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1. Introduction

Let X : RY = R be a mean-zero isotropic Gaussian random field with the
Matérn covariance function

Cov(X(x),X(y)) = 0*Kq(x—1y)
o?(allx — v
(21/”1—F(5)|)ICV(O‘|X_Y”)7 vx,y €RY (1)

where v > 0 is a known constant, «, o are strictly positive but unknown param-
eters and K, is the modified Bessel function of the second kind (cf. Andrews,
Askey and Roy [2], pages 222-223). ||.|| denotes the usual Euclidean norm in
R?. Because 2K, (z) — 2V7'T'(v) as ¢ — 0, ¢ is the variance of X. The
corresponding isotropic spectral density is given by

1

fao(W) = W‘/Rde_zw/xﬁlfa(x)dx

O'2O[2U

T/2(02 + [|w|]2)v+d/2’

Vw € R?, (2)

where 2 = v/—1. It is well known that X is m times mean square differentiable
where m is the largest integer strictly less than v. Hence v can be thought of as
a smoothness parameter and « the scale parameter.

As observed in Zhang [19], (1) comprises a very broad class of covariance
functions and it has received considerable attention in recent years. Unlike many
other families of covariance functions (such as exponential, powered-exponential,
or spherical covariance functions), the Matérn class in (1) has a parameter,
namely v, that controls the smoothness of the random field. Stein [12] presented
very convincing arguments in favor of using (1) to model spatial correlations and
a comprehensive account of the properties of Matérn-type Gaussian random
fields can also be found there.

Interestingly if v is known and d < 3, Zhang [19] proved that a and o cannot
be estimated consistently whereas the quantity o2a?” can be estimated consis-
tently under fixed-domain asymptotics. It is reassuring to note that Corollary
2 of Zhang [19] further showed that it is the latter quantity, and not the indi-
vidual parameters «, o, that matters in interpolation. o?a?” is an example of
a microergodic parameter. We refer the reader to Stein [12], page 163, for the
mathematical definition of microergodicity.

In contrast for d > 5, Anderes [1] recently proved that the Gaussian measures
defined by 02K, and 02 K,,, are orthogonal if (a1,01) # (, o) and hence o and
o can be consistently estimated under fixed-domain asymptotics. The case d = 4
is still open.

This article is concerned with the estimation of o2a?” using observations

{X(x1), X (x2),..., X (xn)}, (3)
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where x1,Xs,...,X, are distinct points in [0, 7]¢ for some (absolute) constant
0 < T < oo. For simplicity, we write

X, = (X(x1), X (x2), ... X (x2)).

The covariance matrix of X,, can be expressed as 2R, where Ry, is a n xn cor-
relation matrix whose elements do not depend on o. Since X,, ~ N,,(0,0%Ry,),
the log-likelihood function I(«, o) satisfies

1 1
l(a,0) = —g log(27) — nlog(o) — 3 log(|Ra) — FX;R?X”.

It is generally acknowledged (e.g., Stein, Chi and Welty [13], Furrer, Gen-
ton and Nychka [6], Kaufman, Schervish and Nychka [10] and Du, Zhang and
Mandrekar [5]) that in practice, the data set in (3) is usually very large and
is irregularly spaced. Computing the inverse covariance matrix o~ 2R !, which
takes O(n?) operations, is then a difficult problem and may even be intractable
in some instances.

A popular and promising way to alleviate this computational problem is to
replace the original covariance function by a more tractable one. More precisely,
we impose a simpler (but mis-specified) covariance function for X given by

Cov(X (x), X (y)) = Uff{al,n(x -y), Vx,ye€ R, (4)

where f(ahn :RY — R is a known isotropic correlation function, a; > 0 is a
known constant and o7 = o%a?/a?’. Ka,n is allowed to, possibly, vary with
sample size n. Under assumption (4), let 07Rq,.» be the covariance matrix

of X,, and hence the corresponding (pseudo) log-likelihood function (e, o)
satisfies

n 1 ~ 1 ~
(01, 01) = —3 log(2m) — nlog(01) — 5 108(Ra, ul) — 5 X4R:, X (5)

r‘,% ntVaq,n
Let 61, be the value of o that maximizes in(al, o1), i.e.

ln(alv a'1,71) = gn%)é in(alv Ul)-
1

Since f{ahn does not depend on o7 and

0 ~ n 1 -
—1, =—— 4+ ZX'R! X,,
80’1 (061,01) o1 + O_i% ntVlay,n
we have 1
~2 5—1
O1n = EX;RQLHX"' (6)

For example, Zhang [19] took Ry, ., = Ra, where oy > 0 is a known (arbitrarily
specified) constant. This made the likelihood analysis simpler because (5) is a
function of only o7. Zhang [19] proved that for d < 3, 61,07 — o?a” with
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P, - probability 1 where P, , is the Gaussian measure defined by the covariance
function in (1). The key idea in Zhang’s proof is that the two Gaussian measures
in question are equivalent.

Covariance tapering is an attractive method of constructing U%f(ahn such
that it is an isotropic, positive definite and compactly supported function. A
way to implement covariance tapering is as follows. Let Kiqap ¢ R? — R be an
isotropic correlation function with compact support, say, supp(Ktap) C [—1,1]9.
Define K, ,, in (4) to be

K(ll-,n(x) = Ka, (X)Ktap(x/’yn)v Vx € Rd? (7)

where 0 < v, <1,n=1,2,...,is a sequence of (possibly) decreasing constants
and K, is asin (1) with a replaced by o (a known constant). The motivation is
that the covariance matrix a%f{ahn of X,, corresponding to K . 1s sparse (with
many off-diagonal elements taking the value 0) and sparse matrix algorithms
are available to evaluate the log-likelihood (5) more efficiently (cf. Davis [4] and
the references cited therein). Isotropic, positive definite, compactly supported
functions have been an intensively studied field. The literature includes Wu [17],
Wendland [15, 16] and Gneiting [7].

Assuming v,, = v is an absolute constant, Kaufman, et al. [10] established
conditions on the spectral density of Ky, such that 67,03 — oo with
P, , probability 1. As in Zhang [19], the theory of the equivalence of Gaussian
measures is used in a crucial manner.

In the case d = 1 and v, = ~, Du, et al. [5] established conditions on the
spectral density of K., such that /n(67, 07" — 0?a®”) converges in law to
N(0,2(c%a?)?) as n — oo under the Gaussian measure Py, ,. Also if 07Ky, . =
0?K,, (i.e. if the true Matérn covariance function is mis-specified as another
Matérn covariance function), they showed that v/n(6% 07" — 02a®") converges
in law to N(0,2(c%a?")?) as n — oo under P, ,. As open problems, Du, et al.
[5] observed that their techniques cannot be extended from d =1 to d = 2 or 3,
and it would be practically important to obtain analogous asymptotic normality
results for higher dimensions. They further noted that letting ~,, — 0 as n — oo
is a natural scheme in the fixed-domain asymptotic framework and remarked
that it is not obvious that their proofs can be adapted to a varying ,.

