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We present a unified approach to Doob’s Lp maximal inequalities for
1 ≤ p < ∞. The novelty of our method is that these martingale inequalities
are obtained as consequences of elementary deterministic counterparts. The
latter have a natural interpretation in terms of robust hedging. Moreover, our
deterministic inequalities lead to new versions of Doob’s maximal inequali-
ties. These are best possible in the sense that equality is attained by properly
chosen martingales.

1. Introduction. In this paper we derive estimates for the running maximum
of a martingale or nonnegative submartingale in terms of its terminal value. Given
a function f we write f̄ (t) = supu≤t f (u). Among other results, we establish the
following martingale inequalities.

THEOREM 1.1. Let (Sn)
T
n=0 be a nonnegative submartingale. Then

E
[
S̄

p
T

] ≤
(

p

p − 1

)p

E
[
S

p
T

]
, 1 < p < ∞,(Doob-Lp)

E[S̄T ] ≤ e

e − 1

[
E

[
ST log(ST )

] + E
[
S0

(
1 − log(S0)

)]]
.(Doob-L1)

Here (Doob-Lp) is the classical Doob Lp-inequality, p ∈ (1,∞) [8], Theo-
rem 3.4. The second result (Doob-L1) represents the Doob L1-inequality in the
sharp form derived by Gilat [10] from the L logL Hardy–Littlewood inequality.

Trajectorial inequalities. The novelty of this note is that the above martin-
gale inequalities are established as consequences of deterministic counterparts. We
postpone the general statements (Proposition 2.1) and illustrate the spirit of our ap-
proach by a simple result that may be seen as the trajectorial version of Doob’s
L2-inequality.
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Let s0, . . . , sT be real numbers. Then

s̄2
T + 4

[
T −1∑
n=0

s̄n(sn+1 − sn)

]
≤ 4s2

T .(Path-L2)

Inequality (Path-L2) is completely elementary and the proof is straightforward:
it suffices to rearrange terms and to complete squares. The significance of (Path-
L2) lies rather in the fact that it implies (Doob-L2). Indeed, if S = (Sn)

T
n=1 is a

nonnegative submartingale, we may apply (Path-L2) to each trajectory of S. The
decisive observation is that, by the submartingale property,

E

[
T −1∑
n=0

S̄n(Sn+1 − Sn)

]
≥ 0,(1.1)

hence, (Doob-L2) follows from (Path-L2) by taking expectations.

Inequalities in continuous time—sharpness. Passing to the continuous time
setting, it is clear that (Doob-Lp) and (Doob-L1) carry over verbatim to the case
where S = (St )t∈[0,T ] is a nonnegative càdlàg submartingale, by the usual limiting
argument. It is also not surprising that in continuous time one has trajectorial coun-
terparts of those inequalities, the sum in (Path-L2) being replaced by a (carefully
defined) integral. Moreover, in the case p = 1, the inequality can be attained by
a martingale in continuous time; cf. [10] and [11]. Notably, this does not hold for
1 < p < ∞. We discuss this for the case p = 2 in the L2-norm formulation. Given
a nonnegative càdlàg submartingale S = (St )t∈[0,T ], we have

‖S̄T ‖2 ≤ 2‖ST ‖2.(Doob-L2)

Dubins and Gilat [9] showed that the constant 2 in (Doob-L2) is optimal, that is,
cannot be replaced by a strictly smaller constant. It is also natural to ask whether
equality can be attained in (Doob-L2). It turns out that this happens only in the triv-
ial case S ≡ 0; otherwise, the inequality is strict. Keeping in mind that equality in
(Doob-L1) is attained, one may also try to improve on (Doob-L2) by incorporating
the starting value of the martingale. Indeed, we obtain the following result.

THEOREM 1.2. For every nonnegative càdlàg submartingale S = (St )t∈[0,T ],

‖S̄T ‖2 ≤ ‖ST ‖2 + ‖ST − S0‖2.(1.2)

Inequality (1.2) is sharp. More precisely, given x0, x1 ∈ R, 0 < x0 ≤ x1, there exists
a positive, continuous martingale S = (St )t∈[0,T ] such that ‖S0‖2 = x0,‖ST ‖2 =
x1 and equality holds in (1.2).

