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perience the outcome of interest. One problem arising then is that it is
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sion analysis of the relationship between X and Y among the susceptibles
is no more straightforward. We develop a maximum likelihood estimation
procedure for this problem, based on the joint modeling of the binary re-
sponse of interest and the cure status. We investigate the identifiability
of the resulting model. Then, we establish the consistency and asymptotic
normality of the proposed estimator, and we conduct a simulation study to
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1. Introduction

Logistic regression is widely used to model binary response data in medical
studies. An example of a binary response variable is the infection status (infected
vs uninfected) with respect to some disease. A logistic regression model can be
used to investigate the relationship between the infection status and various
potential predictors. If Yi denotes the infection status for the i-th individual in
a sample of size n (Yi = 1 if the individual is infected, and Yi = 0 otherwise),
and Xi denotes the corresponding (p-dimensional, say) predictor, the logistic
regression model expresses the relationship between Yi and Xi in term of the
conditional probability P(Yi = 1|Xi) of infection, as:

log

(
P(Yi = 1|Xi)

1− P(Yi = 1|Xi)

)
= β′Xi,

where β ∈ R
p is an unknown parameter to be estimated. An extensive literature

has been devoted so far to statistical inference in logistic regression models. Es-
timation and testing procedures for this class of models are now well established
and are available in standard statistical softwares. In particular, the maximum
likelihood estimator of β is obtained by solving the following score equation:

n∑

i=1

Xi

(
Yi −

eβ
′
Xi

1 + eβ′Xi

)
= 0.

Asymptotic results (consistency and asymptotic normality) for this estimator
were given by Gouriéroux and Monfort [9] and Fahrmeir and Kaufmann [5],
among others. We refer the reader to Hosmer and Lemeshow [13] and Hilbe [12]
for detailed treatments and numerous examples.

In this paper, we consider the problem of estimation in the logistic regression
model with a cure fraction. In medical studies, it often arises that a proportion
of the study subjects cannot experience the outcome of interest. Such individ-
uals are said to be cured, or immune. The population under study can then be
considered as a mixture of cured and susceptible subjects, where a subject is
said to be susceptible if he would eventually experience the outcome of interest.
One problem arising in this setting is that it is usually unknown who are the
susceptible, and the cured subjects (unless the outcome of interest has been
observed). Consider, for example, the occurrence of infection from some disease
to be the outcome of interest. Then, if a subject is uninfected, the investiga-
tor usually does not know whether this subject is immune to the infection, or
susceptible albeit still uninfected.

Estimating a regression model with a cure fraction can be viewed as a zero-
inflated regression problem. Zero-inflation occurs in the analysis of count data
when the observations contain more zeros than expected. Failure to account
for these extra zeros is known to result in biased parameter estimates and in-
ferences. The regression analysis of count data with excess zeros has attracted
much attention so far. For example, Lambert [17] proposed the zero-inflated
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Poisson (ZIP) regression model for count data with many zeros. This was fur-
ther extended to a semiparametric ZIP regression model by Lam et al. [16]. We
refer to Dietz and Böhning [2] and Xiang et al. [23] for a review of various other
extensions of the ZIP model. Other popular models are the zero-inflated bino-
mial (ZIB) regression model (see, for example, Hall [11]), and the zero-inflated
negative binomial (ZINB) regression model (see, for example, Ridout et al. [22]).
Recently, Kelley and Anderson [15] proposed a zero-inflated proportional odds
model (ZIPO) for ordinal outcomes, when some individuals are not suscepti-
ble to the phenomenon being measured. Various other models and numerous
references can be found in Famoye and Singh [6] and Lee et al. [18].

In our paper, we consider the problem of estimating a logistic regression
model from binary response data with a cure fraction, when the cure proba-
bility is modeled by a logistic regression. This can be viewed as a zero-inflated
Bernoulli regression problem, where logistic link functions are used for both
the binary response of interest (the probability of infection, say) and the zero-
inflation probability (the probability of being cured). The literature on zero-
inflated models is extensive but to the best of our knowledge, the theoretical
and numerical issues related to the statistical inference in this model have not
been yet investigated. In this paper, we intend to fill this gap. We first inves-
tigate the identifiability question in this model. Then, we turn to the problem
of estimation. The estimator we propose is obtained by maximizing the joint
likelihood for the binary response of interest and the cure indicator. We prove
the almost sure asymptotic existence, the consistency, and the asymptotic nor-
mality of this estimator. Then, we investigate its finite-sample properties via
simulations.

The rest of this paper is organized as follows. In Section 2, we describe the
problem of logistic regression with a cure fraction, and we propose an estimation
method adapted to this setting. The proposed procedure is based on a joint
regression model for the binary response of interest and the cure indicator. In
Section 3, we investigate the identifiability of this model, and we state some
regularity conditions. In Section 4, we derive the asymptotic properties of the
resulting estimator. Section 5 describes a simulation study, where we numerically
investigate the small to large sample properties of this estimator. A real data
example illustrates the methodology. A discussion and some perspectives are
given in Section 6.

2. Logistic regression with a cure fraction

2.1. Notations and the model set-up

Let (Y1, S1,X1,Z1), . . . , (Yn, Sn,Xn,Zn) be independent and identically dis-
tributed copies of the random vector (Y, S,X,Z) defined on the probability
space (Ω,A,P). For every individual i = 1, . . . , n, Yi is a binary response vari-
able indicating say, the infection status with respect to some disease (that is,
Yi = 1 if the i-th individual is infected, and Yi = 0 otherwise), and Si is a
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binary variable indicating whether individual i is susceptible to the infection
(Si = 1) or immune (Si = 0). If Yi = 0, then the value of Si is unknown. Let
Xi = (1, Xi2, . . . , Xip)

′ and Zi = (1, Zi2, . . . , Ziq)
′ be random vectors of predic-

tors or covariates (both categorical and continuous predictors are allowed). We
shall assume in the following that the Xi’s are related to the infection status,
while the Zi’s are related to immunity. Xi and Zi are allowed to share some
components.

The logistic regression model for the infection status assumes that the con-
ditional probability P(Y = 1|Xi, Si) of infection is given by

log

(
P(Y = 1|Xi, Si)

1− P(Y = 1|Xi, Si)

)
= β1 + β2Xi2 + · · ·+ βpXip := β′Xi (1)

if {Si = 1}, and by

P(Y = 1|Xi, Si) = 0 (2)

if {Si = 0}, where β = (β1, . . . , βp)
′ ∈ R

p is an unknown regression parameter
measuring the association between potential predictors and the risk of infection
(for a susceptible individual).

The statistical analysis of infection data with model (1) includes estimation
and testing for β. Without immunity (that is, if Si = 1 for every i = 1, . . . , n),
inference on β from the sample (Y1,X1,Z1), . . . , (Yn,Xn,Zn) can be based on
the maximum likelihood principle. When immunity is present, deriving the max-
imum likelihood estimator of β is no longer straightforward: if Yi = 0, we do
not know whether {Si = 1}, so that (1) applies, or whether {Si = 0}, so that
(2) applies.

One solution is to consider every individual i such that {Yi = 0} as being
susceptible that is, to ignore a possible immunity of this individual. We may
however expect this method to produce biased estimates of the association of
interest (such a method will be evaluated in the simulation study described in
section 5). Therefore in this paper, we aim at providing an alternative estimation
procedure for β. This can be achieved if a model for immunity is available, as
is explained in the next section.