This article has essentially three main results. The first result, namely Theo-
rem 1 below, is to generalize the strong consistency result of Kaufman, et al. [10]
from ~, = v to a sequence of v,,’s which could vary with n, in particular where
Yn — 0 as n — oo. It is noted that even for covariance tapering with ~,, = ~, the
number of operations needed to compute the inverse covariance matrix is still
O(n?) whereas if ,, — 0, the number of operations is o(n?®). Clearly the latter
will lessen the computational burden of evaluating the likelihood and inverting
the covariance matrix even more. More precisely, our first result is

Theorem 1. Let 0 < T < 00, 1 < d < 3 and 02K, be the Matérn covariance
function as in (1). Let e, M be constants such that € > max{d/4,1 — v}. Sup-
pose Kiap is an isotropic correlation function with supp(Kp) C [—1, 1]¢ whose
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spectral density

ftap(w) = (27T)d /Rd e_lWIthap(x)dx

satisfies
M

(T WPy

Let iy > 0 and o1 > 0 be constants such that oia3’ = o?a®”. Define

ftap(w) < Yw € Rd.

Km,n(x) = Ko, (%) Ktap(x/7m), VX € R,

where v, = Cyn~ % and 0 < a < 1/(4v + 4e + 2d),0 < C, < 1 are constants
(independent of n). Let 61, be as in (6). Then

~2 2

v 2 2v
017na1 — 0 y

as n — oo,
with Py , probability 1 where P, , is the Gaussian measure defined by the co-
variance function 02K, in (1).

Remark. The above theorem reduces to Theorem 2 of Kaufman, et al. [10] if
we take a = 0 or, equivalently, v,, = 7.

The second result is Theorem 2 which extends the asymptotic normality
results of Du, et al. [5] from d =1 and v, = v to 1 < d < 3 and +,, possibly
varying with n. In particular, we have

Theorem 2. Let 0 < T < 00, 1 < d < 3, 0°K, be the Matérn covariance
function as in (1). Let e, M be constants such that ¢ > max{d/4,1 — v}. Sup-
pose Ky, is an isotropic correlation function with supp(Kap) C [—1,1]% whose
spectral density frap satisfies

M

d
1+ [w[2)r+dze Vw € R

ftap (W) <

Let a7 > 0, 01 > 0 and 0 < b < 1/(8v + 8¢ + 2d) be constants such that
o203 = a%a® and 2b(2v+2¢+d)/ min{2,4—d, 4e—d,4v+d} < (1—2bd)/(2d).
Define ~

Ko, n(x) = Ka, (X)Ktap(X/7n), VX € RY,

where vy, = Con~b and 0 < C,, < 1 is a constant (independent of n). Let 6%,1
be as in (6). Then

V(6?08 — 02a?) = N(0,2(c%0®)?),
in law as n — oo with respect to P, ,, the Gaussian measure defined by the
covariance function o*K,, in (1).

Remark. For b = 0 or, equivalently, v, = 7 and d = 1, Theorem 2 proves
the asymptotic normality of 6%,1 under weaker conditions than Theorem 5(ii)
of Du, et al. [5].
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The third result is Theorem 3 which deals with the case where the Matérn
covariance function 02K, is mis-specified by another Matérn covariance function
02K, with a; a known constant. The proof of Theorem 3 is similar to (though
simpler than) that of Theorem 2 and is omitted. We refer the reader to Wang
[14] for a detailed proof of Theorem 3.

Theorem 3. Let 0 < T < o0, 1 < d < 3, 0°K, be the Matérn covariance
Junction as in (1). Let a; >0 and o1 > 0 be constants such that o?a = o?a?.
Define Ko, n(x) = Kq, (x), ¥x € R?, and Ra, n = Ra, . Let 61, be as in (6).
Then

V(32,03 — 0%a®) = N(0,2(0%a® ),

in law as n — oo with respect to P, ,, the Gaussian measure defined by the
covariance function o®K, in (1).

Remark. For d = 1, Theorem 3 reduces to Theorem 5(i) of Du, et al. [5]. In
the case v = 1/2, i.e. the Ornstein-Uhlenbeck process on [0, T], Ying [18] proved
the strong consistency and asymptotic normality of the MLE for o2a while Du,
et al. [5] obtained similar results for the tapered MLE (obtained by maximizing
(5) with respect to both a; and o1).

The rest of this article is organized as follows. As a check on the practical
applicability of Theorems 1 to 3 for finite sample sizes, some numerical experi-
ments are performed and are reported in Section 2. Section 3 proves a number
of Bernstein-type probability inequalities. These inequalities are needed in the
proof of Theorem 1. Section 4 is heavily motivated by the equivalence of Gaus-
sian measures theory (when d = 1) as detailed in Chapter 3 of Ibragimov and
Rozanov [9]. However in the case that v, — 0 as n — oo, the Gaussian measures
in Theorems 1 and 2 are not equivalent. As such, the results of Ibragimov and
Rozanov [9] have to be modified to accommodate this fact. The main result of
Section 3 is (25) which is needed in the proofs of Theorems 1 and 2.

Lemma 4 in Section 5 establishes some bounds on the spectral density of a
tapered covariance function. The proof of Lemma 4 is a slight refinement of that
found in Kaufman, et al. [10] in order to accommodate a varying -,. Finally,
the proofs of Theorems 1 and 2 are given in Sections 6 and 7 respectively. The
Appendix contains the proofs of a number of technical lemmas that are needed
in the proofs of the theorems.

An Associate Editor noted that the Gaussian assumption as well as the
Matérn covariance function play crucial roles in establishing the results of this
article. The main reasons are that the proofs use the well developed theory of
equivalence of Gaussian measures and that the spectral density of the Matérn
covariance function has a rather simple form. Zhang [19], page 259, has a discus-
sion on the difficulties of obtaining analogous results for non-Gaussian random
fields and the use of other covariance functions. The latter would be an impor-
tant direction for future research.

We end this Introduction with a brief note on notation. R and C denote the
sets of real and complex numbers respectively. Z{.} is the indicator function
and |X|max = maxi<i<a|Ti|, ¥Vx = (21,...,74)" € R If x € RY, then x’ is its
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transpose. Finally, f < g as |[w|| — oo (or n — 00) means there exist constants
0 < ¢ < C such that ¢ < f/g < C for sufficiently large ||w|| (or n) respectively.

2. Numerical experiments

This section uses numerical experiments to gauge the accuracy of the asymptotic
results of Theorems 1 to 3 for finite sample sizes. In particular, Sections 2.1
and 2.2 are concerned with Theorem 3 and Theorems 1, 2 respectively. More
details of this study can be found in Wang [14]. Define

Vi(stas, - %)

Z =
\/50-20421/

2.1. Precision of Theorem 3 approximations for finite n

Each experiment comprises simulating 10,000 independent realizations of a
mean-zero Gaussian random field with the Matérn covariance function (1).
There are altogether 18 experiments where

(i) o =1, « = 0.8 and oy = 1.3 are fixed.

(ii) d takes values 1, 2, 3.

(iii) v takes values 1/4 and 1/2. (d = 1 and v = 0.5 give the Ornstein-
Uhlenbeck process.)

(iv) For d = 1, the Gaussian random field X (.) is observed on a regular grid
on [0,1]4, i.e. {X(1/n), X (1/n),...,X(n/n)} where n = 1000, 2500, 5000.

