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In the late seventies, Clark [In Communication Systems and Random
Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977)
(1978) 721–734, Sijthoff & Noordhoff] pointed out that it would be natural
for πt , the solution of the stochastic filtering problem, to depend continu-
ously on the observed data Y = {Ys, s ∈ [0, t]}. Indeed, if the signal and the
observation noise are independent one can show that, for any suitably cho-

sen test function f , there exists a continuous map θ
f
t , defined on the space

of continuous paths C([0, t],R
d) endowed with the uniform convergence

topology such that πt (f ) = θ
f
t (Y ), almost surely; see, for example, Clark

[In Communication Systems and Random Process Theory (Proc. 2nd NATO
Advanced Study Inst., Darlington, 1977) (1978) 721–734, Sijthoff & Noord-
hoff], Clark and Crisan [Probab. Theory Related Fields 133 (2005) 43–56],
Davis [Z. Wahrsch. Verw. Gebiete 54 (1980) 125–139], Davis [Teor. Veroy-
atn. Primen. 27 (1982) 160–167], Kushner [Stochastics 3 (1979) 75–83]. As
shown by Davis and Spathopoulos [SIAM J. Control Optim. 25 (1987) 260–
278], Davis [In Stochastic Systems: The Mathematics of Filtering and Iden-
tification and Applications, Proc. NATO Adv. Study Inst. Les Arcs, Savoie,
France 1980 505–528], [In The Oxford Handbook of Nonlinear Filtering
(2011) 403–424 Oxford Univ. Press], this type of robust representation is
also possible when the signal and the observation noise are correlated, pro-
vided the observation process is scalar. For a general correlated noise and
multidimensional observations such a representation does not exist. By us-
ing the theory of rough paths we provide a solution to this deficiency: the
observation process Y is “lifted” to the process Y that consists of Y and its
corresponding Lévy area process, and we show that there exists a continuous

map θ
f
t , defined on a suitably chosen space of Hölder continuous paths such

that πt (f ) = θ
f
t (Y), almost surely.
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1. Introduction. Let (�, F , (Ft )t≥0,P) be a filtered probability space on
which we have defined a two-component diffusion process (X,Y ) solving a
stochastic differential equation driven by a multidimensional Brownian motion.
One assumes that the first component X is unobservable, and the second compo-
nent Y is observed. The filtering problem consists of computing the conditional
distribution of the unobserved component, called the signal process, given the ob-
servation process Y . Equivalently, one is interested in computing

πt(f ) = E
[
f (Xt , Yt )|Yt

]
,

where Y = {Yt , t ≥ 0} is the observation filtration, and f is a suitably chosen test
function. An elementary measure theoretic result tells us4 that there exists a Borel-
measurable map θ

f
t :C([0, t],R

dY ) → R, such that

πt(f ) = θ
f
t (Y·), P-a.s.,(1)

where dY is the dimension of the observation state space, and Y· is the path-valued
random variable

Y· :� → C
([0, t],R

dY
)
, Y·(ω) = (

Ys(ω),0 ≤ s ≤ t
)
.

Of course, θ
f
t is not unique. Any other function θ̄

f
t such that

P ◦ Y−1·
(
θ̄

f
t �= θ

f
t

) = 0,

where P ◦Y−1· is the distribution of Y· on the path space C([0, t],R
dY ) can replace

θ
f
t in (1). It would be desirable to solve this ambiguity by choosing a suitable

representative from the class of functions that satisfy (1). A continuous version, if it
exists, would enjoy the following uniqueness property: if the law of the observation
P ◦ Y−1· positively charges all nonempty open sets in C([0, t],R

dY ), then there
exists a unique continuous function θ

f
t that satisfies (1). In this case, we call θ

f
t (Y·)

the robust version of πt(f ) and equation (1) is the robust representation formula
for the solution of the stochastic filtering problem.

The need for this type of representation arises when the filtering framework is
used to model and solve “real-life” problems. As explained in a substantial number
of papers (e.g., [7, 8, 10–14, 26]) the model chosen for the “real life” observation
process Ȳ may not be a perfect one. However, if θf is continuous (or even lo-
cally Lipschitz, as in the setting of [8]), and as long as the distribution of Ȳ· is
close in a weak sense to that of Y· (and some integrability assumptions hold), the
estimate θ

f
t (Ȳ·) computed on the actual observation will still be reasonable, as

E[(f (Xt , Yt ) − θ
f
t (Ȳ·))2] is close to the idealized error E[(f (Xt , Yt ) − θ

f
t (Y·))2].

4See, for example, Proposition 4.9, page 69, in [5].
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Moreover, even when Y and Ȳ actually coincide, one is never able to obtain
and exploit a continuous stream of data as modeled by the continuous path Y·(ω).
Instead the observation arrives and is processed at discrete moments in time

0 = t0 < t1 < t2 < · · · < tn = t.

However, the continuous path Ŷ·(ω) obtained from the discrete observations
(Yti (ω))ni=1 by linear interpolation is close to Y·(ω) (with respect to the supremum

norm on C([0, t],R
dY )); hence, by the same argument, θ

f
t (Ŷ·) will be a sensible

approximation to πt(f ). To conclude the discussion on the un-correlated frame-
work, let us also mention that Kushner introduces in [27] a robust computable
approximation for the filtering solution.

In the following, we will assume that the pair of processes (X,Y ) satisfy the
equation

dXt = l0(Xt , Yt ) dt + ∑
k

Zk(Xt , Yt ) dWk
t + ∑

j

Lj (Xt , Yt ) dB
j
t ,(2)

dYt = h(Xt , Yt ) dt + dWt(3)

with X0 being a bounded random variable and Y0 = 0. In (2) and (3), the
process X is the dX-dimensional signal, Y is the dY -dimensional observa-
tion, B and W are independent dB -dimensional, respectively, dY -dimensional
Brownian motions independent of X0. Suitable assumptions on the coeffi-
cients l0,L1, . . . ,LdB

: RdX+dY → R
dX , Z1, . . . ,ZdY

: RdX+dY → R
dX and h =

(h1, . . . , hdY ) : RdX+dY → R
dY will be introduced later on. This framework cov-

ers a wide variety of applications of stochastic filtering (see, e.g., [9] and the
references therein) and has the added advantage that, within it, πt(f ) admits an
alternative representation that is crucial for the construction of its robust version.
Let us detail this representation first.