2.2. The proposed estimation procedure

A model for the immunity status is defined through the conditional probability
P(S = 1|Zi) of being susceptible to the infection. A common choice for this is the
logistic model (see, for example, Fang et al. [7] and Lu [19, 20] who considered
estimation in various survival regression models with a cure fraction):

log

(
P(S = 1|Zi)

1− P(S = 1|Zi)

)
= θ1 + θ2Zi2 + · · ·+ θqZiq := θ′Zi (3)

where θ = (θ1, . . . , θq)
′ ∈ R

q is an unknown regression parameter.
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Remark 2.1. We note that the model defined by (1)-(2)-(3) can be viewed as
a zero-inflated Bernoulli regression model, with logit links for both the binary
response of interest and the zero-inflation component. As far as we know, no
theoretical investigation of this model has been undertaken yet. Such a work is
carried out in the following.

From (1), (2), and (3), a straightforward calculation yields that

P(Y = 1|Xi,Zi) =
eβ

′
Xi+θ

′
Zi

(1 + eβ′Xi)(1 + eθ′Zi)
.

Let ψ := (β′, θ′)′ denote the unknown k-dimensional (k = p+ q) parameter in
the conditional distribution of Y given Xi and Zi. ψ includes both β (considered
as the parameter of interest) and θ (considered as a nuisance parameter). Now,
the likelihood for ψ from the independent sample (Yi, Si,Xi,Zi) (i = 1, . . . , n)
(where Si is unknown when Yi = 0) is as follows:

Ln(ψ) =

n∏

i=1





[
eβ

′
Xi+θ

′
Zi

(1 + eβ′Xi)(1 + eθ′Zi)

]Yi
[
1−

eβ
′
Xi+θ

′
Zi

(1 + eβ′Xi)(1 + eθ′Zi)

]1−Yi



 .

We define the maximum likelihood estimator ψ̂n := (β̂′
n, θ̂

′
n)

′ of ψ as the solution
(if it exists) of the k-dimensional score equation

l̇n(ψ) =
∂ln(ψ)

∂ψ
= 0, (4)

where ln(ψ) := logLn(ψ) is the log-likelihood function. In the following, we shall
be interested in the asymptotic properties of the maximum likelihood estimator
β̂n of β, considered as a sub-component of ψ̂n. We will however obtain consis-
tency and asymptotic normality results for the whole ψ̂n. Before proceeding, we
need to set some further notations.

2.3. Some further notations

Define first the (p× n) and (q × n) matrices

X =




1 1 · · · 1
X12 X22 · · · Xn2

...
...

. . .
...

X1p X2p · · · Xnp


 and Z =




1 1 · · · 1
Z12 Z22 · · · Zn2
...

...
. . .

...
Z1q Z2q · · · Znq


 ,

and let W be the (k × 2n) block-matrix defined as

W =

[
X 0pn
0qn Z

]
,
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where 0ab denotes the (a×b) matrix whose components are all equal to zero (for
any positive integer values a, b). Let also C(ψ) be the 2n-dimensional column
vector defined as

C(ψ) =
(
(Aβ(ψ)−Bβ(ψ))′, (Aθ(ψ)−Bθ(ψ))′

)′
,

where Aβ(ψ) = (Aβi (ψ))1≤i≤n, B
β(ψ) = (Bβi (ψ))1≤i≤n, A

θ(ψ) = (Aθi (ψ))1≤i≤n,
and Bθ(ψ) = (Bθi (ψ))1≤i≤n are n-dimensional column vectors with respective
elements

Aβi (ψ) =
1 + eθ

′
Zi

1 + eβ′Xi + eθ′Zi

Yi, Bβi (ψ) =
eβ

′
Xi+θ

′
Zi

(1 + eβ′Xi)(1 + eβ′Xi + eθ′Zi)
,

Aθi (ψ) =
1 + eβ

′
Xi

1 + eβ′Xi + eθ′Zi

Yi, Bθi (ψ) =
eβ

′
Xi+θ

′
Zi

(1 + eθ′Zi)(1 + eβ′Xi + eθ′Zi)
.

Then, simple algebra shows that the score equation can be rewritten as

l̇n(ψ) = WC(ψ) = 0.

If M = (Mij)1≤i≤a,1≤j≤b denotes some (a × b) matrix, we will denote by M•j

its j-th column (j = 1, . . . , b) that is, M•j = (M1j , . . . ,Maj)
′. Then, it will be

useful to rewrite the score vector as

l̇n(ψ) =
2n∑

j=1

W•jCj(ψ).

We shall further note l̈n(ψ) the (k × k) matrix of second derivatives of ln(ψ)
that is, l̈n(ψ) = ∂2ln(ψ)/∂ψ∂ψ

′. Let D(ψ) = (Dij(ψ))1≤i,j≤2n be the (2n× 2n)
block matrix defined as

D(ψ) =

[
D1(ψ) D3(ψ)
D3(ψ) D2(ψ)

]
,

where D1(ψ),D2(ψ), and D3(ψ) are (n×n) diagonal matrices, with i-th diagonal
elements (i = 1, . . . , n) respectively given by

D1,ii(ψ) =
eβ

′
Xi+θ

′
Zi

(1 + eβ′Xi)2(1 + eβ′Xi + eθ′Zi)
,

D2,ii(ψ) =
eβ

′
Xi+θ

′
Zi

(1 + eθ′Zi)2(1 + eβ′Xi + eθ′Zi)
,

D3,ii(ψ) =
eβ

′
Xi+θ

′
Zi

(1 + eβ′Xi)(1 + eθ′Zi)(1 + eβ′Xi + eθ′Zi)
.

Then, some algebra shows that l̈n(ψ) can be expressed as

l̈n(ψ) = −WD(ψ)W′.

Note that the size of C(ψ),W, and D(ψ) depends on n. However, in order to sim-
plify notations, n will not be used as a lower index for these vector and matrices.
In the next section, we investigate the question of parameter identifiability in
model (1)-(2)-(3).
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3. Identifiability and regularity conditions

We first state some regularity conditions that will be needed to ensure identifi-
ability and the asymptotic results in Section 4:

C1 The covariates are bounded that is, there exist compact sets F ⊂ R
p and

G ⊂ R
q such that Xi ∈ F and Zi ∈ G for every i = 1, 2, . . . For every

i = 1, 2, . . ., j = 2, . . . , p, k = 2, . . . , q, var[Xij ] > 0 and var[Zik] > 0. For
every i = 1, 2, . . ., the Xij (j = 1, . . . , p) are linearly independent, and the
Zik (k = 1, . . . , q) are linearly independent.

C2 Let ψ0 = (β′
0, θ

′
0)

′ denote the true parameter value. β0 and θ0 lie in the
interior of known compact sets B ⊂ R

p and G ⊂ R
q respectively.

C3 The Hessian matrix l̈n(ψ) is negative definite and of full rank, for every n =
1, 2, . . . Let λn and Λn be respectively the smallest and largest eigenvalues
of WD(ψ0)W

′. There exists a finite positive constant c2 such that Λn/
λn < c2 for every n = 1, 2, . . .

