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Abstract: This paper investigates the problem of testing for linear Granger
causality in mean when the number of parameters is high with the possi-
ble presence of nonlinear dynamics. Dependent innovations are taken into
account by considering tests which asymptotic distributions is a weighted
sum of chi-squares and tests with modified weight matrices. Wald, Lagrange
Multiplier (LM) and Likelihood Ratio (LR) tests for linear causality in
mean are studied. It is found that the LM tests based on restricted estima-
tors significantly improve the analysis of linear Granger causality in mean
relations when the dimension is high or when the autoregressive order is
large. We also see that the tests based on a modified asymptotic distribu-
tion have a better control of the error of first kind when compared to the
tests with modified statistic in finite samples. An application to interna-
tional finance data is proposed to illustrate the robustness to the presence
of nonlinearities of the studied tests.
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1. Introduction

Since the paper by Granger [18], the use of linear causality in mean to study
relations between subsets of variables is a common practice (see [33, 35], or [19]
among other references). This can be explained by the fact that linear causality
in mean is based on linear predictors, and can be easily tested by considering
tests of zero restrictions on the parameters of VAR models with iid innovations.
However when investigating linear causal relations, researchers often consider a
large number of lags to correctly take into account the linear temporal dynamics
of the variables. For instance [4, 34] or [14] use large autoregressive orders to
investigate the money-income causality relation. Note also that linear causality
in mean tests are often carried out in a bivariate framework. Nevertheless omit-
ting relevant variables from the model can lead to erroneous conclusions (see e.g.
[28]). Then researchers sometimes consider VAR models of higher dimension for
the test of linear causality in mean (see e.g. [9, 34] and references therein). In this
paper it is shown that the standard Wald test for linear causality in mean per-
form poorly in these cases. We propose Lagrange Multiplier (LM) tests, based
on restricted estimators, which give significant improvements for the analysis
of linear Granger causality in mean relations when a large number have to be
estimated.

Processes with dependent innovations can arise from many situations (see
e.g. [6, 2] or [25]). [20] tested linear Granger causality in mean between stock re-
turns and percentage volume changes with evidence of nonlinear causality in the
residuals. In addition note that numerous models produce processes with con-
ditional heteroscedasticity, as for instance hidden Markov, all-pass or GARCH
models (see e.g. [1])). In such cases it is common to use Wald tests with cor-
rected statistics. If the error process is assumed to be a martingale difference
the White [38] correction matrix is used. When the innovation process is only
assumed uncorrelated a Heteroscedasticity Autocorrelation Consistent (HAC)
weight matrix is used. However [3] pointed out that using HAC estimators in the
tests statistics may lead to over-rejections when the (linear) temporal depen-
dence of the series is strongly marked. The test for linear Granger causality in
mean in presence of nonlinearities has become of increased interest. For instance
linear causality in mean is studied by [37] in the case of Markov Switching VAR
models. Vilasuso [36] studied the test of linear causality in mean in presence of
causality in variance, and considered tests with corrected statistics by consider-
ing HAC and [38] covariance estimation methods. An important output of this
work is that, in certain cases, these tests may suffer from severe size distortion
in presence of causality in variance. This effect of nonlinear dynamics on the
test of linear causality in mean is also raised in [11]. In this paper tests are built
in the context of weak VAR models, i.e. VAR models with errors only assumed
uncorrelated to take into account a wide range of nonlinearities. More precisely
we use the asymptotic normality of the Quasi Maximum Likelihood Estimator
(QMLE) obtained in [15]. Different approaches for testing the linear Granger
causality in mean when the number of estimated parameters is high are pro-
posed and compared in various situations. The tests are developed assuming no
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particular structure for the error process, and are then quite general. It is found
that the use of the tests with data driven critical values are preferable when a
high number of parameters are estimated in case of dependent errors.

The structure of the paper is as follows. In Section 2 the test of linear causality
in mean in the weak VAR framework is discussed. In Section 3 the QMLE is
derived and its asymptotic behaviour is stated. Modified tests for linear causality
in mean are proposed in Section 4. In Section 5 Monte Carlo experiments are
performed. We study the linear causality in mean from the daily log returns of
the exchange rate of U.S. Dollars to one British Pound (USD/BP hereafter) to
the daily log returns of the exchange rate of U.S. Dollars to one New Zealand
Dollar (USD/NZD hereafter) using the standard and modified tests in Section 6.
The proofs are relegated to the appendix.

The following notations will be used throughout in the paper. The generic
term of a matrix A is denoted A(i, j). We denote by A ⊗ B the Kronecker
product of two matrices A and B, and vecA denotes the vector obtained by

stacking the columns of A. The convergence in probability is denoted by
P
−→.

The symbol ⇒ denotes the convergence in distribution and the almost surely
convergence is denoted by

a.s.
−→.

2. Testing for linear causality in mean in weak VAR models

The test of linear causality in mean is often conducted within the context of VAR
models. Indeed such models do not need a priori restrictions on the parameters.
They also allow to avoid some problems of identification as for instance in the
case of Vector AutoRegressive Moving Average (VARMA) models and account
for linear intertemporal dynamics between variables. We consider the following
VAR model

Xt =

p0∑

i=1

A0iXt−i + ǫt for all t ∈ {0,±1,±2, . . .} (2.1)

where the Xt’s are d-dimensional vectors. The matrices A0i are of dimension
d×d and such that detA0(z) 6= 0 for all |z| ≤ 1, where A0(z) = Id−

∑p0

i=1 A0iz
i.

The error process (ǫt) is commonly assumed to be iid Gaussian with positive
definite covariance matrix Σǫ and such that Eǫt = 0. In this case it is said that
(2.1) is a strong VAR model. However the strong white noise assumption is often
considered to be too restrictive. Indeed there are processes which do not satisfy
the strong assumption of iid innovations as for instance the multivariate GARCH
models (see e.g. [5] for the MGARCH models). In addition there are some cases
where the error process is not a martingale difference as for instance when
we consider the causal representation of a non causal VAR process (i.e. when
roots of the AR polynomial are inside the unit circle). Many applications for
non causal models are given in [7]. Numerous situations where the iid gaussian
assumption on the innovation process is not hold are presented in [32] or [16]
among other references. More generally using the Wold decomposition theorem,
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it can be shown that a large set of processes can be approximated by VARmodels
(see [27]). However since the innovations are only supposed uncorrelated in the
Wold decomposition theorem, assuming a strong VAR model for an observed
process is very restrictive in many cases. Thus we consider the test for linear
causality in mean in the framework given by the following assumption which
allows for a large set of dynamics for the error process.

Assumption A1. The process (ǫt) is strictly stationary ergodic with positive

definite covariance matrix Σǫ and such that Eǫt = 0, Cov (ǫt, ǫt−h) = 0 for all

t ∈ {0,±1,±2, . . .} and all h 6= 0.

Note that A1 is clearly weaker than the iid standard assumption. Indeed
an error process which verifies A1 can be a martingale difference or can even
be such that E(ǫt | ǫt−1, . . . ) 6= 0. If we suppose that the weak white noise

assumption A1 holds, it is said that (2.1) is a weak VAR model. Therefore it is
easy to see from A1 that the set of weak VAR processes can take into account
a large set of temporal dynamics.

In this part we introduce the tested hypotheses in our framework. Let us first
rewrite model (2.1) as follows

(
X1t

X2t

)
=

p0∑

i=1

(
A0i,11 A0i,12

A0i,21 A0i,22

)(
X1t−i

X2t−i

)
+

(
ǫ1t
ǫ2t

)
,

where X1t is of dimension d1 and the matrices A0i,mj have appropriate size. It
is said that (X2t) does not linearly Granger-cause (X1t) in mean if we have

EL(X1t | X1t−1, . . . ) = EL(X1t | X1t−1, X2t−1, . . . ),

where EL(X1t | . . . ) is the linear conditional expectation. It is well known that
(X2t) does not linearly Granger-cause (X1t) in mean if and only if A0i,12 = 0
for all i ∈ {1, . . . , p0} (see [27]). Therefore when testing the null hypothesis that
(X2t) does not linearly cause (X1t) in mean versus the alternative that (X2t)
linearly causes (X1t) in mean, we consider the following pair of hypotheses

H0 : A0i,12 = 0 for all i ∈ {1, . . . , p0} v.s. H1 : A0i,12 6= 0

for at least one i ∈ {1, . . . , p0}. For our study we also introduce the concept
of causality in variance. It is said that (X2t) does not Granger-cause (X1t) in
variance if we have

E(X2
1t | X1t−1, . . . ) = E(X2

1t | X1t−1, X2t−1, . . . ).

