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Let X = (Xt )t≥0 be a transient diffusion process in (0,∞) with the
diffusion coefficient σ > 0 and the scale function L such that Xt → ∞ as
t → ∞, let It denote its running minimum for t ≥ 0, and let θ denote the
time of its ultimate minimum I∞. Setting c(i, x) = 1 − 2L(x)/L(i) we show
that the stopping time

τ∗ = inf{t ≥ 0|Xt ≥ f∗(It )}
minimizes E(|θ − τ | − θ) over all stopping times τ of X (with finite mean)
where the optimal boundary f∗ can be characterized as the minimal solution
to

f ′(i) = − σ 2(f (i))L′(f (i))

c(i, f (i))[L(f (i)) − L(i)]
∫ f (i)

i

c′
i (i, y)[L(y) − L(i)]

σ 2(y)L′(y)
dy

staying strictly above the curve h(i) = L−1(L(i)/2) for i > 0. In particular,
when X is the radial part of three-dimensional Brownian motion, we find that

τ∗ = inf
{
t ≥ 0

∣∣∣Xt − It

It
≥ ϕ

}
,

where ϕ = (1 + √
5)/2 = 1.61 . . . is the golden ratio. The derived results are

applied to problems of optimal trading in the presence of bubbles where we
show that the golden ratio rule offers a rigorous optimality argument for the
choice of the well-known golden retracement in technical analysis of asset
prices.

1. Introduction. The golden ratio has fascinated people of diverse interests
for at least 2400 years (see, e.g., [24]). In mathematics (and the arts) two quantities
a and b are in the golden ratio if the ratio of the sum of the quantities a + b to the
larger quantity a is equal to the ratio of the larger quantity a to the smaller quan-
tity b. This amounts to setting (a + b)/a = a/b =: ϕ and solving ϕ2 − ϕ − 1 = 0
which yields ϕ = (1 + √

5)/2 = 1.61 . . . Apart from being abundant in nature, and
finding diverse applications ranging from architecture to music, the golden ratio
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has also found more recent uses in technical analysis of asset prices (in strate-
gies such as Fibonacci retracement representing an ad-hoc method for determining
support and resistance levels). Despite its universal presence and canonical role in
diverse applied areas, we are not aware of any more exact connections between
the golden ratio and stochastic processes (including any proofs of optimality in
particular).

One of the aims of the present paper is to disclose the appearance of the golden
ratio in an optimal stopping strategy related to the radial part of three-dimensional
Brownian motion. More specifically, denoting the radial part by X it is well known
that X is transient in the sense that Xt → ∞ as t → ∞. After starting at some
x > 0, the ultimate minimum of X will therefore be attained at some time θ that
is not predictable through the sequential observation of X (in the sense that it is
only revealed at the end of time). The question we are addressing is to determine
a (predictable) stopping time of X that is as close as possible to θ . We answer this
question by showing that the time at which the excursion of X away from the run-
ning minimum I and the running minimum I itself form the golden ratio is as close
as possible to θ in a normalized mean deviation sense. We consider this problem
by embedding it into transient Bessel processes of dimension d > 2 and in this
context we derive similar optimal stopping rules. We also disclose further/deeper
extensions of these results to transient diffusion processes. The relevance of these
questions in financial applications is motivated by the problem of optimal trading
in the presence of bubbles. In this context we show that the golden ratio rule offers
a rigorous optimality argument for the choice of the well-known golden retrace-
ment in technical analysis of asset prices. To our knowledge this is the first time
that such an argument has been found/given in the literature.

The problem considered in the present paper belongs to the class of optimal pre-
diction problems (within optimal stopping). Similar optimal prediction problems
have been studied in recent years by many authors (see, e.g., [1, 2, 6–9, 14, 19,
25, 30, 39–41]). Once the “unknown” future is projected to the “known” present,
we find that the resulting optimal stopping problem takes a novel integral form
that has not been studied before. The appearance of the minimum process in this
context makes the problem related to optimal stopping problems for the maximum
process that were initially studied and solved in important special cases of diffu-
sion processes in [11, 12] and [23]. The general solution to problems of this kind
was derived in the form of the maximality principle in [31]; see also Section 13
and Chapter V in [35] and the other references therein. More recent contributions
and studies of related problems include [3, 15, 16, 20, 22, 26, 27, 29]. Close three-
dimensional relatives of these problems also appear in the recent papers [10] and
[43] where the problems were effectively solved by guessing and finding the op-
timal stopping boundary in a closed form. The maximality principle has been ex-
tended to three-dimensional problems in the recent paper [34].

Although the structure of the present problem is similar to some of these prob-
lems, it turns out that none of these results is applicable in the present setting.



3D BROWNIAN MOTION AND THE GOLDEN RATIO RULE 897

Governed by these particular features in this paper we show how the problem can
be solved when (i) no closed-form solution for the candidate stopping boundary
is available and (ii) the loss function takes an integral form where the integrand
is a functional of both the process X and its running minimum I . This is done by
extending the arguments associated with the maximality principle to the setting of
the present problem and disclosing the general form of the solution that is valid
in all particular cases. The key novel ingredient revealed in the solution is the re-
placement of the diagonal and its role in the maximality principle by a nonlinear
curve in the two-dimensional state space of X and I . We believe that this method-
ology is of general interest and the arguments developed in the proof should be
applicable in similar two/multi-dimensional integral settings.

2. Optimal prediction problem. 1. We consider a nonnegative diffusion pro-
cess X = (Xt)t≥0 solving

dXt = μ(Xt) dt + σ(Xt) dBt ,(2.1)

where μ and σ > 0 are continuous functions satisfying (2.4) and (2.5) below, and
B = (Bt )t≥0 is a standard Brownian motion. By Px we denote the probability mea-
sure under which the process X starts at x > 0. Recalling that the scale function of
X is given by

L(x) =
∫ x

exp
(
−

∫ y μ(z)

(σ 2/2)(z)
dz

)
dy,(2.2)

and the speed measure of X is given by

m(dx) = dx

(σ 2/2)(x)L′(x)
,(2.3)

we assume that the following conditions are satisfied:

L(0+) = −∞ and L(∞−) = 0,(2.4) ∫ 1

0+
L(dy) = ∞,

∫ 1

0+
m(dy) < ∞ and

∫ 1

0+
|L(y)|m(dy) < ∞.(2.5)

From (2.4) we read that X is a transient diffusion process in the sense that Xt → ∞
Px -a.s. as t → ∞, and from (2.5) we read that 0 is an entrance boundary point
for X in the sense that the process X could start at 0 but will never return to it
(implying also that X will never visit 0 after starting at x > 0).

2. The main example we have in mind is the d-dimensional Bessel process X

solving

dXt = d − 1

2Xt

dt + dBt ,(2.6)
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where d > 2. Recalling that the scale function is determined up to an affine trans-
formation we can choose the scale function (2.2) and hence the speed measure
(2.3) to read

L(x) = − 1

xd−2 ,(2.7)

m(dx) = 2

d − 2
xd−1 dx(2.8)

for x > 0. It is well known that when d ∈ {3,4, . . .} one can realize X as the
radial part of d-dimensional standard Brownian motion. Similar interpretations of
(2.6) are also valid when d = 1 (with an addition of the local time at zero) and
d = 2 but X is not transient in these cases (but recurrent), and hence the problem
considered below will have a trivial solution. Other examples of (2.1) are obtained
by composing Bessel processes solving (2.6) with strictly decreasing and smooth
functions. This is of interest in financial applications and will be discussed below.
There are also many other examples of transient diffusion processes solving (2.1)
that are not related to Bessel processes.