(v) For d = 2, X(.) is observed on a regular grid on [0,1]%, i.e. {X(i/m,j/m)
1 <i,5 < m} where m = 30,50, 70. Here the sample size is n = m?.

(vi) For d =3, X(.) is observed on a regular grid on [0,1]%, i.e. {X (i/m,j/m,
k/m) : 1 < i,j,k < m} where m = 10,15,17. Here the sample size is
n=m?3.

Table 1 compares the percentiles of Z with those of N(0,1) and also reports
the bias and mean square error (MSE) of 6%a%” as an estimator of o2a?”. In
particular, the simulations reveal that the asymptotic approximations get more
accurate as (i) the smoothness parameter v decreases, (ii) the sample size n
increases, (iil) the dimension d decreases, and (iv) |a — 1] decreases.

2.2. Precision of Theorems 1 and 2 approximations for finite n

As in Section 2.1, each experiment comprises simulating 10,000 independent
realizations of a mean-zero Gaussian random field with the Matérn covariance
function (1). There are altogether 18 experiments where

(i) o =1, =5 and a; = 7.5 are fixed.
(ii) d takes values 1, 2.
(iii) When d = 1, v takes values 1/4, 1/2. When d = 2, v takes values 1/8,
1/4.
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TABLE 1
Percentiles of Z and bias, MSE of &%ai”n

n d v 5% 25% 50% 75% 95% bias MSE
1000 1 1/4 | -1.615 -0.690 | 0.024 | 0.651 1.707 | < 0.0001 | 0.0016
2500 1 1/4 | -1.619 -0.669 | 0.022 | 0.674 1.630 < 0.0001 | 0.0006
5000 1 1/4 | -1.615 -0.679 | 0.004 | 0.690 1.672 0.0001 0.0003
302 2 1/4 | -1.569 -0.643 | 0.012 | 0.717 1.717 0.0017 0.0018
502 2 1/4 | -1.608 -0.661 | 0.021 0.713 1.712 0.0008 0.0007
702 2 1/4 | -1.648 -0.647 | 0.037 | 0.710 1.692 0.0006 0.0003
102 3 1/4 | -1.506 -0.567 | 0.082 | 0.769 1.802 0.0044 0.0016
153 3 1/4 | -1.559 -0.607 | 0.068 | 0.737 1.744 0.0016 0.0005
173 3 1/4 | -1.571 -0.631 | 0.038 | 0.741 1.719 0.0011 0.0003

N(0,1) -1.6449 | -0.6749 0 0.6749 | 1.6449

1000 1 1/2 | -1.575 -0.629 | 0.023 | 0.701 1.732 0.0018 0.0013
2500 1 1/2 | -1.606 -0.669 | 0.000 | 0.681 1.661 0.0002 0.0005
5000 1 1/2 | -1.626 -0.661 | 0.003 | 0.666 1.650 < 0.0001 | 0.0003
302 2 1/2 | -1.556 -0.630 | 0.055 | 0.741 1.708 0.0025 0.0014
502 2 1/2 | -1.613 -0.627 | 0.034 | 0.717 1.705 0.0010 0.0005
702 2 1/2 | -1.587 -0.659 | 0.021 0.700 1.670 0.0004 0.0003
103 3 1/2 | -1.453 -0.523 | 0.140 | 0.837 1.840 0.0060 0.0017
153 3 1/2 | -1.515 -0.563 | 0.117 | 0.780 1.792 0.0023 0.0004
173 3 1/2 | -1.543 -0.568 | 0.092 | 0.774 1.744 0.0016 0.0003

(iv) For d = 1, the Gaussian random field X (.) is observed on a regular grid
on [0,1], i.e. {X(1/n),X(1/n),...,X(n/n)} where n = 1000, 2500, 5000.

(v) Ford =2, X(.)is observed on a regular grid on [0, 1)?, i.e. {X (i/m,j/m) :
1 <4,7 < m} where m = 30,50, 70. The sample size is n = m?.

The covariance function is then mis-specified by multiplying it by a taper as
in (7). A popular class of tapers is due to Wendland [15, 16]. The Wendland
taper ¢q.x(x) is a positive definite function with support {x : ||x|| < 1}. The
corresponding spectral density function fg satisfies

M

fd,k(w) < (1 T |\W|\2)d/2+k+1/27

where M is a constant. Hence in order to satisfy the conditions of Theorems 1
and 2, we choose the taper ¢11(z/v,) = (1 — x/7,)3.(1 4+ 3z/7,) when d = 1
and set v, = Cn~ 99 with C = 1, 0.75, 0.3. Here x, = max{0, z}. Similarly
for d = 2, we choose the taper ¢21(x/vn) = (1 — x/7n)1(1 + 4x/v,) and set
Yn = Cn=%02 with C =1, 0.75.

Table 2 and Table 3 compare the percentiles of Z with those of N(0,1) and
also report the bias and mean square error (MSE) of 62a?2¥, as an estimator of
020" when d =1 and d = 2 respectively. '

In particular, the simulations reveal that the asymptotic approximations get
more accurate as (i) the smoothness parameter v decreases, (ii) the sample size
n increases, (iii) the dimension d decreases, and (iv) =, increases.
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TABLE 2
Percentiles of Z and bias, MSE of &%a%”n ford =1 and ¢1,1(x/vn)

n Yn v 5% 25% 50% 5% 95% bias MSE
1000 0.813 1/4 -1.582 -0.634 0.032 0.718 1.739 0.0048 0.0101
2500 0.791 1/4 -1.600 -0.660 0.003 0.687 1.672 0.0012 0.0040
5000 0.775 1/4 -1.641 -0.678 0.004 0.680 1.686 0.0004 0.0020
1000 0.610 1/4 -1.588 -0.642 -0.022 0.709 1.730 0.0041 0.0101
2500 0.593 1/4 -1.605 -0.666 -0.003 0.682 1.664 0.0009 0.0040
5000 0.581 1/4 -1.631 -0.659 0.032 0.704 1.665 0.0012 0.0020
1000 0.244 1/4 -1.648 -0.714 -0.040 0.641 1.667 -0.0025 | 0.0101
2500 0.237 1/4 -1.656 -0.710 -0.048 0.636 1.625 -0.0019 | 0.0040
5000 0.232 1/4 -1.621 -0.708 -0.035 0.660 1.675 -0.0009 | 0.0020