C4 There exists a continuous covariate V which is in X but not in Z that is,
if βV and θV denote the coefficients of V in the linear predictors (1) and
(3) respectively, then βV 6= 0 and θV = 0. At a model-building stage, it is
known that V is in X.

The conditions C1, C2, C3 are classical conditions for identifiability and asymp-
totic results in standard logistic regression (see, for example, Gouriéroux and
Monfort [9] and Guyon [10]). The condition C4, which imposes some restrictions
on the covariates, is required for identifiability of ψ in the joint model (1)-(2)-(3)
(we may alternatively assume that the continuous covariate V is in Z but not in
X). In the following, we will assume that V is in X but not in Z, with βV := βl
for some l ∈ {2, . . . , p}, and for the i-th individual, we will denote Vi by Xil.
The condition C4 is discussed in greater details in the following two remarks.

Remark 3.1. We may relate the identifiability issue in model (1)-(2)-(3) to the
problem of identifiability of mixtures of logistic regression models, which was
investigated by Follmann and Lambert [8]. Follmann and Lambert [8] consid-
ered the case where there is a finite number c of components in the mixture (we
consider here the case where c = 2, with one degenerate component) and the
mixing probabilities are constant (here, the mixing probabilities given by (3)
are allowed to depend on covariates). The authors have shown that finite mix-
tures of logistic regressions are identifiable provided that the number of unique
covariate combinations values is sufficiently large. C4 can be viewed as a suffi-
cient condition for achieving the same kind of requirement. A similar condition
appears in Kelley and Anderson [15].

To understand C4, note that if Xi = Zi, then exchanging the parameters β
and θ in (1) and (3) yields the same likelihood value Ln(ψ), which is a cause of
model non-identifiability. A similar remark holds if we invert the linear predic-
tors β′Xi and θ

′Zi. The condition C4 evacuates these problems.

First, by asking one of the covariates to be significant in one and only one
linear predictor, C4 prevents β′X and θ′Z from being of the same form, and
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the parameters are thus not exchangeable. Secondly, by assuming that we know,
prior to model fitting, that there exists a covariate V which is in X but not in Z,
C4 will force each linear predictor to be attached to the correct corresponding
model (1) or (3).

These facts are illustrated in a web-based supplementary document available
at the following address: http://perso.univ-lr.fr/jfdupuy/supplementary.pdf.
There, we provide the results of a simulation study which investigates numeri-
cally the identifiability of model (1)-(2)-(3). For each of the models considered
in this study, we assume that C4 is satisfied: the linear predictors β′Xi and
θ′Zi share three covariates (one is continuous, two are discrete), and an addi-
tional continuous covariate is included in Xi. Using the procedure described
in Section 2, maximum likelihood estimates are obtained for β and θ, and are
averaged over N = 1000 samples (we considered several combinations of sample
size, proportion of immunes, proportion of infected among the susceptibles).
Both parameters β and θ appear to be identifiable (the averaged estimates ap-
pear to be close to the true parameters, including those corresponding to the
three shared covariates).

Remark 3.2. The condition C4 does not appear to be too restrictive in practice.
Consider the example of the transmission of some disease by breastfeeding. If
every child in the sample is breastfeeded, it can be expected that the length (in
days, say) of the breastfeeding period (a continuous covariate) will influence the
probability of infection, while the susceptibility probability will rather depend on
risk factors such as say, the mother’s infection status. It is also worth noting that
the consequences of C4, in terms of model-building, are rather mild. At a model-
building stage, we may be tempted to incorporate all available covariates in both
linear predictors (1) and (3), and to remove irrelevant factors by using backward
elimination. The condition C4 slightly restricts this fitting strategy, by imposing
that one relevant continuous covariate is incorporated in one (and only one)
linear predictor. This should often be doable in practice, since the statistician
often gets some prior knowledge (from the clinicians, epidemiologists, . . . ) about
the dataset to be analyzed.

We are now in position to prove the following result:

Theorem 3.3 (Identifiability). Under the conditions C1-C4, the model (1)-(2)-
(3) is identifiable; that is, L1(ψ) = L1(ψ

∗) almost surely implies ψ = ψ∗.

Proof of Theorem 3.3. Suppose that L1(ψ) = L1(ψ
∗) almost surely. Under C1

and C2, there exists a positive constant c1 such that for every x ∈ F , z ∈ G,
and ψ ∈ B × G, c1 < P(Y = 1|x, z) < 1− c1. Thus we can find a ω ∈ Ω, outside
the negligible set where L1(ψ) 6= L1(ψ

∗), and such that Y (ω) = 1 when X = x

and Z = z. For this ω, L1(ψ) = L1(ψ
∗) becomes

eβ
′
x+θ′z

(1 + eβ′x)(1 + eθ′z)
=

eβ
∗′
x+θ∗

′
z

(1 + eβ∗′x)(1 + eθ∗
′
z)
.

http://perso.univ-lr.fr/jfdupuy/supplementary.pdf


468 A. Diop et al.

This can be rewritten as

1 + e−β
′
x

1 + e−β∗′x
=

1 + e−θ
∗′
z

1 + e−θ′z
. (5)

Now, under the condition C4, taking the partial derivative of both sides of (5)
with respect to the l-th component of x (Xil is a continuous covariate) yields

−βle−β
′
x(1 + e−β

∗′
x) + β∗

l e
−β∗′

x(1 + e−β
′
x)

(1 + e−β∗′x)2
= 0

since the right-hand-side of (5) does not depend on x. Thus, it follows that

βl
β∗
l

=
1 + eβ

′
x

1 + eβ∗′x
.

Differentiating both sides of this equality with respect to the l-th component
of x further yields (β − β∗)′x = 0, which implies that β = β∗ under C1. It
remains to show that θ = θ∗, which reduces to the identifiability problem in the
standard logistic regression model. We have that θ = θ∗ under C1 (see Guyon
[10] for example), which concludes the proof.

We now turn to the asymptotic theory for the proposed estimator.

4. Asymptotic theory

In this section, we establish rigorously the existence, consistency and asymptotic
normality of the maximum likelihood estimator β̂n of β in model (1), obtained
from a sample of binary response data with a cure fraction. In the sequel, the
space Rk of k-dimensional (column) vectors will be provided with the Euclidean
norm, and the space R

k×k of (k × k) real matrices will be provided with the
spectral norm (we will use the same notation ‖·‖ for both). We first prove the
following result:

Theorem 4.1 (Existence and consistency). Under the conditions C1-C3, the

maximum likelihood estimator ψ̂n exists almost surely as n→ ∞, and converges
almost surely to ψ0, if and only if λn tends to infinity as n→ ∞.

Proof of Theorem 4.1. The principle of the proof is similar to Gouriéroux and
Monfort [9] but the technical details are different. Three lemmas are needed.
The first lemma essentially provides an intermediate technical result. Its proof
is postponed to the appendix.

Lemma 4.2. Let φn : Rk −→ R
k be defined as

φn(ψ) = ψ + (WD(ψ0)W
′)−1 l̇n(ψ).
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Then there exists an open ball B(ψ0, r) (with r > 0) such that φn satisfies the
Lipschitz condition on B(ψ0, r) that is,

‖φn(ψ1)− φn(ψ2)‖ ≤ c ‖ψ1 − ψ2‖ for all ψ1, ψ2 ∈ B(ψ0, r), (6)

and 0 < c < 1.