3. To formulate the problem to be studied below consider the diffusion process
X solving (2.1), and introduce its running minimum process I = (It )t≥0 by setting

It = inf
0≤s≤t

Xs(2.9)

for t ≥ 0. Due to the facts that X is transient (converging to +∞) and 0 is an
entrance boundary point for X, we see that the ultimate infimum I∞ = inft≥0 Xt

is attained at some random time θ in the sense that

Xθ = I∞(2.10)

with Px -probability one for x > 0 given and fixed (the case x = 0 being trivial and
therefore excluded). It is well known that θ is unique up to a set of Px -probability
zero (cf. [42], Theorem 2.4). The random time θ is clearly unknown at any given
time and cannot be detected through sequential observations of the sample path
t 
→ Xt for t ≥ 0. In many applied situations of this kind, we want to devise se-
quential strategies which will enable us to come as “close” as possible to θ . Most
notably, the main example we have in mind is the problem of optimal trading in the
presence of bubbles to be addressed below. In mathematical terms this amounts to
finding a stopping time of X that is as “close” as possible to θ . A first step toward
this goal is provided by the following lemma. We recall that stopping times of X

refer to stopping times with respect to the natural filtration of X that is defined by
F X

t = σ(Xs |0 ≤ s ≤ t) for t ≥ 0.

LEMMA 1. We have

|θ − τ | = θ +
∫ τ

0

(
2I (θ ≤ t) − 1

)
dt(2.11)

for all stopping (random) times τ of X.
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PROOF. The identity is well known (see, e.g., [35], page 450) and can be de-
rived by noting that

|θ − τ | = (θ − τ)+ + (τ − θ)+ =
∫ θ

0
I (τ ≤ t) dt +

∫ τ

0
I (θ ≤ t) dt

=
∫ θ

0

(
1 − I (τ > t)

)
dt +

∫ τ

0
I (θ ≤ t) dt

= θ −
∫ τ

0
I (θ > t) dt +

∫ τ

0
I (θ ≤ t) dt(2.12)

= θ −
∫ τ

0

(
1 − I (θ ≤ t)

)
dt +

∫ τ

0
I (θ ≤ t) dt

= θ +
∫ τ

0

(
2I (θ ≤ t) − 1

)
dt

for all stopping (random) times τ of X as claimed. �

4. Taking Ex on both sides in (2.11) yields a nontrivial measure of error (from τ

to θ ) as long as Exθ < ∞ for x > 0 given and fixed. The latter condition, however,
may not always be fulfilled. For example, when X is a transient Bessel process of
dimension d > 2 it is known (see [38], Lemma 1) that Px(θ > t) ∼ t−(d/2−1) as
t → ∞. Hence we see that Exθ = ∫ ∞

0 Px(θ > t) dt < ∞ if and only if d/2−1 > 1
or equivalently d > 4. It is clear from (2.11), however, that the pointwise minimiza-
tion of the Euclidean distance on the left-hand side is equivalent to the pointwise
minimization of the integral on the right-hand side. To preserve the generality we
therefore “normalize” |θ − τ | on the left-hand side by subtracting θ from it. After
taking Ex on both sides of the resulting identity, we obtain

Ex(|θ − τ | − θ) = Ex

∫ τ

0

(
2I (θ ≤ t) − 1

)
dt(2.13)

for all stopping times τ of X (for which the right-hand side is well defined). The
optimal prediction problem therefore becomes

V (x) = inf
τ

Ex(|θ − τ | − θ),(2.14)

where the infimum is taken over all stopping times τ of X (with finite mean) and
x > 0 is given and fixed. Note that the problem (2.14) is equivalent to the problem
of minimizing Ex |θ −τ | over all stopping times τ of X (with finite mean) whenever
Exθ < ∞. To tackle the problem (2.14) we first focus on the right-hand side in
(2.13) above.

LEMMA 2. We have

Ex

∫ τ

0

(
2I (θ ≤ t) − 1

)
dt = Ex

∫ τ

0

(
1 − 2

L(Xt)

L(It )

)
dt(2.15)

for all stopping times τ of X (with finite mean) and all x > 0.
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PROOF. Using a well-known argument (see, e.g., [35], page 450), we find that

Ex

∫ τ

0

(
2I (θ ≤ t) − 1

)
dt = Ex

∫ ∞
0

(
2I (θ ≤ t) − 1

)
I (t < τ)dt

=
∫ ∞

0
Ex

(
Ex

[(
2I (θ ≤ t) − 1

)
I (t < τ)|F X

t

])
dt

=
∫ ∞

0
Ex

(
I (t < τ)Ex

[(
2I (θ ≤ t) − 1

)|F X
t

])
dt(2.16)

= Ex

∫ τ

0

(
2Px(θ ≤ t |F X

t ) − 1
)
dt

= Ex

∫ τ

0

(
1 − 2Px(θ > t |F X

t )
)
dt

for any stopping time τ of X (with finite mean) and any x > 0 given and fixed.
Setting I t = infs≥t Xs and recalling that It = inf0≤s≤t Xs , we find by the Markov
property that

Px(θ > t |F X
t ) = Px(I

t < It |F X
t ) = Px(I

t < i|F X
t )|i=It

(2.17)
= Px(I∞ ◦ θt < i|F X

t )|i=It = PXt (I∞ < i)|i=It

for t > 0. To compute the latter probability we recall that M := L(X) is a con-
tinuous local martingale and note that I∞ < i if and only if L(I∞) < L(i) where
L(I∞) = inft≥0 L(Xt) = inft≥0 Mt . This shows that the set {I∞ < i} coincides
with the set {inft≥0 Mt < L(i)} which in turn can be expressed as {σ < ∞} where
σ = inf{t ≥ 0|Mt < L(i)}. Taking x ≥ i we see that the continuous local martin-
gale Mσ = (Mσ∧t )t≥0 is bounded above by 0 and bounded below by L(i) with
Mσ

0 = L(x) under Px . It follows therefore that Mσ is a uniformly integrable mar-
tingale and hence by the optional sampling theorem we find that

L(x) = ExMσ = Ex[L(i)I (σ < ∞)] + Ex[M∞I (σ = ∞)]
(2.18)

= L(i)Px(σ < ∞)

upon using that M∞ := limt→∞ Mt = 0 Px -a.s. on {σ = ∞}. Combining (2.18)
with the previous conclusions we obtain

Px(I∞ < i) = Px(σ < ∞) = L(x)

L(i)
(2.19)

for i ≤ x in (0,∞). From (2.17) and (2.19) we see that

Px(θ > t |F X
t ) = L(Xt)

L(It )
(2.20)

for all x > 0 and t ≥ 0 (for the underlying three-dimensional law, see [5], Theo-
rem A). Inserting this expression back into (2.16) we obtain (2.15) and the proof
is complete. �
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5. From (2.13) and (2.15) we see that the problem (2.14) is equivalent to

V (x) = inf
τ

Ex

∫ τ

0

(
1 − 2

L(Xt)

L(It )

)
dt,(2.21)

where the infimum is taken over all stopping times τ of X (with finite mean) and
x > 0 is given and fixed. Passing from the initial diffusion process X to the scaled
diffusion process L(X) we see that there is no loss of generality in assuming that
μ = 0 in (2.1) or equivalently that L(x) = x for x > 0 (with L(Xt) → 0 Px -a.s.
as t → ∞). Note that the time of the ultimate minimum θ is the same for both
X and L(X) since L is strictly increasing. Note also that τ is a stopping time of
X if and only if τ is a stopping time of L(X). To keep the track of the general
formulas throughout we will continue with considering the general case (when μ

is not necessarily zero and L is not necessarily the identity function). This problem
will be tackled in the next section below.