N(0,1) -1.6449 | -0.6749 0 0.6749 | 1.6449
1000 0.813 1/2 -1.563 -0.620 0.055 0.755 1.783 0.0163 0.0518
2500 0.791 1/2 -1.592 -0.641 0.035 0.716 1.727 0.0064 0.0203
5000 0.775 1/2 -1.603 -0.660 0.023 0.707 1.693 0.0026 0.0101
1000 0.610 1/2 -1.576 -0.635 -0.039 0.739 1.762 0.0130 0.0517
2500 0.593 1/2 -1.599 -0.650 -0.024 0.708 1.716 0.0050 0.0203
5000 0.581 1/2 -1.664 -0.654 -0.014 0.677 1.672 0.0011 0.0100
1000 0.244 1/2 -1.704 -0.765 -0.089 0.612 1.637 -0.0167 | 0.0517
2500 0.237 1/2 -1.695 -0.736 -0.068 0.619 1.618 -0.0076 | 0.0203
5000 0.232 1/2 -1.678 -0.736 -0.062 0.615 1.599 -0.0055 | 0.0100
TABLE 3
Percentiles of Z and bias, MSE of 6%0{%:’” for d =2 and ¢2,1(x/vn)

n Yn v 5% 25% 50% 5% 95% bias MSE
302 0.873 1/8 -1.491 -0.529 0.139 0.837 1.865 0.0112 0.0052
502  0.855 1/8 -1.570 -0.610 0.051 0.741 1.732 0.0028 0.0018
702 0.844 1/8 -1.601 -0.651 0.017 0.701 1.693 0.0010 0.0009
302 0.655 1/8 -1.582 -0.623 -0.042 0.738 1.763 0.0043 0.0051
502  0.641 1/8 -1.676 -0.724 -0.066 0.625 1.615 0.0020 0.0018
702 0.633 1/8 -1.706 -0.776 0.095 0.578 1.543 0.0028 0.0009

N(0,1) -1.6449 | -0.6749 0 0.6749 | 1.6449
302 0.873 1/4 -1.509 -0.562 0.114 0.802 1.794 0.0135 0.0115
502 0.855 1/4 -1.618 -0.657 0.014 0.701 1.721 0.0017 0.0041
702 0.844 1/4 -1.665 -0.708 0.019 0.657 1.614 -0.0012 | 0.0020
302 0.655 1/4 -1.699 -0.757 -0.087 0.598 1.590 -0.0078 | 0.0113
502 0.641 1/4 -1.826 -0.862 -0.194 0.489 1.504 0.0115 0.0042
702 0.633 1/4 -1.846 -0.905 -0.235 0.443 1.412 -0.0102 | 0.0021

3. Some probability inequalities

This section proves a number of probability inequalities that are needed in the
sequel. Let a1, X,, and 61, be defined as in (6). Define 0% = 02a?” /a3, Let
A ={|61, —c%a* /ai’| > e} for some constant & > 0 and B C R™ such that
A = {X,, € B}. For simplicity, we write P, , and p, ., to denote probability
and probability density function of X,, when (1) holds with parameters a, o,
and ]5,117017" and Do, 0, ,n to denote probability and probability density function
of X,, defined by the covariance function 07 K, , in (4). Then for any constant
Tn > 0 (which may depend on n), we have

(A) =

/Bpa,g(x)dx
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- [t

+z{~pL<x>) < Tn}]ﬁm,n<x>dx

pal,dl,n(x

where Z{.} is the indicator function. Consequently,

ToPay oy n(A) > Pag(A) = Pay <Aﬂ{ﬁp°‘#}§")) >rn}>
paa’(Xn) )
> Paa’ »A _Pacr ~17 > Tn )
N oA ' <pa1701,n(xn) !

which implies that

Payg(|6ina§” —o*a®| > ea?”)

- . X
< TnPal,m,n(lU%,nO‘%V - 02a2ul > Ea%j) + Poo ( ~pa7o( n) > Tn)
pal,dlyn(xn)
- R X
= TnPal,m,n(lU% n Ufl > 5) + Poo ( ~pa,a( n) > Tn) (8)
’ palyfflﬂl(xn)

for all e,7,, > 0. Lemmas 1 and 2 below use Bernstein-type inequalities to
establish exponential bounds for each of the two terms on the right hand side
of (8). The proofs of these lemmas are deferred to the Appendix.

Lemma 1. Let ay, X,, and &1, be defined as in (6). Suppose (4) holds. Then

for any constant € > 0, we have

. 5 ) e?n
Palyglﬁn(|al)n — 07| >¢) <2exp —740%(0% el

Next we observe that there exists a n x n non-singular matrix U such that
o’UR,U=1, oIUR,,,U=L,, (9)

where I is the n x n identity matrix and L, is a n x n diagonal matrix with
diagonal elements (Ly,);; = A\i, > 0,i=1,...,n.

Lemma 2. With the notation of (9), suppose 7, >0, 0 < ¢, <1, C, and C,
are constants (which may depend on n) such that forn =1,2,...,

Cn;

min
ie{l,...,n} Ai,n

>
=
IN
$

max
i€{1,om}

n

§2
L
|
—_
~—
[V}
IA
Q
3

. 1 ¢, —1—1log(cn)
o = ma{ g 2R

2log(m,) > CiCp.
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Then

k2
Pa76<~pa,o(xn) > Tn) < exp{ o [21og(7n) — C7Ch] _ }
pal,al,n( n) 4Cn + 160n[2 lOg(Tn) — C:;Cn]

4. Spectral analysis

This section is motivated by the equivalence of Gaussian measures theory as
developed in Chapter 3 of Ibragimov and Rozanov [9]. However, as noted in the
Introduction, these ideas have to be modified because the Gaussian measures
considered in Theorems 1 and 2 are not equivalent if v, — 0 as n — oo.

Let d < 3 and X(x1),...,X(x,), with x1,...,%, € [0,7]¢, be as in (3).
Define ¢y (w) = ew' > w e R k=1,...,n, where 1 = v/—1. Let LY be the
(real) linear space of functions ¢ : RY — C of the form
n
p(w) = Z cror(w),  VYw e RY
k=1

where ¢y, ..., ¢, are real-valued constants, and f, ., be the spectral density as
in (2). We can regard LY as a subspace of a (real) Hilbert space Ly (fa.,) with
inner product

()10 = [ T fo o (W) Vi € L),

and norm ||¢|[s., = /(¢ ¥)f... Without loss of generality, we shall take
Ln(fa.s) to be the closure of the space LY with respect to the above inner

product.

In an analogous manner, let fahghn be the spectral measure of the mean-
zero Gaussian random field X (.) with covariance function given by (4). Let
L (fa,.00.m) be the closure of the space L9 with respect to the inner product

) oy = [ T o () € B,

and norm ”90”.7%1,01,” =, /{p, s0>.fo<1,01,n for all ©, 1 € Ly (fa,.01.n)- Define
tik = (@5 Pk)fuor YISk <n,
Mi1,1 H1,2 M1,
H2,1 H22 oo 2
Hij—1,1 Hj—1,2 -+ Hj—13
¥1 ¥2 ©j

¢j = |Aj|, ijl,...,n,
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where |A ;| denotes the determinant of the square matrix A ;. This implies that
¢1 = ¢1 and
J
¢ = Z(_l)j+k|Aj_j’_k|90ka Vj=2,...,n (10)
k=1

where |A;j’7k| is the determinant of A; with row j and column k deleted.
Immediate consequences are

<<Pk7 <Pl>fa,c, _ / eiw/(xkfxl)fmg(w)dw
Rd
= Ko (xp —x))
= (0’Ra)ki,
<wk7¢l>fal,ol,n = Ume,n(Xk - xq)
= (0iRa ki, V1I<kI<n.
Since @i, k = 1,...,n, are linearly independent functions, we observe from

Lemma 6.3.1 of Andrews, Askey and Roy [2] that (¢, ¢r)s,, = 0 for all 1 <
Jj # k < n. We observe from (10) that