Weak VAR models allow for conditional heteroscedasticity, so that testing lin-
ear causality in mean in presence of causality in variance can be considered as
a particular case of our framework. We will consider causality in variance in the
Monte Carlo experiments because of the considerable attention has been paid
for this kind of nonlinear causality relation in the literature (see e.g. [11] or
[30]). In addition we note that most of the nonlinear models produce processes
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with conditional heteroscedasticity, as for instance hidden Markov models (see
e.g. [1]). Furthermore models which produce processes with conditional het-
eroskedasticity are much employed in the literature (see e.g. [8, 12, 29]). In
conclusion note that the strong assumption of iid errors is often considered to
be not realistic. Thus taking into account for nonlinear dynamics in the error
process when building tests for linear causality is important. Since there is no
possible confusion, we refer to the linear Granger-causality in mean as linear
causality in mean in the rest of the paper.

3. Asymptotic behaviour of the QMLE

Let us first re-write model (2.1) as follow

Xt = (X̃ ′
t−1 ⊗ Id)θ0 + ǫt, (3.1)

where X̃t−1 = (X ′
t−1, . . . , X

′
t−p0

)′ and θ0 = vec(A01, . . . , A0p0
). We use the quasi

maximum likelihood method for the estimation procedure since the error terms
are no longer assumed Gaussian. Consider the observations X1, . . . , XT and set
Xt = 0 for t < 1 in the sequel. The QMLE is given by

θ̂ = vec(Σ̂Xt,X̃t−1
Σ̂−1

X̃t−1

), (3.2)

where

Σ̂Xt,X̃t−1
= T−1

T∑

t=1

XtX̃
′
t−1 and Σ̂X̃t−1

= T−1
T∑

t=1

X̃t−1X̃
′
t−1,

(see e.g. [27] for more details on the derivation of the maximum likelihood esti-

mator). We also obtain Σ̂ǫ = T−1
∑T

t=1 ǫ̂tǫ̂
′
t, where ǫ̂t = ǫt(θ̂) = Xt−(X̃ ′

t−1⊗Id)θ̂
are the residuals. Note that before testing the linear causality in mean, it is im-
portant to study the adequacy of the fitted model. In our framework of possibly
dependent errors one can check that the autoregressive order is well fitted using
portmanteau tests developed by [15]. Then we will suppose that the autoregres-
sive order is well fitted.

We use results on the QMLE stated below to build statistical tools for testing
linear causality in mean which can take into account the presence of nonlinear-
ities. Let us first define the mixing coefficients

αa(h) = sup
A∈σ(au,u≤t),B∈σ(au,u≥t+h)

|P (A ∩B)− P (A)P (B)| ,

that measure the temporal dependence of the stationary process (at). We also

define ‖at‖q = (E‖at‖q)
1/q

, where ‖.‖ denotes the Euclidean norm with E‖at‖q <
∞. In order to state our asymptotic results, we need to make the following as-
sumption.
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Assumption A2. The process (ǫt) satisfies ‖ǫt‖4+2ν < ∞, and the mixing

coefficients of the process (ǫt) are such that
∑∞

h=0{αǫ(h)}
ν/(2+ν) < ∞ for some

ν > 0.

The moment assumption in A2 is slightly stronger than the standard moment
assumption ‖ǫt‖4 < ∞. It is interesting to note that the mixing assumption is
valid for a large class of processes (see [31] or [10]). For instance note that A2

is satisfied for exponential strongly mixing sequences. The following results are
given in [15], making the mixing assumption on the observed process (Xt). More
precisely under A1, the matrix Σ̂X̃t−1

is almost surely invertible and we have

θ̂
a.s.
−→ θ0, Σ̂ǫ

a.s.
−→ Σǫ. (3.3)

In addition if we suppose that A2 holds, we have

T
1

2 {θ̂ − θ0} ⇒ N (0, J−1IJ−1), (3.4)

where J = ΣX̃ ⊗ Σ−1
ǫ with ΣX̃ = E(X̃tX̃

′
t), and

I =

∞∑

h=−∞

E
{
X̃t−1X̃

′
t−h−1 ⊗ Σ−1

ǫ ǫtǫ
′
t−hΣ

−1
ǫ

}
,

If we suppose that the standard assumption on the innovation process hold
we have I = J , so that we obtain in this case

T
1

2 {θ̂ − θ0} ⇒ N (0, J−1) (3.5)

(see e.g. [27], p 74)). However the matrix I can be very different from the matrix
J when the errors are dependent as illustrated in the following example.

Example 3.1. Consider an uncorrelated bivariate process Xt = (X1t, X2t)
′. If

we want to study the linear causality in mean from (X2t) to (X1t), we fit an
AR(1) model Xt = A0Xt−1 + ǫt, while the underlying true value of A0 is zero.
We assume that the innovation process (ǫt) follows an ARCH(1) model with
constant correlation given in [22]

(
ǫ1t
ǫ2t

)
=

(
σ11,t 0
0 σ22,t

)(
η1t
η2t

)

where (
σ2
11,t

σ2
22,t

)
=

(
0.3
0.2

)
+

(
0.4 0
0.1 0.25

)(
ǫ21t−1

ǫ22t−1

)
.

Suppose for simplicity that (η1t, η2t) is Gaussian with variance I2. In this case
the matrices I and J are diagonal and we obtain I = diag(2.538, 2.362, 0.664,
3.474) and J = diag(1, 32 ,

2
3 , 1).

It is clear that using the result (3.5) for the statistical analysis of VAR models,
when the error process is dependent, can be quite misleading. On the other hand
note that the tests build using (3.4) are valid for a large set of processes.



Lagrange Multiplier tests for Granger causality 513

We define several estimators for the covariance matrices which appear in
(3.4). We consider the following estimator for J

Ĵ = Σ̂X̃t−1
⊗ Σ̂−1

ǫ .

From the consistency of θ̂ and the ergodic theorem, we have Ĵ = J + op(1). To
introduce a consistent estimator of the variance matrix in (3.4), we first note
that

J−1IJ−1 =
(
Σ−1

X̃
⊗ Id

){
∞∑

h=−∞

E(ΥtΥ
′
t−h)

}(
Σ−1

X̃
⊗ Id

)
:= ΛΞΛ,

where Υt = X̃t−1 ⊗ ǫt. The matrix Λ can be consistently estimated by Λ̂ =
Σ̂−1

X̃t−1

⊗ Id. Now let us define Υ̂t = X̃t−1 ⊗ ǫ̂t, and Âq(z) = Id2p −
∑q

i=1 Âq,iz
i,

where Âq,1, . . . , Âq,q denote the coefficients of the LS regression of Υ̂t on Υ̂t−1,

. . . , Υ̂t−q. We denote by ǫ̃q,t the residuals of this regression and Σ̂ǫ̃q = T−1
∑T

t=1

ǫ̃q,tǫ̃
′
q,t. In the framework of weak VAR models it is shown in [15] that

Ξ̂ := Â−1
q (1)Σ̂ǫ̃qÂ

′−1
q (1)

P
→ Ξ (3.6)

when q = q(T ) → ∞ and q3/T → 0 as T → ∞. The order q can be chosen
by considering an information criterion. Note that one may use other kinds of
HAC estimators for the estimation of Ξ (see [13] or [17] for more details on this
kind of covariance matrix estimation method).

In the case of martingale difference error processes the expression of Ξ sim-
plifies into

Ξ = E (ΥtΥ
′
t) , (3.7)

and following [36] we will also consider in the sequel the consistent covariance
estimator of [38]

Ξ̃ = T−1
T∑

t=1

Υ̂tΥ̂
′
t. (3.8)

Nevertheless note that the simplification (3.7) is not available in general if we
have E(ǫt | ǫt−1, . . . ) 6= 0.