Let u = {ut , t > 0} be the process defined by

ut = exp

[
−

dY∑
i=1

(∫ t

0
hi(Xs,Ys) dWi

s − 1

2

∫ t

0

(
hi(Xs,Ys)

)2
ds

)]
.(4)

Then, under suitable assumptions,5 u is a martingale which is used to construct
the probability measure P0 equivalent to P on

⋃
0≤t<∞ Ft whose Radon–Nikodym

derivative with respect to P is given by u, namely,

dP0

dP

∣∣∣∣
Ft

= ut .

5For example, if Novikov’s condition is satisfied, that is, if E[exp( 1
2

∫ t
0 ‖hi(Xs,Ys)‖2 ds)] < ∞

for all t > 0, then u is a martingale. In particular it will be satisfied in our setting, in which h is
bounded.
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Under P0, Y is a Brownian motion independent of B . Moreover the equation for
the signal process X becomes

dXt = l̄0(Xt , Yt ) dt + ∑
k

Zk(Xt , Yt ) dY k
t + ∑

j

Lj (Xt , Yt ) dB
j
t .(5)

Observe that equation (5) is now written in terms of the pair of Brownian motions
(Y,B) and the coefficient l̄0 is given by l̄0 = l0 + ∑

k Zkhk . Moreover, for any
measurable, bounded function f : RdX+dY → R, we have the following formula,
called the Kallianpur–Striebel formula:

πt(f ) = pt(f )

pt (1)
, pt (f ) := E0

[
f (Xt , Yt )vt |Yt

]
,(6)

where v = {vt , t > 0} is the process defined as vt := exp(It ), t ≥ 0 and

It :=
dY∑
i=1

(∫ t

0
hi(Xr,Yr) dY i

r − 1

2

∫ t

0

(
hi(Xr,Yr)

)2
dr

)
, t ≥ 0.(7)

The representation (6) suggests the following three-step methodology to construct
a robust representation formula for π

f
t :

Step 1. We construct the triplet of processes (Xy,Y y, I y)6 corresponding to
the pair (y,B) where y is now a fixed observation path y. = {ys, s ∈ [0, t]} belong-
ing to a suitable class of continuous functions and prove that the random variable
f (Xy,Y y) exp(I y) is P0-integrable.

Step 2. We prove that the function y· → g
f
t (y·) defined as

g
f
t (y.) = E0

[
f

(
X

y
t , Y

y
t

)
exp

(
I

y
t

)]
(8)

is continuous.
Step 3. We prove that g

f
t (Y·) is a version of pt(f ). Then, following (6), the

function, y· → θ
f
t (y·) defined as

θ
f
t = g

f
t

g1
t

(9)

provides the robust version of of πt(f ).

We emphasize that step 3 cannot be omitted from the methodology. Indeed one has
to prove that g

f
t (Y·) is a version of pt(f ) as this fact is not immediate from the

definition of g
f
t .

6As we shall see momentarily, in the uncorrelated case the choice of Yy will trivially be y. In the
correlated case we make it part of the SDE with rough drift, for (notational) convenience.
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Step 1 is immediate in the particular case when only the Brownian motion B

drives X (i.e., the coefficient Z = 0) and X is itself a diffusion, that is, it satisfies
an equation of the form

dXt = l0(Xt) dt + ∑
j

Lj (Xt) dB
j
t ,(10)

and h does only depend on X. In this case the process (Xy,Y y) can be taken to be
the pair (X,y). Moreover, we can define I y by the formula

I
y
t :=

dY∑
i=1

(
hi(Xt)y

i
t −

∫ t

0
yi
r dhi(Xr) − 1

2

∫ t

0

(
hi(Xr,Yr)

)2
dr

)
, t ≥ 0,(11)

provided the processes hi(X) are semi-martingales. In (11), the integral∫ t
0 yi

r dhi(Xr) is the Itô integral of the nonrandom process yi with respect to hi(X).
Note that the formula for I

y
t is obtained by applying integration by parts to the

stochastic integral in (7)∫ t

0
hi(Xr) dY i

r = hi(Xt)Y
i
r −

∫ t

0
Y i

r dhi(Xr),(12)

and replacing the process Y by the fixed path y in (12). This approach has been
successfully used to study the robustness property for the filtering problem for the
above case in a number of papers [7, 8, 26].

The construction of the process (Xy,Y y, I y) is no longer immediate in the case
when Z �= 0, that is, when the signal is driven by both B and W (the correlated
noise case). In the case when the observation is one-dimensional, one can solve this
problem by using a method akin with the Doss–Sussmann “pathwise solution” of
a stochastic differential equation; see [20, 32]. This approach has been employed
by Davis to extend the robustness result to the correlated noise case with scalar
observation; see [10, 12–14]. In this case one constructs first a diffeomorphism
which is a pathwise solution of the equation7

φ(t, x) = x +
∫ t

0
Z

(
φ(s, x)

) ◦ dYt .(13)

The diffeomorphism is used to express the solution X of equation (5) as a compo-
sition between the diffeomorphism φ and the solution of a stochastic differential
equation driven by B only and whose coefficients depend continously on Y . As a
result, we can make sense of Xy . I y is then defined by a suitable (formal) inte-
gration by parts that produces a pathwise interpretation of the stochastic integral
appearing in (7), and Yy is chosen to be y, as before. The robust representation
formula is then introduced as per (9). Additional results for the correlated noise
case with scalar observation can be found in [22]. The extension of the robustness

7Here dY = 1 and Y is scalar.
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result to special cases of the correlated noise and multidimensional observation
has been tackled in several works. Robustness results in the correlated setting have
been obtained by Davis in [10, 13] and Elliott and Kohlmann in [21], under a com-
mutativity condition on the signal vector fields. Florchinger and Nappo [23] do
not have correlated noise, but allow the coefficients to depend on the signal and
the observation.8 To sum up, all previous works on the robust representation prob-
lem either treat the uncorrelated case, the case with one-dimensional observation
or the case where the Lie brackets of the relevant vector fields vanish. In parallel,
Bagchi and Karandikar treat in [1] a different model with “finitely additive” state
white noise and “finitely additive” observation noise. Robustness there is virtually
built into the problem.