Lemma 4.3. The maximum likelihood estimator ψ̂n exists almost surely as
n→ ∞, and converges almost surely to ψ0, if and only if (WD(ψ0)W

′)−1 l̇n(ψ0)
converges almost surely to 0.

Proof of Lemma 4.3. We first prove that the condition is sufficient. Thus, we
assume that (WD(ψ0)W

′)−1 l̇n(ψ0) converges almost surely to 0.
Define ηn(ψ) = ψ−φn(ψ) = −(WD(ψ0)W

′)−1 l̇n(ψ) and let ǫ be an arbitrary
positive value. Then for almost every ω ∈ Ω, there exists an integer value n(ǫ, ω)
such that for any n ≥ n(ǫ, ω), ‖ηn(ψ0)‖ ≤ ǫ or equivalently, 0 ∈ B(ηn(ψ0), ǫ).
In particular, let ǫ = (1 − c)s with 0 < c < 1 such as in Lemma 4.2. Since φn
satisfies the Lipschitz condition (6) (by Lemma 4.2), the lemma 2 of Gouriéroux
and Monfort [9] ensures that there exists an element of B(ψ0, s) (let denote this

element by ψ̂n) such that ηn(ψ̂n) = 0 that is,

(WD(ψ0)W
′)−1 l̇n(ψ̂n) = 0.

The condition C3 implies that l̇n(ψ̂n) = 0 and that ψ̂n is the unique maximizer
of ln. To summarize, we have shown that for almost every ω ∈ Ω and for
every s > 0, there exists an integer value n(s, ω) such that if n ≥ n(s, ω), then

the maximum likelihood estimator ψ̂n exists, and ‖ψ̂n − ψ0‖ ≤ s (that is, ψ̂n
converges almost surely to ψ0).

We now prove that the condition that ηn(ψ0) converges almost surely to 0 is
necessary. We use a proof by contradiction.

Assume that as n → ∞, ψ̂n exists and converges almost surely to ψ0, but
ηn(ψ0) does not converge almost surely to 0. Then there exists a set Ω̃ ⊂ Ω

with P(Ω̃) > 0, such that if ω ∈ Ω̃, there exists ǫ > 0 such that for every
m ∈ N, there exists n ≥ m with ‖ηn(ψ0)‖ > ǫ. Now, let t = ǫ

d(1+c) , with d > 1

sufficiently large so that t ≤ r, where r is such as in Lemma 4.2. Then for every
ψ ∈ B(ψ0, t), the following holds:

‖ηn(ψ0)− ηn(ψ)‖ = ‖ψ0 − φn(ψ0)− ψ + φn(ψ)‖

≤ ‖ψ0 − ψ‖+ ‖φn(ψ)− φn(ψ0)‖

≤ t(1 + c) =
ǫ

d
,

where the second to third line follows by Lemma 4.2. Therefore, for every ψ ∈
B(ψ0, t),

ǫ < ‖ηn(ψ0)‖ ≤ ‖ηn(ψ0)− ηn(ψ)‖+ ‖ηn(ψ)‖ ≤ ‖ηn(ψ)‖ +
ǫ

d
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and we conclude that for every ψ ∈ B(ψ0, t), ‖ηn(ψ)‖ > ǫ(1 − 1
d
) > 0. Since

ηn(ψ̂n) = 0, ψ̂n cannot belong to B(ψ0, t) for large n, which implies that ψ̂n
does not converge almost surely to ψ0. This is the desired contradiction.

Lemma 4.4. (WD(ψ0)W
′)−1 l̇n(ψ0) converges almost surely to 0 if and only if

λn tends to infinity as n→ ∞.

Proof of Lemma 4.4. We first prove that the condition is sufficient that is, we
assume that λn tends to infinity as n → ∞. Define the (2n × k) matrix V =

(D(ψ0))
1

2W
′ and the 2n-dimensional vector U = (D(ψ0))

− 1

2C(ψ0). Then

E[U ] = 0 and var[U ] = I2n, (7)

where I2n denotes the identity matrix of order 2n. To see this, note that

E[U ] = E[E[(D(ψ0))
− 1

2C(ψ0)|X,Z]]

= E[(D(ψ0))
− 1

2E[C(ψ0)|X,Z]]

= E[(D(ψ0))
− 1

2E[
(
(Aβ(ψ0)−Bβ(ψ0))

′, (Aθ(ψ0)−Bθ(ψ0))
′
)′
|X,Z]].

For every i = 1, . . . , n, E[Aβi (ψ0)−Bβi (ψ0)|X,Z]] = E[Aβi (ψ0)−Bβi (ψ0)|Xi,Zi]]
by independence between the individuals, and

E[Aβi (ψ0)−Bβi (ψ0)|Xi,Zi]] =
1 + eθ

′
0
Zi

1 + eβ
′
0
Xi + eθ

′
0
Zi

P(Yi = 1|Xi,Zi)−Bβi (ψ0)

= Bβi (ψ0)−Bβi (ψ0)

= 0.

Similarly, E[Aθi (ψ0)−Bθi (ψ0)|X,Z]] = 0 for every i = 1, . . . , n and thus, E[C(ψ0)|
X,Z]] = 0 and E[U ] = 0.

Next, var[U ] = E[var[U |X,Z]] since E[U |X,Z] = 0. Moreover,

var[U |X,Z] = (D(ψ0))
− 1

2 var[C(ψ0)|X,Z](D(ψ0))
− 1

2 ,

with var[C(ψ0)|X,Z] = var[
(
Aβ(ψ0)

′, Aθ(ψ0)
′
)′
|X,Z] a (2n × 2n) block-matrix

of the form [
V1 V3

V3 V2

]

where V1,V2, and V3 are (n× n) matrices. The i-th diagonal elements (i = 1,

. . . , n) of V1,V2, and V3 are var[A
β
i (ψ0)|X,Z], var[A

θ
i (ψ0)|X,Z], and cov[Aβi (ψ0),

Aθi (ψ0)|X,Z] respectively. Similar calculations as above yield: var[Aβi (ψ0)|X,Z] =

D1,ii(ψ0), var[A
θ
i (ψ0)|X,Z] =D2,ii(ψ0), and cov[Aβi (ψ0), A

θ
i (ψ0)|X,Z] =D3,ii(ψ0).

Note also that V1,V2, and V3 are diagonal matrices, by independence between
the individuals. It follows that var[C(ψ0)|X,Z] = D(ψ0) and thus, var[U |X,Z] =
I2n and var[U ] = I2n.
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By Gouriéroux and Monfort [9] (proof of Lemma 4), if (7) holds, Λn/λn < c2
for every n = 1, 2, . . ., and λn tends to infinity as n→ ∞, then

(V′
V)−1

V
′U

a.s.
−→ 0 as n→ ∞

that is, (WD(ψ0)W
′)−1 l̇n(ψ0) converges almost surely to 0.

We now prove that the condition is necessary. Assume that λn does not tend
to infinity as n → ∞. By Gouriéroux and Monfort [9] (proof of Lemma 4),
(V′

V)−1
V

′U (and therefore (WD(ψ0)W
′)−1 l̇n(ψ0)) cannot converge to 0, which

concludes the proof.