6. For future reference we recall that the infinitesimal generator of X equals

LX = μ(x)
∂

∂x
+ σ 2(x)

2

∂2

∂x2(2.22)

for x > 0. Throughout we denote τa = inf{t ≥ 0|Xt = a} and set τa,b = τa ∧ τb for
a < b in (0,∞). It is well known that

Px(Xτa,b
= a) = L(b) − L(x)

L(b) − L(a)
and Px(Xτa,b

= b) = L(x) − L(a)

L(b) − L(a)
(2.23)

for a ≤ x ≤ b in (0,∞). The Green function of X is given by

Ga,b(x, y) = (L(b) − L(y))(L(x) − L(a))

L(b) − L(a)
if a ≤ x ≤ y ≤ b

(2.24)

= (L(b) − L(x))(L(y) − L(a))

L(b) − L(a)
if a ≤ y ≤ x ≤ b.

If f : (0,∞) → R is a measurable function, then it is well known that

Ex

∫ τa,b

0
f (Xt) dt =

∫ b

a
f (y)Ga,b(x, y)m(dy)(2.25)

for a ≤ x ≤ b in (0,∞). This identity holds in the sense that if one of the integrals
exists, so does the other one, and they are equal.

3. Optimal stopping problem. It was shown in the previous section that
the optimal prediction problem (2.14) is equivalent to the optimal stopping prob-
lem (2.21). The purpose of this section is to present the solution to the latter prob-
lem. Using the fact that the two problems are equivalent this also leads to the
solution of the former problem.
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In the setting of (2.1)–(2.5) consider the optimal stopping problem (2.21). This
problem is two-dimensional and the underlying Markov process equals (I,X).
Setting I i

t = i ∧ inf0≤s≤t Xs for t ≥ 0 enables (I,X) to start at (i, x) under Px

for i ≤ x in (0,∞), and we will denote the resulting probability measure on the
canonical space by Pi,x . Thus under Pi,x the canonical process (I,X) starts at
(i, x). The problem (2.21) then extends as follows:

V (i, x) = inf
τ

Ei,x

∫ τ

0

(
1 − 2

L(Xt)

L(It )

)
dt(3.1)

for i ≤ x in (0,∞) where the infimum is taken over all stopping times τ of X (with
finite mean). In addition to σ and L from (2.1) and (2.2) above, let us set

c(i, x) = 1 − 2
L(x)

L(i)
(3.2)

for i ≤ x in (0,∞). The main result of this section may then be stated as follows.

THEOREM 3. The optimal stopping time in problem (3.1) is given by

τ∗ = inf{t ≥ 0|Xt ≥ f∗(It )},(3.3)

where the optimal boundary f∗ can be characterized as the minimal solution to

f ′(i) = − σ 2(f (i))L′(f (i))

c(i, f (i))[L(f (i)) − L(i)]
∫ f (i)

i

c′
i (i, y)[L(y) − L(i)]

σ 2(y)L′(y)
dy(3.4)

staying strictly above the curve h(i) = L−1(L(i)/2) for i > 0 (in the sense that if
the minimal solution does not exist, then there is no optimal stopping time). The
value function is given by

V (i, x) = −
∫ f∗(i)

x

c(i, y)[L(y) − L(x)]
(σ 2/2)(y)L′(y)

dy(3.5)

for i ≤ x ≤ f∗(i) and V (i, x) = 0 for x ≥ f∗(i) with i > 0.

PROOF. 1. It is evident from the integrand in (3.1) that the excursions of X

away from the running minimum I play a key role in the analysis of the problem. In
particular, recalling definition (3.2), we see from (3.1) that the process (I,X) can
never be optimally stopped in the set C0 := {(i, x) ∈ S|c(i, x) < 0} where we let
S = {(i, x) ∈ (0,∞) × (0,∞)|i ≤ x} denote the state space of the process (I,X).
Indeed, if (i, x) ∈ C0 is given and fixed, then the first exit time of (I,X) from
a sufficiently small ball with the centre at (i, x) (on which c is strictly negative)
will produce a value strictly smaller than 0 (the value corresponding to stopping at
once). Defining

h(i) = L−1(1
2L(i)

)
(3.6)
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for i > 0 we see that c(i, x) < 0 for x < h(i) and c(i, x) > 0 for x > h(i) whenever
i ≤ x in (0,∞) are given and fixed. Note that the mapping i 
→ h(i) is increasing
and continuous as well as that h(i) > i for i > 0 with h(0+) = 0 and h(+∞) =
+∞. This shows that C0 = {(i, x) ∈ S|i ≤ x < h(i)}. Note in particular that C0
contains the diagonal {(i, x) ∈ S|i = x} in the state space.

2. Before we formalize further conclusions, let us recall that the general the-
ory of optimal stopping for Markov processes (see [35], Chapter 1) implies that
the continuation set in the problem (3.1) equals C = {(i, x) ∈ S|V (i, x) < 0}, and
the stopping set equals D = {(i, x) ∈ S|V (i, x) = 0}. It means that the first en-
try time of (I,X) into D is optimal in problem (3.1) whenever well defined. It
follows therefore that C0 is contained in C, and the central question becomes to
determine the remainder of the set C. Since Xt → ∞ Px -a.s. as t → ∞ it fol-
lows that L(Xt) → 0 Px -a.s. as t → ∞ so that the integrand in (3.1) becomes
strictly positive eventually, and this reduces the incentive to continue (given also
that the “favorable” set C0 becomes more and more distant). This indicates that
there should exist a point f (i) at or above which the process X should be opti-
mally stopped under Pi,x where i ≤ x in (0,∞) are given and fixed. This yields
the following candidate:

τf = inf{t ≥ 0|Xt ≥ f (It )}(3.7)

for an optimal stopping time in (3.1) where the function i 
→ f (i) is to be deter-
mined.

3. Free-boundary problem. To compute the value function V and determine the
optimal function f , we are led to formulate the free-boundary problem

(LXV )(i, x) = −c(i, x) for i < x < f (i),(3.8)

V ′
i (i, x)|x=i+ = 0 (normal reflection),(3.9)

V (i, x)|x=f (i)− = 0 (instantaneous stopping),(3.10)

V ′
x(i, x)|x=f (i)− = 0 (smooth fit)(3.11)

for i > 0, where LX is the infinitesimal generator of X given in (2.22) above. For
the rationale and further details regarding free-boundary problems of this kind, we
refer to [35], Section 13, and the references therein (we note, in addition, that the
condition of normal reflection (3.9) dates back to [18]).

4. Nonlinear differential equation. To solve the free-boundary problem (3.8)–
(3.11) consider the stopping time τf defined in (3.7) and (formally) the resulting
function

Vf (i, x) = Ei,x

∫ τf

0
c(It ,Xt) dt(3.12)
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for i ≤ x ≤ f (i) in (0,∞) given and fixed. Applying the strong Markov property
of (I,X) at τi,f (i) = inf{t ≥ 0|Xt /∈ (i, f (i))} and using (2.23)–(2.25), we find that

Vf (i, x) = Vf (i, i)
L(f (i)) − L(x)

L(f (i)) − L(i)
(3.13)

+
∫ f (i)

i
c(i, y)Gi,f (i)(x, y)m(dy).

It follows from (3.13) that

Vf (i, i) = L(f (i)) − L(i)

L(f (i)) − L(x)
Vf (i, x)

(3.14)

− L(f (i)) − L(i)

L(f (i)) − L(x)

∫ f (i)

i
c(i, y)Gi,f (i)(x, y)m(dy).

Using (3.10) and (3.11) we find after dividing and multiplying with x − f (i) that

lim
x↑f (i)

Vf (i, x)

L(f (i)) − L(x)
= − 1

L′(f (i))

∂Vf

∂x
(i, x)

∣∣∣∣
x=f (i)−

= 0.(3.15)

Moreover, it is easily seen by (2.24) that

lim
x↑f (i)

L(f (i)) − L(i)

L(f (i)) − L(x)

∫ f (i)

i
c(i, y)Gi,f (i)(x, y)m(dy)

(3.16)

=
∫ f (i)

i
c(i, y)[L(y) − L(i)]m(dy).

