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Abstract: Variables in large data sets in biology or e-commerce often have
a head, made up of very frequent values and a long tail of ever rarer values.
Models such as the Zipf or Zipf–Mandelbrot provide a good description.
The problem we address here is the visualization of two such long-tailed
variables, as one might see in a bivariate Zipf context. We introduce a cop-
ula plot to display the joint behavior of such variables. The plot uses an
empirical ordering of the data; we prove that this ordering is asymptotically
accurate in a Zipf–Mandelbrot–Poisson model. We often see an association
between entities at the head of one variable with those from the tail of the
other. We present two generative models (saturation and bipartite prefer-
ential attachment) that show such qualitative behavior and we characterize
the power law behavior of the marginal distributions in these models.
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1. Introduction

It is increasingly common to see data sets in which two or more categorical
variables each have a long-tailed distribution, of which the Zipf distribution is
the best known example. In the Netflix data, some movies were much more
popular than others, and some users were much more active than others. In
large social or biological networks, both the in-degree of nodes and the out-
degree of nodes may be long-tailed. For electronic commerce there can be many
more than two such variables. For example, an online bookstore may keep track
of customers’ IP addresses, books’ ISBNs, credit card numbers, query strings
and book review identifiers.

In commercial settings, there is considerable interest in prediction, as ex-
emplified by the Netflix prize (Bennett and Lanning, 2007), which centered on
predicting the ratings that a user would give a movie. The prize was eventually
won by a method that combined hundreds of more basic prediction rules.

Ensemble methods and other black box predictors have performance that
is hard to beat, but they do not easily supply qualitative insights about the
phenomena being modeled. Qualitative insights are useful for understanding the
mechanisms underlying the data, especially when one contemplates changing the
mechanism.
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Our goal in this paper is to develop some methods for exploring multiple
long-tailed variables. With ordinary pairs of variables one can easily form a
scatterplot to explore their joint behavior. For a single long-tailed variable, a
Lorenz curve shows, for example the fraction of wealth held by the poorest α% of
the population, as a function of α. Our plot shows a bivariate display of this type.

Earlier work on assortative and disassortative mixing by degree (Newman,
2003) focused on a correlation coefficient. Social networks were predominantly
positively assortative by degree while diverse kinds of biological network were
negatively assortative. Positive association between highly connected elements
is also called the rich-club ordering (Colizza et al., 2006).

In this paper, we look at graphical displays of the entire joint distribution. We
see several different patterns, that can then be interpreted in terms of the origi-
nal data. A given correlation coefficient could be consistent with many different
data patterns. The patterns we see are often concentrated at the extreme ranges,
head or tail, of the data. We also see some clusters at unexpected locations in
the middle of the data ranges.

A famous example of ratings data comes from the Netflix prize (Bennett and
Lanning, 2007) with just over 100 million movie ratings made by 480,189 cus-
tomers on 17,770 movies. Inspecting the Netflix data it becomes clear that the
busy raters tend to rate the less popular movies and that the popular movies
tend to attract the less active raters. A similar phenomenon happens in other
data sets. But the strength and nature of these affinities differ from data set to
data set. Furthermore the affinities don’t have to be symmetric: popular movies
are less strongly associated with rare raters than busy raters are with unpopular
movies.

An outline of the paper is as follows. Section 2 presents a gray scale copula
display to show the joint distribution of two long-tailed quantities. The displays
show the shape, size and sometimes surprising location of the affinities. Section 3
shows examples of the copula display on some large data sets typical of e-
commerce applications.

In making the copula displays we have implicitly assumed that sorting entities
by their observed size in the data set puts them into the correct order that we
would see in an infinite sample. Section 4 gives results showing that most of the
data are placed near where they should be, for large sample sizes.

The ratings data we looked at typically showed head-to-tail affinities. Head-
to-tail affinities for raters and rated items can be explained in terms of experi-
enced raters having more varied and sophisticated tastes than beginners. Sec-
tion 5 proposes two mechanical baseline models that provide alternative expla-
nations. One is a saturation model in which raters and items are independently
sampled but subject to a limit such that no pair is counted more than once.
For the bipartite case, saturation creates a head-to-tail affinity but we find that
it generates unusual marginal distributions. A second model invokes bipartite
preferential attachment. This model provides reasonable marginal distributions
and we find head-to-tail affinities. Our conclusions are in Section 6 along with a
discussion of additional similar plots that one could make. Theorem proofs are
in an Appendix.
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2. The data display

2.1. Construction

We suppose that our data are given as a matrixXij for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Most of the data sets we’re interested in have Xij ≥ 0. As examples, Xij could
represent whether user i rated item j, the number of edges from node i to node
j, the dollar value of transactions from purchaser i to vendor j, and so on.

Given the data matrix, we form the marginal sums Xi• =
∑m

j=1 Xij and

X
•j =

∑n
i=1 Xij . We assume that the row entities have been sorted so that

X1• ≥ X2• ≥ · · · ≥ Xn•
and similarly X

•j ≥ X
•j+1. It is convenient to refer to

large and small entities, where the size of an entity is simply its marginal sum.
Our display is a gray level plot in the unit square [0, 1]2. The row entities are

on the horizontal axis arranged from smallest at 0 to largest at 1. The amount of
horizontal space given to row entity i is proportional to Xi•. The column entities
are similarly arranged on the vertical axis, again with smallest at 0, largest at
1 and with length proportional to X

•j . If one then selects a data point Xij

uniformly from those in the sample, it corresponds to a point in [0, 1]2 with
uniformly distributed horizontal and vertical coordinates.

For our plot we split the unit square into rectangles and shade them in gray.
The gray level of a rectangle is proportional to the sum of the observedXij values
in it, divided by the area of that rectangle. We call this a copula plot because
the gray level is proportional to a bivariate density with uniform margins.

With this convention, a dark upper right corner means that the large row
entities are more strongly associated with the large column entities than they
would be under independence, while a light upper right corner means that the
heads of the two distributions avoid each other. Similar interpretations apply to
the other three corners.

Table 1 shows a small example. It has seven nonzero numbers totalling 10. The
data include four different row entities I, II, III and IV. There are three different
column entities A, B and C. The first row indicates that the combination A-IV
was observed one time.

Table 1

This table shows a small example with 7 nonzero counts summing to 10. One variable takes

values A, B, C, · · · while the other takes values I, II, III, · · · . The copula plot for this data

is shown in Figure 1

Column variable Row variable Xij

A IV 1
B III 1
B IV 2
C I 1
C II 2
C III 2
C IV 1
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Fig 1. This figure shows the construction of the copula plot for the data from Table 1. The left

panel shows joint and marginal counts. The right panel has gray levels showing joint counts

relative to area and marginal counts relative to length. The latter are uniform by construction.