An alternative framework is that where the signal and the observation run in dis-
crete time. In this case the filtering problem is well understood and has been stud-
ied in many works, including the monograph [15] and the articles [16–18]. These
works include an analysis of discrete time filtering problems and their approxi-
mation models, including particle approximation, approximate Bayesian compu-
tation, filtering models, etc. We note that in this context the continuity of the filter
with respect to the observation data holds true9 provided very natural conditions
are imposed on the model: for example, the likelihood functions are assumed to be
continuous and bounded (which includes the Gaussian case).

To our knowledge, the general correlated noise and multidimensional obser-
vation case has not been studied, and it is the subject of the current work. In
this case it turns out that we cannot hope to have robustness in the sense ad-
vocated by Clark. More precisely, there may not exist a map continuous map
θ

f
t :C([0, t],R

dY ) → R, such that the representation (1) holds almost surely. The
following is a simple example that illustrates this.

EXAMPLE 1. Consider the filtering problem where the signal and the obser-
vation process solve the following pair of equations:

Xt = X0 +
∫ t

0
Xr d

[
Y 1

r + Y 2
r

] +
∫ t

0
Xr dr,

Yt =
∫ t

0
h(Xr) dr + Wt,

where Y is two-dimensional and P(X0 = 0) = P(X0 = 1) = 1
2 . Then with f,h

such that f (0) = h1(0) = h2(0) = 0 one can explicitly compute

E
[
f (Xt)|Yt

]
(14)

= f (exp(Y 1
t + Y 2

t ))

1 + exp(−∑
k=1,2

∫ t
0 hk(exp(Yr)) dY k

r + ∫ t
0 ‖h(exp(Yr))‖2 dr/2)

.

8We thank the anonymous referee for these references.
9which can be easily seen using the representation of Lemma 2.1 in [18].
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Following the findings of rough path theory (see, e.g., [25, 28–30]) the expression
on the right-hand side of (14) is not continuous in supremum norm (nor in any other
metric on path space) because of the stochastic integral. Explicitly, this follows,
for example, from Theorem 1.1.1 in [29] by rewriting the exponential term as the
solution to a stochastic differential equation driven by Y .

Nevertheless, we can show that a variation of the robustness representation for-
mula still exists in this case. For this we need to “enhance” the original process Y

by adding a second component to it which consists of its iterated integrals (that,
knowing the path, is in a one-to-one correspondance with the Lévy area process).
Explicitly we consider the process Y = {Yt , t ≥ 0} defined as

Yt =

⎛
⎜⎜⎜⎜⎝Yt ,

⎛
⎜⎜⎜⎜⎝

∫ t

0
Y 1

r ◦ dY 1
r · · ·

∫ t

0
Y 1

r ◦ dY dY

r

...
...

...∫ t

0
YdY

r ◦ dY 1
r · · ·

∫ t

0
YdY

r ◦ dY dY

r

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ , t ≥ 0.(15)

The stochastic integrals in (15) are Stratonovich integrals. The state space of Y
is G2(RdY ) ∼= R

dY ⊕ so(dY ), where so(dY ) is the set of anti-symmetric matrices
of dimension dY .10 Over this state space we consider not the space of continu-
ous function, but a subspace C 0,α that contains paths η : [0, t] → G2(RdY ) that
are α-Hölder in the R

dY -component and somewhat “2α-Hölder” in the so(dY )-
component, where α is a suitably chosen constant α < 1/2. Note that there exists
a modification of Y such that Y(ω) ∈ C 0,α for all ω (Corollary 13.14 in [25]).

The space C 0,α is endowed with the α-Hölder rough path metric under which
C 0,α becomes a complete metric space. The main result of the paper (captured in
Theorems 6 and 7) is that there exists a continuous map θ

f
t : C 0,α → R, such that

πt(f ) = θ
f
t (Y·), P-a.s.(16)

Even though the map is defined on a slightly more abstract space, it nonetheless
enjoys the desirable properties described above for the case of a continuous ver-
sion on C([0, t],R

d). Since P ◦ Y−1 positively charges all nonempty open sets
of C 0,α ,11 the continuous version we construct will be unique. Also, it provides
a certain model robustness, in the sense that E[(f (Xt) − θ

f
t (Ȳ·))2] is well ap-

proximated by the idealized error E[(f (Xt) − θ
f
t (Y·))2], if Ȳ· is close in distribu-

tion to Y·. The problem of discrete observation is a little more delicate. One one

10More generally, G[1/α](Rd) is the “correct” state space for a geometric α-Hölder rough path; the
space of such paths subject to α-Hölder regularity (in rough path sense) yields a complete metric
space under α-Hölder rough path metric. Technical details of geometric rough path spaces (as found,
e.g., in Section 9 of [25]) are not required for understanding the results of the present paper.

11This fact is a consequence of the support theorem of Brownian motion in Hölder rough path
topology [24]; see also Chapter 13 in [25].
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hand, it is true that the rough path lift Ŷ calculated from the linearly interpolated
Brownian motion Ŷ will converge to the true rough path Y in probability as the
mesh goes to zero (Corollary 13.21 in [25]), which implies that θ

f
t (Ŷ) is close

in probability to θ
f
t (Y) (we provide local Lipschitz estimates for θf ). Actually,

most sensible approximations will do, as is, for example, shown in Chapter 13
in [25] (although, contrary to the uncorrelated case, not all interpolations that con-
verge in uniform topology will work; see, e.g., Theorem 13.24 ibid). But these are
probabilistic statements, that somehow miss the pathwise stability that one wants
to provide with θ

f
t . If, on the other hand, one is able to observe at discrete time

points not only the process itself, but also its second level, that is, the area, one can
construct an interpolating rough path using geodesics (see, e.g., Chapter 13.3.1
in [25]) which is close to the true (lifted) observation path Y in the relevant metric
for all realizations Y ∈ C 0,α .

The following is the outline of the paper: In the next section, we enumerate the
common notation used throughout the paper. In Section 3 we introduce the notion
of a stochastic differential equation with rough drift, which is necessary for our
main result and correspond to step 1 above. We present it separately of the filtering
problem, since we believe this notion to be of independent interest. The proof of
the existence of a solution of a stochastic differential equation with rough drifts
and its properties is postponed to Section 5. Section 4 contains the main results of
the paper and the assumptions under which they hold true. Steps 2 and 3 of above
mentioned methodology are carried out in Theorems 6 and 7.