Combining (3.14)–(3.16) we see that

Vf (i, i) = −
∫ f (i)

i
c(i, y)[L(y) − L(i)]m(dy).(3.17)

Inserting this back into (3.13) and using (2.24) and (2.25), we conclude that

Vf (i, x) = −
∫ f (i)

x
c(i, y)[L(y) − L(x)]m(dy)(3.18)

for i ≤ x ≤ f (i) in (0,∞). Finally, using (3.9) we find that

f ′(i) = − σ 2(f (i))L′(f (i))

2c(i, f (i))[L(f (i)) − L(i)]
(3.19)

×
∫ f (i)

i
c′
i (i, y)[L(y) − L(i)]m(dy)

for i > 0. Recalling that C0 is contained in C, we see that there is no restriction
to assume that each candidate function f solving (3.19) satisfies f (i) ≥ h(i) for
all i > 0. In addition we will also show below that all points (i, h(i)) belong to
C for i > 0 so that (at least in principle) there would be no restriction to assume
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that each candidate function f solving (3.19) also satisfies f (i) > h(i) for all
i > 0. These candidate functions will be referred to as admissible. We will also
see below, however, that solutions to (3.19) “starting” at h play a crucial role in
finding/describing the solution.

Summarizing the preceding considerations, we can conclude that to each can-
didate function f solving (3.19), there corresponds the function (3.18) solving
the free-boundary problem (3.8)–(3.11) as is easily verified by direct calculation.
Note, however, that this function does not necessarily admit the stochastic repre-
sentation (3.12) (even though it was formally derived from this representation).
The central question then becomes how to select the optimal boundary f among
all admissible candidates solving (3.19). To answer this question we will invoke
the subharmonic characterization of the value function (see [35], Chapter 1) for the
three-dimensional Markov process (I,X,A) where At = ∫ t

0 c(Is,Xs) ds for t ≥ 0.
Fuller details of this argument will become clearer as we progress below. It should
be noted that among all admissible candidate functions solving (3.19) only the op-
timal boundary will have the power of securing the stochastic representation (3.12)
for the corresponding function (3.18). This is a subtle point showing the full power
of the method (as well as disclosing limitations of the optimal stopping problem
itself).

5. The minimal solution. Motivated by the previous question we note from (3.18)
that f 
→ Vf is decreasing over admissible solutions to (3.19). This suggests to
select the candidate function among admissible solutions to (3.19) that is as far as
possible from h. The subharmonic characterization of the value function suggests
to proceed in the opposite direction, and this is the lead that we will follow in the
sequel.

To address the existence and uniqueness of solutions to (3.19), denote the right-
hand side of (3.19) by �(i, f (i)). From the general theory of nonlinear differential
equations, we know that if the direction field (i, f ) 
→ �(i, f ) is (locally) continu-
ous and (locally) Lipschitz in the second variable, then the equation (3.19) admits a
(locally) unique solution. For instance, this will be the case if, along a (local) conti-
nuity of (i, f ) 
→ �(i, f ), we also have a (local) continuity of (i, f ) 
→ �′

f (i, f ).
In particular, we see from the structure of � that equation (3.19) admits a (lo-
cally) unique solution whenever x 
→ σ 2(x) is (locally) continuously differen-
tiable. It is important to realize that the preceding arguments apply only away
from h since each point (i, h(i)) is a singularity point of equation (3.19) in the
sense that f ′(i+) = ∞ when f (i+) = h(i) due to c(i, h(i)) = 0 for i > 0. In this
case it is also important to note that the preceding arguments can be applied to the
equivalent equation for the inverse of i 
→ f (i) since this singularity gets removed
(the derivative of the inverse being zero).

To construct the minimal solution to (3.19) staying strictly above h, we can
proceed as follows (see Figure 1). For any in > 0 such that in ↓ 0 as n → ∞,
let i 
→ fn(i) denote the solution to (3.19) on (in,∞) such that fn(in+) = h(in).
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FIG. 1. Solutions fn and f∗ to the differential equation (3.4) from Theorem 3. The optimal stopping
boundary f∗ is the minimal solution staying strictly above the curve h. This is a genuine drawing
corresponding to the golden ratio rule of Corollary 5 when X is the radial part of three-dimensional
Brownian motion and the optimal stopping boundary f∗ is linear.

Note that i 
→ fn(i) is singular at in and that passing to the equivalent equation for
the inverse of i 
→ fn(i), this singularity gets removed as explained above. (Note
that the solution to the equivalent equation for the inverse can be continued below
h(in) as well until hitting the diagonal at some strictly positive point at which
the derivative is −∞. This yields another solution to (3.19) staying below fn and
providing its “physical” link to the diagonal. We will not make use of this part
of the solution in the sequel.) Note that the right-hand side of equation (3.19) is
positive for f (i) > h(i) so that i 
→ fn(i) is strictly increasing on [in,∞). By the
uniqueness of the solution we know that the two curves i 
→ fn(i) and i 
→ fm(i)

cannot intersect for n �= m, and hence we see that (fn)n≥1 is increasing. It follows
therefore that f∗ := limn→∞ fn exists on (0,∞). Passing to an integral equation
equivalent to (3.19) it is easily verified that i 
→ f∗(i) solves (3.19) wherever finite.
This f∗ represents the minimal solution to (3.19) staying strictly above the curve
h on (0,∞). We will first consider the case when f∗ is finite valued on (0,∞).

6. Stochastic representation. We show that the function (3.18) associated with
the minimal solution f∗ admits the stochastic representation (3.12). For this, let
i 
→ fn(i) be the solution to (3.19) on (in,∞) such that fn(in+) = h(in) for in > 0
with in ↓ 0 as n → ∞. Consider the function (i, x) 
→ Vfn(i, x) defined by (3.18)
for i ≤ x ≤ fn(i) and i ≥ in with n ≥ 1 given and fixed. Recall that Vfn solves
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the free-boundary problem (3.8)–(3.11) for i ≥ in. Consider the stopping time
τn := τin ∧ τfn where τin = inf{t ≥ 0|Xt = in} and τfn = inf{t ≥ 0|Xt ≥ fn(It )}.
Applying Itô’s formula and using (3.8), we find that

Vfn(Iτn,Xτn) = Vfn(i, x) +
∫ τn

0

∂Vfn

∂i
(It ,Xt ) dIt

+
∫ τn

0

∂Vfn

∂x
(It ,Xt) dXt

+ 1

2

∫ τn

0

∂2Vfn

∂x2 (It ,Xt ) d〈X,X〉t
(3.20)

= Vfn(i, x) +
∫ τn

0
LX(Vfn)(It ,Xt ) dt

+
∫ τn

0
σ(Xt)

∂Vfn

∂x
(It ,Xt) dBt

= Vfn(i, x) −
∫ τn

0
c(It ,Xt) dt + Mτn,

where we also use (3.9) to conclude that the integral with respect to dIt is equal
to zero and Mt = ∫ t∧τn

0 σ(Xs)(∂Vfn/∂x)(Is,Xs) dBs is a continuous local martin-
gale for t ≥ 0.