Finally, Theorem 4.1 follows by Lemma 4.3 and Lemma 4.4.

We now turn to the convergence in distribution of the proposed estimator,
which is stated by the following theorem:

Theorem 4.5 (Asymptotic normality). Assume that the conditions C1-C3 hold

and that ψ̂n converges almost surely to ψ0. Let Σ̂n = WD(ψ̂n)W
′ and Ik denote

the identity matrix of order k. Then Σ̂
1

2

n (ψ̂n − ψ0) converges in distribution to
the Gaussian vector N (0, Ik).

Proof of Theorem 4.5. A Taylor expansion of the score function is as

0 = l̇n(ψ̂n) = l̇n(ψ0) + l̈n(ψ̃n)(ψ̂n − ψ0)

where ψ̃n lies between ψ̂n and ψ0, and thus l̇n(ψ0) = −l̈n(ψ̃n)(ψ̂n − ψ0). Let

Σ̃n := −l̈n(ψ̃n) = WD(ψ̃n)W
′ and Σn,0 := WD(ψ0)W

′. Now,

Σ̂
1

2

n (ψ̂n − ψ0) =
[
Σ̂

1

2

n Σ̃
− 1

2

n

] [
Σ̃

− 1

2

n Σ
1

2

n,0

]
Σ

− 1

2

n,0

(
Σ̃n(ψ̂n − ψ0)

)
. (8)

The two terms in brackets in (8) converge almost surely to Ik. To see this, we

show for example that
∥∥Σ̃− 1

2

n Σ
1

2

n,0 − Ik
∥∥ a.s.
−→ 0 as n→ ∞. First, note that

∥∥∥Σ̃− 1

2

n Σ
1

2

n,0 − Ik

∥∥∥ ≤ Λ
1

2

n

∥∥∥Σ̃− 1

2

n

∥∥∥
∥∥∥Λ− 1

2

n

(
Σ

1

2

n,0 − Σ̃
1

2

n

)∥∥∥ , (9)

and

Λ−1
n

∥∥∥Σn,0 − Σ̃n

∥∥∥ = Λ−1
n

∥∥∥W(D(ψ0)− D(ψ̃n))W
′
∥∥∥ .

Note also that ψ̃n converges almost surely to ψ0 (that is, for every ω ∈ Ω̆, where
Ω̆ ⊂ Ω and P(Ω̆) = 1). Let ω ∈ Ω̆. By the same arguments as in the proof
of Lemma 4.2, for every ǫ > 0, there exists a positive n(ǫ, ω) ∈ N such that

if n ≥ n(ǫ, ω), then Λ−1
n

∥∥W(D(ψ0) − D(ψ̃n))W
′
∥∥ ≤ ǫ. Hence Λ−1

n

∥∥W(D(ψ0) −

D(ψ̃n))W
′
∥∥ converges almost surely to 0. By continuity of the map x 7→ x

1

2 ,
∥∥Λ− 1

2

n

(
Σ

1

2

n,0−Σ̃
1

2

n

)∥∥ converges also almost surely to 0. Moreover, for n sufficiently

large, there exists a positive constant c4 <∞ such that almost surely,
∥∥Σ̃− 1

2

n

∥∥ ≤
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c4λ
− 1

2

n . It follows from (9) and the condition C3 that
∥∥Σ̃− 1

2

n Σ
1

2

n,0− Ik
∥∥ converges

almost surely to 0. The almost sure convergence to 0 of
∥∥Σ̂

1

2

n Σ̃
− 1

2

n − Ik
∥∥ follows

by similar arguments.

It remains for us to show that Σ
− 1

2

n,0 (Σ̃n(ψ̂n−ψ0)) converges in distribution to

N (0, Ik), or equivalently, that (V
′
V)−

1

2V
′U converges in distribution toN (0, Ik).

Following Eicker [4], this convergence holds if we can check the following condi-
tions: i) max1≤i≤2n Vi•Σ

−1
n,0V

′
i• −→ 0 as n→ ∞, ii) sup1≤i≤2n E[U

2
i 1{|Ui|>α}] −→

0 as α→ ∞, iii) inf1≤i≤2n E[U
2
i ] > 0, where Vi• and Ui respectively denote the

i-th raw of V and the i-th component of U , i = 1, . . . , 2n. Condition i) follows
by noting that

0 ≤ max
1≤i≤2n

Vi•Σ
−1
n,0V

′
i• ≤ max

1≤i≤2n
‖Vi•‖

2 ∥∥Σ−1
n,0

∥∥ = max
1≤i≤2n

1

λn
‖Vi•‖

2
,

and that ‖Vi•‖ is bounded above, by C1 and C2. Moreover, 1
λn

tends to 0 as

n→ ∞, since ψ̂n converges almost surely to ψ0. Condition ii) follows by noting
that the components Ui of U are bounded under C1 and C2. Finally, for every
i = 1, . . . , 2n, E[U2

i ] = var[Ui] since U is centered. We have proved (see Lemma
4.4) that var[U ] = I2n, thus for every i = 1, . . . , 2n, var[Ui] = 1, and finally,
inf1≤i≤2n E[U

2
i ] = 1 > 0.

To summarize, we have proved that Σ
− 1

2

n,0 (Σ̃n(ψ̂n − ψ0)) converges in distri-
bution to N (0, Ik). This result, combined with Slutsky’s theorem and equation

(8), implies that Σ̂
1

2

n (ψ̂n − ψ0) converges in distribution to N (0, Ik).

5. A simulation study and real data example

5.1. Study design

In this section, we investigate the numerical properties of the maximum likeli-
hood estimator β̂n, under various conditions. The simulation setting is as follows.
We consider the following models for the infection status:

{
log
(

P(Y=1|Xi,Si)
1−P(Y=1|Xi,Si)

)
= β1 + β2Xi2 if Si = 1

P(Y = 1|Xi, Si) = 0 if Si = 0

and the immunity status:

log

(
P(S = 1|Zi)

1− P(S = 1|Zi)

)
= θ1 + θ2Zi2,

where Xi2 is normally distributed with mean 0 and variance 1, and Zi2 is nor-
mally distributed with mean 1 and variance 1. An i.i.d. sample of size n of the
vector (Y, S,X,Z) is generated from this model, and for each individual i, we
get a realization (yi, si,xi, zi), where si is considered as unknown if yi = 0. A
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maximum likelihood estimator β̂n of β = (β1, β2) is obtained from this incom-
plete dataset by solving the score equation (4), using the optim function of the
software R. An estimate is also obtained for θ = (θ1, θ2), but θ is not the primary

parameter of interest hence we only focus on the simulation results for β̂n.
The finite-sample behavior of the maximum likelihood estimator β̂n was as-

sessed for several sample sizes (n = 100, 500, 1000, 1500) and various values for
the percentage of immunes in the sample, namely 25%, 50%, and 75%. The case
where it is known that there are no immunes in the sample was also consid-
ered. In this case, there is no missing information about the infection status
and therefore, this case provides a benchmark for evaluating the performance
of the proposed estimation method. We also considered different values for the
proportion of infected individuals among the susceptibles. The desired propor-
tions of immunes and infected were obtained by choosing appropriate values for
the parameters β (the parameter of interest) and θ (the nuisance parameter).
The following values were considered for β: i) model M1: β = (−.8, 1) (using
these values, approximately 30% of the susceptibles are infected), ii) model M2:
β = (1, .7) (approximately 70% of the susceptibles are infected), iii) model M3:
β = (−.8, 0) (approximately 30% of the susceptibles are infected), iv) model
M4: β = (1, 0) (approximately 70% of the susceptibles are infected).

