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1. Introduction

Many inferential methods for non-linear models have been developed. For most
excellent accounts, we refer the readers to Bates and Watts [1], Carroll and
Ruppert [3], Seber and Wild [15], Lindsey [13], Huet et al. [11], Carroll et al. [4]
and references therein.
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Often one wishes to fit models that contain both linear and non-linear terms.
Such models arise in many situations. We mention: stiffness and friction in
biological rhythmic movements (Beek et al. [2]); data precision in optimal re-
gression models (Shacham and Brauner [16]); local chlorophyll concentration
from satellite images (Trentin et al. [19]); and models of total and presumed
wildlife sources (Siewicki et al. [17]).

Suppose we are fitting a model involving both linear parameters and one
or two non-linear parameters by least squares. A convenient approach is to
use a linear least squares program to fit the model for a variety of values
of the non-linear parameters and then find confidence intervals for the non-
linear parameters from the graph of the residual sum of squares plotted against
the trial values of the non-linear parameters. In this note, we derive an easy
way of finding confidence intervals for the other parameters, considered one
at a time, or certain functions of them from the graph of the residual sum of
squares.

The purpose here is not to achieve high accuracy. There are of course many
methods for finding highly accurate confidence intervals for non-linear models.
These methods are based on complicated and computationally expensive meth-
ods like bootstrapping and Markov Chain Monte Carlo (see, for example, Hu
and Kalbfleisch [10] and Tian et al. [18]). Besides, the methods are relative new,
and software for their implementation may not be widely available in the public
domain - for example, the authors could not find references for Tian et al. [18]
in the widely used R statistical package.

Here, we derive a simple method for finding confidence intervals that can be
implemented easily in almost any platform, possibly even using a hand calcula-
tor. We show that our method is reasonably accurate. We compare our method
with the delta method (Casella and Berger [5]), another simple and commonly
used method for constructing confidence intervals for non-linear functions. We
establish that ours is far superior.

Suppose our data is represented by the n-dimensional vector

Y = f (Xθ,β) + ε,

where f(·, ·) is a real valued n × 1 function; Xθ is an n × m matrix function
of θ; β is an m-dimensional vector of unknown linear parameters, linear in the
sense that f(Xθ ,β) = f(X′

θβ), where A′ denotes the transpose of a matrix
or vector A; and ε is an n-dimensional vector of uncorrelated random variables
with zero expectation and variance σ2. We do not assume normality. The vector,
θ, consists of s unknown non-linear parameters, non-linear is the sense that Y
is a non-linear function of θ. We wish to find a confidence interval (Λ−,Λ+) for
a function

Λ = g (λθ,β) , (1)

where g(·, ·) is a real valued scalar function; λθ is an m-dimensional function of
θ. Three possible examples of (1) are now given.



Confidence intervals in a regression 605

Example 1.1. A single element of β, say βi, 1 ≤ i ≤ m. Take g(λθ,β) = λ′

θβ

and λθ to be an m× 1 vector of zeros except for a one at the ith position. Then
Λ = βi.

Example 1.2. Predicted value, a+ c(x− θ)+, of the model

yi = a+ c (xi − θ)
+
+ ǫi

for i = 1, 2, . . . , n and for a given x, where ǫi are independent errors. This is a
particular case of the two phase regression model due to Hawkins [8] and Davies
[6], see Section 3 for details. Here, (x)+ = 0 if x ≤ 0, (x)+ = x if x ≥ 0 and
a, c, θ are unknown scalar parameters, som = 2 and s = 1. Take g(λθ,β) = λ′

θβ,
β = (a, c)′, and λθ = (1, (x− θ)+)′. Then Λ = a+ c(x− θ)+.