The row entities, sorted from least to most frequent are I, II, III and IV with
relative frequencies 0.1, 0.2, 0.3 and 0.4. The column entities in increasing order
are A, B and C with relative frequencies 0.1, 0.3 and 0.6.

The raw counts and marginal totals are shown in the left panel of Figure 1.
Each entity is given horizontal or vertical space proportional to its frequency. As
a result the upper right corner, C-IV, has the largest rectangle. That rectangle
has area 0.6×0.4 or 24% of the unit square. But it only has 1 of 10 counts or 10%
of the data. Therefore we plot it with a gray level proportional to 10/24

.
= 0.42.

The combination A-IV was also observed 1 time in 10 but it has smaller area
0.1× 0.4 = .04 and so it is plotted with a gray level proportional to 0.1/0.04 =
2.5. The image was scaled so that the gray scale from 0 to 1 corresponds to a
ratio from 0 to the maximum observed, in this case 2.5.

For large data sets it is not effective to plot one row of rectangles for each
column entity and vice versa. Instead we aggregate the data to reduce the display
to a manageable number of cells. In our large examples, we have aggregated so
that there are 100 cells along each dimension. Sometimes there are many small
entities with the same marginal total, such as 2 total links, that in aggregate
comprise a large proportion of the image. In such cases, our plot does not split
the rectangle corresponding to such a popular level.

2.2. Copulas and discrepancies

By construction, the data being plotted are nonnegative, and have line integrals
equal to 1 if one component of [0, 1]2 is fixed and the other is the variable
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of integration. Therefore the gray level plot depicts a bivariate copula density
(Nelsen, 2006).

The gray level plot allows us to compare the observed copula to a uniform
one. A uniform copula would be uniformly gray. Darker and lighter gray indicate
regions with higher (respectively lower) joint density than they would have under
uniformity. Metrics comparing distributions to uniformity on a hypercube are
called discrepancies. See Niederreiter (1992) for a discussion of discrepancies in
quasi-Monte Carlo sampling. Our data display reveals a local discrepancy, with
near black pixels showing positive discrepancy, and near white ones showing a
negative discrepancy.

The random variables whose copula we plot require a few remarks. They
are ordered categorical variables derived from the original categories by sorting
according to relative abundance. For example, movies are an unordered categor-
ical variable. They can be sorted into an ordered categorical variable based on
the number of ratings that they got. In practice, we sort them on their sample
popularity, which may deviate from their popularity in the process from which
they are sampled.

2.3. Maslov and Sneppen’s display

Our display superficially resembles one used by Maslov and Sneppen (2002) to
show patterns in protein interaction networks. They plot a normalized empirical
probability that two proteins of given degree are connected. For a bipartite graph
joining prey proteins to bait proteins, the probability is the fraction of all edges
that connect a prey protein with degree K0 to a bait protein of degree K1. The
normalization is the same probability, for a network constructed with random
edges where all nodes retain their original degrees.

Whereas their normalization is based on randomly rewiring the edges in the
graph, ours is based on a deterministic respacing of the axes. The Netflix data
set has about 100,000,000 edges and the Yahoo! song ratings data set is even
larger. For such large data sets, it is computationally burdensome to randomly
resample the graph, but quite simple to rescale the coordinate axes.

We find it interesting that Maslov and Sneppen (2002) procedure is not equiv-
alent to ours. To show that they are different, it is enough to use a very tiny
example. Consider data of the form:

A1, B2, C1, C2, C3, C4, C5, C6,

as illustrated by the graph in Figure 2.
Each step in their random graph algorithm selects two edges, say uv and xy.

Then if uy and xv are not edges in the graph, the selected edges are removed
and replaced by uy and xv.

Consider the tiny graph of Figure 2. Our measure takes the value 0 for con-
nections between the letters of lowest degree (A and B) and numbers (1,2,3,4)
of lowest degree, because there are no such connections in the graph. Inspecting
that graph, we see that none of the edges connected to C can be removed. As
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Fig 2. A small bipartite graph illustrating the difference between the Maslov and Sneppen

display and the one discussed herein. Any random rewiring of the graph leaves all degrees

unchanged, so the Maslov and Sneppen display takes a value of one everyone. Our copula

plot would be non-uniform for this case, because there are no connections from {A,B} to

{3, 4, 5, 6}.

a result, the ensemble of random graphs has only two members, the one shown
and the one obtained by rewiring A1 and B2 to A2 and B1. That rewiring
leaves all degrees unchanged and so their ratio takes the value 1 everywhere,
and hence does not show the lack of affinity between {A,B} and {1, 2, 3, 4}.

Their measure displays connectivity relative to that under random rewiring.
Ours is relative to independence of row and column entities. This allows us to
use the copula interpretation, described in Section 2.2.

3. Examples

Here we show some examples of the copula plots. The first set of examples come
from bipartite graphs showing relations between two types of entity. The second
set show directed graphs where the two quantities being displayed are in-degree
and out-degree. The third group of examples are for symmetric matrices.

3.1. Bipartite graphs

Figure 3 shows the discrepancy plot for the Netflix data. The raw data take the
form Xij if user i rated movie j. We are visualizing the rating events themselves,
not the ratings. We comment briefly below on how the ratings themselves look.

The left panel of Figure 3 shows that the Netflix data has a strong head-to-tail
affinity. Users who rate few movies are over-represented at movies that received
many ratings. Conversely, movies that are rarely rated get the majority of their
ratings from users who rate many movies. This finding suggests a taste-based
explanation: novices primarily rate blockbusters, while the cognescenti have also
searched out some rare gems.

The head-to-tail spikes so dominate the plot that we cannot easily see other
smaller structures. In the right panel of Figure 3, the data are replotted with
a different gray scale. We have used 256 gray levels chosen so that each level
is used (within rounding error) for the same number of pixels. As a result, the
histogram of gray levels from the image is uniform.
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Fig 3. The left panel shows the discrepancy plot for the Netflix data. Dark spots in the upper

left and lower right corners show a head-to-tail affinity for this data. The right panel using

a uniform gray level reveals finer structure: some affinity among small movies and users,

depletion for large movies and users, horizontal stripes and some weaker vertical stripes.

