
Statistical Science
2011, Vol. 26, No. 2, 203–205
DOI: 10.1214/11-STS338A
Main article DOI: 10.1214/10-STS338
© Institute of Mathematical Statistics, 2011

Discussion of “Objective Priors:
An Introduction for Frequentists”
by M. Ghosh
José M. Bernardo

1. INTRODUCTION

Professor Ghosh has produced a very useful, inter-
esting piece of work which (i) argues that Bayesian
results with objective priors may be interesting for
frequentist statisticians, (ii) reviews two useful (unre-
lated) techniques which find application in the deriva-
tion of objective priors, (iii) introduces a family of di-
vergence priors which is claimed to include reference
priors, (iv) reviews matching priors, and (v) demon-
strates that these ideas may produce new objective pri-
ors. I will comment in turn on each of these points.

2. OBJECTIVE BAYESIAN STATISTICS

Professor Ghosh states that “with enough historical
data, it is possible to elicit a prior distribution fairly ac-
curately.” I believe this is a (possibly misleading) over-
statement, an example of wishful thinking. In practice,
useful prior elicitation is limited to small text-book
models with very few parameters. I have never seen
a proper elicitation job in moderately complex conven-
tional models (say a logistic regression), let alone in re-
ally complex problems. In optimal circumstances, one
may be able to elicit a proper joint prior for a couple of
parameters of interest, but one is then forced to assume
some form of objective conditional prior for the many
nuisance parameters typically present in any real ap-
plication. Some people then use a “flat” prior, typically
a limiting form of some conjugate family of priors; but
this is a very dangerous procedure, for one does not
control the implications of the choice made, and may
result in severely biased, or even improper posteriors.
There is simply no substitute for the search of a well-
motivated objective prior.

The author further states that “Bayesian methods, if
judiciously used, can produce meaningful inferences
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based on. . . objective priors” and makes reference to
several problems where frequentist methods fail to pro-
duce sensible answers, while objective Bayesian meth-
ods certainly succeed. I surely agree with this, but I find
this to be an understatement. Ever since Wald (1950)
proved that to be admissible (a frequentist concept!)
a procedure must be Bayesian, people have found, over
and over again, that (as could have been expected from
this general result) the frequentist performance of ob-
jective Bayesian procedures is typically very good, and
often better than that of the procedures derived from
ad hoc frequentist methods. Actually, one could well
invert the conventional teaching of mathematical statis-
tics, by teaching first objective Bayesian methods
(motivated from first principles), and then introducing
frequentist ideas and proving that, under replication,
objective Bayesian methods also perform very well.

3. ASYMPTOTIC EXPANSIONS AND SHRINKAGE

Theorem 1 is a very useful result. . . when it is appli-
cable. This essentially requires conditions for the pos-
terior to be asymptotically normal, and we all know
many important examples where this is not the case.
It is conceivable that alternative asymptotic expansion
may similarly be obtained in those “nonregular” cases,
and I would like Professor Ghosh to comment on this.

The shrinkage argument introduced by J. K. Ghosh
was a welcome addition to the mathematical statisti-
cian toolkit. It often provides an elegant, efficient pro-
cedure to obtain conditional expectations. This is an-
other example of the power of techniques based on
working on sequences of priors based on compact sets,
a procedure pioneered in the construction of reference
priors, and developed in detail in Berger, Bernardo and
Sun (2009), where these types of sequences are used
to derive reference priors in completely general situa-
tions, with no assumptions of asymptotic normality.

4. DIVERGENCE PRIORS

Professor Ghosh recalls that in the original paper
on reference priors (Bernardo, 1979), these are ob-
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tained by (heuristically) maximizing the expected KL
divergence (better known as Shannon expected infor-
mation), as the number of replications goes to infin-
ity, and quotes a later result—actually published in
Berger, Bernardo and Mendoza (1989), not in Berger
and Bernardo (1989), where it is proven that maxi-
mization for a finite n may lead to a discrete prior. It
may be worth it to point out that in reference analy-
sis one does not let the sample size n go to infinity,
but consider k replications of the original experiment
and let k go to infinity, which may be very different.
Indeed, as a direct consequence of this, the reference
prior may depend on the design (two sample problems
provide many examples of this situation; see Bernardo
and Pérez (2007) on the comparison of normal means
for a relatively recent example). How is this imple-
mented using the expansion techniques?

Moreover, although the mathematical consequences
are very nice, the original reason to consider an infi-
nite amount of replications was not mathematical con-
venience, but first principles: one wants to find the
prior that maximizes the missing information about the
quantity of interest, and the complete missing informa-
tion would only be attained by an infinite number of
replications.

The fact that (with only one parameter and under
regularity conditions which guarantee asymptotic nor-
mality) the missing information is maximized by Jef-
freys’ prior for all the information measures derived
from a family of divergences which encompass both
KL and Hellinger is reassuring, in that the result seems
to be pretty stable with respect to changes in the def-
inition of information. That said, we would argue that
there are many independent arguments (additivity, for
one) suggesting that Shannon is the appropriate mea-
sure of information in mathematical statistics. It fol-
lows that I am very suspicious of the properties of the
priors derived by maximizing the expected chi-squared
distance. In particular, in the binomial case, I fail to
see any reason to prefer a Beta(1/4,1/4) prior over
Jeffreys’ Beta(1/2,1/2) well justified from many (re-
ally many!) points of view. May the author provide any
such reason?

The concept of general divergence priors concep-
tually includes that of reference priors in that it uses
a family of expected divergences which includes Shan-
non as a particular, limiting case. The specifics of the
paper, however, exclusively refer to the relatively sim-
ple situation where asymptotic normality may be guar-
anteed. I would like to see some examples of “nonreg-
ular” problems solved before concluding that the tech-
niques described in this paper may be used in general.

Nonregular problems were already solved in the orig-
inal (Bernardo, 1979) formulation of reference priors,
and have been rigorously analyzed in Berger, Bernardo
and Sun (2009).

5. PROBABILITY MATCHING

As mentioned above, it is certainly interesting to an-
alyze the frequentist properties of objective Bayesian
results, but one does not necessarily want to repro-
duce frequentist behavior. For instance, in the ratio of
normal means problem mentioned by Professor Ghosh
in the Introduction, one certainly does not want to
“match” the unacceptable coverage properties of the
conventional frequentist solutions.

More importantly, I see invariance under reparame-
terization as a necessary prerequisite for any general
procedure to derive objective priors, for the resulting
(presumably objective) inferences cannot possibly de-
pend on the arbitrary (and hence irrelevant) parameteri-
zation chosen to formalize the problem. It follows that,
although it is certainly useful and important to study
the eventual matching properties of priors, I believe
that requiring matching is not a sensible procedure to
choose an objective prior.

6. NEW OBJECTIVE PRIORS

Professor Ghosh states “I believe very strongly that
many new priors will be found in the future by ei-
ther a direct application or slight modification of these
tools,” and I agree that this is indeed quite plausible.
However, a new objective prior is not something nec-
essarily a good prior. One needs objective priors which
satisfy a number of desiderata: general applicabil-
ity, appropriate marginalization properties, invariance,
strong consistency, and so on [see Bernardo (2005),
for a general discussion]. And new priors which do not
satisfy those desiderata should probably not even be
considered. Some would say that “the proof of the pud-
ding is in the eating”; that may be so, but then I would
like Professor Ghosh to quote at least one convincing
example where he would propose to use an objective
prior which is not a reference prior.
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