Example 1.3. Predicted value, a+ bx+ c(x− θ)+, of the model

yi = a+ bxi + c (xi − θ)+ + ǫi

for i = 1, 2, . . . , n and for a given x, where ǫi are independent errors. This is
the two phase regression model due to Hawkins [8] and Davies [6], see Section
3 for details. Here, a, b, c, θ are unknown scalar parameters, so m = 3 and
s = 1. Take g(λθ,β) = λ′

θβ, β = (a, b, c)′, and λθ = (1, x, (x − θ)+)′. Then
Λ = a+ bx+ c(x− θ)+.

Often f(·, ·), g(·, ·), Xθ and λθ are highly non-linear and non-differentiable
(Kaniovskaya [12]; Manski [14], Chapter 9; [9]). In these cases, we might wish
to base our confidence interval directly on the residual sum of squares function
Rθ,β = ‖Y − f(Xθ,β)‖

2, where ‖ · ‖ denotes the l2 norm of a vector. See
Donaldson and Schnabel [7].

Define

S2
m = min

θ,β
Rθ,β.

Let

σ̂2 = S2
m/(n−m− s),

∆ = S2
m + σ̂2F1,n−m−s(α),

where α denotes the confidence level and Fp,q(α) denotes the α probability level
of an Fp,q distribution. Then an approximate confidence set for Λ may be defined
using the least squares analogue of the profile likelihood:

{
λ : min

θ,β,g(λθ ,β)=λ
(Rθ,β) < ∆

}
. (2)

Typically, this set will be an interval (Λ−,Λ+), where Λ− and Λ+ can be found
from (2) if the inequality is replaced by an equality.

In Section 2, we describe the method for finding (Λ−,Λ+) and illustrate it for
Examples 1.1–1.3. In Section 3, some numerical studies are discussed to assess
the performance of the confidence interval.
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2. Main results

Theorem 2.1 derives the confidence set for (1) for general f(Xθ ,β) and g(λθ,β).
Theorem 2.2 illustrates the proof of Theorem 2.1 for the particular case
f(Xθ,β) = Xθβ and g(λθ,β) = λ′

θβ. In this case, define βθ = A−1
θ X ′

θY ,
Rθ = Y′(I−XθA

−1
θ X′

θ)Y and aθ = λ′

θA
−1
θ λθ, where Aθ = X′

θXθ is assumed
to be non-singular for all θ. The general proof of Theorem 2.1 is similar to that
given.

Theorem 2.1. Assume f(·, ·) and g(·, ·) are differentiable. Then the confidence
set for (1) defined by (2) is ∪θIθ, where Iθ is the open interval

Iθ =

{
λ : Y′(Y − f) < ∆+ γf ′

∂g (λθ,β)

∂f

}
,

where f = f(Xθ ,β) and γ are the simultaneous solutions of the equations Y−f =
γ (∂g(λθ,β) / ∂f), and g(λθ,β) = λ.

Theorem 2.2. Let f(Xθ ,β) = Xθβ and g(λθ,β) = λ′

θβ. Then the confidence
set for (1) defined by (2) is ∪θIθ, where Iθ is the open interval

Iθ =
(
λ′

θβθ − {aθ (∆−Rθ)}
1/2

,λ′

θβθ + {aθ (∆−Rθ)}
1/2
)

and the union is taken over all θ with Rθ < ∆.
If λθ and Xθ are continuous functions of θ and {θ : Rθ < ∆} is connected

then the confidence set will be an interval (Λ−,Λ+), where

Λ− = min
θ:Rθ<∆

[
λ′

θβθ − {aθ (∆− Rθ)}
1/2
]
, (3)

Λ+ = max
θ:Rθ<∆

[
λ′

θβθ + {aθ (∆−Rθ)}
1/2
]
. (4)

Proof. We want to find the set

[
λ : min

θ

{
min
β

(Rθ,β : λ′

θβ = λ)

}
< ∆

]
. (5)

Using Lagrange multipliers to evaluate the inner minimum: we need to solve
X′

θ(Y −Xθβ)− γλθ = 0 and λ′

θβ = λ. So,

(
β

γ

)
=

(
Aθ λθ

λ′

θ 0

)
−1(

X′

θY

λ

)

=

(
A−1

θ −A−1
θ λθλ

′

θA
−1
θ /aθ A−1

θ λθ/aθ
λ′

θA
−1
θ /aθ −1/aθ

)(
X′

θY

λ

)
.
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That is,

β = βθ −A−1
θ λθλ

′

θβθ/aθ +A−1
θ λθλ/aθ,

and

γ = (λ′

θβθ − λ) /aθ.