2. Nomenclature. Lipγ is the set of γ -Lipschitz12 functions a : Rm → R
n

where m and n are chosen according to the context.
G2(RdY ) ∼= R

d ⊕ so(dY ) is the state space for a dY -dimensional Brownian mo-
tion (or, in general for an arbitrary semi-martingale) and its corresponding Lévy
area.

C 0,α := C
0,α-Höl
0 ([0, t],G2(RdY )) is the set of geometric α-Hölder rough paths

η : [0, t] → G2(RdY ) starting at 0. We shall use the nonhomogenous metric ρα-Höl

on this space.
In the following we will make use of an auxiliary filtered probability space

(�̄, F̄ , (F̄t )t≥0, P̄) carrying a dB -dimensional Brownian motion B̄ .13

Let S 0 = S 0(�̄) denote the space of adapted, continuous processes in R
dS , with

the topology of uniform convergence in probability.

12In the sense of E. Stein, that is, bounded kth dervative for k = 0, . . . , �γ 
 and γ − �γ 
-Hölder
continuous �γ 
th derivative.

13We introduce this auxiliary probability space, since in the proof of Theorem 7 it will be easier to
work on a product space separating the randomness coming from Y and B . A similar approach was
followed in the proof of Theorem 1 in [2].
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For q ≥ 1 we denote by S q = S q(�̄) the space of processes X ∈ S 0 such that

‖X‖S q :=
(
Ē

[
sup
s≤t

|Xt |q
])1/q

< ∞.

3. SDE with rough drift. For the statement and proof of the main results we
shall use the notion (and the properties) of an SDE with rough drift captured in the
following theorems. The proofs are postponed to Section 5.

As defined above, let (�̄, F̄ , (F̄t )t≥0, P̄) be a filtered probability space carry-
ing a dB -dimensional Brownian motion B̄ and a bounded dS -dimensional random
vector S0 independent of B̄ . In the following, we fix ε ∈ (0,1) and α ∈ ( 1

2+ε
, 1

2).
Let ηn : [0, t] → R

dY be smooth paths, such that ηn → η in α-Hölder, for some
η ∈ C 0,α , and let Sn be a dS -dimensional process which is the unique solution to
the classical SDE

Sn
t = S0 +

∫ t

0
a
(
Sn

r

)
dr +

∫ t

0
b
(
Sn

r

)
dB̄r +

∫ t

0
c
(
Sn

r

)
dηn

r ,

where we assume that14

(a1) a ∈ Lip1(RdS ), b1, . . . , bdB
∈ Lip1(RdS ) and c1, . . . , cdY

∈ Lip4+ε(RdS );
(a1′) a ∈ Lip1(RdS ), b1, . . . , bdB

∈ Lip1(RdS ) and c1, . . . , cdY
∈ Lip5+ε(RdS ).

THEOREM 2. Under assumption (a1), there exists a dS -dimensional process
S∞ ∈ S 0 such that

Sn → S∞ in S 0.

In addition, the limit �(η) := S∞ only depends on η and not on the approximating
sequence.

Moreover, for all q ≥ 1, η ∈ C 0,α it holds that �(η) ∈ S q and the correspond-
ing mapping � : C 0,α → S q is locally uniformly continuous [and locally Lipschitz
under assumption (a1′)].

Following Theorem 2, we say that �(η) is a solution of the SDE with rough
drift

�(η)t = S0 +
∫ t

0
a
(
�(η)r

)
dr +

∫ t

0
b
(
�(η)r

)
dB̄r +

∫ t

0
c
(
�(η)r

)
dηr .(17)

The following result establishes some of the salient properties of solutions of SDEs
with rough drift. Recall that (�, F ,P0) carries, as above, the dY -dimensional

14In the forthcoming publication [19] we show existence of solutions to SDEs with rough drift
under additional sets of assumptions. The corresponding proofs do not rely on the technique of flow
decomposition used in the present work, but require more elements of rough path theory and would
lead us too far astray from the topic of filtering.
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Brownian motion Y , and let �̂ = � × �̄ be the product space, with product mea-
sure P̂ := P0 ⊗ P̄. Let S be the unique solution on this probability space to the
SDE

St = S0 +
∫ t

0
a(Sr) dr +

∫ t

0
b(Sr) dB̄r +

∫ t

0
c(Sr) ◦ dYr .(18)

Denote by Y the rough path lift of Y (i.e., the enhanced Brownian Motion over Y ).

THEOREM 3. Under assumption (a1) we have that:

• For every R > 0, q ≥ 1

sup
‖η‖α-Höl<R

E
[
exp

(
q
∣∣�(η)

∣∣∞;[0,t]
)]

< ∞.(19)

• For P0-a.e. ω

P̄
[
Ss(ω, ·) = �

(
Y(ω)

)
s(·), s ≤ t

] = 1.(20)

4. Assumptions and main results. In the following we will make use of the
Stratonovich version of equation (5); that is, we will consider that the signal satis-
fies the equation

Xt = X0 +
∫ t

0
L0(Xr,Yr) dr + ∑

k

∫ t

0
Zk(Xr,Yr) ◦ dY k

r

+ ∑
j

∫ t

0
Lj(Xr,Yr) dBj

r ,(21)

Yt =
∫ t

0
h(Xr,Yr) dr + Wt,

where L
j
0(x, y) = l̄

j
0 (x, y) − 1

2
∑

k

∑
i ∂xi

Z
j
k (x, y)Zi

k(x, y) − 1
2

∑
k ∂yk

Z
j
k (x, y).

We remind the reader that under P0 the observation Y is a Brownian motion inde-
pendent of B .

We will assume that f is a bounded Lipschitz function, and we fix ε ∈ (0,1)

α ∈ ( 1
2+ε

, 1
2), t > 0, and X0 is a bounded random vector independent of B and Y .

We will use one of the following assumptions:

(A1) Z1, . . . ,ZdY
∈ Lip4+ε , h1, . . . , hdY ∈ Lip4+ε and L0,L1, . . . ,LdB

∈
Lip1;

(A1′) Z1, . . . ,ZdY
∈ Lip5+ε , h1, . . . , hdY ∈ Lip5+ε and L0,L1, . . . ,LdB

∈
Lip1.