(61, 6n) =T(p1,.. ., 0n)',

where T is a n x n lower triangular matrix whose elements are

Tj = (—1)FA7 7, vi<k<j<n

Then
20D 'TR, T'D 'O’ = 1,
020D 'TR,, ,T'D !0’ = L,, (11)
where D is a n x n diagonal matrix with elements D;; = (¢4, ., i =1,...,n,

O is a suitably chosen n x n orthogonal matrix and L, is a n x n diagonal
matrix as in (9). Define

(Y1, ,%n) = OD ' T(p1, ..., 0n). (12)
Then

(Vi Uk faw = Ojks
<1/)Ja 1/}k> = )\j,naj,kv v‘]a k = 15 ceey (13)
where A;, = (Ly);,; and d§;, = 1 if j = k and is 0 otherwise. Let m =

lv+d/2] +1 and k = (v + d/2)/(2m) where |.] denotes the greatest integer
function. Define

fario1.n

Ixl[*~“Z{l|x[| < 1},  vx € RY,

co(x)

§o(w)

/ e Voo (x)dx,  Yw e R%, (14)
Rd
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Since 0 < k < 1/2, it follows from Lemma 6 (see Appendix) that & : R? — R
is a continuous, isotropic, strictly positive function and &y(w) = ||w|| ™" as
[wi| = oo

Let ¢1 = ¢ * - - - % ¢g denote the 2m-fold convolution of the function ¢y with
itself. Then supp(c;) C [~2m, 2m]¢ and

alw) = [ e reix

d
/ e—zwx/ / CO(x_yl)CO(yl—yz)...CO(y2m—2_y2m—l)
R4 R4 R4

XCQ(yQ»,n_l)dyl c. dygm_l dx

]

= &H(w)?™, vweR% (15)

This implies that & : R? — R is a continuous, isotropic and strictly positive
function. It follows from (2) and Lemma 6 that there exist constants c¢ > 0
and C¢, (not depending on w) such that

Cey < ij‘i‘;’z) < Cgl, Yw € Rd. (16)

For simplicity we write

o fal,ol,n w) — fa,o(w)

(W) = £ (w)? . VweR% (17)

and assume that 7, : R? — R is square-integrable. Lemma 4 in Section 5 shows
that this is indeed true under the assumptions of Theorems 1 or 2. It follows
from the theory of Fourier transforms of L?(R?) functions (cf. Stein and Weiss
[11], Chapter 1) that there exists a square-integrable function g, : R? — C such
that

/d [ (W) — §n7k(w)|2dw —0, ask— oo,
R

where
(W) = / %G ()T {|x|max < k}dx,  Yw € RY, (18)
Rd

and |X|max = max;<;<q|7;| whenever x = (z1,...,74)" € R%. Also
/ o w'x [/ / gn(x — 8)T{|x — S|max < k}e1(s — t)er (t)dsdt} dx
Rd R JRa

[ e %000l < k}dx] { /. ezW’Sq(s)ds} [ /. elw’tq(t)dt}

= gux(W)&(w)?,  Yw e R (19)
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Let
b(x,y) =

where FE

fay,o1.m
measures defined by the spectral densities fqo,,0,,n and fq o, respectively. Then
for any x,y € [0,7]¢, we have

bxy) = [ oy () = oo

X(x)X(y) - By, . X(x)X(y), Vxye[0,T]),

faj.o1.m

and Ey, . denote expectation with respect to the probability

- / eIV (w)er (w)2dw
Rd

~ lim { / e g () — G (w)]EF ()i

k—o00

b [ e )€ ) |

— g [ e, (w)eR(w)dw. (20)

k—o0 Rd

From (19) and (20), we obtain via Fourier inversion,

b(x,y)
= klingo(Zw)d /Rd /]Rd gn(s — t)Z{|s — t|max < k}c1(x — 8)er(y — t)dsdt
= )¢ n(s —t)ci(x —s)c — S
= 0! [ [ o= tex sy — tdsde 1)

= (27T)d/ ho(s,t)er(x —s)ei(y — t)dsdt, Vx,y € [0,T]%,
R2d

where
B (8,t) = gn(s — )Z{|s + t|max < 4m + 2T}, Vs, t € RL

‘We observe that

/ |hn(s, t)2dsdt
R2d

[ [ Jouls = OPT{ls + e < 4+ 27 st
Rd JRd

1
= _d/ / |90 (8)PZ{ [t max < 4m + 2T }dsdt
2 Rd JRd

(4m + 2T)d/ 1gn(s)[2ds < oc.
Rd

Also for w,v € R?,

/ e SWHYI L (5, 4) TS — tlmax < k}dsdt
R2d

_ /R d /R e e 24 ) g (5
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1 , ,
. / / ¢ (W) /24 (k) /2] ()
2d R JRd

XI{|S|maX S k, |t|max S dm + 2T}det
1 /
— _ e*ZS (W*V)/an(s)z-{|s|max S k}ds
24 Jou

XZ{|s — t|max < k, |8 + t|max < 4m + 2T }dsdt

()

1 ,
- / e YT |thmax < 4m + 2TV,  Yw eRL (23)
Rd

X/ e*lﬁ’(W‘FV)/QI{ltlmaX < 4m+2T}dt
R4

where

0(w)

Lemma 3. Let 6 be as in (23). Then 6 : RY — R is continuous and [5, 0(w)?dw
< 00.

Observing that
/2d e_’(s/w“/v)cl (s)er(t)dsdt = & (w)ér(v),
R

it follows from (18), (21), (22) and Fourier transform inversion that for x,y €
[0, 7],

b(x,y)
= lim (27r)d/ hin(8,8)Z{|s — t|max < k}e1(x —s)er(y — t)dsdt
k—o00 R2d

1 ’ ’ —
g lim —— / €Z(w xtv y)gn,k w M 0 witv 51 (W)gl (V)deV
- 2 2

k—o00 (27T)d

1 iy _
= @) ‘/RM et(W'xtv y)nn <W . V>9 (W —2|- V) €1 (W)Es (v)dwdy

= o Lo b ()
X fo,0(W) fa,o (V)dwdv. (24)

Let {11,...,%,} be as in (12). Then it follows from (13) and (24) that for
k=1,...,n,

(Vr, Vi)
= )\k,n -1

= i o, ) {"" <W ; V>9 (W 7 V> f”ﬁ% f&%
X o (W) fvr (V)Y

- <w/€7 1/%>fa,a

foq,(rl,n
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Arguing as in Ibragimov and Rozanov [9], pages 83-85, we conclude from Bessel’s

inequality and (16) that
S+ e (M)
" [ & (w)? ] [ﬁl(V)Q ]dwdv

k=1
fao(W) | [ fa,o(V)

2

< ma{in 205} [ wo] [t
< gLt el [Loera] e

5. Tapered covariance functions

Let 1 < d < 3, 02K, be the Matérn covariance function as in (1) with spectral
density fa, as in (2). Suppose Kiap is an isotropic correlation function with
supp(Kiap) C [—1,1]¢ and spectral density

1 —aw’x
Jrap(W) = 2 /Rd e Kiap(x)dx. (26)

Let ay,01 be strictly positive constants such that o7a3” = o2a?” and v, €

(0,1], n =1,2,..., be a sequence of constants. We define the tapered covariance
function to be
Ral,n()o = Ko, (%) Ktap(x/70),  Vx € Rdv

and its spectral density is given by

3 1 —w'x %

far,o0.n(W) = W /Rd e 0 Ko, n(x)dx, Vw € R (27)

Lemma 4 below gives non-asymptotic bounds on the spectral density of the

tapered covariance function. The proof is motivated by Kaufman, et al. [10].