The uniform histogram view of the Netflix data reveals that there is a small
tail-to-tail affinity but no head-to-head affinity at all, in the Netflix data. We see
that the copula contours in the two head-to-tail corners have different shapes,
more rectangular for big movies but rounder for big raters. There are also promi-
nent horizontal stripes corresponding to consecutive blocks of movies that go
against the grain compared to the bulk of the data. Similar vertical stripes are
fainter. This may be because there are more raters than movies. Because these
features are small compared to the head-to-tail affinities, they do not show up
in the left panel. Combining both views shows more about the data than either
on its own.

Figure 3 displays where the ratings come from, but not how high or low those
ratings are. To do that, we could define Xij to be some increasing function of
{1, 2, 3, 4, 5} and redo the plot. We have done this, with some extreme scores.
The first score takes Xij = 1 if the rating was 5, and 0 otherwise. It just
looks at particularly fortuitous movie-customer combinations, the kind that a
recommender would most like to have made. A second score took Xij = 1 if
the rating was 1 and Xij = 0 otherwise. This score looks at the combinations
that a recommender would most regret. Those plots (data not shown) both had
strong affinities between inactive users and frequently rated movies, but much
less affinity between busy users and rarely rated movies.

Figure 4 shows the Yahoo! song ratings data. Here Xij is 1 if user i rated song
j. Once again we see head-to-tail affinity, but it takes a different shape than it did
for the Netflix data. The busy users dominate the bottom 10% or more of songs,
much more than the busy movie raters dominated the least viewed movies.

Further differences between the two data sets show up in comparing the
figures. While the movie data has some tail-to-tail overlap, the song data has
very little. Also, the shape of the contours in the lower right corner (active raters



Visualizing bivariate long-tailed data 649

Fig 4. This figure plots the Yahoo! song ratings data in the same manner that Figure 3 shows

the Netflix data.

Fig 5. This figure plots data representing which actors appeared in which movies, in the

IMDB. The ordinary copula is on the left, the uniformly scaled one is on the right.

on unpopular items) is more rectangular for the songs than for the movies. For
movies there is a progression where ever more rare movies get their ratings from
ever more busy raters. For songs, the contour is much straighter.

We can extract numerical assessments of head-to-tail affinities from this data.
The busiest raters rate the popular movies only about 22.5% as often as they
would under independence. This and other summaries appear in Table 2. From
that data we also see that the corner associations are stronger for movies than
for songs. Also the two head-to-tail affinities are roughly equally strong in the
song data, but, for movies, the affinity between busy users and rare movies is
stronger than the reverse.

Figure 5 shows data from the Internet Movie Database (IMDB). The vari-
able Xij = 1 if and only if actor i was in movie j. Actors who worked rarely
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(e.g. only once) are overrepresented in movies with the largest casts and nearly
absent from movies with smaller casts. On the other hand, the busiest actors
are overrepresented in movies with small casts, but not the very smallest casts.

This display also provides an example where a single level accounts for a large
proportion of the data: actors appearing in only one movie account for about
16% of the data. This explains the wide column of cells on the left hand margin
of the display which has not been split due to ties.

3.2. Directed graphs

In a directed graph, each entity has both an in-degree and an out-degree. We
are interested in visualizing the joint distribution of these two quantities.

Copula plots for some publicly available directed graphs appear in Figure 6.
The upper left panel shows trust relations at the consumer review site Epinions.

Fig 6. This figure shows copula plots for four directed graphs: Epinions, Wikipedia, Snapfish

and arXiv hep-th, as described in the text.
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Here Xij = 1 if user i trusts user j. We see two dark clusters. At the lower right
we see that there are lots of edges from users who trust many people to users
who are trusted only by a few others. We might see that pattern in users with
computer generated trust out-links. If many of the links are of that type, then
it might be wise to discount such potentially spammy links. Near the lower left
we see that there are lots of edges from users who trust only a few people to
users trusted only by a few others. Such links might arise from infrequent users
trusting their friends, though there are other possibilities (they could also be
computer generated).

The upper right panel of Figure 6 shows a snapshot of the Wikipedia graph as
of February 2007. Here Xij = 1 if the page for topic i links to the one for topic
j. Each topic included had at least one in-link and at least one out-link. We
might expect to see hubs and authorities (Kleinberg, 1999) in this graph. There
is a cluster of topics with large out-degree and small in-degree. It included many
lists, as we might expect for hubs. One striking mode represents pages with a
medium-small number of out-links and a high, but not maximal, number of in-
links. Upon inspection, this hotspot included many topics that are either years
or locations—in particular, countries. This is roughly what we might expect for
authorities but they did not quite land in the upper left hand corner where
one might have expected. Some pages have both small in-degree and small out-
degree. Many of those are stubs. It is exceedingly rare for a topic to have both
low out-degree and high in-degree.

The lower left panel of Figure 6 shows some data from Hewlett-Packard’s
Snapfish photo sharing service. This is a directed graph where Xij = 1 if user
i shares a photo album with user j. Curiously, there is a fairly strong, though
asymmetric, head-to-head affinity where very active sharers tend to share with
the most active sharees. A large proportion of people that share photos do so
only once, and, as indicated by the somewhat darker lower left corner of the
plot, they tend to share with those that also accept very few sharing requests.
The normalized view of this data in Figure 7 brings out some of these features.

Fig 7. This figure shows normalized copula plots for the Snapfish and arXiv hep-th directed

graphs of Figure 6.
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The lower right panel of Figure 6 shows a snapshot of the arXiv hep-th paper
citation network. The normalized version of this plot is in Figure 7. HereXij = 1
if paper i cites paper j. We see affinities among papers with few citations. Only
citations within hep-th are counted so the affinity at the low end is not just
among papers with few total citations or references.

3.3. Symmetric matrices

Undirected graphs have symmetric incidence matrices, so Xij = Xji. In graphs
based on social network links we have seen positive associations: members with
the most out-links get the most in-links and conversely. This is the opposite
of the head-to-tail affinities we saw in ratings data. Such a pattern is not pre-
ordained by the symmetry. It is possible for graphs to contain a strong hub and
spoke pattern, as for example protein networks do.

Figure 8 shows two publicly available data sets. For the Enron email data,
Xij is 1 if one or more emails were exchanged between addresses i and j. This
version of the data is symmetric by construction. There are some head-to-tail
affinities that we would expect if some email is broadcast to all or most accounts.
There are also some affinities among smaller participants of equal size, giving
dark squares along the main diagonal.