Since the process (I,X) remains in the compact set {(j, y) ∈ S|in ≤ j ≤ y ≤
fn(i)} up to time τn under Pi,x , and both σ and ∂Vfn/∂x are continuous (and thus
bounded) on this set, we see that M is a uniformly integrable martingale, and hence
by the optional sampling theorem we have Ei,xMτn = 0. Taking Ei,x on both sides
of (3.20), we therefore obtain

Vfn(i, x) = Ei,xVfn(Iτn,Xτn) + Ei,x

∫ τn

0
c(It ,Xt) dt

(3.21)
= Vfn(in, in) Pi,x(τin < τfn) + Ei,x

∫ τn

0
c(It ,Xt) dt

since (Iτn,Xτn) = (in, in) on {τin < τfn} and Vfn(Iτn,Xτn) = 0 on {τfn < τin}. Us-
ing that |c| ≤ 1 we find by (3.17), (2.23) and (3.6) that

|Vfn(in, in)| Pi,x(τin < τfn)

≤
∫ f (in)

in

|c(i, y)||L(y) − L(in)|m(dy) Pi,x(τin < τfn)

(3.22)

≤ |L(h(in)) − L(in)|
∫ h(in)

in

m(dy)
L(f∗(i)) − L(x)

L(f∗(i)) − L(in)

= 1

2
|L(in)| L(f∗(i)) − L(x)

L(f∗(i)) − L(in)

∫ h(in)

in

m(dy) → 0
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as n → ∞ since L(in) → −∞ and h(in) → 0, so that
∫ h(in)
in

m(dy) → 0, due to
(2.5) above. Hence letting n → ∞ in (3.21) and using that Vfn → Vf∗ by the
monotone convergence theorem, as well as that τn ↑ τf∗ since fn ↑ f∗ and in ↓ 0,
we find noting that Ei,xτf∗ < ∞ and using the dominated convergence theorem
that

Vf∗(i, x) = Ei,x

∫ τf∗

0
c(It ,Xt) dt(3.23)

for all i ≤ x in (0,∞) as claimed.

7. Nonpositivity. We show that for every solution f to (3.19) such that f ≥ f∗
on (0,∞) and the function Vf defined by (3.18) above, we have

Vf (i, x) ≤ 0(3.24)

for all i ≤ x in (0,∞). Clearly, since c(i, y) ≥ 0 for y ≥ h(i) in (3.18), it is enough
to prove (3.24) for f∗ and i ≤ x < h(i) with i > 0. For this, consider the stopping
time τh = inf{t ≥ 0|Xt ≥ h(It )} and note that τf∗ = τh + τf∗ ◦ θτh

. Hence by the
strong Markov property of (I,X) applied at τh we find using (3.23) that

Vf∗(i, x) = Ei,x

∫ τh

0
c(It ,Xt) dt + Ei,x

∫ τh+τf∗◦θτh

τh

c(It ,Xt) dt

= Ei,x

∫ τh

0
c(It ,Xt) dt + Ei,x

∫ τf∗◦θτh

0
c(It+τh

,Xt+τh
) dt

= Ei,x

∫ τh

0
c(It ,Xt) dt + Ei,xEi,x

[∫ τf∗

0
c(It ,Xt) dt ◦ θτh

∣∣∣F X
τh

]
(3.25)

= Ei,x

∫ τh

0
c(It ,Xt) dt + Ei,xEIτh

,Xτh

[∫ τf∗

0
c(It ,Xt) dt

]

= Ei,x

∫ τh

0
c(It ,Xt) dt + Ei,xVf∗(Iτh

,Xτh
) ≤ 0,

where the final inequality follows from the facts that c(It ,Xt) ≤ 0 for all t ∈ [0, τh]
and Vf∗(Iτh

,Xτh
) ≤ 0 due to Xτh

= h(Iτh
) upon recalling (3.18) as already indi-

cated above. This completes the proof of (3.24).

8. Optimality of the minimal solution. We will begin by disclosing the subhar-
monic characterization of the value function (3.1) in terms of the solutions to (3.19)
staying strictly above h. For this, let i 
→ f (i) be any solution to (3.19) satisfying
f (i) > h(i) for all i > 0. Consider the function (i, x) 
→ Vf (i, x) defined by (3.18)
for i ≤ x ≤ f (i) in (0,∞) and set Vf (i, x) = 0 for x ≥ f (i) in (0,∞). Let i ≤ x

in (0,∞) be given and fixed. Due to the “double-deck” structure of Vf , we can
apply the change-of-variable formula from [32] that in view of (3.11) reduces to
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standard Itô’s formula and gives

Vf (It ,Xt) = Vf (i, x) +
∫ t

0

∂Vf

∂i
(Is,Xs) dIs

+
∫ t

0

∂Vf

∂x
(Is,Xs) dXs + 1

2

∫ t

0

∂2Vf

∂x2 (Is,Xs) d〈X,X〉s
(3.26)

= Vf (i, x) +
∫ t

0
LX(Vf )(Is,Xs) ds

+
∫ t

0
σ(Xs)

∂Vf

∂x
(Is,Xs) dBs,

where we also use (3.9) to conclude that the integral with respect to dIs is equal to
zero. The process M = (Mt)t≥0 defined by

Mt =
∫ t

0
σ(Xs)

∂Vf

∂x
(Is,Xs) dBs(3.27)

is a continuous local martingale. Introducing the increasing process P = (Pt )t≥0
by setting

Pt =
∫ t

0
c(Is,Xs)I

(
Xs ≥ f (Is)

)
ds(3.28)

and using the fact that the set of all s for which Xs equals f (Is) is of Lebesque
measure zero, we see by (3.8) that (3.26) can be rewritten as follows:

Vf (It ,Xt) +
∫ t

0
c(Is,Xs) ds = Vf (i, x) + Mt + Pt .(3.29)

From this representation we see that the process Vf (It ,Xt) + ∫ t
0 c(Is,Xs) ds is a

local submartingale for t ≥ 0.
Let τ be any stopping time of X (with finite mean). Choose a localization se-

quence (σn)n≥1 of bounded stopping times for M . Then by (3.24) and (3.29) we
can conclude using the optional sampling theorem that

Ei,x

∫ τ∧σn

0
c(It ,Xt) dt ≥ Ei,x

[
Vf (Iτ∧σn,Xτ∧σn) +

∫ τ∧σn

0
c(It ,Xt) dt

]

(3.30)
≥ Vf (i, x) + Ei,xMτ∧σn = Vf (i, x).

Letting n → ∞ and using the dominated convergence theorem (upon recalling that
|c| ≤ 1 as already used above) we find that

Ei,x

∫ τ

0
c(It ,Xt) dt ≥ Vf (i, x).(3.31)

Taking first the infimum over all τ , and then the supremum over all f , we conclude
that

V (i, x) ≥ sup
f

Vf (i, x) = Vf∗(i, x),(3.32)



910 K. GLOVER, H. HULLEY AND G. PESKIR

upon recalling that f 
→ Vf is decreasing over f ≥ f∗ so that the supremum is
attained at f∗. Combining (3.32) with (3.23) we see that (3.3) and (3.5) hold as
claimed.

Note that (3.30) implies that the function (i, x) 
→ Vf (i, x) + a is subharmonic
for the Markov process (I,X,A) where At = ∫ t

0 c(Is,Xs) ds for t ≥ 0. Recall-
ing that f 
→ Vf is decreasing over f ≥ f∗, and that Vf (i, x) ≤ 0 for all i ≤ x

in (0,∞) by (3.24) above, we see that selecting the minimal solution f∗ staying
strictly above h is equivalent to invoking the subharmonic characterization of the
value function (according to which the value function is the largest subharmonic
function lying below the loss function). For more details on the latter characteriza-
tion in a general setting we refer to [35], Chapter 1. It is also useful to know that the
subharmonic characterization of the value function represents the dual problem to
the primal problem (3.1) (for more details on the meaning of this claim including
connections to the Legendre transform see [33]).