In Theorem 3.1 we formulate the result of Theorem 1.2 for 1 < p < ∞, thus
establishing an optimal a priori estimate on ‖S̄T ‖p .
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We emphasize that the idea that (Doob-Lp) can be improved by incorporating
the starting value S0 into the inequality is not new. Cox [7], Burkholder [5] and
Peskir [18] show that

E
[
S̄2

T

] ≤ 4E
[
S2

T

] − 2E
[
S2

0
]
.(1.3)

Here the constants 4 (resp., 2) are sharp (cf. [18]) with equality in (1.3) holding iff
S ≡ 0.1

Financial interpretation. We want to stress that (Path-L2) has a natural inter-
pretation in terms of mathematical finance.

Financial intuition suggests that we consider the positive martingale S =
(Sn)

T
n=0 as the process describing the price evolution of an asset under the so-called

“risk-neutral measure,” so that �(S0, . . . , ST ) = (S̄T )2 [resp., ϕ(ST ) = S2
T ] have

the natural interpretation of a so-called exotic option (resp., a European option)
written on S. In finance, a European option ϕ (resp., exotic option �) is a function
that depends on the final value ST of S (resp., on its whole path S0, . . . , ST ). The
seller of the option � pays the buyer the random amount �(S0, . . . , ST ) after its
expiration at time T . Following [2] we may interpret E[�] as the price that the
buyer pays for this option at time 0; cf. [19], Chapter 5, for an introductory survey
on risk-neutral pricing.

Here we take the point of view of an economic agent who sells the option �

and wants to protect herself in all possible scenarios ω ∈ �, that is, against all
possible values �(S0(ω), . . . , ST (ω)), which she has to pay to the buyer of �. This
means that she will trade in the market in order to arrive at time T with a portfolio
value which is at least as high as the value of �. By buying a European option
ϕ(ST ) = S2

T , she can clearly protect herself in case the asset reaches its maximal
value at maturity T . However, she still faces the risk of S having its highest value
at some time n before T . To protect against that possibility, one way for her is to
“go short” in the underlying asset (i.e., to hold negative positions in S). By scaling,
her protecting strategy should be proportional to the running maximum S̄n. At this
point our educated guess is to follow the strategy Hn = −4S̄n, meaning that from
time n to time n+ 1 we keep an amount Hn of units of the asset S in our portfolio.
The portfolio strategy produces the following value at time T :

T −1∑
n=0

Hn(Sn+1 − Sn) = −4
T −1∑
n=0

S̄n(Sn+1 − Sn).(1.4)

The reason why we have chosen the special form Hn = −4S̄n now becomes appar-
ent when considering (Path-L2) and (1.1). In our “financial mind experiment” this
may be interpreted as follows: by buying 4 European options S2

T and following the

1That (1.2) implies (1.3) follows from a simple calculation. Alternatively, the sharpness of (1.3) is a
consequence of the fact that equality in (1.2) can be attained for all possible values of ‖S0‖2,‖ST ‖2.
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self-financing trading strategy H = (Hn)
T −1
n=0 , the seller of the option � = (S̄T )2

covers her position at maturity T , whatever the outcome (S0(ω), . . . , ST (ω)) of
the price evolution is. Thus an upper bound for the price of the exotic option � in
terms of the European option ϕ is given by

E
[
(S̄T )2] ≤ 4E

[
S2

T

]
.

We note that Henry-Labordère [12] derived (Doob-Lp) in a related fashion.
The idea of robust pricing and pathwise hedging of exotic options seemingly

goes back to Hobson [13] (see also [4, 6, 15]). We refer the reader to [14] for a
thorough introduction to the topic.

Organization of the paper. In Section 2 we prove Doob’s inequalities (Doob-
Lp) and (Doob-L1) after establishing the trajectorial counterparts (Path-Lp) and
(Path-L1). We prove Theorem 3.1 and its Lp version in Section 3.

2. Proof of Theorem 1.1. The aim of this section is to prove Doob’s maxi-
mal inequalities in Theorem 1.1 by means of deterministic inequalities, which are
established in Proposition 2.1 below. The proof of Theorem 1.1 is given at the end
of this section. Regarding (Doob-Lp), we prove the stronger result

E
[
S̄

p
T

] ≤
(

p

p − 1

)p

E
[
S

p
T

] − p

p − 1
E

[
S

p
0

]
, 1 < p < ∞,(2.1)

which was obtained in [7, 18].

PROPOSITION 2.1. Let s0, . . . , sT be nonnegative numbers.