The second data set depicted in Figure 8 is based on a network of roads in
California, where Xij = 1 if intersection i connects to intersection j. That is,
vertices correspond to intersections and edges to road segments. The structure
of this network is quite different from those involving people as entities. There is
a very strong head-to-head affinity, as major intersections connect to each other.
Road segments with few connections tend to connect to other such roads, with
one important exception. Intersections composed of only one connection do not
connect to each other. The graph is nearly planar (as would be expected) and
the maximum degree is only 12.

Fig 8. The left panel shows the data display for the Enron data set and the right panel

corresponds to the California road-network data.
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Table 2

Numerical summary of corner affinities from Figures 3 to 8. Independence corresponds to a

value of 1. For example, infrequent movie raters rate popular movies 2.776 times as often as

they would under independence

Data (lo,lo) (lo,hi) (hi,lo) (hi,hi)

Netflix (users, movies) 0.981 2.776 3.192 0.225
Yahoo! (users, songs) 0.551 2.127 2.163 0.202
IMDB (actors, movies) 0.871 2.000 0.787 0.528
Epinions (truster, trusted) 1.084 0.608 1.864 0.358
Wikipedia (out, in)-degree 2.213 0.100 1.722 0.251
Snapfish (sharer, sharee) 1.187 0.575 0.881 1.979
arXiv hep-th (citer, cited) 3.928 0.377 0.631 0.733
Enron email addr. (sym) 3.225 3.972 3.972 0.202
CA intersections (sym) 0.240 0.717 0.717 1.507

3.4. Numerical summaries

To compare the plots we make a numerical summary. For any rectangle, we can
sum the values of Xij in it and divide the sum by X

••
times the area of the

rectangle. This ratio gives us a lift statistic with a value of 1 corresponding to
neutral affinity. To study corner affinities we have found it useful to measure the
lift over small squares in the corners. Table 2 displays the affinities for squares
of size 0.05×0.05 in each of 4 corners of the 11 copulas shown in Figures 3
through 8.

4. Proper ordering

The gray scale images we present depict bivariate copula densities. In form-
ing the copula, we have replaced a categorical variable on many levels, such
as a movie customer by one single number, that customer’s rank. It is an enor-
mous convenience to replace categorical variables such as customer, query string,
credit card number, IP address and so on by a single nonnegative integer. But
it is possible that some of those variable levels will be given the wrong rank,
because the amount of data for each entity is random.

Dyer and Owen (2010) study the extent to which the biggest entities are
placed in the correct order in a random sample. They suppose that entity i
appears Xi times where Xi ∼ Poi(Nθi) and θi are decreasing values. Entities i
and i + 1 are in the correct order if Xi > Xi+1. From their Lemma 2, we find
that

P(X1 > X2 > · · · > Xn) ≥ 1−
n−1
∑

i=1

exp(−N(
√

θi −
√

θi+1)
2).

They show that for the Zipf-Poisson ensemble in which θi = i−α for α > 1
the top (BN/ log(N))1/(2+α) are correctly ordered with probability tending to
1 as N → ∞, when B < α2(α + 2)/4. Because α > 1, we can take B =
3/4 and so we anticipate getting the top (3N/(4 log(N)))1/(2+α) entities in the
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proper order. Asymptotically those entities will account for all but a fraction
o(N−(α−1)/(α+2)+ǫ) of the total data

∑

iXi, for any ǫ > 0.
While the top entities are properly ordered, our eye is also drawn to the

corners defined by small entities. Small entities are not properly ordered because
for them, the sampling fluctuations are relatively large. In the Zipf–Poisson
ensemble, the top CN1/(2+α) entities for C > 0 will include some ordering
errors as N → ∞.

Here we extend the analysis from Dyer and Owen (2010) to show that most
of the entities of any size are nearly correctly placed.

Suppose that movie i appears Xi times and customer j appears Yj times.
That one rating contributes to the darkness of the pixel at a point given by
the relative size of movie i among the movie data and customer j among the
customer data. If both the customer and the movie are located near where they
should be, then the data from that rating is near its proper location. If the bulk
of the movies and customers, weighted by their data size, are properly located
then the copula plot is descriptive of the process generating the data, not just
the one data set at hand.

We will suppose that, marginally, one of the entity types (e.g. the movies)
comes from a Zipf–Mandelbrot ensemble defined as follows. The number of times
entity i is observed is Xi ∼ Poi(Nθi), independently, where θi = (i + k)−α for
i ≥ 1, k > −1 and α > 1. The Zipf–Mandelbrot form is more flexible than the
plain Zipf law (k = 0) and it provides a qualitatively better description of the
data we study.

We want to show that very little of the data will appear at any great distance
from where it should. For τ > σ ≥ 0, let

J(τ, σ) =
1

N

∞
∑

i=1

Xi1Xi≥Nτ1E(Xi)<Nσ.

The quantity J represents a normalized total of all data from entities with mean
below Nσ that have sample values at or above Nτ . These entities have jumped
ahead of their true location.

Let T =
∑∞

i=1 Xi be the total sample size. Then E(T ) = N
∑∞

i=1 θi (and
V(T ) = E(T )) and so the proportion of data jumping from below σ to over τ is
nearly J(τ, σ)/C, for large N , where C =

∑∞

i=1 θi. The Zipf–Mandelbrot model
has C < ∞.

Similarly, we define

S(τ, σ) =
1

N

∞
∑

i=1

Xi1Xi≤Nσ1E(Xi)>Nτ .

The quantity S represents a normalized amount of data from entities that have
slipped from a true location above Nτ to a position at or below Nσ.

Our graphic is based on a fixed partition, such as 100 bins, into which the
Xi are placed. Suppose that the bin boundaries are βk for k = 1, . . . , 99. If all
of J(βk, βk − ǫk) and S(βk + ǫk, βk) are small, for small ǫk > 0, then the data
within each bin are representative of the entities that belong in that bin.
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Theorem 1. Let Xi be from the Zipf–Mandelbrot–Poisson ensemble with pa-

rameters k > −1 and α > 1. Let 0 < σ < τ ≤ θ1 be given. Then

E(J(τ, σ)) ≤ 1

N

1

ατ1/α
τ

τ − σ
+ o(N−1). (1)

as N → ∞.

Proof. We prove this in the Appendix.

Theorem 1 shows that very little of the total data counts can have jumped
from below expectationNσ to Nτ or above. From Markov’s inequality, the jump
fraction satisfies

P(J(τ, σ) > ǫ) = O
( 1

N

)

as N → ∞ for any ǫ > 0, and τ > σ > 0.
The formula for E(J) diverges as τ − σ → 0. We defined J with σ strictly

smaller than τ , disallowing J(τ, τ). The value J(τ, τ) describes entities that have
jumped from below Nτ to Nτ or higher. In the models we consider, there is an
indexm such that θm ≥ τ > θm+1. Then J(τ, τ) = J(τ, σ) for any σ ∈ (θm+1, τ).
Therefore, we can always avoid the case with σ = τ .