So, the inner minimum of (5) becomes

(Y −Xθβ)
′ (Y −Xθβ) = Y′ (Y −Xθβ)− β′X′

θ (Y −Xθβ)

= Y′Y −Y′Xθβ − γβ′λθ

= Y′Y

−Y′Xθ

(
βθ −A−1

θ λθλ
′

θβθ/aθ +A−1
θ λθλ/aθ

)

−γλ

= Y′Y −Y′Xθβθ + β′

θλθλ
′

θβθ/aθ − β′

θλθλ/aθ

− (λ′

θβθ − λ)λ/aθ

= Y′Y −Y′Xθβθ + (λ′

θβθ − λ)
2
/aθ

= Y′
(
I−XθA

−1
θ X′

θ

)
Y + (λ′

θβθ − λ)
2
/aθ

= Rθ + (λ′

θβθ − λ)
2
/aθ,

so that (5) becomes

[
λ : min

θ

{
Rθ + (λ′

θβθ − λ)
2
/aθ

}
< ∆

]

=
[
λ : Rθ + (λ′

θβθ − λ)
2
/aθ < ∆ for at least some θ

]

= ∪θ

{
λ : Rθ + (λ′

θβθ − λ)
2
/aθ < ∆

}

= ∪θ

[
λ : |λ′

θβθ − λ| < {aθ (∆−Rθ)}
1/2
]
,

where the union is over values of θ with Rθ < ∆. This equals ∪θIθ as required.
If λθ and Xθ are continuous functions of θ and {θ : Rθ < ∆} is connected;
then so is {λ′

θβθ : Rθ < ∆} and hence so is our confidence set. In this case, it
is an interval with end points (3) and (4). This completes the proof.

We now return to the three examples discussed in Section 1. We show how the
results of Theorem 2.2 apply to each of the examples. Throughout, we denote
by Aij the (i, j)th element of A−1.
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Example 2.1. Consider Example 1.1. Then the confidence set for βi is (Λ−,Λ+),
where

Λ− = min
θ:Y′(I−XθA

−1

θ
X′

θ)Y<∆

[
βθ,i −

{
Aii

θ

(
∆−Y′

(
I−XθA

−1
θ X′

θ

)
Y
)}1/2]

,

and

Λ+ = max
θ:Y′(I−XθA

−1

θ
X′

θ)Y<∆

[
βθ,i +

{
Aii

θ

(
∆−Y′

(
I−XθA

−1
θ X′

θ

)
Y
)}1/2]

,

where Aθ = X′

θXθ and βθ = A−1
θ X′

θY. We have assumed that Xθ is a contin-
uous function of θ and that {θ : Y′(I−XθA

−1
θ X′

θ)Y < ∆} is connected.

Example 2.2. Consider Example 1.2. Then the confidence set for a+c(x−θ)+

is (Λ−,Λ+), where

Λ− = min
θ:Rθ<∆

{
A11

θ

n∑

i=1

yi +A12
θ

n∑

i=1

(xi − θ)
+
yi

+(x− θ)+

[
A12

θ

n∑

i=1

yi +A22
θ

n∑

i=1

(xi − θ)
+
yi

]

−
{[
A11

θ + (x− θ)2A22
θ + 2(x− θ)+A12

θ

]
(∆−Rθ)

}1/2
}
,

and

Λ+ = max
θ:Rθ<∆

{
A11

θ

n∑

i=1

yi +A12
θ

n∑

i=1

(xi − θ)+ yi

+(x− θ)+

[
A12

θ

n∑

i=1

yi +A22
θ

n∑

i=1

(xi − θ)
+
yi

]