Lemma4. Let1 <d <3 and fo,0, frap, fahghn be asin (2), (26), (27) respec-
tively with o2a3” = a%a®". Let €, M, B be constants such that ¢ > max{d/4,1 —
v}, B € (d/2, min{2,2¢}) and B < 2v + d. Suppose that

M
(1 + [[w|2)rFa/z+e’
Then there exist constants 0 < ¢y <1 and 1 < C¢ < oo (independent of w and
n) such that

vYw e R%.

ftap (w) <

fal o1 n(w) ’ Cf
1, 1 : , 28
Far W) I W) =
d fal,ol,n(w) Cy d
CfYn < fa)a(w) S 772111—"_267 VYw € R (29)



254 D. Wang and W.-L. Loh

6. Proof of Theorem 1
Let (¢1,...,%y) be as in (12). We observe from (13) and (29) that
Mo = 00007, = [ )P o (W)
O 1 2V+26 S )\kn S Cf ,_Yn (30)

Using Lemma 3, (25) and (28), we obtain

D L

¢ C¢ foron(w) _|°
&1 a1,01,n 2
Nin — 1)? < {/ -1 dw} {/ O(v) dv]
2 7T | Jua | Fra() y
My
S ,_Y;llu+4e ?
n —2
c: "M,
-1 2 —2d f -0
Z()‘z,n - 1) S Cj /771 Z i — 74u+4e+2d’ (31)
i=1 "
for some constant My (not depending on n). Motivated by Lemma 2, define
Cn _ Cf 172u+26 < 1,
1 ¢, —1+log(c,!)
cr = - =
. max{ 5 =)
{1 Cy a2 =1+ 1og(Cy) +2(v + €) log(vnl)}
= max )
2 (1 _ 0;1,7311/-'1'26)2
Cn = C;I’Ygdu
~ C;QMQ
Cn = ~Slverad:

Let a(4v + 4e +2d) < a; < 1 be a constant and 7, = ™', n = 1,2.... Lemma
1 implies that for e > 0,

- . e2n
TnPahgl’nGUin — Uf| > E) S 26Xp |:10g(7'n) — m}
e’n

= 2 o . 32
L e
Since C Cn — 7—411 4e—2d IOg( —1 4 1) (4U+4€+2d) log(n 4 1) C - ad
and C a(dvtdet2d) 49 p 00, wWe observe from Lemma 2 that there exist

constants ng, My, My >0 (mdependent of n) such that

0o (Xn 2log(n) — C*Ch)?
Puo(22 ) g { - Bl CGE )
Pa,o1,n(Xn) 4C,, +16C,,[21og(1,,) — CxCy]

< Mjexp(—Myn® =), Vn > ng. (33)
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It follows from (8), (32) and (33) that

Z Paﬁg(|&ina1 —0%a®| > ea?”)

n>ngo
< Z 2exp|n — 82771 + My exp(—Mon® =) b < oo
£ 402(0? + 4e) '
n-=no
Thus we conclude from the Borel-Cantelli lemma that 62 na%” — o%a® as
n — oo with P, , probability 1. This proves Theorem 1. [l

7. Proof of Theorem 2

Since o3 = o%a?”, we have

V(o pat ~ o%a™)
52
2 2u 91n
= — —1
oray”’vn( a% )
lomte’ loate’

2 2v 2 2v 1
= (o2 X\ R X, — 0 X\ R'X,) + —— [ XL R, X, —n ).
\/ﬁ @1,m fe% \/ﬁ 0,2 n-ra

With respect to the probability measure P, ,, 02X, R;'X,, ~ x2 and hence

U2Oé2V
vn

as n — 00. Thus to prove Theorem 2, it suffices to show that

1
(Tngglxn - n> — N(0,2(c%a?)?)
g

1
— (o ?X! R X, — 02X/ R;'X,) = 0
\/ﬁ «q,n n-ro

in P, , probability as n — co. We observe that

1 n
— (072X R, X, — 02X/ R;'X Z (A — DY, (34)
vn " Vn

where (Y1,...,Y,) ~ N,(0,I) under P, ,, and Mg,k =1,...,n, are as in (9)
and (11).
Let a >0, mg = |a+d/2] + 1 and ag = (a + d/2)/(2m,). Define
Gx) = [x|*I{Ix| <1}, vxeR
fo(w) = / e Ve (x)dx,  Yw e R%
Rd

Since 0 < ag < 1/2, it follows from Lemma 6 (see Appendix) that & :RESR
is a continuous, strictly positive function and &y(w) =< ||w|| = as ||w] — oo.
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Let ¢1 = ¢ * -+ % &g denote the 2m,-fold convolution of ¢, with itself. Then
supp(¢1) C {x: ||x]| < 2m,} and

&(w) = /Rd e~™WXE (x)dx = Eo(w)? ™, Yw e R

Let 0 < &,, <1 be a constant such that ¢,, — 0 as n — oo. Define

en(x) = ——¢ < x > Vx € R, (35)

= Cl _
Ceed En

where C, = f]Rd & (x)dx. e, : RY — R is an approximate identity in Fourier
Analysis (cf. Grafakos [8], page 24). This implies that e,(x) > 0 Vx € R9,
Jpa €n(x)dx =1 and

én(w) = /Rde_zw/xen(x)dx

1 ,
= a g e "W XE (x)dx
= & (ZZW) . YweR4

Hence there exists a constant Cs (not depending on w and n) such that

Ce
(14 en||wl[)a+d/2’

|n(w)] < vw € RY. (36)

Lemma 5. With the assumptions of Theorem 2, let By be a constant such that
0 < Bo < min{4 — d,4e — d,4v + d} and By < 2. Let 1y, gn, en be as in (17),
(18), (35) respectively. Then there exists a constant Cg, (not depending on n)
such that

Cg,elo
2 BoCn
€n * X) — x)|7dx < .
/d| n gn( ) gn( )| > ;LLV+46

Using (21) and observing that supp(c1) C [—2m, 2m]¢, we obtain for x,y €
[0, 7],

b(x,y) = (2n)? /Rd /Rd €n * gn(s —t)er(x — 8)er(y — t)dsdt
+ (27m)® /]Rd /Rd [gn(s —t) — en x gn(s — t)]c1(x — s)er (y — t)dsdt
= 7Td En ¥ gplS —1T)C1 (X —8)C1 — S
= 0! [ [ enauls = tpentx—s)eaty — tyisdt
+ (2m)? /Rd /Rd R (s,t)c1(x — s)ei(y — t)dsdt, (37)

where

hE(s,t) = [gn(s — t) — en % gn(s — t)]Z{|s + t|max < 4m + 2T}, Vs, t € R%
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Let n : R? — C denote the Fourier transform of g,, — e, * g,,. This implies that

/ |5 (W) — §Z7k(w)|2dw —0, ask— oo,
]Rd
where
I (W) = / e X [g(x) — en * gn (X)) T{[X|max < k}dx, VYw € R%
Rd