4. Tests for linear causality in mean

We propose several approaches which can potentially give improvements for the
test of linear causality in mean when the number of parameters we have to
estimate is high. In such situations practitioners usually consider the standard
Wald test or Wald tests with modified statistics introduced below. In this section
we use the LM and Likelihood Ratio (LR) approaches to build tests, and tests
with standard statistics and modified distribution. To introduce these modified
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tests let us define the block diagonal matrix R = diag(C, . . . , C) of dimension
pd1d2 × pd2, where C is a d1d2 × d2-dimensional matrix given by

C =




0d1×d1d Id1
0d1×d2

0

0
. . .

. . . 0
0 0 Id1

0d1×d2


 ,

so that, under the null hypothesis, we have Rθ0 = 0. Andrews and Monahan [3]
pointed out that the use of HAC estimators in the test statistics may yield to
over-rejections. Therefore we propose modified tests which are based on standard
statistics. The standard Wald, LM and LR statistics are respectively given by
the expressions

QWS = T θ̂′R′(RĴ−1R′)−1Rθ̂,

QLMS = T−1S ′R′(RĴ−1R′)RS

and
QLR = 2

{
L(θ̂, Σ̂ǫ)− L(θ̂c, Σ̂c

ǫ)
}
,

where S =
∂L(θ̂c,Σ̂c

ǫ))
∂θ is the score vector and Σ̂c

ǫ = T−1
∑T

t=1 ǫt(θ̂
c)ǫt(θ̂

c) with

ǫt(θ̂
c) = Xt−(X̃ ′

t−1⊗Id)θ̂
c. The log-likelihood is denoted by L. The constrained

estimator θ̂c is obtained using OLS estimation. Note that θ̂c is used for the
estimation of J in QLMS . The following theorem gives the asymptotic behaviour
of the standard statistics.

Theorem 4.1. If we suppose that assumptions A1 and A2 hold, then under

the null hypothesis, the standard statistics QWS , QLMS and QLR converge in

distribution, as T → ∞, to

Z (ξ) =

pd1d2∑

i=1

ξiZ
2
i (4.1)

where ξ = (ξ1, . . . , ξpd1d2
)′ is the vector of the eigenvalues of the matrix

Ω = (RJ−1R′)−
1

2 (RJ−1IJ−1R′)(RJ−1R′)−
1

2

and the Zi’s are independent N (0, 1) variables.

Using Theorem 4.1, we are now in position to define the tests for linear causal-
ity in mean we propose in this paper. These tests are based on modified critical
values which can be obtained as follows. It is clear that using the consistent
HAC estimator Ξ̂ and Ĵ we obtain

Ω̂ := (RĴ−1R′)−
1

2 (RΛ̂Ξ̂Λ̂R′)(RĴ−1R′)−
1

2
P
−→ Ω.

Now let us define by ξ̂ = (ξ̂1, . . . , ξ̂pd1d2
)′ the vector of the eigenvalues of the

matrix Ω̂. At the asymptotic level υ, the Wmd test (resp. the LMmd, LRmd
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tests) consists in rejecting the null hypothesis that (X2t) does not linearly cause
(X1t) in mean when

P{Z(ξ̂) > QWS} < υ (resp. P{Z(ξ̂) > QLMS} < υ, P{Z(ξ̂) > QLR} < υ).
(4.2)

The subscript md stands for “modified distribution”. In practice one can eval-
uate the p-values in (4.2) using the Imhof algorithm [21] or the saddlepoint
approximation method (see e.g. [26]). Note that the use of standard statistics
allows us to define a LR test which is adapted to our framework.

If we suppose that the error process is iid we have I = J , so that Ω = Ipd1d2

in this case and we obtain the standard results

QWS ⇒ χ2
pd1d2

, QLMS ⇒ χ2
pd1d2

and QLR ⇒ χ2
pd1d2

. (4.3)

It is clear from Example 3.1 that considering the critical values of the χ2
pd1d2

distribution while the errors are dependent can be quite misleading when we
use the standard statistics. Indeed in this example (X2t) does not cause (X1t)
in variance, while (X1t) causes (X2t) in variance. When testing if (X2t) linearly
causes (X1t) in mean, we take R = (0, 0, 1, 0) so that RJ−1IJ−1R′ ≈ RJ−1R′ =
3
2 . If one want to test linear causality in mean from (X1t) to (X2t), we take
R = (0, 1, 0, 0), so that we have RJ−1IJ−1R′ = 1.128 and RJ−1R′ = 2

3 . Then
for Example 3.1 one can use the standard distribution for testing the linear
causality in mean from (X2t) to (X1t) since E(X2

1t | X2t−1, X1t−1 . . . ) = E(X2
1t |

X1t−1 . . . ). However the test for linear causality in mean from (X1t) to (X2t)
using the standard approach can be misleading. In the sequel the standard tests
based on the results in (4.3) are denoted by Ws, LMs and LRs. The Ws test
is the most commonly used test in the literature for testing linear causality in
mean relations.

In the literature it is common to consider Wald tests with corrected statistics
when nonlinear dynamics are suspected in the error process. This approach is
studied by [36] for the test of linear Granger causality in mean in presence of
heteroscedasticity. We also study these tests in the case where a large number
of parameters have to be estimated. Let us consider the following modified
statistics for the Wald test

QW = T θ̂′R′(RΛ̂Ξ̂Λ̂R′)−1Rθ̂.

Similarly we introduce the LM modified statistic

QLM = T−1S ′R′(RĴ−1R′)(RΛ̂Ξ̂Λ̂R′)−1(RĴ−1R′)RS.

In the sequel we suppose that Ξ is invertible, so that Ξ̂ is invertible at least
asymptotically. The tests with modified statistics are based on the following
result.

Theorem 4.2. If we suppose that assumptions A1, A2 hold and under the

null hypothesis, the modified statistics QW and QLM are asymptotically χ2
pd1d2

distributed.
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Fig 1. The tails of the asymptotic distributions of the modified Wald statistic (full line) and
the standard statistic (dotted line) in the case of the test of the linear Granger causality in
mean from (X1t) to (X2t) in Example 3.1.

At the asymptotic level υ, the Wms test (resp. the LMms test) consists in
rejecting the null hypothesis that (X2t) does not linearly cause (X1t) in mean
when

QW > U1−υ (resp. QLM > U1−υ),

where U1−υ is such that P{χ2
pd1d2

> U1−υ} = υ. The subscript ms stands for
“modified statistic”. If we suppose that the error process is iid we have I = J ,
so that we obtain QW ≈ QWS and QLM ≈ QLMS for large enough sample
size in this case. Nevertheless if we assume that the error process is dependent,
Example 3.1 shows that the modified statistics we use can be quite different from
the standard statistics even for large T . In Figure 1 we plotted the asymptotic
distributions of the modified and standard Wald statistics in the case of testing
linear Granger causality in mean from (X1t) to (X2t) in Example 3.1. In this
case the asymptotic distribution of the standard Wald statistic is 1.58χ2

1. It is
found that the asymptotic distribution of the modified Wald statistic is quite
different from the asymptotic distribution of the standard Wald statistic.

Vilasuso [36] also considered the following Wald statistic based on the White
variance correction

Q̃W = T θ̂′R′(RΛ̂Ξ̃Λ̂R′)−1Rθ̂.

Similarly we introduce the following corrected LM statistic

Q̃LM = T−1S ′R′(RĴ−1R′)(RΛ̂Ξ̃Λ̂R′)−1(RĴ−1R′)RS.

If we assume that the error process is a martingale difference, it can be shown
that Q̃W ⇒ χ2

pd1d2
and Q̃LM ⇒ χ2

pd1d2
. Using these results, one can consider the

tests with modified statistics denoted by W̃ms and L̃Mms in a similar way to the
Wms and LMms tests. If we suppose that (ǫt) is a martingale difference, it can
also be shown that the statistics QWS , QLMS and QLR converge in distribution
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to

Z
(
ξ̃
)
=

pd1d2∑

i=1

ξ̃iZ
2
i

where ξ̃ = (ξ̃1, . . . , ξ̃pd1d2
)′ is the vector of the eigenvalues of the matrix

Ω̃ = (RJ−1R′)−
1

2 [RΛ{E (ΥtΥ
′
t)}ΛR

′] (RJ−1R′)−
1

2 .