+
{[
A11

θ + (x− θ)2A22
θ + 2(x− θ)+A12

θ

]
(∆−Rθ)

}1/2
}
,

where

Rθ =

n∑

i=1

y2i −

[
A11

θ

(
n∑

i=1

yi

)2

+A22
θ

(
n∑

i=1

(xi − θ)
+
yi

)2

+2A12
θ

(
n∑

i=1

yi

)(
n∑

i=1

(xi − θ)
+
yi

)]
,

A11
θ =

n∑

i=1

(xi − θ)
2
/D,
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A12
θ = −

n∑

i=1

(xi − θ)
+
/D,

A22
θ = n/D,

where

D = n
n∑

i=1

(xi − θ)2 −

(
n∑

i=1

(xi − θ)+
)2

.

We have assumed that {θ : Rθ < ∆} is connected.

Example 2.3. Consider Example 1.3. Then the confidence set for a+bx+c(x−
θ)+ is (Λ−,Λ+), where

Λ− = min
θ:Rθ<∆

{
−
[
A11

θ + x2A22
θ + (x − θ)2A33

θ + 2xA12
θ

+2(x− θ)+A13
θ + 2x(x− θ)+A23

θ

]1/2(
∆−Rθ

)1/2

+A11
θ

n∑

i=1

yi +A12
θ

n∑

i=1

xiyi +A13
θ

n∑

i=1

(xi − θ)
+
yi

+x

[
A12

θ

n∑

i=1

yi +A22
θ

n∑

i=1

xiyi +A23
θ

n∑

i=1

(xi − θ)
+
yi

]

+(x− θ)+

[
A13

θ

n∑

i=1

yi +A23
θ

n∑

i=1

xiyi +A33
θ

n∑

i=1

(xi − θ)+ yi

]}
,

and

Λ+ = max
θ:Rθ<∆

{[
A11

θ + x2A22
θ + (x− θ)2A33

θ + 2xA12
θ

+2(x− θ)+A13
θ + 2x(x− θ)+A23

θ

]1/2(
∆−Rθ

)1/2

+A11
θ

n∑

i=1

yi +A12
θ

n∑

i=1

xiyi +A13
θ

n∑

i=1

(xi − θ)
+
yi

+x

[
A12

θ

n∑

i=1

yi +A22
θ

n∑

i=1

xiyi +A23
θ

n∑

i=1

(xi − θ)
+
yi

]

+(x− θ)+

[
A13

θ

n∑

i=1

yi +A23
θ

n∑

i=1

xiyi +A33
θ

n∑

i=1

(xi − θ)
+
yi

]}
,
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where

Rθ =

n∑

i=1

y2i −

[
A11

θ

(
n∑

i=1

yi

)2

+A22
θ

(
n∑

i=1

xiyi

)2

+A33
θ

(
n∑

i=1

(xi − θ)+ yi

)2

+2A12
θ

(
n∑

i=1

yi

)(
n∑

i=1

xiyi

)

+2A13
θ

(
n∑

i=1

yi

)(
n∑

i=1

(xi − θ)
+
yi

)

+2A23
θ

(
n∑

i=1

xiyi

)(
n∑

i=1

(xi − θ)
+
yi

)]
,

A11
θ =

[(
n∑

i=1

(xi − θ)
2

)(
n∑

i=1

x2
i

)
−

(
n∑

i=1

xi (xi − θ)
+

)2 ]
/D,

A12
θ =

[
−

(
n∑

i=1

(xi − θ)
2

)(
n∑

i=1

xi

)

+

(
n∑

i=1

xi (xi − θ)
+

)(
n∑

i=1

(xi − θ)
+

)]
/D,

A13
θ =

[(
n∑

i=1

xi (xi − θ)+
)(

n∑

i=1

xi

)
−

(
n∑

i=1

x2
i

)(
n∑

i=1

(xi − θ)+
)]