Consider finally the case when f∗ is not finite valued on (0,∞). Since i 
→ f∗(i)
is increasing we see that there is i∗ ≥ 0 such that f∗(i) < ∞ for all i ∈ (0, i∗) when
i∗ > 0 and f∗(i) = ∞ for all i ≥ i∗ with i �= 0 when i∗ = 0. If i∗ > 0, then the
proof above can be applied in exactly the same way to show that (3.3) and (3.5)
hold as claimed under Pi,x for all i ≤ x in (0,∞) with i < i∗. If i ≥ i∗ with i �= 0
when i∗ = 0, then the same proof shows that (3.5) still holds with ∞ in place of
f∗(i), however, the stopping time (3.3) can no longer be optimal in (3.1). This is
easily seen by noting that the value in (3.5) is nonpositive (it could also be −∞)
for any x ≥ h(i) for instance, while the Pi,x -probability for X hitting i before
drifting away to ∞ is strictly smaller than 1 so that the Pi,x-expectation over this
set in (3.1) equals ∞ (since the integrand tends to 1 as t tends to ∞) showing
that the stopping time (3.3) cannot be optimal. The proof above shows that the
optimality of (3.5) in this case is obtained through τn = τin ∧ τfnwhich play the
role of approximate stopping times (obtained by passing to the limit when n tends
to ∞ in (3.21) above). This completes the proof of the theorem. �

4. The golden ratio rule. In this section we show that the minimal solution to
(3.4) admits a simple closed-form expression when X is a transient Bessel process
(Theorem 4). In the case when X is the radial part of three-dimensional Brown-
ian motion this leads to the golden ratio rule (Corollary 5). We also show that X

stopped according to the golden ratio rule has what we refer to as the golden ratio
distribution (Corollary 8).

In the setting of (2.6)–(2.8) consider the optimal prediction problem (2.14). Re-
call that this problem is equivalent to the optimal stopping problem (2.21) which
further extends as (3.1). The main result of this section can now be stated as fol-
lows.

THEOREM 4. If X is the d-dimensional Bessel process solving (2.6) with
d > 2, then the optimal stopping time in (2.14) is given by

τ∗ = inf{t ≥ 0|Xt ≥ λIt },(4.1)
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where λ is the unique solution to

λd − (1 + d)λ2 + 4

4 − d
λ4−d − (d − 2)2

4 − d
= 0 if d �= 4,(4.2)

λ4 − 5λ2 + 4 logλ + 4 = 0 if d = 4(4.3)

belonging to (21/(d−2),∞). The value function (3.1) is given explicitly by

V (i, x) = 2

d − 2

[
x2

(
1

2
+

(
i

x

)d−2)((
λi

x

)2

− 1
)

− x2

d

((
λi

x

)d

− 1
)

− 2λ4−d

d − 4
i2

((
λi

x

)d−4

− 1
)]

if d �= 4

(4.4)

=
[
x2

(
1

2
+

(
i

x

)2)((
λi

x

)2

− 1
)

− x2

4

((
λi

x

)4

− 1
)

− 2i2 log
(

λi

x

)]
if d = 4

for i ≤ x ≤ λi and V (i, x) = 0 for x ≥ λi with i > 0.

PROOF. By the result of Theorem 3 we know that the optimal stopping time
τ∗ is given by (3.3) above where the optimal boundary f∗ can be characterized as
the minimal solution to (3.4) staying strictly above the curve h(i) = L−1(L(i)/2)

for i > 0. Using (2.7) and (3.2) it can be verified that (3.4) reads as follows:

f ′(i) =
(

d − 2

4 − d

(
f (i)

i

)[
(4 − d)

(
f (i)

i

)d−2

+ (d − 2)

(
f (i)

i

)d−4

− 2
])

×
(((

f (i)

i

)d−2

− 1
)((

f (i)

i

)d−2

− 2
))−1

if d �= 4(4.5)

= 2(f (i)/i)[(f (i)/i)2 − 2 log(f (i)/i) − 1]
((f (i)/i)2 − 1)((f (i)/i)2 − 2)

if d = 4

and h(i) = 21/(d−2)i for i > 0. Hence it is enough to show that f∗(i) = λi is
the minimal solution to (4.5) staying strictly above the curve h(i) = 21/(d−2)i for
i > 0.

To show that f∗ is a solution to (4.5) staying strictly above h, insert f (i) = λi

into (4.5) with λ > 0 to be determined. Multiplying both sides of the resulting
identity by λ4−d (to be able to derive the factorization (4.7) below) it is easy to see
that this yields the equation F(λ) = 0 where we set

F(λ) = λd − (1 + d)λ2 + 4

4 − d
λ4−d − (d − 2)2

4 − d
if d �= 4

(4.6)
= λ4 − 5λ2 + 4 logλ + 4 if d = 4
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for λ > 0. After some algebraic manipulations we find that

F ′(λ) = dλ3−d

(
λd−2 − 2

d

)
(λd−2 − 2)(4.7)

for λ > 0 and d > 2. Hence we see that the equation F ′(λ) = 0 has two roots
λ0 = (2/d)1/(d−2) and λ1 = 21/(d−2) where 0 < λ0 < 1 < λ1 < ∞. It is easy
to check that F ′′(λ0) < 0 and F ′′(λ1) > 0 showing that F has a local maxi-
mum at λ0 and F has a local minimum at λ1. Noting that F(0+) < 0, F(1) = 0
and F(∞−) = ∞ this shows that (i) F is strictly increasing on (0, λ0) with
F(0+) < 0 and F(λ0) > 0; (ii) F is strictly decreasing on (λ0, λ1) with F(1) = 0
and F(λ1) < 0; and (iii) F is strictly increasing on (λ1,∞) with F(∞−) = ∞. It
follows therefore that the equation F(λ) = 0 has exactly three roots λ∗

0 < 1 < λ∗
1

where λ∗
0 ∈ (0, λ0) and λ∗

1 ∈ (λ1,∞). Setting λ = λ∗
1 this shows that f∗(i) = λi

is a solution to (4.5) staying strictly above the curve h(i) = 21/(d−2)i for i > 0 as
claimed.

To show that f∗ is the minimal solution satisfying this property, set κ(i) =
f (i)/i and note that (4.5) can then be rewritten as follows:

iκ ′(i) = − F(κ(i))

κ3−d(i)(κd−2(i) − 1)(κd−2(i) − 2)
(4.8)

for i > 0. Since F(κ(i)) < 0 for κ(i) ∈ (21/(d−2), λ) we see from (4.8) that i 
→
κ(i) is increasing for κ(i) ∈ (21/(d−2), λ). Noting that (4.8) implies that

−
∫ κ(i0)

κ(i)

κ3−d(κd−2 − 1)(κd−2 − 2)

F (κ)
dκ =

∫ i0

i

di

i
= log

(
i0

i

)
,(4.9)

it follows therefore that the integrand on the left-hand side is bounded by a con-
stant (not dependent on i) as long as κ(i) ∈ (21/(d−2), λ) for i ∈ (0, i0) with any
i0 > 0 given and fixed. Letting then i ↓ 0 in (4.9) we see that the left-hand side
remains bounded while the right-hand side tends to ∞ leading to a contradiction.
Noting that κ(i) ∈ (21/(d−2), λ) if and only if f (i) ∈ (h(i), f∗(i)), we can there-
fore conclude that there is no solution f to (4.5) satisfying f (i) ∈ (h(i), f∗(i))
for i > 0. Thus f∗ is the minimal solution to (4.5) staying strictly above h and the
proof is complete. �

COROLLARY 5 (The golden ratio rule). If X is the radial part of three-
dimensional Brownian motion, then the optimal stopping time in (2.14) is given
by

τ∗ = inf
{
t ≥ 0

∣∣∣Xt − It

It

≥ ϕ

}
,(4.10)

where ϕ = (1 + √
5)/2 = 1.61 . . . is the golden ratio (see Figure 2).
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FIG. 2. The golden ratio rule for the radial part X of three-dimensional Brownian motion.