As a consequence using again the White covariance estimator defined in (3.8),

we introduce the tests with modified distributions denoted by W̃md, L̃Mmd and
L̃Rmd in a similar way to the Wmd, LMmd and LRmd tests.

In this section we have considered different approaches to build tests. The
main advantage of considering tests with modified statistics is that we obtain
tests with a standard chi-squared asymptotic distribution. However we have to
invert Ξ̂ or Ξ̃ to implement these tests, on the contrary to the modified tests
based on the standard statistics. We also remark that the tests based on the
HAC estimation have larger theoretical basis than the tests based on the White
estimation method. Nevertheless the tests based on the White estimation are
easier to implement than the tests based on the HAC estimation. Finally note
that the use of the constrained estimator can potentially give some efficiency to
the LM tests when there is a large number of parameters to estimate.

5. Monte Carlo experiments

The small sample properties of the tests presented in the previous section are
compared in several situations. We consider the simple bivariate AR(1) parame-
ters given by cases (a) and (c) in Table 1. We study the AR(1) case to illustrate
the difference in the analysis between this simple case, and the cases where the
number of parameters increase. To assess the behaviour of the tests under com-
parison when the autoregressive order increase, we also use the AR(2), AR(3)
and AR(4) parameters given by cases (b), (d), (e) and (g). The finite sample
performances of the tests when the dimension is high is investigated using the
4 and 5-dimensional parameters given by cases (h) and (f).

Independent and dependent error terms are considered. For experiments
where the errors are iid, we let ǫt ∼ N (0, Id). In order to illustrate the ef-
fect of ARCH innovations on the different tests we consider the model with
constant correlation proposed by [22]. We have chosen this model because of
its simplicity. In our simulations the process (ǫt) follows the Data Generating
Process (DGP) given by




ǫ1t
...
ǫdt


 =




σ1t 0 0

0
. . . 0

0 0 σdt







η1t
...
ηdt


 (5.1)
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Table 1

Parameters used in the Monte Carlo experiments

(a) A01 =

(
0.4 a

0 0.4

)
(b) A01 =

(
0.4 a

0 0.4

)
, A02 = 0.2I2, A03 = 0.1I2

(c) A01 = 0.4I2 (d) A01 = 0.4I2, A02 = 0.2I2 (e) A01 = 0.4I2, A02 = 0.2I2, A03 = 0.1I2
(f)A01 = 0.4I5 (g) A01 = 0.4I2, A02 = 0.2I2, A03 = 0.1I2, A04 = −0.1I2

(h) A01 =




0.6 a a a

0 0.6 0 0
0 0 0.6 0
0 0 0 0.6


 (i) B =




0.3 0 0 0.1 0.1
0 0.3 0 0.1 0.1
0 0 0.3 0.1 0.1
0 0 0 0.3 0.1
0 0 0 0 0.3




(j) B = 0.3I2 (k) B =

(
0.3 0.2
0 0.3

)
(l) B = 0.3I5

(m) B =




0.3 0 0.1 0.1
0 0.3 0.1 0.1
0 0 0.3 0.1
0 0 0 0.3




where



σ2
1t
...

σ2
dt


 =




ω
...
ω


+




b(1, 1) . . . b(1, d)
...

. . .
...

b(d, 1) . . . b(d, d)







ǫ21t−1
...

ǫ2dt−1


 .

The process ηt = (η1t, . . . , ηdt)
′
is iid, such that ηt ∼ N (0, Id). We take ω = 0.1.

In the sequel we will denote by B the matrix of generic term b(i, j) ≥ 0. In
addition the parameters are chosen such that the stationarity conditions hold
(see [22] for more details). The process defined by (5.1) presents conditional
heteroscedasticity. We use parameters (i)-(m) in Table 1 for weak white noise
(5.1). Note that for parameters (i), (k) and (m), we take b(i, j) > 0 for i ∈
{1, . . . , d1} and j ∈ {d1 + 1, . . . , d}, such that (Xd1+1 t, . . . , Xdt)

′ is causal in
variance for (X1t, . . . , Xd1 t)

′.
The weak error process in (5.1) is such that the best predictor is linear.

To illustrate the case where the best predictor is not linear, we consider the
following bivariate DGP

ǫ1t − φǫ1t−1 = ut − φ−1ut−1, (5.2)

with φ = 0.6 and ut = ηtǫ2t. The iid standard Gaussian processes (ǫ2t) and
(ηt) are independent. The process (ǫ1t) follows an all-pass model and is then
uncorrelated, so that we write EL(ǫ1t | ǫ1t−1, . . . ) = 0. However since (ut) is
not Gaussian we have E(ǫ1t | ǫ1t−1, . . . ) 6= 0 and hence the best predictor is
not linear on the contrary of the ARCH process (5.1). To see this note that
we have E{ǫ1t(ǫ1t−1 − φǫ1t−2)

3} = (E(u4
t )− 3)(1− φ−2)2φ. Thereby we obtain
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Table 2

Empirical size (in %) of the tests under comparison for testing linear non causality in mean
in the bivariate case with autoregressive order p0 = 1

Case iid no causality in variance causality in variance
T 100 300 1000 100 300 1000 100 300 1000

LMs 4.5 5.4 5.8 4.8 5.7 5.7 8.3 9.6 10.4

LRs 5.0 5.5 5.8 5.1 6.1 5.8 9.2 9.7 10.4

Ws 5.2 5.6 5.8 5.3 6.1 5.9 9.3 9.7 10.5

LMms 5.7 5.8 5.7 5.8 6.7 5.6 6.6 7.2 6.0
Wms 6.4 6.0 5.8 6.9 6.7 5.7 7.2 7.2 6.0

L̃Mms 5.6 5.5 5.6 5.3 6.0 5.7 6.0 6.1 6.0

W̃ms 6.3 5.9 5.7 6.2 6.1 5.7 7.0 6.3 6.1

LMmd 5.7 5.8 5.7 5.8 6.7 5.6 6.6 7.2 6.0
LRmd 6.1 5.9 5.7 6.5 6.7 5.7 7.1 7.2 6.0
Wmd 6.4 6.0 5.8 6.9 6.7 5.7 7.2 7.2 6.0

L̃Mmd 5.6 5.5 5.6 5.3 6.0 5.7 6.0 6.1 6.0

L̃Rmd 6.2 5.8 5.6 6.1 6.1 5.7 7.0 6.3 6.1

W̃md 6.3 5.9 5.7 6.2 6.1 5.7 7.0 6.3 6.1

E{E(ǫ1t | ǫ1t−1, . . . )(ǫ1t−1 − φǫ1t−2)
3} = (E(u4

t ) − 3)(1 − φ−2)2φ 6= 0 since
E(u4

t ) = 9, so that the result follow. We chosen an all-pass model for our
illustrations since it is well known that this kind of models can capture some
features of nonlinear processes (see [7]).

In the sequel we simulate n = 1000 independent trajectories in each experi-
ment. The null hypothesis that (X2t) does not linearly cause (X1t) in mean is
tested for each simulated process Xt = (X ′

1t, X
′
2t)

′.

In this part we study the empirical size of the tests under comparison. The
simulated processes are of lengths T = 100, T = 300 and T = 1000. The
asymptotic nominal level 5% is used in all the experiments for the standard and
modified tests. Note that since n = 1000 replications are performed and assum-
ing that the finite sample size of the tests is 5%, the relative rejection frequencies
should be between the significant limits 3.65% and 6.35% with probability 0.95.
Then the relative rejection frequencies are displayed in bold type when they are
outside the significant limits 3.65% and 6.35% in Tables 2-7.