REMARK 4. Assumption (A1) and (A1′) lead to the existence of a solution
of an SDEs with rough driver (Theorem 2). Under (A1) the solution mapping is
locally uniformly continuous, and under (A1′) it is locally Lipschitz (Theorem 3).
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Assume either (A1) or (A1′). For η ∈ C 0,α there exists by Theorem 2 a solution
(Xη, I η) to the following SDE with rough drift:

X
η
t = X0 +

∫ t

0
L0

(
Xη

r , Y η
r

)
dr +

∫ t

0
Z

(
Xη

r , Y η
r

)
dηr

+ ∑
j

∫ t

0
Lj

(
Xη

r , Y η
r

)
dB̄j

r ,

(22)

Y
η
t =

∫ t

0
dηr ,

I
η
t =

∫ t

0
h
(
Xη

r , Y η
r

)
dηr − 1

2

∑
k

∫ t

0
Dkh

k(Xη
r , Y η

r

)
dr.

REMARK 5. Note that formally (!) when replacing the rough path η with the
process Y , Xη, Y η yields the solution to the SDE (21) and exp(I

η
t ) yields the (Gir-

sanov) multiplicator in (6). This observation is made precise in the statement of
Theorem 2.

We introduce the functions gf , g1, θ : C 0,α → R defined as

gf (η) := Ē
[
f

(
X

η
t , Y

η
t

)
exp

(
I

η
t

)]
, g1(η) := Ē

[
exp

(
I

η
t

)]
,

θ(η) := gf (η)

g1(η)
, η ∈ C 0,α.

THEOREM 6. Assume that (A1) holds; then θ is locally uniformly continuous.
Moreover if (A1′) holds, then θ is locally Lipschitz.

PROOF. From Theorem 2 we know that for η ∈ C 0,α the SDE with rough drift
(22) has a unique solution (Xη, Y η, I η) belonging to S 2.

Let now η,η′ ∈ C 0,α . Denote X = Xη, Y = Y η, I = I η and analogously for η′.
Then ∣∣gf (η) − gf (η)

∣∣
≤ E

[∣∣f (Xt , Yt ) exp(It ) − f
(
X′

t , Y "t

)
exp

(
I ′
t

)∣∣]
≤ E

[∣∣f (Xt , Yt )
∣∣∣∣exp(It ) − exp

(
I ′
t

)∣∣]
+ E

[∣∣f (Xt , Yt ) − f
(
X′

t , Y
′
t

)∣∣ exp
(
I ′
t

)]
≤ |f |∞E

[∣∣exp(It ) − exp
(
I ′
t

)∣∣]
+ E

[∣∣f (Xt , Yt ) − f
(
X′

t , Y
′
t

)∣∣2]1/2
E

[∣∣exp
(
I ′
t

)∣∣2]1/2

≤ |f |∞E
[∣∣exp(It ) + exp

(
I ′
t

)∣∣2]1/2
E

[∣∣It − I ′
t

∣∣]1/2

+ E
[∣∣f (Xt , Yt ) − f

(
X′

t , Y
′
t

)∣∣2]1/2
E

[∣∣exp
(
I ′
t

)∣∣2]1/2
.
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Hence, using from Theorems 2 and 3 the continuity statements as well as the
boundedness of exponential moments, we see that gf is locally uniformly contin-
uous under (A1), and it is locally Lipschitz under (A1′).

The same then holds true for g1 and moreover g1(η) > 0. Hence θ is locally
uniformly continuous under (A1) and locally Lipschitz under (A1′). �

Denote by Y·, as before, the canonical rough path lift of Y to C 0,α . We then have

THEOREM 7. Assume either (A1) or (A1′). Then θ(Y·) = πt(f ), P-a.s.

PROOF. To prove the statement it is enough to show that

gf (Y·) = pt(f ), P-a.s.,

which is equivalent to

gf (Y·) = pt(f ), P0-a.s.

For that, it suffices to show that

E0
[
pt(f )ϒ(Y·)

] = E0
[
gf (Y·)ϒ(Y·)

]
(23)

for an arbitrary continuous bounded function ϒ :C([0, t],R
dY ) → R.

Let (�̄, F̄ , P̄) be the auxiliary probability space from before, carrying an dB -
dimensional Brownian motion B̄ . Let (�̂, F̂ , P̂) := (�× �̄, F ⊗ F̄ ,P0 ⊗ P̄). By Y

and X0 we denote also the “lift” of Y to �̂, that is, Y(ω, ω̄) = Y(ω), X0(ω, ω̄) =
X0(ω). Then (Y,B) (on � under P0) has the same distribution as (Y, B̄) (on �̂

under P̂).
Denote by (X̂, Î ) the solution on (�̂, F̂ , P̂) to the SDE

X̂t = X0 +
∫ t

0
L0(X̂r , Yr) dr + ∑

k

∫ t

0
Zk(X̂r , Yr) ◦ dY k

r

+ ∑
j

∫ t

0
Lj(X̂r , Yr) dB̄j

r ,

Ît = ∑
k

∫ t

0
hk(X̂r , Yr) ◦ dY k

r − 1

2

∑
k

∫ t

0
Dkh

k(X̂r , Yr) dr.

Then

(Y, X̂, Î )
P̂

∼
(
Y,X,

∑
k

∫ ·
0

hk(Xr,Yr) ◦ dY k
r − 1

2

∑
k

∫ ·
0

Dkh
k(Xr,Yr) dr

)
P0

.
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Hence, for the left-hand side of (23),

E0
[
pt(f )ϒ(Y·)

]
= E0

[
f (Xt , Yt ) exp

(∑
k

∫ t

0
hk(Xr,Yr) ◦ dY k

r

− 1

2

∑
k

∫ t

0
Dkh

k(Xr,Yr) dr

)
ϒ(Y·)

]

= Ê
[
f (X̂t , Yt ) exp(Ît )ϒ(Y·)

]
.

On the other hand, from Theorem 3 we know that for P0-a.e. ω

XY·(ω)(ω̄)t = X̂t (ω, ω̄), Y Y·(ω)(ω̄)t = Ŷt (ω, ω̄),

IY·(ω)(ω̄)t = Ît (ω, ω̄), P̄-a.e. ω̄.