PROOF. In this case d = 3 and equation (4.2) reads

λ3 − 4λ2 + 4λ − 1 = (λ − 1)(λ2 − 3λ + 1) = 0(4.11)

for λ > 0. Solving the latter quadratic equation and choosing the root strictly
greater than 1, we find that λ = 1 + ϕ where ϕ = (1 + √

5)/2 = 1.61 . . . is the
golden ratio. The optimality of (4.10) then follows from (4.1) and the proof is
complete. �

Returning to the result of Theorem 3 above we now determine the law of the
transient diffusion process X stopped at the optimal stopping time τ∗ (for related
results on the Skorokhod embedding problem see [36], pages 269–277, and the
references therein).

PROPOSITION 6. In the setting of Theorem 3 we have

Px(Xτ∗ ≤ y) = exp
(
−

∫ x

f −1∗ (y)

dL(z)

L(f∗(z)) − L(z)

)
(4.12)

for 0 < y ≤ f∗(x) with x > 0.

PROOF. Note that

τ∗ = inf{t ≥ 0|Xt ≥ f∗(It )}
= inf{t ≥ 0|L(Xt) ≥ (L ◦ f∗ ◦ L−1)(L(It ))}(4.13)

= inf{t ≥ 0|XL
t ≥ f L∗ (IL

t )},
where we set XL

t = L(Xt), f L∗ = L◦f∗ ◦L−1 and IL
t = L(It ) = inf0≤s≤t L(Xs) =

inf0≤s≤t X
L
s for t ≥ 0. Let x > 0 be given and fixed. For j ≤ L(x) set G(j) =∫ j

−∞ g(k) dk where g : (−∞,L(x)] → R is a continuously differentiable function
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with bounded support. Using the fact that dIL
t = 0 when XL

t �= IL
t it is easily

verified by Itô’s formula that the process ML = (ML
t )t≥0 defined by

ML
t = G(IL

t ) + (XL
t − IL

t )G′(IL
t )(4.14)

is a continuous local martingale. Moreover, since G′ = g is continuous and has
bounded support, we see that ML is bounded and therefore uniformly integrable.
By the optional sampling theorem we thus find that

GL(x) = ExM
L
0 = ExM

L
τ∗ = ExG(IL

τ∗) + Ex[(XL
τ∗ − IL

τ∗)G
′(IL

τ∗)]

=
∫ L(x)

−∞
G(j)dF (j) + Ex

[(
f L∗ (IL

τ∗) − IL
τ∗

)
G′(IL

τ∗)
]

= G(j)F (j)|L(x)
−∞ −

∫ L(x)

−∞
F(j) dG(j)

(4.15)

+
∫ L(x)

−∞
(
f L∗ (j) − j

)
G′(j) dF (j)

= GL(x) −
∫ L(x)

−∞
F(j)g(j) dj

+
∫ L(x)

−∞
(
f L∗ (j) − j

)
g(j) dF (j),

where we set GL(x) = G(L(x)) and F denotes the distribution function of IL
τ∗

under Px . Since (4.15) holds for all functions g of this kind, it follows that

F ′(j) = F(j)

f L∗ (j) − j
(4.16)

for j < L(x) with F(L(x)) = 1. Solving (4.16) under this boundary condition we
find that

F(j) = exp
(
−

∫ L(x)

j

dk

f L∗ (k) − k

)
(4.17)

for j ≤ L(x). Recalling that f L∗ = L◦f∗ ◦L−1 and substituting k = L(z) it follows
that

Px(Iτ∗ ≤ i) = Px

(
L(Iτ∗) ≤ L(i)

) = Px

(
IL
τ∗ ≤ L(i)

)

= F(L(i)) = exp
(
−

∫ L(x)

L(i)

dk

f L∗ (k) − k

)
(4.18)

= exp
(
−

∫ x

i

dL(z)

L(f∗(z)) − L(z)

)
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for i ≤ x in (0,∞). Hence we find that

Px(Xτ∗ ≤ y) = Px

(
f∗(Iτ∗) ≤ y

) = Px

(
Iτ∗ ≤ f −1∗ (y)

)
(4.19)

= exp
(
−

∫ x

f −1∗ (y)

dL(z)

L(f∗(z)) − L(z)

)

for 0 < y ≤ f∗(x) with x > 0. This completes the proof. �

Specializing this result to the d-dimensional Bessel process X of Theorem 4 we
obtain the following consequence.

COROLLARY 7. In the setting of Theorem 4 we have

Px(Xτ∗ ≤ y) =
(

y

λx

)(d−2)/(1−(1/λ)d−2)

(4.20)

for 0 < y ≤ λx with x > 0.

PROOF. In this case f∗(i) = λi for i > 0 where λ is the unique solution to
either (4.2) when d �= 4 or (4.3) when d = 4 and L is given by (2.7). Inserting
these expressions into the right-hand side of (4.12) it is easily verified that this
yields (4.20). �

Specializing this further to the radial part X of three-dimensional Brownian
motion in Corollary 5 we obtain the following conclusion.

COROLLARY 8 (The golden ratio distribution). In the setting of Corollary 5
we have

Px(Xτ∗ ≤ y) =
(

y

(1 + ϕ)x

)ϕ

(4.21)

for 0 < y ≤ (1 + ϕ)x with x > 0.

PROOF. In this case d = 3 and λ = 1 + ϕ so that (d − 2)/(1 − (1/λ)d−2) =
1/(1 − 1/(1 + ϕ)) = (1 + ϕ)/ϕ = ϕ2/ϕ = ϕ. Hence we see that (4.20) reduces to
(4.21). �

Note from (4.21) that the density function of Xτ∗ under Px is given by

fXτ∗ (y) = ϕ

((1 + ϕ)x)ϕ
yϕ−1(4.22)

for 0 < y < (1 +ϕ)x with x > 0 and equals zero otherwise. We refer to (4.21) and
(4.22) as the golden ratio distribution. It is easy to see that

ExXτ∗ = ϕx(4.23)
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for x > 0. The fact that this number is strictly greater than x (the initial point
corresponding to stopping at once) is not surprising since X is a submartingale. It
needs to be recalled moreover that the aim of applying the golden ratio rule τ∗ is to
be as close as possible to the time θ at which the ultimate minimum is attained. We
will see in the next section that the golden ratio distribution provides insight as to
what extent the golden ratio rule has the power of capturing the ultimate maximum
of a strict local martingale.

5. Applications in optimal trading. In this section we present some applica-
tions of the previous results in problems of optimal trading. We also outline some
remarkable connections between such problems and the practice of technical anal-
ysis. These applications and connections rest on three basic ingredients that we
describe first.

1. Fibonnaci retracement. We begin by explaining a few technical terms from
the field of applied finance. Technical analysis is a financial term used to describe
methods and techniques for forecasting the direction of asset prices through the
study of past market data (primarily prices themselves plus the volume of their
trade). Support and resistance are concepts in technical analysis associated with
the expectation that the movement of the asset price will tend to cease and re-
verse its trend of decrease/increase at certain predetermined price levels. A sup-
port/resistance level is a price level at which the price will tend to find sup-
port/resistance when moving down/up. This means that the price is more likely
to bounce off this level rather than break through it. One may also think of these
levels as turning points of the prices. Fibonacci retracement is a method of techni-
cal analysis for determining support and resistance levels. The name comes after
its use of Fibonacci numbers Fn+1 = Fn +Fn−1 for n ≥ 1 with F0 = 0 and F1 = 1.
Fibonacci retracement is based on the idea that after reversing the trend at a sup-
port/resistance level, the price will retrace a predictable portion of the past down-
ward/upward move by advancing in the opposite direction until finding a new re-
sistance/support level, after which it will return to the initial trend of moving down-
wards/upwards. Fibonacci retracement is created by taking two extreme points on
a chart showing the asset price as a function of time and dividing the vertical dis-
tance between them by the key Fibonacci ratios ranging from 0% (start of the re-
tracement) to 100% (end of the retracement representing a complete reversal to the
original trend). The other key Fibonacci ratios are 23.6% (shallow retracement),
38.2% (moderate retracement) and 61.8% (golden retracement). They are obtained
by formulas (Fn/Fn+3) × 100 ≈ ϕ−3 × 100, (Fn/Fn+2) × 100 ≈ ϕ−2 × 100 and
(Fn/Fn+1) × 100 ≈ ϕ−1 × 100, respectively (see the next paragraph). These re-
tracement levels serve as alert points for a potential reversal at which traders may
employ other methods of technical analysis to identify and confirm a reversal. De-
spite its widespread use in technical analysis of asset prices, there appears to be no
(rigorous) explanation of any kind as to why the Fibonacci ratios should be used
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to this effect. We will show below that the golden ratio rule derived in the previous
section offers a rigorous optimality argument for the choice of the golden retrace-
ment (61.8%). To our knowledge this is the first time that such an argument has
been found/given in the literature.