Theorem 2. Let Xi be from the Zipf–Mandelbrot–Poisson ensemble with pa-

rameters k > −1 and α > 1. Let 0 < σ < τ ≤ θ1 be given. Then

E(S(τ, σ)) ≤ 1

N

1

ασ1/α

τ

τ − σ
+ o(N−1). (2)

as N → ∞.

Proof. We prove this in the Appendix.

4.1. Data from the deep tail

In the Zipf–Mandelbrot–Poisson model there are an infinite number of entities.
The very small entities comprise the deep tail of the ensemble. We can use
Theorem 1 to get an estimate of the total amount of data that could jump from
the deep tail into the near tail. We define the near tail by excluding the largest
entities which comprise a proportion 1 − ǫ of the expected data. The deep tail
is similarly defined through η where 0 < η < ǫ ≪ 1.

The bound in Theorem 1 does not depend on the parameter k of the Zipf–
Mandelbrot distribution, and so we illustrate it with k = 0, corresponding to the
Zipf distribution. To simplify the formulas, we approximate the Zipf distribution
with probability mass function proportional to i−α by the Pareto density αx−α

on 1 < x < ∞. The u’th quantile of the Pareto distribution is xu = (1− u)−1/α

and the Pareto density there is αx−α
u = α(1 − u)1+1/α. Therefore the relevant

thresholds are

τ = αǫ1+1/α and σ = αη1+1/α.
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The expected fraction of mass jumping from below σ to over τ is asymptotic to

τ1−1/α

α(τ − σ)
N−1 =

1

α1+1/αN

ǫ−1/α

1− (η/ǫ)1+1/α
.

For illustration, taking ǫ = 0.01 and η = 0.005 and α = 2 we get

1

N

10

25/2 − 1

.
=

2.14

N

so very little of the data for sample entities making up the top 99% will have
come from population entities not among the top 99.5%.

It is not necessary to scale the thresholds proportionally to N . We can take
Nτ = 1 and Nσ = η < 1 and find by equation (7) (a non-asymptotic expression
used in the proof of Theorem 1 in the Appendix) that

E(J(τ, σ)) ≤ N1/α−1Γ(1− 1/α)

(1− η)α
≤ N1/α−1α− 1

1− η
.

Thus variables Xi with E(Xi) < η < 1 contribute a vanishing fraction of the
total data, though there are infinitely many of them.

5. Affinity models

In this section we present some simple generative models for networks in which
head-to-tail affinities arise. The first model is a saturation model in which a
head-to-tail affinity appears as a simple consequence of no rater being allowed
to rate any item more than once. The second model is a bipartite preferential
attachment model in which each entity type exhibits a size based preference for
the other entity type. Every entity starts out with a single edge and a preference
for the pre-existing large entities of the opposite type.

These models show that head-to-tail affinities can arise from very simple
processes. The models have one or two parameters each. Thus they provide only
crude approximations to the empirical copulas we have seen which may require
several degrees of freedom in each of four corners to describe well. Figure 9
shows example copulas from each of these models.

5.1. A saturation model

In ratings data we often see strong head-to-tail affinities between raters and
items. This may be explained through the idea that sophisticated raters have
branched out to the less well known items, while the neophytes mostly stay with
the items of massive popularity.

Before adopting such a taste-based explanation we should at least consider
a much simpler one. A rater is very unlikely to rate the same item twice. Even
if this happens, the system may well retain only the last rating that was made.
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(a) Saturation model (b) Bipartite pref. attachment

Fig 9. Copula estimates for some simulated datasets. The left panel shows a saturation model

with parameters a = 1.5 and b = 2.5. The right panel shows bipartite preferential attachment

with p = 4/9.

There are just not enough popular items for a busy rater to rate. These satura-
tion effects alone would induce negative dependence. A large saturation effect
has already been noted by Maslov et al. (2004) for symmetric networks, such as
the Internet, where there are greatly diminished connections among the most
connected nodes.

We introduce a model that has independence apart from the limitation of
one rating per rater-item pair. We let

Yij ∼ Poi(Nci−aj−b), and,

Xij =

{

1 Yij ≥ 1

0 else,

(3)

where c = cacb = 1/(ζ(a)ζ(b)) and ζ(x) denotes the Riemann-zeta function.
The random variables Yij comprise a bivariate Zipf–Poisson ensemble. The Yij

are latent and we only observe the truncated values Xij . In the latent model,
row and column entities are generated independently. The truncation that turns
Yij into Xij is more likely to deplete the head-to-head combinations than any
others and this produces head-to-tail affinity.

Figure 9(a) shows an example simulated with a = 1.5, b = 2.5 and N = 107.
We do indeed see an asymmetric negative dependence in the corners, though the
affinity extends farther towards the center of the square than we have seen in
real data. Figure 10(a) shows the marginal Zipf plot of the columns (the plot for
the rows is similar). Instead of sorting the entities by observed counts, we have
kept the original ordering. We see that these expected counts have curvature.
Also the slope near the origin is not a, but has instead been altered by the
sampling process. The bounds shown are those of the following theorem.
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(a) Marginal plot of saturation model with
a = 1.5, b = 2.5, N = 107.

(b) Degree distribution of M of bipartite
pref. attachment (p = 4/9, t = 106).

Fig 10. Expected distribution and bounds for two reference models. Gray dots indicate sample

degrees, the solid line is the expected distribution and the dashed lines are upper and lower

bounds on the expected distribution.

Theorem 3. Let Xij be sampled as the saturated bivariate Zipf–Poisson en-

semble (3). Let Xi• and X
•j be the marginal sums. Then

(1 +Nci−a)1/b − 1 ≤ E(Xi•) ≤ min
{

Γ(1− 1/b)(Nc)1/bi−a/b, Ncai
−a

}

,

and, as i → ∞,

E(Xi•) ∼ Ncai
−a.

By symmetry, analogous results hold for X
•j where we swap the roles of i and

j, and a and b, respectively.

Proof. We prove this in the Appendix.

From Theorem 3, the marginal distribution of the row entity behaves as a
power law that starts at slope a/b for the largest entities and transitions to slope
a for the small ones. Conversely the column entities have slope starting at b/a
and transitioning to b. As a consequence, the large entities of one type follow a
power law with rate ≤ 1 while large entities of the other type have a rate ≥ 1.
We have not seen that pattern in any of the data sets we’ve investigated. As a
result we believe that the head-to-tail affinity often seen in ratings data is not
simply due to saturation. Models invoking taste therefore seem more plausible.