/D,

A22
θ =


n

n∑

i=1

(xi − θ)
2
−

(
n∑

i=1

(xi − θ)
+

)2

 /D,

A23
θ =

[
−n

n∑

i=1

xi (xi − θ)
+
+

(
n∑

i=1

xi

)(
n∑

i=1

(xi − θ)
+

)]
/D,

A33
θ =


n

n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

 /D,

where

D = n

(
n∑

i=1

(xi − θ)
2

)(
n∑

i=1

x2
i

)
− n

(
n∑

i=1

xi (xi − θ)
+

)2
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−

(
n∑

i=1

(xi − θ)
2

)(
n∑

i=1

xi

)2

+2

(
n∑

i=1

xi (xi − θ)+
)(

n∑

i=1

(xi − θ)+
)(

n∑

i=1

xi

)

−

(
n∑

i=1

(xi − θ)
+

)2( n∑

i=1

x2
i

)
.

We have assumed that {θ : Rθ < ∆} is connected.

All of the terms required for (3) and (4) can be found from linear least squares
programs. The minimum and maximum can be found by scanning over values
of θ at suitably small intervals. In Section 3, for example, the minimum and
maximum are found by taking θ from −9 to 9 at intervals of 0.01. Linear least
square programs are widely available in every statistical package, even in many
hand calculators. Hence, the method presented by Theorem 2.2 is simple and
could have wide spread applicability.

In principle, the confidence sets, ∪θIθ , in Theorems 2.1 and 2.2 could be
pieces of sets. However, if f(·, ·), g(·, ·), Xθ, and λθ are suitably regular functions
- as they will be in most applications - then ∪θIθ will be a whole interval. In
particular, if λθ and Xθ are continuous functions of θ and {θ : Rθ < ∆}
is connected then ∪θIθ will be a whole interval as shown by Theorem 2.2.
The conditions λθ and Xθ are continuous functions of θ can be easily verified
analytically. For example, these conditions are satisfied in the cases of Examples
1.2–1.3 and Examples 2.2–2.3. The condition {θ : Rθ < ∆} is connected can be
tested either analytically or at least numerically for cases like Examples 1.2–1.3
and Examples 2.2–2.3.

3. Numerical studies

Here, we pursue the model discussed by Examples 1.2–1.3 and 2.2–2.3, i.e. the
continuous two phase regression model due to Hawkins [8] and Davies [6]:

yi = a+ bxi + c (xi − θ)
+
+ ǫi (6)

for i = 1, 2, . . . , n, where ǫi are assumed to be independent standard normal.
Take β = (a, b, c)′, an unknown parameter vector, and let λθ = (1, x, (x −
θ))′ for some given x. We wish to find a confidence interval for the predicted
value

y = g (λθ,β) = λ′

θβ = a+ bx+ c(x− θ)+. (7)

The results in Example 2.3 can be used to find the confidence interval.
Computer simulation shows that actual confidence levels tend to be slightly

lower than nominal values. There is no evidence to suggest that the confidence
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Fig 1. Confidence level for y (top left), confidence level for θ (top right), average confidence
length for θ (bottom left) and power of Davies (1987)’s test for c 6= 0 (bottom right) for c = 0.2
and θ = 0. The proposed method and the delta method are in black and red, respectively.

intervals are better for smaller/larger c or for smaller/larger | x − θ |. Fig-
ures 1–5 show typical results. The four plots in each of the figures correspond
to:

• the top left gives the fraction of trials that the calculated confidence in-
terval covered y in (7).

• the top right gives the fraction of successes for the confidence interval
found as those values of θ for which Rθ > ∆.

• the bottom left gives the average length of the confidence interval found
as those values of θ for which Rθ > ∆.

• the bottom right gives the power of the 5% test for testing the hypothesis
c is non-zero as given by Davies [6] with the variance of the series being
estimated.
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Fig 2. Confidence level for y (top left), confidence level for θ (top right), average confidence
length for θ (bottom left) and power of Davies [6]’s test for c 6= 0 (bottom right) for c = 0.5
and θ = 0. The proposed method and the delta method are in black and red, respectively.