Thus we conclude as in (24) that

m)? *(s,t)e1(x —s)er(y — t)ds
(2m) /Rd/whn( S t)er ( Yei(y — t)dsdt
1

— _(27T)d /R2d el(w'x—v'Y)n:; (W —2|— V)g (W 2— V) 13 (W)fl (V)deV' (38)

Next we define

hi*(s,t) = en(s —u)gn(u—t)du, Vs,tecR™L

/|u|n]ax<2m+2ma+T

Then hY* : R2 — C is square-integrable and

’
= / {/ e "W, (s — u)ds]
Iulmax§2m+2ma+T R4

x [ / et g (1 — t)T{|t|max < k}dt} du
Rd

’ ’ 7
/ e (W utv'u) [/ e IW Sen(S)dsj|
Iulmax§2m+2ma+T R4

x U eV g (—8)Z{|t + ulmax < k}dt] du.
Rd

/ e WSO (6 T [blmax < K }dsdt
R2d

Consequently using Fourier inversion, we have for x,y € [0, T,
(27T)d/ / en * gn(s — t)er1(x — 8)er (y — t)dsdt
Rd JRd
= (27T)d/ hy¥(s,t)c1(x —s)ei(y — t)dsdt
R2d

1 ’ ’ ’ ’
lim —— / et(W'xtv y)g1 (W)& (V){ / e t(Wutv'u)
koo (2m)% Jp2a [t max <2m+2mq+T

x [ / e_lwlsen(s)ds] [ / e g () T{|t + Ulmax < k}dt} du}dvdw
Rd Rd
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_ z(w/x—v/y)§ —(w'u—v'u)
- ‘ e [ ‘
(2m)d /R2d [ max <2m+2ma+T

X n (W), (v)du}dvdw. (39)

It follows from (37), (38) and (39) that for x,y € [0, T4,

b(x,y) = @ /R 3 e (Wx—vy) (W ; V) 0 <W > V) &1(W)E (v)dwdv

! (271r)d /R G (W) ()

X { / eil(w’ufv’u)én(W)'I]n (V)du}dvdw
[ulmax<2m~+2m,+T

Let {¢1,...,%,} be asin (12). Then for k =1,...,n,

(Vr, Vi)

(ks Yk foo = Ak —1

V/-L,n + Vli,n’ say, (40)

farorm

Z (23dIWJM@WER;%Z<W;V)9<W;V>§ﬂwﬁvawmg

3

o = g L, TG W) (W) ()

R2d

’ ’
X {/ e wu—v u)du}dvdw.
IulmaxS2m+2ma+T

Now using Bessel’s inequality, we have
n

; |Vk,n| < (2ﬂ_)d kz

=1/ |ulmax<2m42ma+T

/Rd e U (W)EL (W)ey, (W)dw‘

X

du

[ e ntavm vav
Rd

1
< 2(2m) ‘/|u|maxS2m+2ma+T
n eflw’u W gl(W) 6 (w W 2
x;{éd (W) o (W) o ()
2
+ /]Rd eZV’u’l/Jk(V) fili‘("),) nn(v)fa,o(V)dV }du
<

U

1 M e (w2 w}
(27) /|11|max<2m+2ma+T{ R fa,a(W)| n( )| d du

[)
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1 gl(v)z 2d }d
- 2(2m)? /Umax<2m+2ma+T{ R4 fa,o(v)nn(V) vy
1 &1(s)? } i
= 2(2m)? {sseungi fa,o(s) /|u|maxg2m+2ma+:r "
A 2 2
XUR en(w)| dw—i—/Rdnn(v) dv],
and

S 1 & (s)? 2 WV WV
;'Vk.,nP (27T)2d{sseu]1£‘fao()} /]R?d nn( 2 )6< 2 )

1
= 2d7r2d{suﬂng }/|n |2dw/ |0(v)|?dv.
sE OtU

Consequently we observe from (16), (28), (36) and Lemmas 3, 5 that there exists
a constant C' (not depending on n) such that

- 1 1 Bo

i
Z Veml < C<62a+d + ,741/-1-46)’ E |’/k n 4u+4€' (41)
k=1 n n

Now using (41), we have

n n 1/2 C o
nen
Z |Vl'£,n| S <TL Z |Uli,n|2> S dv+-4e” (42)
k=1 k=1 V In

We conclude from (40), (41) and (42) that

n " [ Cnen’ 1 1
E :|/\kn_1| E : |Vk n|+|ykn ) S 4dv+4e +O( 2a-+d + 4v+45>' (43)
k=1 k=1 n &n n

Finally for any constant § > 0, using Markov’s inequality, (30), (34) and (43)
we obtain

2
dwdv

IN

Po.o (%ml?x’ R.!, X, -0 X/ R'X,| > 5>
< — —1Y2 >
SIEONTEIEY
P — /\*1 -1
\/— I;I |
<

%\
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1 Cnel’ —i—C( 1 n 1 >
Cf5nl/2%‘f ,_Y;llu+4e E%aer 7;4111-‘1-46

1/2, ,80/2
C C ( 1 1 > (44)

+ +
2u+2e+d Cf5nl/2%‘f E%aer 4dv+4e

cF0vn Yn

From the definitions of b in Theorem 2 and (p in Lemma 5, we choose 3y
sufficiently close to min{2,4 —d, 4e — d, 4v + d} and a sufficiently close to 0 such
that
2b(2v 4 2e + d) - 1 —2bd
5o da +2d’
Now let b* be a constant such that 2b(2v+2e+d)/By < b* < (1—-2bd)/(4da+2d),
and e, =n",n=1,2,.... Then

2
gho/
7721U+2€+d

1 < 1 N 1 ) S0
nl/Q/Yg E%a+d 7;4111-',-45 9

— 0,

as n — oo. It follows from (44) that

(072X R, X, — 02X, R'X,)| = 0

‘\/— aq,m

in P, , probability as n — co. This proves Theorem 2. |

8. Appendix

Proof of Lemma 1. Let Y = (Y1,...,Y,) = 07 "Ra;2X,,. Then Y ~ N,,(0,T).
We observe that
BY? - B(Y?)
BlY? - BE(Y?)

K2

B(Y? -1)* =2,
E[(max{Y?, E(Y?)})"]
E(Y +1)

(2k)!
2k k!
882kl Vk=3,4,....