2. Golden ratio and Fibonacci numbers. The link between the two is well known
and is expressed by Binet’s formula

Fn = ϕn − ψn

ϕ − ψ
= ϕn − ψn

√
5

,(5.1)

where ϕ = (1 + √
5)/2 and ψ = (1 − √

5)/2 = 1 − ϕ = −1/ϕ. It follows that

lim
n→∞

Fn+1

Fn

= ϕ.(5.2)

This fact is used in the description of Fibonacci retracement above.

3. The CEV model. One of the simplest/tractable models for asset price move-
ments that is capable of reproducing the implied volatility smile/frown effect and
the (inverse) leverage effect (both observed in the empirical data) is the Constant
Elasticity of Variance (CEV) model in which the (nonnegative) asset price process
Z = (Zt )t≥0 solves

dZt = μZt dt + σZ
1+β
t dBt ,(5.3)

where μ ∈ R is the appreciation rate, σ > 0 is the volatility coefficient, and β ∈
R is the elasticity parameter. If β = 0 then Z is a geometric Brownian motion
which was initially considered in [28] and [37]. For β �= 0 this model was firstly
considered in [4] for β < 0 and then in [13] for β > 0. Due to its predictive power
and tractability, the CEV model is widely used by practitioners in the financial
industry, especially for modeling prices of equities and commodities. If β < 0 then
the model embodies the leverage effect (commonly observed in equity markets)
where the volatility of the asset price increases as its price decreases. If β > 0
then the model embodies the inverse leverage effect (often observed in commodity
markets) where the volatility of the asset price increases when its price increases.
For example, it is reported in [17] that the elasticity coefficient β for Gold on the
London Bullion Market in the period from 2000 to 2007 was approximately 0.49.
Similar elasticity coefficients have also been observed for other precious metals
(such as Copper for instance).

In the remainder of this section we focus on the case when μ = 0 and β > 0. It
is well known (cf. [13]) that Z solving (5.3) is a strict local martingale (a local mar-
tingale which is not a true martingale) in this case due to the fact that t 
→ Ez(Zt )

is strictly decreasing on R+ for any z > 0. This also implies that Z does not ad-
mit an equivalent martingale measure so that the CEV model may admit arbitrage
opportunities. One way of looking at the models of this type is to associate them
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with asset price bubbles (see [21]). After soaring to a finite ultimate maximum
(bubble) at a finite time, the asset price will tend to zero as time goes to infinity,
and the central question for a holder of the asset becomes when to sell so as to be
as close as possible to the time at which the ultimate maximum is attained. More
precisely, introducing the running maximum process S = (St )t≥0 associated with
Z by setting

St = sup
0≤s≤t

Zs(5.4)

and recalling that Zt → 0 as t → ∞, we see that the ultimate supremum S∞ =
supt≥0 Zt is attained at some random time θ in the sense that

Zθ = S∞(5.5)

with Pz-probability one for z > 0 given and fixed. The optimal selling problem
addressed above then becomes the optimal prediction problem

V (z) = inf
τ

Ez(|θ − τ | − θ),(5.6)

where the infimum is taken over all stopping times τ of Z (with finite mean) and
z > 0 is given and fixed. We will now show that due to the well-known connection
between CEV and Bessel processes (dating back to similar transformations in [4]
and [13]) the problem (5.6) can be reduced to the problem (2.14) solved above.

4. The golden ratio rule for the CEV process. For d > 2 given and fixed consider
the d-dimensional Bessel process X solving (2.6) under Px with x > 0. Recall that
the scale function L is given by (2.7) and set K(x) = −cσL(x) for x > 0 with
cσ > 0 given and fixed. Then the process Z = K(X) defined by

Zt = K(Xt) = cσ

Xd−2
t

(5.7)

is on natural scale and Itô’s formula shows that Z solves

dZt = σZ
1+1/(d−2)
t dB̃t ,(5.8)

where σ = (d − 2)/c
1/(d−2)
σ and B̃ = −B is a standard Brownian motion. Note

that equation (5.8) coincides with equation (5.3) for μ = 0 and β = 1/(d − 2).
By the uniqueness in law for this equation (among positive solutions) it follows
that Z = K(X) is a CEV process. From the properties of X it follows that after
starting at z = K(x) > 0, the process Z stays strictly positive (without exploding
at a finite time) and Zt → 0 with Pz-probability one as t → ∞. This shows that θ

in (5.5) is well defined. Moreover, due to the reciprocal relationship (5.7) we see
that the time of the ultimate maximum θ for Z in (5.5) coincides with the time of
the ultimate minimum θ for X in (2.10), and hence the problem (5.6) has the same
solution as the problem (2.14) (note also that the natural filtrations of Z and X

coincide so that τ is a stopping time of Z if and only if τ is a stopping time of X).
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FIG. 3. The golden ratio rule for the CEV process Z = 1/X where X is the radial part of three-di-
mensional Brownian motion. Note the presence of a bubble and its relation to the golden ratio.

Since Xt ≥ λIt if and only if Zt/cσ = X2−d
t ≤ λ2−dI 2−d

t = λ2−dSt/cσ it follows
from (4.1) in Theorem 4 that the optimal stopping time in (5.6) is given by

τ∗ = inf{t ≥ 0|St ≥ λd−2Zt },(5.9)

where λ is the unique solution to either (4.2) or (4.3) belonging to (21/(d−2),∞).
In particular, if d = 3 then we know from (4.11) that λ = 1 + ϕ so that (5.9) reads

τ∗ = inf
{
t ≥ 0

∣∣∣St − Zt

Zt

≥ ϕ

}
.(5.10)

This is the golden ratio rule for the CEV process Z = 1/X where X is the radial
part of three-dimensional Brownian motion (see Figure 3).

To relate the golden ratio rule (5.10) to Fibonacci retracement discussed above,
let a = Sτ∗ − Zτ∗ denote the larger quantity and let b = Zτ∗ denote the smaller
quantity in the golden ratio rule. To determine the percentage of a in a + b we
need to calculate

a

a + b
= Sτ∗ − Zτ∗

Sτ∗
= 1 − Zτ∗

Sτ∗
= 1 − 1

1 + ϕ
(5.11)

= ϕ

1 + ϕ
= 1

ϕ
.

Multiplying this expression by 100 gives 61.8% and this is exactly the golden
retracement discussed above. In view of the optimality of (5.10) in (5.6) we see
that the golden retracement of 61.6% for the CEV process Z = 1/X (starting close
to zero) where X is the radial part of three-dimensional Brownian motion can be
seen as a rational support level (in the sense that rational investors who aim at
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selling the asset at the time of the ultimate maximum will sell the asset at the time
of the golden retracement, and therefore the asset price could be expected to raise
afterwards). To our knowledge this is the first time that such a rational optimality
argument for the golden retracement has been established.
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