We first study the case of simple bivariate AR(1) processes generated using
parameter (c). We consider for the error process the iid case, the case of ARCH
errors with no causality in variance using parameter (j) and the case of ARCH
errors with causality in variance using parameter (k). The results are given
in Table 2. We first analyze the results for the cases of iid errors and when
there is no causality in variance. We find that the relative rejections frequencies
of the different tests are close to the asymptotic nominal level in general. We
only remark slight over-rejections of some of the modified Wald and LR tests
when the samples are small. When (X2t) cause (X1t) in variance we note that
the standard tests are clearly oversized, even when the samples are large. In
presence of causality in variance the modified tests perform better than the
standard tests. The relative rejection frequencies of the modified tests converge
to the asymptotic nominal level as the samples increase. The results we found
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Table 3

Empirical size (in %) of the tests under comparison for testing linear non causality in mean
in the bivariate case with different autoregressive orders. The innovations are iid

Case p0 = 2 p0 = 3 p0 = 4
T 100 300 1000 100 300 1000 100 300 1000

LMs 4.7 5.9 5.0 4.5 5.0 3.9 4.0 5.0 4.1
LRs 6.0 6.0 5.4 7.0 5.6 4.3 8.2 5.8 4.2
Ws 6.6 6.0 5.4 7.7 5.6 4.3 9.0 5.9 4.2

LMms 6.4 5.9 4.7 11.9 5.1 4.5 43.2 5.6 4.2
Wms 8.4 6.6 4.9 14.4 5.8 4.7 45.8 7.0 4.7

L̃Mms 6.1 5.8 4.7 6.6 5.0 4.5 7.4 5.6 4.2

W̃ms 7.6 6.5 5.0 10.1 5.7 4.7 11.9 6.8 4.7

LMmd 5.3 6.0 5.0 5.8 5.1 4.0 7.9 4.8 4.1
LRmd 6.3 6.2 5.1 7.5 6.0 4.0 11.2 5.8 4.4
Wmd 6.6 6.3 5.2 8.3 6.0 4.0 12.0 5.9 4.4

L̃Mmd 5.1 6.0 4.9 4.5 5.1 4.0 4.5 4.8 4.1

L̃Rmd 5.9 6.2 5.1 6.7 6.0 4.0 8.1 5.8 4.4

W̃md 6.4 6.2 5.2 7.5 5.9 4.0 9.3 5.9 4.4

are consistent with those obtained by [36] for the standard Wald tests and Wald
tests with modified statistics. The standard tests are not able to distinguish
between causality in variance and linear causality in mean. In general it appears
from the results in Table 2 that there is no difference between the tests with
modified distributions and tests with modified statistics in this simple case. We
also find that the LM tests have better results in general than the Wald or LR
tests for small samples (T = 100). In particular the L̃Mmd test well control the
error of first kind in all cases.

The finite sample properties of the tests when the autoregressive order p0
increase is investigated by considering bivariate AR(2), AR(3) and AR(4) pro-
cesses generated using parameters (d), (e) and (g). In Table 3 we give the results
when the errors are iid. The results in Table 4 correspond to the case of ARCH
errors with causality in variance using parameter (k). From Tables 3 and 4 we
can note that as p0 increase, the tests with modified statistics are severely size
distorted when the samples are small. This could be explained by the fact that
the temporal dependence is more marked when p0 is large and that complicated
estimators of the weight matrices are inverted. In this case the modified statistics
likely lead to reject the null hypothesis too often as pointed out by [3], although
the corresponding tests are intended to take into account for nonlinearities. It
also emerges that the results of the tests with modified distributions are clearly
better than those of the tests with modified statistics for small samples. These
results may be explained by the fact that we use the standard statistics which
do not require to invert complicated estimators of the weight matrices for the
tests with modified distributions, while the possible presence of nonlinearities
are taken into account by using the modified distributions. The standard test
have similar results to the L̃Mmd, L̃Rmd and W̃md when the errors are iid.
However the standard tests are not valid in presence of causality in variance as
before. We also find that the tests built using the White covariance matrix esti-
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Table 4

Empirical size (in %) of the tests under comparison for testing linear non causality in mean
in the bivariate case with different autoregressive orders. The error process is such that

(X2t) is causal in variance for (X1t)

Case p0 = 2 p0 = 3 p0 = 4
T 100 300 1000 100 300 1000 100 300 1000

LMs 8.8 10.2 10.1 8.8 9.4 9.7 7.3 9.6 8.4

LRs 10.4 10.7 10.3 11.1 10.6 10.0 12.3 11.2 9.0

Ws 10.6 10.8 10.3 11.8 11.0 10.0 12.9 11.3 9.1

LMms 9.7 7.3 5.6 21.8 7.8 5.7 49.0 9.0 5.5
Wms 11.7 8.0 5.6 25.1 8.7 5.9 51.7 10.3 5.9

L̃Mms 6.5 6.3 4.7 7.4 6.2 4.5 8.0 6.9 4.7

W̃ms 9.8 7.2 5.0 11.6 7.4 4.7 14.0 8.2 4.8

LMmd 6.5 6.0 4.9 8.6 5.5 4.9 8.1 5.4 4.1
LRmd 8.6 6.8 5.2 11.3 5.6 4.9 12.5 6.6 4.3
Wmd 8.8 6.7 5.3 12.0 5.9 5.1 13.6 6.8 4.3

L̃Mmd 5.4 5.2 4.3 5.2 5.0 5.0 5.2 5.4 4.3

L̃Rmd 7.6 5.7 4.6 8.2 5.7 5.3 9.0 7.1 4.6

W̃md 8.2 5.8 4.6 9.0 6.2 5.4 10.2 7.3 4.6

mation have better results than the tests built using the HAC covariance matrix
in small samples (T = 100). This can be explained by the relative simplicity of
computing the White covariance matrices. We note from Tables 3 and 4 that
the LM tests perform better than the Wald and LR tests when p0 increase.
This can be explained by the fact that the number of parameters to estimate
increase faster for the Wald and LR tests than the LM tests based on restricted
estimators. In particular we again find that the L̃Mmd test well control the
error of first kind in all cases. Finally we can remark that the relative rejection
of the modified tests are close to the asymptotic nominal level for large samples
(T = 1000). When the errors are iid the relative rejection frequencies of the
standard tests also converge to the asymptotic nominal level.

We also study the test of linear causality in mean in the case of high di-
mensional VAR processes. For this we consider 5-dimensional VAR(1) processes
generated using parameter (f). We consider for the error process the iid case,
the case of dependent errors with no causality in variance using parameter (l)
and the case of ARCH errors with causality in variance using parameter (i).
The null hypothesis that (X3t, X4t, X5t)

′ does not linearly cause (X1t, X2t)
′ in

mean is tested. We first analyze the results for the small samples in Table 5. We
find that the tests with modified distribution perform better than the tests with
modified statistics. In these experiments the estimators of Ξ we use to build
the modified statistics are of high dimension and then may be difficult to invert
when the sample is small. From Table 5 the standard tests have similar results
to that of the L̃Mmd, L̃Rmd and W̃md tests when the errors are iid or when
there is no causality in variance. However we again remark that the standard
tests are not valid in presence of causality in variance contrary to the L̃Mmd,
L̃Rmd and W̃md tests. It can also be noted that the tests based on the White
approach have better results than the tests built using the HAC estimator of the
weight matrix. A possible explanation is that the HAC estimation method can
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Table 5

Empirical size (in %) of the tests under comparison for testing linear non causality in mean
in the 5-dimensional case with autoregressive order p0 = 1

Case iid no causality in variance causality in variance
T 100 300 1000 100 300 1000 100 300 1000

LMs 4.9 5.6 5.9 4.7 5.9 5.8 8.1 9.9 10.4

LRs 8.3 6.8 5.9 7.6 6.3 6.3 12.8 11.6 10.6

Ws 9.1 6.7 6.0 8.3 6.4 6.3 13.3 11.6 10.8

LMms 47.2 7.5 6.1 48.4 7.5 7.0 46.0 9.1 7.1

Wms 47.4 8.1 6.3 49.5 8.6 7.3 47.1 11.0 7.4

L̃Mms 9.7 7.5 6.1 8.8 7.4 6.4 9.9 7.8 6.4

W̃ms 12.4 8.0 6.3 12.2 8.2 6.8 14.5 9.4 6.6

LMmd 28.3 5.7 5.3 29.5 5.9 6.1 29.5 5.7 5.6
LRmd 30.6 6.6 5.7 31.8 6.3 6.4 32.3 6.6 6.0
Wmd 30.7 6.8 5.7 31.6 6.4 6.6 32.5 6.9 6.0

L̃Mmd 5.1 5.7 5.3 4.4 6.1 5.9 5.0 5.6 5.9

L̃Rmd 7.9 6.6 5.7 7.3 6.5 6.3 8.2 6.7 6.0

W̃md 8.4 6.8 5.7 7.8 6.6 6.5 9.0 7.0 6.1

be viewed to be too complicated when the dimension is high and the samples
are small when compared to the White estimation. It also appears that the LM
tests perform much better than the Wald and LR tests. Similarly to the case of
large autoregressive orders, this is can be explained by the fact that the number
of parameters to be estimated increase faster for the Wald and LR tests than
the LM tests as the dimension increase. We also remark here that the L̃Mmd

test is well performing in all cases. For large samples (T = 1000) we find that
the relative rejection frequencies of the modified tests are in general close to the
asymptotic nominal level.