Also shown in Figures 1–5 are the confidence levels for y, θ and the average
length of the confidence interval for θ computed using the delta method.

In the simulations n = 21, xi = (−10,−9, . . . , 10), the residual standard
deviation equals 1.0, the formulas were calculated for values of θ from −9 to 9
at intervals of 0.01. In each case, there were 10,000 simulations and the nominal
confidence level was 0.95. The choice n = 21 corresponds to a small sample size.
Other small sample sizes yielded similar results.

Figures 1–5 suggest that the confidence interval for y is reasonably accurate
whether the confidence interval for θ is short or not, whether c is well distin-
guished from zero or not, and whether x and θ are well separated or not.

The bottom right plots in Figures 1–5 show - as expected - that the power
increases to 1 as c becomes more distinguished from zero. The bottom left plots
show that the average length becomes shorter.
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Fig 3. Confidence level for y (top left), confidence level for θ (top right), average confidence
length for θ (bottom left) and power of Davies [6]’s test for c 6= 0 (bottom right) for c = 1
and θ = 0. The proposed method and the delta method are in black and red, respectively.

The top left, the top right and the bottom left plots in Figures 1–5 suggest
that the proposed method has higher confidence levels and shorter lengths than
the delta method for all values of c, θ and x considered. The gain in average
length does not appear substantial. The gain in confidence level appears sub-
stantial. The average confidence level for the proposed method is approximately
0.945. That for the delta method is approximately 0.905.

We now perform a simulation study to verify that the confidence level of the
interval given by Theorem 2.2 converges to the nominal value with increasing
sample size. We computed the confidence levels for y as in Figures 1–5 for
xi = (−(n− 1)/2, 1− (n− 1)/2, . . . , (n− 1)/2− 1, (n− 1)/2), n = 15, 17, . . ., and
(c, θ, x) = (0, 0, 0), (0.2, 0, 0), (0.5, 0, 0), (0.5, 0, 2), (0.5, 0, 20), (1, 0, 0), (2, 0, 0),
(5, 0, 0). The plots of the confidence levels versus n are shown in Figure 6.
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Fig 4. Confidence level for y (top left), confidence level for θ (top right), average confidence
length for θ (bottom left) and power of Davies [6]’s test for c 6= 0 (bottom right) for c = 2
and θ = 0. The proposed method and the delta method are in black and red, respectively.

It is evident from Figure 6 that the confidence levels for y approach the nom-
inal level with increasing sample size for each of the selected values of (c, θ, x).
For practical use, one could consider samples of size 40 or higher sufficient.

Next, we wish to verify that calculations using (2) and Theorem 2.2 lead
to the same results. For this, we computed the confidence levels of y using (2)
for the same ranges of parameters considered by Figure 6. These confidence
levels were plotted on the same graphs. As we can see, the values computed
using the two formulas appear indistinguishable. This supports correctness of
the mathematical derivations for Theorem 2.2.

The above results assume that the residuals in (6) are normal. To show ro-
bustness of our methods in Section 2, these results were recalculated for a va-
riety of non-normal and asymmetric errors, including Student’s t with 1 degree
of freedom, Student’s t with 10 degrees of freedom, Student’s t with 20 degrees
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Fig 5. Confidence level for y (top left), confidence level for θ (top right), average confidence
length for θ (bottom left) and power of Davies [6]’s test for c 6= 0 (bottom right) for c = 5
and θ = 0. The proposed method and the delta method are in black and red, respectively.

of freedom, Laplace, logistic, uniform, Gumbel and skew normal. The corre-
sponding Figures 1–6 were similar, suggesting robustness of our methods. These
figures are not reported here because of their similarity and to avoid repetitive
discussion.
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Fig 6. Confidence level for y versus n for (c, θ, x) = (0, 0, 0), (0.2, 0, 0), (0.5, 0, 0), (0.5, 0, 2),
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