5.2. Bipartite preferential attachment

A second model for these data is a bipartite preferential attachment model. The
model constructs a bipartite graph via a simple extension of the Barabási and
Albert (1999) model.
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There are several generative models for bipartite graphs. Bipartite graphs in
which each node type have the same degree distribution can have edges randomly
assigned as in Newman et al. (2002). Graphs in which one kind of node has a
prescribed degree distribution and the other kind is sampled by preferential
attachment have also been considered Guillaume and Latapy (2006).

We investigate a preferential attachment model that generates the degree
distributions along with the edge connectivity. Bipartite preferential attachment
describes a random graph with two parameters, an integer valued time t ≥ 1 and
a probability p ∈ (0, 1). There are two node sets,M andN , corresponding to row
and column entities respectively. At time t the graph has nodes i = 1, . . . ,m(t)
from M and nodes j = 1, . . . , n(t) from N . We will assume that the entity
sets are distinct. The graph is represented by an ∞×∞ matrix with elements
Xij = Xij(t) ∈ {0, 1}, of which only t elements are nonzero.

The process starts at t = 1 withm(1) = n(1) = 1 and a single edge connecting
node 1 of M with node 1 of N . That is X11 = 1 and Xij = 0 if i > 1 or j > 1.
At each time t ≥ 2, we sample Ut ∼ U(0, 1). If Ut ≤ p, then we add a new node
i = m(t) = m(t − 1) + 1 to M and connect it at random to one of the nodes
j ∈ {1, . . . , n(t − 1)} in N , thereby setting Xij = 1. If Ut > p, then we add a
new node to N and connect it at random to one of the nodes 1, . . . ,m(t − 1)
of M. The random connections are always made by preferential attachment. A
new node of one type is connected to a particular old node of the other type
with probability equal to the degree of that old node at time t − 1, divided by
the total number t− 1 of edges.

In Barabási and Albert (1999) it is argued that the degree distribution of the
vertices in (unipartite) preferential attachment graphs decays as a power law
with exponent 3. That is, if pk is the proportion of vertices of degree k, then pk =
Θ(k−3) as the number of vertices goes to infinity. This was further formalized in
Bollobás et al. (2001). Degree distributions in bipartite preferential attachment
are fundamentally different from those in the unipartite case.

Theorem 4. Let Xij(t) be sampled from the bivariate preferential attachment

model with p ∈ (0, 1) and q = 1− p. Let Xi•(t) and X
•j(t) be the marginal sums

and let M(k, t) =
∑

i 1Xi•(t)=k and N(k, t) =
∑

j 1X•j(t)=k be the number of

vertices of degree k in M and N , respectively at time t. Then

M(k, t)

t
→ p(k − 1)!

q
∏k

i=1(i+ 1/q)
∼ p

q
Γ(1 + 1/q)k−1−1/q

N(k, t)

t
→ q(k − 1)!

p
∏k

i=1(i + 1/p)
∼ q

p
Γ(1 + 1/p)k−1−1/p

where the arrows denote both convergence of the mean and convergence in prob-

ability as t → ∞, and the asymptotic equivalence holds as k → ∞.

Proof. We prove this in the Appendix.

Theorem 4 shows that both marginal distributions follow power laws. Unlike
the Barabási–Albert model, the degree distributions for the bipartite model do
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not always have a scaling coefficient of 3. One margin has a coefficient in the
range (2, 3] and the other coefficient is in the range [3,∞). In real-life networks,
it has been often observed that scaling coefficients tend to fall between 2 and 4.
Some extensions to the basic Barabási–Albert model do generate scaling laws
with coefficients in (2,∞) (Durrett, 2006, Chapter 4).

Like the saturation model, the bipartite model generates head-to-tail affini-
ties, but they do not concentrate in the corners. This can be seen in Figure 9(b).
In the appendix, we provide bounds in addition to the asymptotic statements
in Theorem 4. Figure 10(b) shows the degree distribution of M for a simulation
of one million (total) vertices with p = 4/9.

6. Discussion

We have investigated head-to-tail affinities for bivariate heavy tailed data arising
from bipartite networks and directed networks. A graphical display reveals the
locations and strengths of these affinities, along with other affinities that are
initially surprising. Our display depends on ordering the entities by sample
values of their magnitudes. Results on the bulk ordering of values show that for
large sample sizes as we see in Internet applications, the graphs are indicative
of properties of the underlying entities, not just the data at hand.

The copulas we have seen in real data rarely resemble classical parametric
copula densities. As a result we advocate plotting the actual copula estimates
instead of fitting parametric models. The Wikipedia plot in particular is distinct
from all of the usual parametric copula densities.

Graphical displays cannot compete with sophisticated machine learning algo-
rithms when the goal is to predict something like the rating a user will give an
item. In those settings the best performing algorithms may be uninterpretable
combinations of hundreds of predictions. The strength of graphical displays is
that they can bring qualitative information to the attention of domain experts
who may then interpret them and perhaps change the system somehow. We
have found that people quickly start thinking about what the dense spots and
voids in our copula density plots might mean in terms of the underlying entities.

No single display can capture all of the structure in enormous data sets of
this kind. The graphs we present do not show explicit community structure,
as, for example, those of Newman and Girvan (2004) and Palla et al. (2005) do.
By grouping row and column entities by size we merge members from different
communities revealing patterns that hold across communities and not necessar-
ily within communities.

The images we present can easily be generalized. The row entities can be
sorted by one variable, the column entities by another, and a third quantity can
be used to define the gray level. We have used the same quantity in all three
roles to simplify exposition and interpretation.
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7. Appendix: Proofs

Section 7.1 proves our two results on entities that either jump ahead or slip
behind their proper place in the data ensemble. Section 7.2 proves Theorem 3
on the saturation model. Finally, Section 7.3 proves Theorem 4 on properties of
our bipartite preferential attachment model.

7.1. Accuracy of the bulk ordering

We begin with a lemma that generalizes a bound of Shorack and Wellner (1986,
page 485) on the Poisson tail probability, to certain tail factorial moments. For
integers p ≥ 1, define X(p) = X(X−1) · · · (X−p+1). The p’th factorial moment
of X is E(X(p)).