Hence, for the right-hand side of (23) we get (using Fubini for the last equality)

E0
[
gf (Y·)ϒ(Y·)

] = E0
[
Ē

[
f

(
X

Y·
t , Y

Y·
t

)
exp

(
I

Y·
t

)]
ϒ(Y·)

]
= E0

[
Ē

[
f (X̂t , Yt ) exp(Ît )

]
ϒ(Y·)

]
= Ê

[
f (X̂t , Yt ) exp(Ît )ϒ(Y·)

]
,

which yields (23). �

5. Proofs of Theorems 2 and 3.

PROOF OF THEOREM 2. Let η ∈ C 0,α be the lift of a smooth path η. Let Sη

be the unique solution of the SDE

S
η
t = S0 +

∫ t

0
a
(
Sη

r

)
dr +

∫ t

0
b
(
Sη

r

)
dB̄r +

∫ t

0
c
(
Sη

r

)
dηr .

Define S̃η := (φη)−1(t, S
η
t ), where φη is the ODE flow

φη(t, x) = x +
∫ t

0
c
(
φη(r, x)

)
dηr .(24)

By Lemma 9, we have that S̃η satisfies the SDE

S̃
η
t = S0 +

∫ t

0
ãη(

r, S̃η
r

)
dr +

∫ t

0
b̃η(

r, S̃η
r

)
dB̄r(25)

with ãη, b̃η defined as in Lemma 9.
This equation makes sense, even if η is a generic rough path in C 0,α [in which

case (24) is now really an RDE]. Indeed, since the first two derivatives of φη and its
inverse are bounded (Proposition 11.11 in [25]) we have that ãη(t, ·), b̃η(t, ·) are
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also in Lip1. Hence by Theorem V.7 in [31], there exists a unique strong solution
to (25).

We define the mapping introduced in Theorem 2 as

�(η)t := φη(
t, S̃

η
t

)
.

To show continuity of the mapping we restrict ourselves to the case q = 2.
Moreover we shall assume c1, . . . , cdY

∈ Lip5+ε(RdS ), and we will hence prove
the local Lipschitz property of the respective maps.

Let η1,η2 ∈ C 0,α with |η1|α-Höl, |η2|α-Höl < R. By Lemma 12 we have

Ē

[
sup
s≤t

∣∣S̃1
s − S̃2

s

∣∣2]1/2 ≤ CLem 12(R)ρα-Höl
(
η1,η2)

.

Hence

Ē

[
sup
s≤t

∣∣�(
η1)

s − �
(
η2)

s

∣∣2]1/2

= Ē

[
sup
s≤t

∣∣φ1(
s, S̃1

s

) − φ2(
s, S̃2

s

)∣∣2]1/2

≤ Ē

[
sup
s≤t

∣∣φ1(
s, S̃1

s

) − φ1(
s, S̃2

s

)∣∣2]1/2 + Ē

[
sup
s≤t

∣∣φ1(
s, S̃2

s

) − φ2(
s, S̃2

s

)∣∣2]1/2

≤ Ē

[
sup
s≤t

∣∣φ1(
s, S̃1

s

) − φ1(
s, S̃2

s

)∣∣2]1/2 + sup
s≤t,x∈R

dS

∣∣φ1(s, x) − φ1(s, x)
∣∣

≤ K(R)Ē
[
sup
s≤t

∣∣S̃1
s − S̃2

s

∣∣2]1/2 + CLem 13(R)ρα-Höl
(
η1,η2)

≤ C1ρα-Höl
(
η1,η2)

as desired, where

C1 = KLem 13(R)CLem 12(R) + CLem 13(R),

where KLem 13(R) and CLem 13(R) are the constants from Lemma 13. �

PROOF OF THEOREM 3. In order to show (19), pick k ∈ 1, . . . , dS . We first
note that by simply scaling (the coefficients of) Sη it is sufficient to argue for
q = 1. And consider the kth component of �.

Then

E
[
exp

(∣∣�(k)(η)
∣∣∞;[0,t]

)]
≤ E

[
exp

(∣∣Dψη
∣∣∞(∣∣φη(0, S0)

∣∣ + ∣∣S̃(k);η∣∣∞;[0,t]
))]

≤ exp
(∣∣Dψη

∣∣∞ sup
|x|≤|S0|L∞

∣∣φη(0, x)
∣∣)E

[
exp

(∣∣Dψη
∣∣∞ sup

s≤t

∣∣S̃(k);η
t

∣∣)]
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≤ exp
(∣∣Dψη

∣∣∞ sup
|x|≤|S0|L∞

∣∣φη(0, x)
∣∣)

×
(
E

[
exp

(∣∣Dψη
∣∣∞ sup

s≤t
S̃(k);η

s

)]
+ E

[
− exp

(∣∣Dψη
∣∣∞ sup

s≤t
S̃(k);η

s

)])

= exp
(∣∣Dψη

∣∣∞ sup
|x|≤|S0|L∞

∣∣φη(0, x)
∣∣)

×
(
E

[
sup
s≤t

exp
(∣∣Dψη

∣∣∞S̃(k);η
s

)] + E

[
− sup

s≤t
exp

(∣∣Dψη
∣∣∞S̃(k);η

s

)])
.

Now, only the boundedness of the last two terms remains to be shown, for η
bounded.

By applying Itô’s formula we get that

exp
(
S̃

(k);η
t

) = 1 +
∫ t

0
exp

(
S̃(k);η

r

)
dS̃(k);η

r +
∫ t

0
exp

(
S̃(k);η

r

)
d
〈
S̃(k);η〉

r

= 1 +
∫ t

0
exp

(
S̃(k);η

r

)
ã

η
k

(
S̃(k);η

r

)
dr +

dB∑
i=1

∫ t

0
exp

(
S̃(k);η

r

)
b̃

η
ki

(
S̃(k);η

r

)
dB̄i

r

+
dB∑
i=1

∫ t

0
exp

(
S̃(k);η

r

)∣∣b̃η
ki

(
S̃(k);η

r

)∣∣2 dr.