(I) For 1 < p < ∞ and h(x) := − p2

p−1xp−1, we have

s̄
p
T ≤

T −1∑
i=0

h(s̄i)(si+1 − si) − p

p − 1
s
p
0 +

(
p

p − 1

)p

s
p
T .(Path-Lp)

(II) For h(x) := − log(x), we have

s̄T ≤ e

e − 1

(
T −1∑
i=0

h(s̄i)(si+1 − si) + sT log(sT ) + s0
(
1 − log(s0)

))
.(Path-L1)

We note that for p = 2, inequality (Path-Lp) is valid also in the case where
s0, . . . , sT are real (possibly negative) numbers. A continuous time counterpart of
(Path-Lp) is given in Remark 3.5 below.

In the proof of Proposition 2.1, we need the following identity.

LEMMA 2.2. Let s0, . . . , sT be real numbers and h : R → R any function.
Then

T −1∑
i=0

h(s̄i)(si+1 − si) =
T −1∑
i=0

h(s̄i)(s̄i+1 − s̄i ) + h(s̄T )(sT − s̄T ).(2.2)
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PROOF. This follows by properly rearranging the summands. Indeed, observe
that for a term on the right-hand side there are two possibilities: if s̄i+1 = s̄i (resp.,
sT = s̄T ) it simply vanishes. Otherwise, it equals a sum h(s̄k)(sk+1 − sk) + · · · +
h(s̄m)(sm+1 − sm) where s̄k = · · · = s̄m. In total, every summand on the left-hand
side of (2.2) is accounted exactly once on the right. �

We note that Lemma 2.2 is a special case of [17], Lemma 3.1.

PROOF OF PROPOSITION 2.1. (I) By convexity, xp + pxp−1(y − x) ≤
yp, x, y ≥ 0. Hence, Lemma 2.2 yields

T −1∑
i=0

h(s̄i)(si+1 − si) = − p2

p − 1

T −1∑
i=0

s̄
p−1
i (s̄i+1 − s̄i ) − p2

p − 1
s̄
p−1
T (sT − s̄T )

≥ − p

p − 1

T −1∑
i=0

s̄
p
i+1 − s̄

p
i − p2

p − 1
s̄
p−1
T (sT − s̄T )(2.3)

= ps̄
p
T − p2

p − 1
s̄
p−1
T sT + p

p − 1
s̄
p
0 .

We therefore have
T −1∑
i=0

h(s̄i)(si+1 − si) +
(

p

p − 1

)p

s
p
T − p

p − 1
s̄
p
0 − s̄

p
T

(2.4)

≥ (p − 1)s̄
p
T − p2

p − 1
s̄
p−1
T sT +

(
p

p − 1

)p

s
p
T .

To establish (Path-Lp) it is thus sufficient to show that the right-hand side of (2.4)
is nonnegative. Defining c such that Sn = cS̄n amounts to showing that

g(c) = (p − 1) − p2

p − 1
c +

(
p

p − 1

)p

cp ≥ 0.(2.5)

Using standard calculus we obtain that g reaches its minimum at ĉ = p−1
p

where
g(ĉ) = 0.

(II) By Lemma 2.2 we have
T −1∑
i=0

h(s̄i)(si+1 − si)

= −
T −1∑
i=0

log(s̄i)(s̄i+1 − s̄i ) − log(s̄T )(sT − s̄T )

≥
T −1∑
i=0

(
s̄i+1 − s̄i − s̄i+1 log(s̄i+1) + s̄i log(s̄i)

) − log(s̄T )(sT − s̄T )

= s̄T − s0 + s0 log(s0) − sT log(s̄T ),
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where the inequality follows from the convexity of x 	→ −x + x log(x), x > 0. If
sT = 0 then the above inequality shows that (Path-L1) holds true. Otherwise, we
have

s̄T ≤
T −1∑
i=0

h(s̄i)(si+1 − si) + s0 − s0 log(s0) + sT log(sT ) + sT log
(

s̄T

sT

)
.

Note that the function x 	→ x log(y/x) on (0,∞), for any fixed y > 0, has a max-
imum in x̂ = y/e, where it takes the value y/e. This means that sT log(s̄T /sT ) ≤
s̄T /e which concludes the proof. �

We are now in the position to prove Theorem 1.1.

PROOF OF THEOREM 1.1. By Proposition 2.1(I), for h(x) := − p2

p−1xp−1 we
have

S̄
p
T ≤

T −1∑
i=0

h(S̄i)(Si+1 − Si) − p

p − 1
S

p
0 +

(
p

p − 1

)p

S
p
T .(2.6)

Since S is a submartingale and h is negative, E[∑T −1
i=0 h(S̄i)(Si+1 − Si)] ≤ 0 and

thus (2.1) [and consequently (Doob-Lp)] follows from (2.6) by taking expecta-
tions.