Lemma 1. Let X ∼ Poi(λ) and let p ≥ 1 be an integer. Then for integers t > λ,

E(X(p)1X≥t) ≤
max(t, p)p

1− λ/t
P(X = t). (4)

Proof. For t ≥ p,

E(X(p)1X≥t) =
e−λλt

t!

∞
∑

j=t

λj−t t!

(j − p)!
=

e−λλt

t!

∞
∑

ℓ=0

λℓ t!

(t+ ℓ− p)!
.

Now t!/(t+ ℓ− p)! ≤ tp−ℓ holds for integer ℓ ≥ 0, trivially for ℓ = p and by
simple direct arguments in cases ℓ > p and ℓ < p. Therefore

E(X(p)1X≥t) ≤ P(X = t)

∞
∑

ℓ=0

λℓtp−ℓ = P(X = t)
tp

1− λ/t
.

If t < p, then E(X(p)1X≥t) = E(X(p)1X≥p) and the result follows as before.

Shorack and Wellner (1986) give the bound P(X ≥ t) ≤ (1−λ/t)−1
P(X = t)

which can be interpreted as the p = 0 version of Lemma 1. The case with
p = 2 is useful for bounding the variance of J(τ, σ) defined below. We omit that
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computation for reasons of space. The case of most interest to us has p = 1.
Then t > λ ≥ 0 implies t ≥ p and so equation (4) becomes

E(X1X≥t) ≤
t

t− λ

e−λλt

(t− 1)!
=

t

t− λ

e−λλt

Γ(t)
. (5)

We will also use Gautschi’s inequality (Gautschi, 1959) on the Gamma func-
tion,

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x + 1)1−s (6)

which holds for x > 0 and 0 < s < 1.
Now we are ready to examine the amount of data jumping over thresholds.

Let τ > 0 be a threshold. Let σ < τ be a second threshold. Then

J(τ, σ) =
1

N

∞
∑

i=1

Xi1Xi≥Nτ1E(Xi)<Nσ

is a normalized version of the total count from entities with mean below Nσ
that have ‘jumped’ up to the threshold Nτ > 0.

The indices of the jumping observations are i ≥ n(σ) where n(σ) = min{m ≥
1 | θm < σ}. We may assume that n(σ) ≥ 2 because X1 has no other entity to
jump ahead of. Now

E(J(τ, σ)) =
1

N

∞
∑

i=n(σ)

E(Xi1Xi≥Nτ ) ≤
τ

N(τ − σ)

∞
∑

i=n(σ)

e−Nθi(Nθi)
Nτ

Γ(Nτ)
,

by equation (5).

Proof of Theorem 1, bounding E(J(τ, σ)).

For the Zipf–Mandelbrot–Poisson ensemble,

E(J(τ, σ)) ≤ τ

N(τ − σ)

∑

i>n(σ)

e−N(i+k)−α

(N(i+ k)−α)Nτ

Γ(Nτ)

≤ τI

N(τ − σ)Γ(Nτ)

where

I =

∫ ∞

n(σ)−1

e−N(x+k)−α

(N(x+ k)−α)Nτ dx

≤
∫ ∞

0

e−yyNτ−1/α−1N1/αα−1 dy

=
N1/α

α
Γ(Nτ − 1/α),

after making the substitution y = N(x+ k)−α.
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Applying the bound for I we get

E(J(τ, σ)) ≤ τN1/α

N(τ − σ)α

Γ(Nτ − 1/α)

Γ(Nτ)
. (7)

Gautschi’s inequality (6) gives Γ(Nτ − 1/α)/Γ(Nτ) < (Nτ − 1)−1/α, once N >
1/τ , and then

E(J(τ, σ)) ≤
(

N

Nτ − 1

)1/α
τ

N(τ − σ)α
. �

Now we turn to the amount of data from entities that have slipped below
their proper places. Here

S(τ, σ) =
1

N

∞
∑

i=1

Xi1Xi≤Nσ1E(Xi)>Nτ ,

is a normalized version of the total count from entities with mean above Nτ
that have ‘slipped’ below the threshold Nσ, where once again τ > σ ≥ 0. We
will use the following result

P(X ≤ t) ≤ (1− t/λ)−1
P(X = t), X ∼ Poi(λ), t < λ (8)

which is equation (9) of Shorack and Wellner (1986, page 485). It then easily
follows that

E(Xp1X≤t) ≤ tpP(X ≤ t) ≤ (1 − t/λ)−1
P(X = t)tp. (9)

A factorial moment version of (9) also holds.
For t < λ with p = 1 we get

E(X1X≤t) ≤
λ

λ− t

e−λλt

Γ(t)
. (10)

Proof of Theorem 2 bounding E(S(τ, σ))

Let n′(τ) = max{m | θm > τ}. Then

E(S(τ, σ)) ≤ 1

N

n′(τ)
∑

i=1

E(Xi1Xi≤Nσ) ≤
1

N

n′(τ)
∑

i=1

Nθi
Nθi −Nσ

e−Nθi(Nθi)
Nσ

Γ(Nσ)

=
1

NΓ(Nσ)

θn′

θn′ − σ

n′(τ)
∑

i=1

exp(−N(i+ k)−α)(N(i + k)−α)Nσ

≤ I

NΓ(Nσ)

τ

τ − σ
,
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where

I =

∫ ∞

0

exp(−N(x+ k)−α)(N(x + k)−α)Nσ dx ≤ N1/α

α
Γ(Nσ − 1/α),

by the same arguments used in Theorem 1. Therefore

E(S(τ, σ)) ≤ N1/α−1

α

Γ(Nσ − 1/α)

Γ(Nσ)

τ

τ − σ
, (11)

so for Nσ > 1,

E(S(τ, σ)) ≤ 1

Nα

(

N

Nσ − 1

)1/α
τ

τ − σ
. �

7.2. Proof of Theorem 3

We will make use of the following integral.

Lemma 2. Let α > 0, β > 1. Then

∫ ∞

0

1− exp(−αt−β) dt = Γ(1 − 1/β)α1/β.

Proof. Introduce the change of variable u(t) = αt−β . Then, the term 1 − e−u

will appear in the integrand. Write this as
∫ u

0 e−w dw, apply Fubini’s theorem
and simplify.

The upper bound in Theorem 3 is now easy to obtain. Note that E(Xi•) =
∑∞

j=1 1−exp(−Nci−aj−b). By monotonicity,
∑

j E(Xij) ≤
∑

j E(Yij) = Ncai
−a.

For the other part of the bound, 1− exp(−Nci−aj−b) is decreasing in j, so

E(Xi•) ≤
∫ ∞

0

1− exp(−Nci−ay−b) dy,

and an application of Lemma 2 with α = Nci−a and β = b gives the result.