In this part we investigate the effect of the innovations variance on the test of
the linear causality in mean. More precisely we study cases where the variance is
relatively large beside the autoregressive parameter and explore the properties
of the modified and standard tests in such situations. These results will be
compared with the cases where the variance is relatively small when compared
to the autoregressive parameter. Five dimensional VAR(1) processes are again
used in these experiments with autoregressive parameterA01 = aI5. We consider
the dependent case with causality in variance and we again use model (5.1) with
ω = 2 and parameter (i) for the matrix B when the variance is relatively large
beside the autoregressive parameter (a = 0.1). We also study the case where
ω = 0.1 using parameter (i) for the matrix B and a = 0.6. In this case the
innovations variance is relatively small. The samples of the simulated processes
are T = 100, T = 300 and T = 1000. From Table 6 we see that the standard tests
are again unable to control the error of first kind when the innovations volatility
is relatively large beside the autoregressive parameter even when the samples
become large. It appears that the modified tests converge to the 5% asymptotic
nominal level in such case. We also note that the results we obtain when the
innovations variance is large and the autoregressive parameter is close to zero
are in general similar to the results of the case where the innovations variance
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Table 6

Empirical size (in %) of the tests under comparison for testing linear non causality in mean
in 5-dimensional cases taking different variance and autoregressive parameter specifications

with autoregressive order p0 = 1

T = 100 T = 300 T = 1000
a = 0.1 a = 0.6 a = 0.1 a = 0.6 a = 0.1 a = 0.6
ω = 2 ω = 0.1 ω = 2 ω = 0.1 ω = 2 ω = 0.1

LMs 8.1 7.7 11.2 10.8 9.9 9.5

LRs 12.3 12.1 12.8 11.8 10.4 9.7

Ws 13.0 12.2 12.9 11.8 10.6 9.6

LMms 45.3 48.4 10.3 10.1 6.9 7.3

Wms 46.3 49.0 12.2 11.2 7.3 7.4

L̃Mms 9.3 12.1 8.0 8.6 6.3 6.6

W̃ms 13.8 16.3 9.4 9.7 6.9 7.0

LMmd 30.3 29.3 5.3 6.2 4.8 5.7
LRmd 32.5 32.0 6.2 8.2 5.5 5.9
Wmd 32.6 32.3 6.6 8.0 5.5 5.9

L̃Mmd 3.9 5.1 5.8 6.2 5.6 5.3

L̃Rmd 7.4 9.4 6.6 8.0 6.1 5.9

W̃md 7.8 9.6 6.9 8.2 6.1 6.2

Table 7

Empirical size (in %) of the tests under comparison for testing linear non causality in mean
when the best predictor is not linear. The error process is given in (5.2)

T = 100 T = 300 T = 1000 T = 2000
LMs 17.5 17.7 18.9 17.9

LRs 18.3 17.9 19.0 17.9

Ws 18.6 17.8 19.0 17.9

LMms 8.7 6.6 4.8 5.4
Wms 9.8 7.1 4.8 5.4

L̃Mms 9.0 8.9 7.2 8.7

W̃ms 10.6 9.7 7.3 8.7

LMmd 8.7 6.6 4.8 5.4
LRmd 9.9 7.1 4.8 5.4
Wmd 9.8 7.1 4.8 5.4

L̃Mmd 9.0 8.9 7.2 8.7

L̃Rmd 10.2 9.5 7.3 8.7

W̃md 10.6 9.7 7.3 8.7

is relatively small when compared to the autoregressive order. Therefore we
can see that the unconditional noise variance does not play a major role in the
behaviour of the modified and standard tests.

In the previous experiments the weak error process given in (5.1) is such that
the simplification (3.7) of the matrix Ξ holds. This could explain the relative
efficiency of the tests based on the White estimation method to control the
error of first kind. We study the case where the best predictor is not linear by
considering bivariate AR(1) processes generated using parameter (c) with error
processes following the DGP (5.2). We test the null hypothesis that (X2t) does
not linearly cause (X1t) in mean. The results are given in Table 7. When the
samples are small we remark that the tests are oversized. This can be explained
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Table 8

Empirical power (in %) of the different tests with p0 = 1, d = 2. The innovations are iid on
the left and follow an ARCH model on the right

a 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.5
LMs 20.1 58.7 88.0 97.8 14.0 41.7 70.3 89.8 96.4
LRs 20.2 58.4 87.9 97.8 13.6 41.9 70.3 89.6 96.3
Ws 20.0 58.2 87.8 97.7 13.9 41.8 70.3 89.6 96.3

LMms 20.4 57.6 85.6 97.2 15.6 39.8 67.5 86.1 94.3
Wms 20.5 58.0 85.9 97.4 15.8 40.3 68.9 86.7 95.0

L̃Mms 19.8 57.0 85.6 97.4 13.5 39.7 68.2 86.8 94.9

W̃ms 19.5 56.8 85.8 97.4 13.0 39.4 67.9 87.2 94.9

LMmd 20.1 58.7 88.0 97.8 14.0 41.7 70.3 89.8 96.4
LRmd 20.2 58.4 87.9 97.8 13.6 41.9 70.3 89.6 96.3
Wmd 20.0 58.2 87.8 97.7 13.9 41.8 70.3 89.6 96.3

L̃Mmd 20.1 58.7 88.0 97.8 14.0 41.7 70.3 89.8 96.4

L̃Rmd 20.2 58.4 87.9 97.8 13.6 41.9 70.3 89.6 96.3

W̃md 20.0 58.2 87.8 97.7 13.9 41.8 70.3 89.6 96.3

by the fact that the standard tests and the tests based on the White estimation
method are not intended to take into account this kind of situations. When the
samples are small (T = 100) the more sophisticated tests based on the HAC
estimation are likely to not control well the error of first kind. However we note
that when the samples increase, the relative rejections of the tests based on
the White estimation does not converge to the asymptotic nominal level. The
relative rejection frequencies of the tests based on the HAC estimation are close
to 5% for large samples. This result is not surprising since from (3.6) the more
sophisticated HAC estimation method provides a valid theoretical framework
for the case of errors which are uncorrelated but not necessarily a martingale
difference. In this case the White estimation method have no sound theoretical
basis and is likely to lead to substantially distorted tests. As expected in Table 7
the standard tests are oversized even when the samples are large.