Inequality (Doob-L1) follows from Proposition 2.1(II) in the same fashion. �

REMARK 2.3. Given the terminal law μ of a martingale S, Hobson [14], Sec-
tion 3.7, also provides pathwise hedging strategies for lookback options on S. As
opposed to the strategies given in Proposition 2.1, we emphasize that the strategies
in [14] depend on μ.

3. Qualitative Doob Lp-inequality—Proof of Theorem 1.2. In this section
we prove Theorem 1.2 as well as the following result which pertains to p ∈ (1,∞).

THEOREM 3.1. Let (St )t∈[0,T ] be a nonnegative submartingale, S 
= 0 and
1 < p < ∞. Then

‖S̄T ‖p ≤ p

p − 1
‖ST ‖p − 1

p − 1

‖S0‖p
p

‖S̄T ‖p−1
p

.(3.1)

Given the values ‖S0‖p and ‖ST ‖p , inequality (3.1) is best possible. More pre-
cisely, given x0, x1 ∈ R, 0 < x0 ≤ x1, there exists a positive, continuous martingale
S = (St )t∈[0,T ] such that ‖S0‖p = x0,‖ST ‖p = x1 and equality holds in (3.1).

Moreover, equality in (3.1) holds if and only if S is a nonnegative martingale
such that S̄ is continuous and S̄T = αST , where α ∈ [1,

p
p−1).
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REMARK 3.2. We prove Theorem 3.1 by introducing a pathwise integral in
continuous time. Note that inequality (3.1) can also be obtained without defining
such an integral. However, the definition of the pathwise integral will allow us to
characterize all submartingales for which equality in (3.1) holds.

Connection between Theorems 1.2 and 3.1. We now discuss under which con-
ditions Theorem 1.2 and Theorem 3.1 are equivalent for p = 2. Recall that Theo-
rem 1.2 asserts that

‖S̄T ‖2 ≤ ‖ST ‖2 + ‖ST − S0‖2(3.2)

and Theorem 3.1 reads, in the case of p = 2, as

‖S̄T ‖2 ≤ 2‖ST ‖2 − ‖S0‖2
2

‖S̄T ‖2
.(3.3)

• If S is a martingale, then (3.2) and (3.3) are equivalent. Indeed, rearranging (3.3)
yields

ψ
(‖S̄T ‖2

) := 1

2
‖S̄T ‖2 + ‖S0‖2

2

2‖S̄T ‖2
≤ ‖ST ‖2,(3.4)

and by inverting the strictly monotone function ψ on [‖S0‖2,∞), we obtain

‖S̄T ‖2 ≤ ψ−1(‖ST ‖2
) = ‖ST ‖2 +

√
‖ST ‖2

2 − ‖S0‖2
2.

Since S is a martingale,
√

‖ST ‖2
2 − ‖S0‖2

2 = ‖ST − S0‖2, which gives (3.2).
• If S is a true submartingale, then the estimate in (3.2) is in fact stronger

than (3.3). This follows from the above reasoning and the fact that for a true

submartingale, we have
√

‖ST ‖2
2 − ‖S0‖2

2 > ‖ST − S0‖2.
• Clearly, it would be desirable to also obtain for general p an inequality of the

type (3.2), which is in the case of a martingale S equivalent to (3.1), and where
S̄T only appears on the left-hand side. By similar reasoning as for p = 2, finding
such an inequality is tantamount to inverting the function

ψ(x) = p − 1

p
x + ‖S0‖p

p

pxp−1 ,

which is strictly monotone on [‖S0‖p,∞). Since finding ψ−1 amounts to solv-
ing an algebraic equation, there is, in general, no closed form representation of
ψ−1 unless p ∈ {2,3,4}.

Definition of the continuous-time integral. For a general account on the theory
of pathwise stochastic integration we refer to Bichteler [3] and Karandikar [16].
Here we are interested in the particular case where the integrand is of the form
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h(S̄) and h is monotone and continuous. In this setup a rather naive and ad hoc
approach is sufficient (see Lemma 3.3 below).