Hence the process exp(S̃(k);η) satisfies an SDE with Lipschitz coefficients and by
an application of Gronwalls lemma and the Burkholder–Davis–Gundy inequality
(see also Lemma V.2 in [31]) one arrives at

sup
|η|α-Höl<R

sup
s≤t

Ē
[
exp

(∣∣Dψη
∣∣∞S̃

(k);η
t

)] ≤ C exp(C2),(26)

where C is universal and

C2 := sup
η:‖η‖α-Höl<R

∣∣ãη
∣∣∞ + ∣∣b̃η

∣∣2∞,

which is finite because of Lemma 10. One argues analogously for

sup
s≤t

Ē
[− exp

(∣∣Dψη
∣∣∞S̃

(k);η
t

)]
,

which then gives (19).
Now, for the correspondence to an SDE solution let � be the additional proba-

bility space as given in the statement. Let S be the solution to the SDE (18).
In Section 3 in [6] it was shown (see also Theorem 2 in [3]), that if we let � be

the stochastic (Stratonovich) flow

�(ω; t, x) = x +
∫ t

0
c
(
�(ω; r, x)

) ◦ dYr(ω),
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then with Ŝt := �−1(t, St ) we have P̂-a.s.

Ŝs

(
ω,ωB̄) = S0 +

∫ s

0
â(r, Ŝr ) dr

(27)
+

∫ s

0
b̂(r, Ŝr ) dB̄r , s ∈ [0, t], P̂-a.e.

(
ω,ωB̄)

.

Here, componentwise,

â(t, x)i := ∑
k

∂xk
�−1

i

(
t,�(t, x)

)
ak

(
�(t, x)

)

+ 1

2

∑
j,k

∂xj xk
�−1

i

(
t,�(t, x)

)∑
l

bj l

(
�(t, x)

)
bkl

(
�(t, x)

)
,

b̂(t, x)ij := ∑
k

∂xk
�−1

i (t, x)bkj

(
�(t, x)

)
.

Especially, by a Fubini-type theorem (e.g., Theorem 3.4.1 in [4]), there exists
�0 with P0(�0) = 1 such that for ω ∈ �0 equation (27) holds true P̄-a.s.

Let Y ∈ C 0,α be the enhanced Brownian motion over Y . We can then construct
ω-wise the rough flow φY(ω) as given in (24). By the very definition of � we know
that S̃

Y(ω)
t (ω) := (φY(ω))−1(ω; t,�(ω)t ) satifies the SDE

S̃
Y(ω)
t = S0 +

∫ t

0
b̂Y(ω)(r, S̃Y(ω)

r

)
dr

(28)

+
∫ t

0
b̂Y(ω)(r, S̃Y(ω)

r

)
dB̄r , P̄-a.e. ωB̄,

where

ãY(ω)(t, x)i := ∑
k

∂xk

(
φY(ω))−1

i

(
t, φY(ω)(t, x)

)
ak

(
t, φY(ω)(t, x)

)

+ 1

2

∑
j,k

∂xj xk

(
φY(ω))−1

i

(
t, φY(ω)(t, x)

)

× ∑
l

bj l

(
t, φY(ω)(t, x)

)
bkl

(
t, φY(ω)(t, x)

)
,

b̃Y(ω)(t, x)ij := ∑
k

∂xk

(
φY(ω))−1

i (t, x)bkj

(
t, φY(ω)(t, x)

)
.

It is a classical rough path result (see, e.g., Section 17.5 in [25]), that there exists
�1 with P

Y (�1) = 1 such that for ω ∈ �1, we have

φY(ω)(·, ·) = �(ω; ·, ·).
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Hence for ω ∈ �1 we have that â = ãY(ω), b̂ = b̃Y(ω). Hence for ω ∈ �0 ∩ �1 the
processes Ŝt (ω, ·), S̃Y(ω)

t (·) satisfy the same Lipschitz SDE (with respect to P̄).15

By strong uniqueness we hence have for ω ∈ �0 ∩ �1 that P̄-a.s.

Ŝs(ω, ·) = S̃Y(ω)
s (·), s ≤ t.

Hence for ω ∈ �0 ∩ �1

Ss(ω, ·) = �
(
Y(ω)

)
(·)s, s ≤ t, P̄-a.s. �

REMARK 8. We remark that the above idea of a flow decomposition is also
used in the work by Davis [10, 12–14]. Without rough path theory this approach is
restricted to one-dimensional observation, since, for multidimensional flows, one
cannot hope for continuous dependence on the driving signal in supremum norm.

LEMMA 9. Let η be a smooth dY -dim path η and S be the solution of the the
following classical SDE

St = S0 +
∫ t

0
a(Sr) dr +

∫ t

0
b(Sr) dB̄r +

∫ t

0
c(Sr) dηr,

where B̄ is a dB -dimensional Brownian motion,∫ t

0
c(Sr) dηr :=

dS∑
i=1

∫ t

0
ci(Sr)η̇

i
r dr,

a ∈ Lip1(RdS ), b1, . . . , bdB
∈ Lip1(RdS ), c1, . . . , cdY

∈ Lip4+ε(RdS ), and S0 ∈
L∞(�̄;R

dS ) independent of B̄ . Consider the flow

φ(t, x) = x +
∫ t

0
c
(
φ(r, x)

)
dηr .(29)

Then S̃t := φ−1(t, St ) satisfies the following SDE:

S̃t = S0 +
∫ t

0
ã(r, S̃r ) dr +

∫ t

0
b̃(r, S̃r ) dB̄r ,

where we define componentwise

ã(t, x)i := ∑
k

∂xk
φ−1

i

(
t, φ(t, x)

)
ak

(
φ(t, x)

)

+ 1

2

∑
j,k

∂xj xk
φ−1

i

(
t, φ(t, x)

)∑
l

bj l

(
φ(t, x)

)
bkl

(
φ(t, x)

)
,

b̃(t, x)ij := ∑
k

∂xk
φ−1

i

(
t, φ(t, x)

)
bkj

(
φ(t, x)

)
.

15Here one has to argue that fixing ω in equation (28) gives (P0-a.s.) the solution to the respective

SDE on �B̄ .
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PROOF. Denote ψ(t, x) := φ−1(t, x). Then

ψ(r, x) = x −
∫ t

0
∂xψ(r, x)c(x) dηr .