A further set of Monte Carlo experiments has been conducted to study the
ability of the tests under comparison to detect linear causality in mean in differ-
ent situations. To this aim we compare size-adjusted powers of the tests using
only processes of length T = 100. Results not reported here show that when
the samples are large the different tests have the same power. The errors are
iid Gaussian with variance Id in the standard case, and follow an ARCH model
given by (5.1) with parameters (k) and (m) in the weak case. In Table 8 we first
consider the case of bivariate AR(1) processes generated using parameter (a).
We see that the different tests have the same power in this simple case from
Table 8. In order to illustrate the case where p0 is large we considered bivari-
ate AR(3) processes generated by parameter (b) in Table 9. We also study the
power of the different tests when the dimension of the observed process is high
by considering four dimensional AR(1) processes obtained using parameter (h)
in Table 10. In this case the null hypothesis that (X2t, X3t, X4t)

′ is not linearly
causal in mean for (X1t) is tested. From Tables 9 and 10 it appears that the
tests with modified statistics built using HAC estimators LMms and Wms are
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Table 9

Empirical power (in %) of the different tests with p0 = 3, d = 2. The innovations are iid on
the left and follow an ARCH model on the right

a 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.5
LMs 14.1 47.1 80.2 95.7 10.7 33.3 63.4 84.8 94.8
LRs 14.0 47.1 79.7 95.5 11.2 33.2 63.2 84.6 94.9
Ws 14.0 47.0 79.1 95.2 11.3 32.5 63.0 84.2 94.8

LMms 8.9 27.2 60.6 84.1 8.1 16.0 25.2 33.2 45.4
Wms 10.5 33.2 67.4 89.5 8.7 18.3 34.6 54.6 73.1

L̃Mms 12.6 45.8 77.1 94.8 10.7 30.5 60.1 81.7 92.9

W̃ms 13.0 46.4 77.8 94.7 10.5 31.0 61.3 82.6 94.0

LMmd 14.1 47.1 80.2 95.7 10.7 33.3 63.4 84.8 94.8
LRmd 14.0 47.1 79.7 95.5 11.2 33.2 63.2 84.6 94.9
Wmd 14.0 47.0 79.1 95.2 11.3 32.5 63.0 84.2 94.8

L̃Mmd 14.1 47.1 80.2 95.7 10.7 33.3 63.4 84.8 94.8

L̃Rmd 14.0 47.1 79.7 95.5 11.2 33.2 63.2 84.6 94.9

W̃md 14.0 47.0 79.1 95.2 11.3 32.5 63.0 84.2 94.8

Table 10

Empirical power (in %) of the different tests with p0 = 1, d = 4 and iid innovations. The
innovations are iid on the left and follow an ARCH model on the right

a 0.1 0.15 0.2 0.3 0.1 0.15 0.2 0.3
LMs 35.5 69.1 90.2 99.9 28.5 61.2 84.0 98.5
LRs 35.2 69.5 90.2 99.9 28.7 61.6 83.8 98.4
Ws 35.6 70.2 91.0 99.9 28.5 61.8 83.9 98.3

LMms 17.4 32.8 44.0 60.3 16.3 26.0 38.4 53.6
Wms 20.2 38.6 56.6 87.5 18.2 32.1 50.4 78.7

L̃Mms 29.3 60.3 87.3 99.5 26.5 53.1 79.0 97.7

W̃ms 30.2 61.7 87.9 99.6 27.3 55.2 80.4 98.2

LMmd 35.5 69.1 90.2 99.9 28.5 61.2 84.0 98.5
LRmd 35.2 69.5 90.2 99.9 28.7 61.6 83.8 98.4
Wmd 35.6 70.2 91.0 99.9 28.5 61.8 83.9 98.3

L̃Mmd 35.5 69.1 90.2 99.9 28.5 61.2 84.0 98.5

L̃Rmd 35.2 69.5 90.2 99.9 28.7 61.6 83.8 98.4

W̃md 35.6 70.2 91.0 99.9 28.5 61.8 83.9 98.3

less powerful than the other tests. Finally we also note that in general the use
of the LMmd and L̃Mmd tests does not lead to a loss of power, when compared
to the other tests build in a similar way.

Some additional remarks on the results of the Monte Carlo experiments have
to be made. The Wald type tests are widely used to test the linear causality
in mean. However it emerges that the Lagrange Multiplier tests have a better
control of the error of first kind under the null, and do not suffer of loss of power
under the alternative when compared to the Wald tests. The better efficiency
of the LM tests is particulary marked when the number of parameters to be
estimated is high and can be explained by the fact that the constrained estima-
tors are used in the test statistic. Note also that we found similar results (not
reported here) to those given in Table 3 and 4 when the autoregressive order
used for the estimation of the VAR model is larger than the true autoregres-
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sive order p0. The choice of the correct lag length is important for the study of
linear Granger causality in mean relationship between variables, as pointed out
by [35] and [23]. Therefore if the errors are suspected to be weak, one should
use adapted tools for the choice of the autoregressive order, as for instance the
modified portmanteau tests proposed in [15], for a gain of efficiency when testing
the linear causality in mean. Nevertheless [15] pointed out that the use of the
standard portmanteau tests may lead to an overparameterization of the weak
VAR model. Thus if one use the standard tools for checking the autoregressive
order in the weak VAR framework, it emerges from our simulation results that
it is preferable to use the L̃Mmd test when the sample is small and the LMmd

when the sample is large.

6. Illustrative example

We consider an application to the daily log returns USD/BP and USD/NZD
from January 2, 1998 to September 4, 2008 to illustrate the robustness of the
different tests to the presence of nonlinearities. The length of the series is T =
2688. The analyzed data are plotted in Figure 2. Note that the linear causality
in mean concept is much used to analyze this kind of data. For instance [24]
test linear causality in mean of exchange rates and stock prices to investigate
the sources of the 1997 asian financial crisis. We test the null hypothesis that
USD/BP does not linearly cause in mean USD/NZD. For this purpose a VAR(1)
model is adjusted to the series. We get the following estimates of the parameters

(
nzt
bpt

)
=

(
−0.028[0.06] 0.073[0.06]
−0.001[0.01] 0.016[0.02]

)(
nzt−1

bpt−1

)
+

(
ǫ̂1t
ǫ̂2t

)
(6.1)

where the USD/NZD and USD/BP at the date t are respectively denoted by
nzt and bpt. The standard deviations of the estimates computed using the result
(3.4) are into brackets. Here we can note that the estimated parameters are not
significantly different from zero.

We use standard Box-Pierce and Ljung-Box portmanteau tests to check the
adequacy of the VAR(1) model (6.1). Modified Box-Pierce and Ljung-Box port-

Fig 2. The daily log returns of the exchange rates of USD to one NZD on the left, and USD to
one BP on the right from 01/02/1998 to 09/04/2008 (T=2688). Data source: The research
division of the federal reserve bank of St. Louis, www.research.stlouisfed.org .

www.research.stlouisfed.org
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Fig 3. Autocorrelations of the first component of the residuals of the VAR(1) model adjusted
to the analyzed data. The left graphic represent the autocorrelations of the residuals and the
right the autocorrelations of the squared residuals. The horizontal lines about zero represent
the approximate 5% significance limits for the sample autocorrelations (that is ±1.96/

√
T

with T = 2688).

Table 11

The p-values (in%) of the modified and standard causality tests obtained for the test of the
linear causality in mean from the returns of daily the exchange rates of USD to one BP to

the returns of the daily exchange rates of USD to one NZD

LRs 2.05
LRmd 18.79

L̃Rmd 16.50
Ws 3.21
Wms 22.32
Wmd 22.32

W̃ms 19.91

W̃md 19.91
LMs 1.23
LMms 15.49
LMmd 15.49

L̃Mms 13.37

L̃Mmd 13.37

manteau tests developed in the framework of weak VAR models in [15] are also
considered. Since the results for the Box-Pierce and Ljung-Box tests are similar,
we only reported the results for the Box-Pierce tests. From Table 13 we can
remark that the p-values of the different portmanteau tests are far from zero.
We also considered the autocorrelations of the residuals. In order to save space,
we only plotted the autocorrelations of the first component of the residuals in
Figure 3. We can remark that the autocorrelations are inside or not much larger
than the 5% significance limits. Then from these results, it appears that the
weak VAR(1) model cannot be rejected. However considering the first autocor-
relation of the first component of the squared residuals in Figure 3, the standard
iid assumption for the error process have to be rejected. This is in accordance
with the fact that it is commonly admitted that financial series often exhibit
nonlinearities.