5.2. Results

For each configuration (sample size, percentage of immunes, percentage of in-
fected among susceptibles) of the design parameters, N = 1500 samples were
obtained. Based on these 1500 repetitions, we obtain averaged values for the esti-

mates of β1 and β2, which are calculated as N−1
∑N

j=1 β̂
(j)
1,n and N−1

∑N
j=1 β̂

(j)
2,n,

where β̂
(j)
n = (β̂

(j)
1,n, β̂

(j)
2,n) is the estimate obtained from the j-th simulated sam-

ple. For each of the parameters β1 and β2, we also obtain the empirical root
mean square and mean absolute errors, based on the N samples. When β2 6= 0
(respectively β2 = 0), we obtain the empirical power (respectively the empirical
size) of the Wald test at the 5% level for testing H0 : β2 = 0 (models M1 and
M2, see Tables 1 and 2) (respectively models M3 and M4, see Tables 1 and
2). The null hypothesis H0 : β2 = 0 is the hypothesis that the predictor X2

does not influence the risk of infection of susceptible individuals. The results
are summarized in Tables 1 and 2.

From these tables, it appears that the proposed maximum likelihood estima-
tor β̂n provides a reasonable approximation of the true parameter value, even
when the percentage of immunes is high. While the bias of β̂n stays limited,
its variability increases with the immune fraction, sometimes drastically when
the sample size is small. Consequently, when the sample size is small (n = 100)
and/or the immune proportion is very high (75%), the power of the Wald test
for nullity of the regression coefficient β2 can be low, compared to the case
where there are no immunes. But we note that for moderately large to large
sample sizes (n ≥ 500), the dispersion indicators and the power of the Wald
test indicate good performance of the maximum likelihood estimate, even when
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Table 1

Simulation results for models M1: β = (−.8, 1) and M3: β = (−.8, 0)

percentage of immunes in the sample
0% 25% 50% 75%

n β̂1,n β̂2,n β̂1,n β̂2,n β̂1,n β̂2,n β̂1,n β̂2,n

Model M1

100 -0.834 1.064 -0.773 1.114 -0.787 1.137 -0.750 0.917
(0.258) (0.301) (0.583) (0.412) (0.825) (0.603) (0.921) (0.858)
[0.202] [0.232] [0.465] [0.324] [0.657] [0.440] [0.784] [0.568]

0.965∗ 0.109∗ 0.096∗ 0.121∗

500 -0.807 1.012 -0.783 1.111 -0.788 1.129 -0.791 1.120
(0.107) (0.125) (0.320) (0.354) (0.428) (0.389) (0.707) (0.538)
[0.085] [0.099] [0.264] [0.227] [0.352] [0.270] [0.603] [0.407]

1∗ 0.985∗ 0.85∗ 0.267∗

1000 -0.801 1.004 -0.794 1.058 -0.798 1.060 -0.797 1.108
(0.077) (0.085) (0.241) (0.202) (0.310) (0.247) (0.683) (0.482)
[0.062] [0.068] [ 0.201] [0.147] [0.253] [0.178] [0.569] [0.354]

1∗ 1∗ 1∗ 0.567∗

1500 -0.805 1.003 -0.801 1.040 -0.799 1.040 -0.802 1.057
(0.061) (0.074) (0.210) (0.159) (0.277) (0.191) (0.600) (0.361)
[0.048] [0.059] [0.176] [0.119] [0.228] [0.141] [0.493] [0.276]

1∗ 1∗ 1∗ 0.861∗

Model M3

100 -0.815 -0.001 -0.721 -0.007 -0.734 0.000 -0.746 -0.004
(0.224) (0.229) (0.465) (1.341) (0.800) (2.109) (1.966) (3.258)
[0.177] [0.179] [0.377] [0.762] [0.636] [1.111] [1.516] [1.715]

0.052† 0.077† 0.069† 0.087†

500 -0.801 -0.001 -0.748 0.007 -0.750 0.001 -0.775 -0.006
(0.097) (0.099) (0.280) (0.415) (0.520) (0.469) (1.209) (0.711)
[0.078] [0.080] [0.241] [0.231] [0.422] [0.241] [1.007] [0.363]

0.041† 0.058† 0.052† 0.057†

1000 -0.803 -0.001 -0.759 0.008 -0.763 0.005 -0.793 0.005
(0.067) (0.066) (0.221) (0.237) ( 0.367) (0.266) (1.154) (0.312)
[0.053] [0.053] [0.182] [0.137] [0.299] [0.140] [0.911] [0.175]

0.042† 0.045† 0.037† 0.048†

1500 -0.801 0.000 -0.782 0.009 -0.784 0.003 -0.783 0.009
(0.053) (0.054) (0.208) (0.168) (0.328) (0.212) (1.149) (0.258)
[0.042] [0.043] [0.178] [0.099] [0.267] [0.102] [0.901] [0.144]

0.051† 0.048† 0.027† 0.039†

Note: n: sample size. (·): root mean square error. [·]: mean absolute error. ∗: empirical power
(†: empirical size) of the Wald test at the level 5% for testing H0 : β2 = 0. For each percentage
of immunes, the percentage of infected among the susceptibles is 30%. All results are based
on 1500 replicates.

the immune proportion is up to 50%. The level of the Wald test for nullity of
β2 is globally respected except, for every immune proportion, when the sample
size is small (n = 100).

We compare these results to the ones obtained from a “naive” method where:
i) we consider every individual i such that {Yi = 0} as being susceptible but
uninfected, that is we ignore the eventual immunity of this individual, ii) we
apply a usual logistic regression analysis to the resulting dataset. The results
of such “naive” analysis for model M1 are given in Table 3 (the results for
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Table 2

Simulation results for models M2: β = (1, .7) and M4: β = (1, 0)

percentage of immunes in the sample
0% 25% 50% 75%

n β̂1,n β̂2,n β̂1,n β̂2,n β̂1,n β̂2,n β̂1,n β̂2,n

Model M2

100 1.026 0.720 0.945 0.723 0.949 0.740 0.834 0.647
(0.246) (0.273) (0.780) (0.534) (0.988) (0.788) (1.549) (1.455)
[0.196] [0.215] [0.655] [0.376] [0.829] [0.555] [1.326] [0.933]

0.746∗ 0.132∗ 0.118∗ 0.088∗

500 1.003 0.712 1.098 0.717 1.112 0.721 0.840 0.652
(0.107) (0.115) (0.651) (0.247) (0.672) (0.279) (0.969) (0.534)
[0.086] [0.091] [0.518] [0.202] [0.534] [0.230] [0.802] [0.421]

1∗ 0.503∗ 0.418∗ 0.168∗

1000 1.003 0.707 1.078 0.711 1.096 0.719 0.842 0.657
(0.071) (0.082) (0.590) (0.215) (0.571) (0.224) (0.796) (0.439)
[0.057] [0.065] [0.428] [0.168] [0.441] [0.181] [0.670] [0.352]