For the lower bound we will use the following elementary inequality, valid for
all real x,

1− e−x ≥ x

1 + x
. (12)

An application of (12) to E(Xi•) yields

E(Xi•) ≥
∞
∑

j=1

Nci−aj−b

1 +Nci−aj−b
.
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Each term on the right-hand side decreases as j increases, and so

E(Xi•) ≥
∫ ∞

1

Nci−ay−b

1 +Nci−ay−b
dy

=

∫ ∞

1

Nci−a

u+Nci−a
b−1u−1+1/b du, (u = yb)

= b−1

∫ ∞

1

u1/b
(

u−1 − (u +Nci−a)−1
)

du

≥ b−1

∫ ∞

1

(

u−1+1/b − (u +Nci−a)−1+1/b
)

du

= (1 +Nci−a)1/b − 1,

as desired.
To get the asymptotic result, note that

1 ≥ E(Xi•)

E(Yi•)
≥

∞
∑

j=1

Nci−aj−b

Ncai−a(1 +Nci−aj−b)
≥ cb

∞
∑

j=1

(jb +Nci−a)−1,

and, for all j ≥ 1, ε ≥ 0, we have (jb+ε)−1 ≥ (1+ε)−1j−b. Hence, the right-hand
side converges to one as i → ∞.

7.3. Proof of Theorem 4

The results will mostly be established via application of two lemmas in Durrett
(2006) along with arguments adapted from Bollobás et al. (2001).

Lemma 3. Let c and b be constants. Define the recurrence relation xn+1 =
cn + (1− b/n)xn. Then if cn → c, xn/n → c/(1 + b).

Proof. See Durrett (2006, Lemma 4.1.1) and Durrett (2006, Lemma 4.1.2).

Lemma 4 (Azuma–Hoeffding inequality). Let Xt be a martingale with uni-

formly bounded increments. Then

P(|Xn −X0| > x) ≤ e−x2/(2c2n),

where c is the bound on the martingale increments.

We begin by observing that at any time t, there are exactly t edges in the
bipartite graph. We will focus on the analysis of M(k, t), keeping in mind that
the results forN(k, t) are entirely analogous, except that we replace the sampling
probability p with 1− p.

First considerM(1, t), i.e., the number of vertices in M at time t with a single
edge. At time t+ 1, we either add a new vertex of unit degree with probability
p, or preferential attachment is performed on M with probability q = 1 − p.
Hence

E(M(1, t+ 1)−M(1, t)) = p− q

t
E(M(1, t)).
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Applying Lemma 3 to E(M(1, t)) with ct = c = p and b = q, we conclude that
E(M(1, t))/t → p/(2− p).

Similarly for each M(k, t), k ≥ 2, we have the recurrence

EM(k, t+ 1) =
(k − 1)q

t
EM(k − 1, t) +

(

1− kq

t

)

EM(k, t),

and a second application of Lemma 3 yields

EM(k, t)

t
→ (k − 1)q

1 + kq
lim
t→∞

EM(k − 1, t)

t
,

where the limit on the right-hand side exists by induction. Solving the recursion,
we get

lim
t→∞

EM(k, t)

t
=

p(k − 1)!

q
∏k

i=1(i+ 1/q)
. (13)

This establishes convergence of the mean. To obtain convergence in probability,
let X(k, s) = E(M(k, t) | Fs) for s ≤ t. Then X(k, s) is a martingale, and by an
elegant result from Bollobás et al. (2001), |X(k, s)−X(k, s− 1)| ≤ 2 for all s.
Noting that X(k, 0) = EM(k, t), an application of Lemma 4 with x =

√
t log t

gives the desired convergence in probability.
It remains to show that

µ(k) ≡ p(k − 1)!

q
∏k

i=1(i+ 1/q)
∼ p

q
Γ(1 + 1/q)k−1−1/q (14)

as k → ∞. We do this by constructing explicit bounds for µ(k) from (14), using
some properties of the Gamma function from Artin (1964). First we introduce

Γn(x) ≡
n!nx

∏n
j=0(x + j)

(15)

for real x > 0 and integer n ≥ 1.

Lemma 5. For x ∈ (0, 1] and integer n ≥ 2,

Γn(x) ≤ Γ(x) ≤ Γn(x)
x + n

n
.

Proof. This result is equivalent to an inequality at the top of page 15 in Artin
(1964). It appears in the middle of his proof of Theorem 2.1, which is also
known as the Bohr–Mollerup Theorem, or sometimes, the Bohr–Mollerup–Artin
Theorem.

Corollary 1. For all x > 0 and all n ≥ 2,

Γn(x) ≥ Γ(x)
( n

n+ x

)x+1

.
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Proof. By Lemma 5, for all x ∈ (0, 1],

Γn(x) ≥ Γ(x)
n

n+ x
≥ Γ(x)

( n

x+ n

)x+1

.

We extend the proof to x > 1 by induction on ⌊x⌋, using

Γn(x+ 1) = xΓn(x)
n

x + 1 + n

≥ Γ(x+ 1)
( n

x+ n

)x+1 n

x+ 1 + n

≥ Γ(x+ 1)
( n

x+ 1 + n

)x+2

.

Lemma 6. For x > 0,

Γ(x) = lim
n→∞

Γn(x).

Proof. This result, due to Gauss, is in Artin (1964, page 15).

Corollary 2. For all x ≥ 1 and every n, Γn(x) ≤ Γ(x).

Proof. For x ≥ 1,

Γn+1(x)

Γn(x)
=

(

1 + 1
n

)x

1 + x
n+1

≥ 1 + x
n

1 + x
n+1

≥ 1.

So, Γn(x) ↑ Γ(x) for all x ≥ 1.

Now we are ready to establish the asymptotic order of µ(k). We begin by
writing

µ(k) =
p

q
Γk−1(1 + 1/q)(k − 1)−1−1/q.

From Corollary 1 we obtain the following lower bound, for k ≥ 3,

µ(k) ≥ p

q
Γ(1 + 1/q)

( k − 1

k + 1/q

)2+1/q

(k − 1)−1−1/q. (16)

Next, we get an upper bound. Since 1/q > 1, we can use Corollary 2, yielding
for k ≥ 3,

µ(k) ≤ p

q
Γ(1 + 1/q)k−1−1/q. (17)

Now we conclude that µ(k) ∼ (p/q)Γ(1 + 1/q)k−1−1/q as k → ∞ because both
bounds (16) and (17) have that limiting behavior.
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