Now we turn to the study of the linear causality in mean for the analyzed
data. The different causality tests considered in this paper are applied. Table 11
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Table 12

The tests statistics obtained using the analyzed data

LR test statistic QLR 5.37
Standard Wald test statistic QWS 4.60
Modified Wald test statistic QW 1.48

Modified Wald test statistic Q̃W 1.65
Standard LM test statistic QLMS 6.27
Modified LM test statistic QLM 2.02

Modified LM test statistic Q̃LM 2.25

Table 13

The p-values (in %) and test statistics of the modified and standard Box-Pierce portmanteau
tests for the VAR(1) model adjusted to the analyzed data. The number of autocorrelations

used is m

m = 3 m = 6 m = 12 m = 18
Box-Pierce statistics 13.54 25.39 49.90 75.40

p-value of the standard Box-Pierce test 9.46 18.69 25.04 25.14
p-value of the modified Box-Pierce test 11.97 23.35 29.83 30.37

displays the p-values of the tests. First remark that the p-values of the modified
tests are far from zero. According to these results, the hypothesis that USD/BP
does not linearly cause in mean USD/ NZD cannot be rejected. Note that the
order q given in (3.6) is chosen equal to one using the AIC criterion. This explain
that the p-values of the tests based on the HAC estimation are different from
those of the tests based on the White estimation. However since the p-values
of the standard tests are very small, the null hypothesis is clearly rejected by
the LMs, LRs and Ws tests. For the Wms and LMms tests these contradictory
results can be explained by the fact that the modified and standard statistics
are very different in Table 12. Similar comments can be made for the tests with
modified distribution when comparing Λ̂Ξ̂Λ̂, Λ̂Ξ̃Λ̂ and Ĵ−1 (not reported here).
In view of the results of our Monte Carlo experiments it seems likely that the
standard tests detected the nonlinear dynamics of the series as linear causality
in mean. In addition note that the log returns of such systems of exchange rates
should be uncorrelated in theory.

7. Conclusion

In this paper we considered the problem of testing the linear causality in mean
in situations where the dimension is high or the autoregressive order is large.
In general the practitioners consider the standard Wald test for the analysis of
linear causality in mean when the errors are suspected to be iid. Wald tests
with corrected statistics are used if one suspect the presence of nonlinearities in
the error process. It appears that the standard Wald test poorly perform when
the number of estimated parameters is high. Hence we considered standard LM
tests and found that such tests improve the analysis of the linear causality in
mean. However in accordance to with earlier studies, we also found that the
standard tests are unable to distinguish between nonlinear temporal dynamics
and linear causality in mean. Concerning the Wald tests with modified statistics,
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it also emerges that this kind of tests poorly perform when the dimension is
high or the autoregressive order is large in small samples. We proposed LM
tests with modified statistics which give some improvement when compared to
the Wald tests with modified statistics. Nevertheless it appears that the use of
corrected statistics does not provide satisfactory results when the number of
parameters is high. Therefore Wald, LM and LR tests with standard statistics
but modified critical values evaluated using HAC andWhite variance corrections
were introduced. It is found that the tests with modified distribution have better
results than the tests with modified statistics when the dimension is high or
the autoregressive order is large. For this kind of tests we also found that the
LM tests give significant improvements when compared to the Wald and LR
tests. This can be explained by the fact that when the dimension is high or the
autoregressive order is large, the number of parameters to estimate is relatively
high for the Wald and LR tests, while we only use the constrained estimator for
the LM test. Note also that the tests with modified distribution are built taking
into account for nonlinear dynamics in the error process contrary to the standard
tests. Thus when the sample is small we recommend to use the standard LM test
in the iid case when the autoregressive order is large or when the dimension is
high. If the existence of temporal dynamics is suspected and the sample is small,
it is preferable to use the LM test with modified distribution based on the White
variance correction due to its relative simplicity. However the more sophisticated
tests based on HAC correction have a larger theoretical basis than the standard
tests or the tests based on the White estimation method. Then it is preferable
to use the LM test based on HAC correction with modified distribution when
we have a large sample. More generally note that practitioners are likely to use
the Wald test to analyze parameter restrictions in models. Similarly corrections
on the test statistics are commonly used when needed. Therefore when applied
to other topics, the approaches presented in this paper can potentially give
improvements for the analysis of time series.

Appendix

Proof of Theorem 4.1. To prove the result concerning the statistic QLMS , using
a Taylor expansion about θ0 and from the consistency of Σ̂ǫ, we write

0 = T− 1

2

∂L(θ̂, Σ̂ǫ)

∂θ
= T− 1

2

∂L(θ0,Σǫ)

∂θ
− JT

1

2 (θ̂ − θ0) + op(1). (A.1)

Similarly under the null hypothesis we have

T− 1

2

∂L(θ̂c, Σ̂c
ǫ)

∂θ
= T−1

2

∂L(θ0,Σǫ)

∂θ
− JT

1

2 (θ̂c − θ0) + op(1), (A.2)

Note that θ̂c and Σ̂c
ǫ maximize the expression

L(θ,Σ) − λ′Rθ,
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where λ is a vector of dimension pd1d2 (see [27], p 671). First order condition
give

R′λ̂ =
∂L(θ̂c, Σ̂c

ǫ)

∂θ
and Rθ̂c = 0. (A.3)

In addition under the null hypothesis we have Rθ̂c = Rθ0 = 0, so that from
(3.4) we write

T
1

2R{θ̂ − θ̂c} = T
1

2R{θ̂ − θ0} ⇒ N (0, RJ−1IJ−1R′). (A.4)

Using (A.3) and subtracting (A.2) from (A.1) we obtain

RJ−1R′T− 1

2 λ̂ = RJ−1T− 1

2

∂L(θ̂c, Σ̂c
ǫ)

∂θ
= T

1

2R(θ̂ − θ̂c) + op(1). (A.5)

From (A.3) we also have RR′λ̂ = λ̂ = R
∂L(θ̂c,Σ̂c

ǫ))
∂θ . Then using (A.4) and (A.5)

it follows that

T− 1

2R
∂L(θ̂c, Σ̂c

ǫ)

∂θ
= T−1

2 λ̂ ⇒ N (0, (RJ−1R′)−1(RJ−1IJ−1R′)(RJ−1R′)−1),

(A.6)
so that writing

T− 1

2 (RJ−1R′)
1

2RS = T− 1

2 λ̂ ⇒ N (0, (RJ−1R′)−
1

2 (RJ−1IJ−1R′)(RJ−1R′)−
1

2 )

we obtain the result for theQLMS statistic. The proof of the assertion concerning
the statistic QWS is a straightforward consequence of (3.4). To prove the result
concerning the statistic QLR, using again a Taylor expansion around θ0 we write

L(θ̂, Σ̂ǫ) = L(θ0,Σǫ) +
∂L(θ0,Σǫ)

∂θ′
(θ̂− θ0)−

T

2
(θ̂− θ0)

′J(θ̂− θ0)+ op(1), (A.7)

and

L(θ̂c, Σ̂ǫ) = L(θ0,Σǫ)+
∂L(θ0,Σǫ)

∂θ′
(θ̂c−θ0)−

T

2
(θ̂c−θ0)

′J(θ̂c−θ0)+op(1). (A.8)

Under the null hypothesis and subtracting (A.8) from (A.7) we obtain

QLR = 2
{
L(θ̂, Σ̂ǫ)− L(θ̂c, Σ̂c

ǫ)
}
= 2

∂L(θ0,Σǫ)

∂θ′
(θ̂ − θ̂c)

− T (θ̂ − θ0)
′J(θ̂ − θ0) + T (θ̂c − θ0)

′J(θ̂c − θ0) + op(1).

Recall that from (A.1) we have

T− 1

2

∂L(θ0,Σǫ)

∂θ
= T

1

2J(θ̂ − θ0) + op(1),

so that we write

QLR = 2
{
L(θ̂, Σ̂ǫ)− L(θ̂c, Σ̂c

ǫ)
}
= 2T (θ̂ − θ0)

′J(θ̂ − θ̂c)

− T (θ̂ − θ0)
′J(θ̂ − θ0) + T (θ̂c − θ0)

′J(θ̂c − θ0) + op(1). (A.9)
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Then writing the last term of (A.9) as follows

(θ̂c − θ0)
′J(θ̂c − θ0) = (θ̂c − θ̂ + θ̂ − θ0)

′J(θ̂c − θ̂ + θ̂ − θ0)

we obtain

QLR = T (θ̂ − θ̂c)′J(θ̂ − θ̂c).

Similarly to (A.5) we can write

J−1R′λ̂ = T (θ̂ − θ̂c) + op(1).

so that we have

QLR = T−1λ̂′RJ−1R′λ̂.

Then using (A.6) we obtain the result (4.1).

Proof of Theorem 4.2. The assertion concerning the statistic QW is a straight-
forward consequence of (3.4). From (A.6) it easy to see that the result concerning
the statistic QLM hold.
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