Fix càdlàg functions f,g : [0, T ] → [0,∞) and assume that g is monotone. We
set ∫ T

0
gt- dft := lim

n→∞
∑

ti∈πn

gti-(fti+1 − fti )(3.5)

if the limit exists for every sequence of finite partitions πn with mesh converg-
ing to 0. The standard argument of mixing sequences then implies uniqueness.
We stress that (3.5) exists if and only if the “nonpredictable version”

∫ T
0 gt dft =

limn→∞
∑

ti∈πn
gti (fti+1 − fti ) exists; in this case the two values coincide.

By rearranging terms, one obtains the identity∑
ti∈π

gti (fti+1 − fti ) = − ∑
ti∈π

fti (gti+1 − gti ) + gT fT − g0f0

(3.6)

−
(∗)︷ ︸︸ ︷∑

ti∈π

(gti+1 − gti )(fti+1 − fti ) .

If it is possible to pass to a limit on either of the two sides, one can do so on the
other. Hence,

∫ T
0 gt dft is defined whenever

∫ T
0 ft dgt is defined and vice versa,

since the monotonicity of g implies that (∗) converges. In this case we obtain the
integration-by-parts formula∫ T

0
gt dft = −

∫ T

0
ft dgt + gT fT − g0f0 − ∑

0≤t≤T

(gt − gt-)(ft − ft-).(3.7)

Below we will need that the integrals
∫ T

0 h(f̄t ) dft and
∫ T

0 ft dh(f̄t ) are well-
defined whenever h is continuous, monotone and f is càdlàg. In the case of∫ T

0 ft dh(f̄t ), this can be seen by splitting f in its continuous and its jump part.
Existence of

∫ T
0 h(f̄t ) dft is then a consequence of (3.7).

The following lemma establishes the connection of the just defined pathwise
integral with the standard Itô integral.

LEMMA 3.3. Let S be a martingale on (�, F , (Ft )t≥0,P) and h be a mono-
tone and continuous function. Then

(
h(S̄) • S

)
T (ω) =

∫ T

0
h
(
S̄t-(ω)

)
dSt (ω) P-a.s.,(3.8)

where the left-hand side refers to the Itô integral while the right-hand side appeals
to the pathwise integral defined in (3.5).
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PROOF. Karandikar [16], Theorem 2, proves that(
h(S̄) • S

)
T (ω) = lim

n→∞
∑

ti∈πn

h
(
S̄ti-(ω)

)(
Sti+1(ω) − Sti (ω)

)
for a suitably chosen sequence of random partitions πn,n ≥ 1. According to the
above discussion,

∫ T
0 h(S̄t-(ω)) dSt (ω) = limn→∞

∑
ti∈πn

h(S̄ti-(ω))(Sti+1(ω) −
Sti (ω)) for any choice of partitions πn(ω),n ≥ 1, with mesh converging to 0. �

We are now able to establish a continuous-time version of Proposition 2.1.

PROPOSITION 3.4. Let f : [0, T ] → [0,∞) be càdlàg. Then for h(x) :=
− p2

p−1xp−1, we have

f̄
p
T ≤

∫ T

0
p−1h(f̄t ) dft + p

p − 1
f̄

p−1
T fT − 1

p − 1
f

p
0 .(3.9)

Equality in (3.9) holds true if and only if f̄ is continuous. Similarly, a continuous-
time version of (Path-L1) also holds true.

PROOF. Inequality (3.9) follows from (2.3) by passing to limits. We now show
that equality in (3.9) holds iff f̄ is continuous. To simplify notation, we consider
the case p = 2. Formula (3.7) implies∫ T

0
h(f̄t ) dft = 4

∫ T

0
ft df̄t − 4f̄T fT + 4f 2

0

+ 4
∑

0≤t≤T

(f̄t − f̄t-)(ft − ft-),(3.10)

≥ 2f̄ 2
T − 4f̄T fT + 2f̄ 2

0 ,

where equality in (3.10) holds iff f̄ is continuous. Hence, equality in (3.9) holds
true iff f̄ is continuous. �

If we choose f to be the path of a continuous martingale, the integral in (3.9) is
a pathwise version of an Azéma–Yor process; cf. [17], Theorem 3.

REMARK 3.5. Passing to limits in (Path-Lp) in Section 2 we obtain that for
every càdlàg function f : [0, T ] → [0,∞)

f̄
p
T ≤ −

∫ T

0

p2

p − 1
f̄

p−1
t dft +

(
p

p − 1

)p

f
p
T − p

p − 1
f

p
0 , 1 < p < ∞.