1∗ 0.779∗ 0.675∗ 0.205∗

1500 1.001 0.701 1.035 0.705 1.069 0.709 0.887 0.655
(0.064) (0.065) (0.450) (0.163) (0.466) (0.177) (0.604) (0.312)
[0.050] [0.052] [0.344] [0.135] [0.358] [0.144] [0.502] [0.257]

1∗ 0.986∗ 0.926∗ 0.300∗

Model M4

100 1.030 0.001 1.110 0.007 1.154 0.017 0.913 -0.003
(0.233) (0.234) (0.852) (0.969) (1.211) (1.347) (1.775) (1.640)
[0.182] [0.187] [0.684] [0.587] [0.995] [0.792] [1.450] [0.865]

0.058
†

0.072
†

0.083
†

0.066
†

500 1.007 -0.005 1.105 0.020 1.123 0.054 0.915 -0.009
(0.103) (0.103) (0.609) (0.293) (0.690) (0.318) (0.817) (0.370)
[0.081] [0.082] [0.492] [0.180] [0.562] [0.208] [0.614] [0.215]

0.046
†

0.050
†

0.063
†

0.051
†

1000 1.003 0.000 1.091 -0.003 1.101 0.033 0.934 -0.003
(0.071) (0.070) (0.521) (0.198) (0.578) (0.210) (0.757) (0.256)
[0.057] [0.055] [0.437] [0.125] [0.455] [0.135] [0.600] [0.142]

0.051
†

0.045
†

0.042
†

0.039
†

1500 1.003 0.001 1.073 0.009 1.115 0.015 0.934 0.002
(0.057) (0.057) (0.480) (0.132) (0.501) (0.139) (0.633) (0.175)
[0.046] [0.046] [0.392] [0.087] [0.400] [0.104] [0.521] [0.109]

0.042
†

0.040
†

0.046
†

0.047
†

Note: ∗: empirical power (†: empirical size) of the Wald test at the level 5% for testing H0 :
β2 = 0. For each percentage of immunes, the percentage of infected among the susceptibles is
70%.

models M2,M3,M4 yield similar observations and thus, they are not given
here. However, the complete simulation study is available from the web-based
supplementary document mentioned above).

From this table, it appears that ignoring the immunity present in the sam-
ple results in strongly biased estimates of β. The bias of the intercept estimate
increases with the immune proportion. At the same time, the estimate of the
regression coefficient β2 is biased towards 0 for all values of the immune percent-
age and sample size. This results in a very low power for the Wald test of nullity
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Table 3

“Naive” analysis of model M1: β = (−.8, 1)

percentage of immunes in the sample
25% 50% 75%

n β̂1,n β̂2,n β̂1,n β̂2,n β̂1,n β̂2,n

100 -1.154 0.023 -1.632 0.017 -2.410 0.001
( 0.428) (1.011) (0.879) (1.025) (1.776) (1.071)
[0.365] [0.977] [0.833] [0.983] [1.610] [1.003]

0.049∗ 0.057∗ 0.052∗

500 -1.128 0.087 -1.594 0.042 -2.305 0.002
(0.344) (0.915) (0.803) (0.963) (1.513) (1.010)
[0.328] [0.913] [0.794] [0.958] [1.505] [0.997]

0.049∗ 0.051∗ 0.053∗

1000 -1.131 0.059 -1.590 0.050 -2.297 0.033
(0.338) (0.941) (0.795) (0.952) (1.501) (0.970)
[0.330] [0.940] [0.790] [0.950] [1.497] [0.966]

0.053∗ 0.051∗ 0.054∗

1500 -1.127 0.050 -1.591 0.046 -2.302 0.039
(0.332) (0.953) (0.794) (0.955) (1.504) (0.962)
[0.327] [0.952] [0.791] [0.954] [1.502] [0.960]

0.051∗ 0.050∗ 0.053∗

Note: ∗: empirical power of the Wald test at the level 5% for testing H0 : β2 = 0. For each
percentage of immunes, the percentage of infected among the susceptibles is 30%. In the
“naive” analysis, every uninfected individual (i.e. Yi = 0) is considered as susceptible.

of β2, and in a wrong interpretation of the relationship between the covariate
X2 and the binary response Y .

The quality of the Gaussian approximation to the large-sample distribution
of β̂2,n was also investigated. For each configuration of the design parameters,

histograms of the β̂
(j)
2,n (j = 1, . . . , N) are obtained, along with the corresponding

QQ-plots. The plots for the model M1 are pictured on Figures 1 to 4 (the plots
for the models M2, M3, M4 are given in the web-based file).

From these figures, it appears that the normal approximation stated in The-
orem 4.5 is reasonably satisfied when the proportion of immunes is moderate
(25%), provided that the sample size is sufficiently large (n ≥ 500, say). Con-
sider the case when β2 6= 0. When the immune fraction is large (50%), the
normal approximation still appears reasonable, provided that the sample size
is at least 1000, or eventually 1500. When the immune proportion is very large
(75%), the distribution of β̂2,n can be highly skewed, in particular when the
sample size is small. Consider the case when β2 = 0. Then the finite-sample dis-
tribution of β̂2,n appears to be symmetric, with heavy tails however, especially
when the sample size is small. When the immune fraction is about 50% and the
sample size is greater than or equal to 500, the normal distribution appears to
fit reasonably well the distribution of β̂2,n.

Overall, these results indicate that a reliable statistical inference on the re-
gression effect in the model (1) with a cure fraction should be based on a sample
having, at least, a moderately large size (n ≥ 500, say) when the immune fraction
is moderate (25%), or a large size (n ≥ 1000, say) when the immune proportion
is large (50%).
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Fig 1. Histograms and Q-Q plots for β̂2,n in model M1, with no immunes in the sample (the
percentage of immunes is given in brackets). n is the sample size. All results are based on
1500 simulated datasets.

n=100 (25%)

betahat

0.0 1.5 3.0

0
20

40
60

80
10

0

−3 0 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

n=100 (25%)

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

n=500 (25%)

betahat

0.5 1.5

0
50

10
0

15
0

−3 0 2

0.
5

1.
0

1.
5

2.
0

n=500 (25%)

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

n=1000 (25%)

betahat

0.6 1.2

0
50

10
0

15
0

−3 0 2

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

n=1000 (25%)

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

n=1500 (25%)

betahat

0.6 1.2

0
50

10
0

15
0

20
0

−3 0 2

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

n=1500 (25%)

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

Fig 2. Histograms and Q-Q plots for β̂2,n in model M1, with 25% of immunes.
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Fig 3. Histograms and Q-Q plots for β̂2,n in model M1, with 50% of immunes.
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Fig 4. Histograms and Q-Q plots for β̂2,n in model M1, with 75% of immunes.
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5.3. A real data example

In this application, we consider a study of dengue fever, which is a mosquito-
borne viral human disease. A dengue infection confers a partial and transient
immunity against a subsequent infection (see Dussart et al. [3]). We consider
here a database of size n = 528, which was constituted with individuals re-
cruited in Cambodia, Vietnam, French Guiana, and Brazil (Dussart et al. [3]).
Each individual i was diagnosed for dengue infection and coded as Yi = 1 if
infection was present and 0 otherwise. Note that if Yi = 0, then the i-th in-
dividual may either be immune at the time of analysis (due to a temporary
immunity acquired following a previous infection) or susceptible to dengue in-
fection, albeit not infected. We aim at estimating the risk of infection for those
individuals, based on this data set which also includes the following covariates:
age (a continuous bounded covariate) and weight (coded 0 in case of under-
weight and 1 otherwise). We first ran a standard logistic regression analysis of
the model logit P(Y = 1|age, weight) = β1 + β2age + β3weight. The results are
displayed in Table 4. Then, we estimated the parameters β1, β2 and β3 using
the methodology described in Section 2.