By Itô’s formula,

ψi(t, St ) − ψi(0, S0)

=
∫ t

0
∂tψi(r, Sr) dr + ∑

j

∫ t

0
∂xj

ψi(r, Sr) dSj (r)

+ ∑
j,k

1

2

∫ t

0
∂xj xk

ψi(r, Sr) d〈Sk, Sj 〉r

= ∑
j

∫ t

0
∂xj

ψi(r, Sr)aj (Sr) dr + ∑
j

∫ t

0
∂xj

ψi(r, Sr)
∑
k

bjk(Sr) dB̄k(r)

+ ∑
j,k

1

2

∫ t

0
∂xj xk

ψi(Sr)
∑

l

bkl(Sr)bjl(Sr) dr.
�

LEMMA 10. Consider for a rough path η ∈ C 0,α the coefficients transformed
analogously to Lemma 9, ãη, b̃η; that is, consider the rough flow

φ(t, x) = φη(t, x) = x +
∫ t

0
c
(
φ(r, x)

)
dηr(30)

and define

ãη(t, x)i := ∑
k

∂xk
φ−1

i

(
t, φ(t, x)

)
ak

(
φ(t, x)

)

+ 1

2

∑
j,k

∂xj xk
φ−1

i

(
t, φ(t, x)

)∑
l

bj l

(
φ(t, x)

)
bkl

(
φ(t, x)

)
,

b̃η(t, x)ij := ∑
k

∂xk
φ−1

i

(
t, φ(t, x)

)
bkj

(
φ(t, x)

)
.

Then for every R > 0 there exists KLem 10 = KLem 10(R) < ∞ such that

sup
η:|η|α-Höl<R

∣∣ãη
∣∣∞ ≤ KLem 10,

sup
η:|η|α-Höl<R

∣∣b̃η
∣∣∞ ≤ KLem 10,

sup
η:|η|α-Höl<R

sup
s≤t

∣∣Dãη(s, ·)∣∣∞ ≤ KLem 10,

sup
η:|η|α-Höl<R

sup
s≤t

∣∣Db̃η(s, ·)∣∣∞ ≤ KLem 10,
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and such that if η, η̃ are two rough paths with |η|α-Höl, |η̃|α-Höl < R, we have

sup
t,x

∣∣ã1(t, x) − ã2(t, x)
∣∣ ≤ KLem 10(R)ρα-Höl

(
η1,η2)

,

sup
t,x

∣∣b̃1(t, x) − b̃2(t, x)
∣∣ ≤ KLem 10(R)ρα-Höl

(
η1,η2)

.

PROOF. This is a straightforward calculation using Lemma 13 and the prop-
erties of a, b. �

The following is a standard result for continuous dependence of SDEs on pa-
rameters.

LEMMA 11. Let ãi (t, x), b̃i (t, x), i = 1,2, be bounded and uniformly Lips-
chitz in x.

Let S̃i be the corresponding unique solutions to the SDEs

S̃i
t = S0 +

∫ t

0
ãi(r, S̃i

r

)
dr +

∫ t

0
b̃i(r, S̃i

r

)
dB̄r , i = 1,2.

Assume

sup
s≤t

∣∣Dã1(s, ·)∣∣∞, sup
s≤t

∣∣Db̃1(s, ·)∣∣∞ < K < ∞,

sup
r,x

(
ã1(r, x) − ã2(r, x)

)
, sup

r,x

(
b̃1(r, x) − b̃2(r, x)

)
< ε < ∞.

Then there exists CLem 11 = CLem 11(K) such that

E

[
sup
s≤t

∣∣S̃1
s − S̃2

s

∣∣2]1/2 ≤ CLem 11ε.

PROOF. This is a straightforward application of Itô’s formula and the
Burkholder–Davis–Gundy inequality. �

We now apply the previous lemma to our concrete setting.

LEMMA 12. Let η1,η2 ∈ C 0,α and let S̃1, S̃2 be the corresponding unique
solutions to the SDEs

S̃i
t = S0 +

∫ t

0
ãi(r, S̃i

r

)
dr +

∫ t

0
b̃i(r, S̃i

r

)
dB̄r , i = 1,2,

where ãi , b̃i are given as in Lemma 10.
Assume R > max{|η1|α-Höl, |η2|α-Höl}. Then there exists CLem 12 = CLem 12(R):

E

[
sup
s≤t

∣∣S̃1
s − S̃2

s

∣∣2]1/2 ≤ CLem 12ρα-Höl
(
η1,η2)

.
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PROOF. Fix R > 0. Let ‖η1‖α-Höl,‖η2‖α-Höl < R.
From Lemma 10 we know that

sup
t,x

∣∣b̃1(t, x) − b̃2(t, x)
∣∣ ≤ KLem 10(R)ρα-Höl

(
η1,η2)

.

Analogously, we get

sup
t,x

∣∣ã1(t, x) − ã2(t, x)
∣∣ ≤ L2ρα-Höl

(
η1,η2)

for a L2 = L2(R). �

LEMMA 13. Let α ∈ (0,1). Let γ > 1
α

≥ 1, k ∈ {1,2, . . .} and assume
that V = (V1, . . . , Vd) is a collection of Lipγ+k-vector fields on R

e. Write n =
(n1, . . . , ne) ∈ N

e and assume |n| := n1 + · · · + ne ≤ k.
Then, for all R > 0 there exist C = C(R, |V |Lipγ+k ),K = K(R, |V |Lipγ+k ))

such that if x1,x2 ∈ Cα-Höl([0, t],G[p](Rd)) with maxi ‖xi‖α-Höl;[0,t] ≤ R, then

sup
y0∈Re

∣∣∂nπ(V )

(
0, y0;x1) − ∂nπ(V )

(
0, y0;x2)∣∣

α-Höl;[0,t] ≤ Cρα-Höl
(
x1,x2)

,

sup
y0∈Re

∣∣∂nπ(V )

(
0, y0;x1)−1 − ∂nπ(V )

(
0, y0;x2)−1∣∣

α-Höl;[0,t] ≤ Cρα-Höl
(
x1,x2)

,

sup
y0∈Re

∣∣∂nπ(V )

(
0, y0;x1)∣∣

α-Höl;[0,t] ≤ K,

sup
y0∈Re

∣∣∂nπ(V )

(
0, y0;x1)−1∣∣

α-Höl;[0,t] ≤ K.

PROOF. The fact that V ∈ Lipγ+k (instead of just Lipγ+k−1) entails that
the derivatives up to order k are unique, nonexplosive solutions to RDEs with
Lipγ

loc vector fields; see Section 11 in [25]. Localization (uniform for driving paths
bounded in α-Hölder norm) then yields the desired results. �
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