Alternatively, this can be seen as a consequence of (3.9).
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LEMMA 3.6. Let (St )t∈[0,T ] be a nonnegative submartingale and 1 < p < ∞.
Set S = M + A, where M is a martingale and A is an increasing, predictable
process with A0 = 0. Then

E
[
S̄

p
T

] ≤ − p

p − 1
E

[
S

p−1
0 AT

] + p

p − 1
E

[
S̄

p−1
T ST

] − 1

p − 1
E

[
S

p
0

]
.(3.11)

Equality holds in (3.11) if and only if S is a martingale such that S̄ is a.s. continu-
ous.

PROOF. By Proposition 3.4 we find for h(x) = − p2

p−1xp−1,

S̄
p
T ≤

∫ T

0
p−1h(S̄t ) dSt + p

p − 1
S̄

p−1
T ST − 1

p − 1
S

p
0 ,(3.12)

where equality holds iff S̄ is continuous. Since

E

[∫ T

0
p−1h(S̄t ) dAt

]
≤ − p

p − 1
E

[
S

p−1
0 AT

]
,(3.13)

(3.11) follows by taking expectations in (3.12). As the estimate in (3.13) is an
equality iff A = 0, we conclude that equality in (3.11) holds iff S is a martingale
such that S̄ is continuous. �

We note that in the case of p = 2, [1], Corollary 2.2.2, also implies that equality
in (3.11) holds for every continuous martingale S.

PROOF OF THEOREMS 3.1 AND 1.2. By Lemma 3.6 and Hölder’s inequality
we have

‖S̄T ‖p
p ≤ − p

p − 1
E

[
S

p−1
0 AT

] + p

p − 1

∥∥S̄p−1
T ST

∥∥
1 − 1

p − 1
‖S0‖p

p(3.14)

≤ − p

p − 1
E

[
S

p−1
0 AT

] + p

p − 1
‖S̄T ‖p−1

p ‖ST ‖p − 1

p − 1
‖S0‖p

p,(3.15)

where equality in (3.14) holds for every martingale S such that S̄ is continuous,
and equality in (3.15) holds whenever ST is a constant multiple of S̄T . Since
E[Sp−1

0 AT ] ≥ 0, we obtain (3.1) after dividing by ‖S̄T ‖p−1
p .

In order to establish (1.2) in Theorem 1.2 for p = 2, we rearrange terms in (3.15)
to obtain

ψ
(‖S̄T ‖2

) := 1

2
‖S̄T ‖2 + 2E[S0AT ] + ‖S0‖2

2

2‖S̄T ‖2
≤ ‖ST ‖2.

Similarly, as in the discussion after Remark 3.2 above, inverting ψ on [‖S0‖2,∞)

implies

‖S̄T ‖2 ≤ ‖ST ‖2 +
√

‖ST ‖2
2 − 2E[S0AT ] − ‖S0‖2

2.
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Since for every submartingale S we have
√

‖ST ‖2
2 − 2E[S0AT ] − ‖S0‖2

2 = ‖ST −
S0‖2, this proves (1.2).

In order to prove that (3.1) [resp., (1.2)] is attained, we have to ensure the exis-
tence of a p-integrable martingale S such that S̄ is continuous and ST is a constant
multiple of S̄T . To this end, we may clearly assume that x0 = 1. Fix α ∈ (1,

p
p−1)

and let B = (Bt )t≥0 be a Brownian motion starting at B0 = 1. Consider the process
Bτα = (Bt∧τα )t≥0 obtained by stopping B at the stopping time

τα := inf{t > 0 :Bt ≤ B̄t /α}.
This stopping rule corresponds to the Azéma–Yor solution of the Skorokhod em-
bedding problem (B,μ) (cf. [1]) where the probability measure μ is given by

dμ

dx
= α−1/(α−1)

(α − 1)
x−(2α−1)/(α−1)1[α−1,∞)(x).

Clearly Bτα is a uniformly integrable martingale. Therefore the process (St )t∈[0,T ]
defined as St := Bt/(T −t)∧τα is a nonnegative martingale satisfying ST = S̄T /α.
ST is p-integrable for α ∈ (1,

p
p−1) and ‖ST ‖p runs through the interval (1,∞)

while α runs in (1,
p

p−1). This concludes the proof.
In fact, note that the proof shows that equality in (3.1) holds if and only if S

is a nonnegative martingale such that S̄ is continuous and S̄T = αST , where α ∈
[1,

p
p−1). �
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