Note first that the eventual immunity imparted by a past infection is only
transient, thus there is no reason why an older individual (who has therefore
been exposed longer to the risk of dengue fever) would have a greater proba-
bility of being immune than a younger one. In fact, individual susceptibility to
the dengue infection may rather depend on whether the individual benefits or
not from some preventive and control measures (such as the application of in-
secticides to larval habitats in his area, or appropriate water storage and waste
disposal practices). Such informations are not available in our dataset.

Age was therefore taken as the variable V in condition C4, and we fitted
to the data the model (1)-(2)-(3) with logit P(Y = 1|age, weight, S = 1) =
β1 + β2age + β3weight and logit P(S = 1| weight) = θ1 + θ2weight. Since the
Wald-type test of “θ2 = 0” was not significant, we removed the weight from
the model for susceptibility, resulting in a constant proportion of immunes. The
final results of this fitting procedure are given in Table 4.

The fitted model produced the following estimate: 1 − exp(0.497)/(1 +
exp(0.497)) ≈ 0.38 for the probability of being immune. Then, as expected,

Table 4

Dengue fever data analysis

naive analysis model (1)-(2)-(3)
parameter estimate sd estimate sd

β1 1.552 0.255 7.654 1.485
β2 -0.055 0.007 -0.131 0.020
β3 -0.813 0.207 -4.501 1.059
θ1 0.497 0.159

Note: In the “naive” fitting of logit P(Y = 1|age, weight) = β1+β2age+
β3weight, every uninfected individual is considered as susceptible. The
final model (1)-(2)-(3) is given by logit P(Y = 1|age,weight, S = 1) =
β1 + β2age + β3weight and logit P(S = 1) = θ1.
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the estimated probabilities of infection obtained from our approach are larger
than the ones derived from a standard analysis that does not take account of
the possible immunity. For example, the probabilities of infection for individu-
als respectively aged 30 and 10 years old, with “normal” weight, are estimated
by 0.29 and 0.55 (standard logistic regression) and 0.31 and 0.86 (from our
approach). It is expected that underweighted subjects (those considered to be
under a healthy weight) will have higher risks of infection. The probabilities of
infection for underweighted individuals respectively aged 30 and 10 years old
are estimated by 0.48 and 0.73 (standard logistic regression) and 0.97 and 0.99
(our approach). While both approaches provide the same qualitative conclu-
sions: the probability of dengue infection is higher for younger individuals and
in case of underweight (caused by malnutrition for example), they differ on their
estimations of the risk of infection. Our approach takes account of the eventual
immunity imparted by a past infection and therefore, it is reasonable to think
that the resulting estimations of the infection probabilities provide a more re-
alistic picture of the infection risk for this data set. In particular, the estimates
provided by our approach suggest that underweight constitutes a major risk
factor for dengue infection, irrespectively of age.

6. Discussion and perspectives

In this paper, we have considered the problem of estimating the logistic regres-
sion model from a sample of binary response data with a cure fraction. The
estimator we propose is obtained by maximizing a likelihood function, which
is derived from a joint regression model for the binary response of interest and
the cure indicator, considered as a random variable whose distribution is mod-
eled by a logistic regression (the proposed joint model can thus be viewed as
a zero-inflated Bernoulli regression model, with logit links for both the binary
response of interest and the zero-inflation component). We have established the
existence, consistency, and asymptotic normality of this estimator, and we have
investigated its finite-sample properties via simulations.

Several open questions now deserve attention. The estimation approach pro-
posed here relies on our ability to correctly specify the model for the binary
immunity status. It is therefore of interest to investigate the effect of a misspec-
ification of this model (and in particular, of the link function). The techniques
and results by Czado and Santner [1] may be useful for that purpose. Another
issue of interest deals with the inference in the logistic regression model with a
cure fraction, in a high-dimensional setting. We have established the theoretical
properties of our estimator in a low-dimensional setting that is, when a small
number of potential predictors are involved. Several recent contributions (see
for example Huang et al. [14] and Meier et al. [21]) have considered the problem
of estimation in the logistic model (without cure fraction) when the predictor
dimension is much larger than the sample size (this problem arises, for example,
in genetic studies where high-dimensional data are generated using microarray
technologies). Extending our methodology to this setting constitutes another
topic for further research.
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Appendix

Proof of Lemma 4.2. Recall that Ik denotes the identity matrix of order k. Then
we write:

∥∥∥∥
∂φn(ψ)

∂ψ′

∥∥∥∥ =
∥∥Ik − (WD(ψ0)W

′)−1
WD(ψ)W′

∥∥

=
∥∥(WD(ψ0)W

′)−1
W(D(ψ0)− D(ψ))W′

∥∥

≤
∥∥(WD(ψ0)W

′)−1
∥∥ ‖W(D(ψ0)− D(ψ))W′‖

= λ−1
n ‖W(D(ψ0)− D(ψ))W′‖ .

Next, define S = {(i, j) ∈ {1, 2, . . . , 2n}2|Dij(ψ0) 6= 0}. Then the following
holds:

‖W(D(ψ0)− D(ψ))W′‖ =

∥∥∥∥∥∥

2n∑

i=1

2n∑

j=1

W•iW
′
•j(Dij(ψ)− Dij(ψ0))

∥∥∥∥∥∥

≤
∑

(i,j)∈S

∥∥W•iW
′
•jDij(ψ0)

∥∥
∣∣∣∣
Dij(ψ)− Dij(ψ0)

Dij(ψ0)

∣∣∣∣ .

From C1 and C2, there exists a real constant c3 (c3 > 0) such that Dij(ψ0) >
c3 for every (i, j) ∈ S. Moreover, Dij(·) is uniformly continuous on B × G,
thus for every ǫ > 0, there exists a positive r such that for all ψ ∈ B(ψ0, r),
|Dij(ψ)− Dij(ψ0)| < ǫ. It follows that

‖W(D(ψ0)− D(ψ))W′‖ ≤
ǫ

c3

∑

(i,j)∈S

∥∥W•iW
′
•jDij(ψ0)

∥∥

≤
ǫ

c3
tr


 ∑

(i,j)∈S

W•iW
′
•jDij(ψ0)




=
ǫ

c3
tr




2n∑

i=1

2n∑

j=1

W•iW
′
•jDij(ψ0)




=
ǫ

c3
tr (WD(ψ0)W

′)

≤
ǫ

c3
Λnk.

This in turn implies that
∥∥∂φn(ψ)

∂ψ′

∥∥ ≤ ǫΛnk
c3λn

< ǫc2k
c3

. Now, choosing ǫ = c c3
c2k

with 0 < c < 1, we get that
∥∥∂φn(ψ)

∂ψ′

∥∥ ≤ c for all ψ ∈ B(ψ0, r), and the result
follows.
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