exp
(
−λ

∫ t

0
ψ

(
x + Bs − b(s)

)
ds

)
dx

]
.

This can be achieved by solving the ODE/PDE system (2.12). Next, set ν1 = h1,
T = T2 −T1, f1(x) = E[f (x) exp(−λ

∫ T1
0 ψ(x +Bs −b(s)) ds)], and find a barrier

with b1(0) = b(T1) such that on 0 ≤ t < T = T2 − T1 we have

e−ν1t = E

[∫
R

f1(x) exp
(
−λ

∫ t

0
ψ

(
x + Bs − b1(s)

)
ds

)
dx

]
.

This procedure can be repeated until we find a function b on [0, Tn], that
is, continuously differentiable everywhere, except perhaps the finite number of
points T1, . . . , Tn.
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8. Duhamel’s formula. For the sake of reference, we provide a statement of
Duhamel’s formula. Given functions v :R×R+ →R and b :R+ →R, the solution
of ⎧⎨

⎩
(
∂t − ∂xx

2

)
u = −ψbv, x ∈ R, t > 0,

u(x,0) = f (x), x ∈ R,
(8.1)

is given by

u(x, t) = [
G ∗ (f δt=0)

]
(x, t) + [

G ∗ (−ψbv)
]
(x, t)

=
∫
R

G(x − y, t)f (y) dy(8.2)

−
∫ t

0

∫
R

G(x − y, t − s)ψb(s)(y)v(y, s) dy ds,

where

G(x, t) := 1√
2πt

e−x2/(2t), x ∈ R, t > 0.(8.3)
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