IA A

+1

IN

Consequently it follows from Bernstein’s inequality (e.g., (7) of Bennet [3]) that

2

Py oin E(Y?)]| > ev2n < 2e {—E—}, Ve > 0.
o <Z I ) P12 1+ 8e/vam)

i=1

This implies that

- 1
Pal-,dl-,n(w%,n - Uﬂ >e) = Poyorn (E|XI R,! X, - EX; Ral 2 Xa| > 5)

@1,n
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~ 1, — €
- Pam,n<ﬁ| >l - B > ;)
1

i=1
ev/n
= P, ,o1,m | Y2 | > 2n
oun (1300 SN
< 2e =n
Xp|—————|.
P 40%(0? + 4e)
This proves Lemma 1. O
Proof of Lemma 2. We observe that
Pa,o(Xn) 1 2 |
log| ————— = —=1 R.|) - =X R, X,
o (L2l ) — Lou(oRa) - X R
1 95 1
+ ) log(|o7Ra, n|) + EXI Rm nXn-
It follows from (9) that
_tr( R (;11,77,Ra)

2
Eag[lo (7]9”(}(") )} - 1k ( [ R )
Pay,oq n(Xn) 2 |O'1Ra1 n|
TL
= —_—— 1 P —
E :Og zn 2

%E 1o 1og<A;,1>], (45)

where E, , denotes expectation with respect to the probability measure P, »
The right hand side of the last equality is a minimum when \;, = 1 for all
i=1,...,n. We further observe from (9) and (45) that

Py ( Pao(Xn) E m)

pal,dl,n(Xn
= P, (log(ipa o(Xn) ) —FEy o 10g<7pa o(Xn) )
Pay,o1,n(Xn) Pay,or,n(Xn)

> log(7y) — Eo,q log (#ﬁ%)»

1 R’ ~1 1 R;! =1
- Pa.a’ _X “LR R—a Xn - _Ea.a'X/ — Ra Xn

0% o2
1 ¢ 1 -1
> log(m,) — 3 Z: AL im — 1 — 1og(/\i7n)]>

Po.o (X;(ULglU' - UU)X,, - E,,X, (UL 'U - UU)X

IN
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n

> 2log(ma) = Cp > (Aip — 1)2>

=1

< Pao(X,(UL;'U = UU)X,, ~ Bo o X, (UL, U~ UU')X,
> 2log(7y) — c;;én). (46)

Writing Y = (Y4,...,Y,,) = UX,,, wehave Y ~ N, (0,I) under P, .. It follows
from (46) that

puo( 22X )

]5011,0'1,77,( n
< Pa,U(Zw,;—1>m2—Ea,o<z-2>] >2log<m>—c:;én). (47)
=1

We further have

Eaol{l(Ain = DYZ = Ba o YOI} = 207, —1)%
Eao{|(Mp = DIY? = Ea o (YDI*} < A = 1P Eao[(max{Y?, 1})"]
< A = B, o (YR + 1)
< A — 1]F8F 2k
< (Aa = 1P8C)M PR, VE=3.4,....

Consequently it follows from Bernstein’s inequality (cf. (7) of Bennett [3]) that

FPoo (i(Az,i - 1)[3/;2 - Ea,a(yf)] > €

i=1

ex — e ,  Ve>0. 48
) p{ 2[1+80ne/¢22?_1@;$—1>21} i ()

From (47) and (48), we obtain
o, Xn
Pa,a’(~p7( ))>Tn>

pal,dl,n(Xn
P( - 2log(r,) — C*C,

IN

(Aia = D2 = BEY?)] >
T V2SO - 12

K2

_ k2 ey 71
_ exp{ B [2 logrgrn) 716'"0"1 [1 N 40712105(7—")71 Onc;n,:| }
4Zi:1(/\i,n - 1) Zi:l(/\i,n - 1)
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. [2log(r) = G0

- p{ A (A = 1)2 £ 16C,[2log(T,) — ]}
[21log(7,) — C:C,]?

= exp{_4én+160n[2log(7n) C:C ]}'

This proves Lemma 2. [l
Proof of Lemma 3. We observe that

1 d Am~+2T ,
O(w) — [/ e i J’dt}
24 H —(4m+2T) !

J=1

[ﬁ / cos(tj)dt]} . Yw = (wi,...,wg) €RL
wj

|
AE&

j=1

Hence 0 is a real-valued, continuous function on R% and [p, 6(w)?*dw < oo. This
proves Lemma 3. O

Proof of Lemma /. First we observe that

/ ey / Fan o0 (W — V) Fenplpav)dvdwy
Rd Rd

’ v
= / X w/ faq,t‘fl <W — —> ftap(V)dVdW
R4 Rd Tn

ettt | [ o

02K o, (%) Kiap (£> Vx € R

n

Hence using inverse Fourier transform, we have

r 1 —aw'x X
Foroin(w) = / VXK oy () K ()

n

= /Yn/ faho'l - V)ftap(’YnV)dV
= Tn /]Rd fou,Ul (V)ftap(/Yn(W - V))dV, Yw € ]Rd.

Let By € ((d + 2v + B)/(d + 2v + 2¢),1) be a constant and u € R? such that
|lul] = 1. For all » > 0, define

Now = {v eR?: |ru—v|| <r}.
Then

fal,ol,n(ru) 1 = 'Yg fRd for,00 (V)ftap("Yn(Tu —v))dv 1

fa,o(ru) fa,o(ru)
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/Yg f/\/m fOll,(Tl (V)ftap (/771 (ru - V))dV

_ -1
fa,o(ru)
Fyg f'/\/'r?u fa1701 (V)ftap(ﬁyn(ru - V))dV (49)
fO¢7U(Tu)
Note that
dpr
dp B < Tn
vilfl\]/;:?u Yo frap(n(ru —v)) < vzljl\g?u (14~2|[ru — v||2)r+d/2+e
dpr
Tn Vr > 0.

S (1 + FY%TQBQ)Uer/ZJre ’

Since [pu fai,0, (V)dv = 07, there exists a constant Cy (independent of r and n)
such that

" f/\fﬁu for 00 (V) frap (yn (ru = v))dv - a2 Mo? (a? + r?)vtd/?
fa,cr(ru) — 02(12”(1 + ,77217a2,80)u+d/2+6
Co

vr>0. (50)

Next expanding fo,.0, (v) as a Taylor series about ru, we obtain

fOll,(Tl (V) = fOll,(Tl (TU.) + (V - Tu)l[vfal,al (TU.)]
1
+ 5(" - ru)/[v2foz1,a1 (myru)](v = ru)
where my -y is a point on the line segment joining v and ru, [V fa, o, (ru)] is
the d x 1 vector of first derivatives of f evaluated at ru, and [V2fa, o, (My 1u)]

is the d x d matrix of second derivatives of f,, ,, evaluated at my 4. Then

Ve f/\/m for 00 (V) frap (yn (ru = v))dv

Toa () -1 (51)
Tt L hsentntra oo 1] 4 Bl
b [ = A9 o 3 = P = )
Since 003" = 0?a?”, we observe that there exists a constant C; (independent

of r and n) such that

forn(ru) a2ty
oty T e
C
L Vr > 0,

1 + T.2v+d )
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and

1 /N Fean (7 — ¥))dv

<

1 / Feap(rv)dv
[[v]|<rPo

/ ftap(v)dv
[[v[>~nrfo
min {1, M

min{l,

1
|2U+d+2€ dV}

[[v]|>~nrfo Hvl

ord/2 )N > zd-1 d
I‘(d/2) \/w:nrﬁo x2u+d+2e I}

. 1 72 M
i { ’ ”y,%wrzé(y + €)I'(d/2)r2Po(v+e) }
@ vr > 0. (52)

I

We observe from Kaufman, et al. [10], page 1554, that there exist constants Cy
and C5 (independent of r and n) such that

d
Tn
57 o 8 7 s () 70 e = )i
d 2 v+d/2
YaC3(a? +1r?)
< S [ IVl st = v))av
d 2 vd/2
’}/nC?,(Oé +r ) / 2
— a n d
[a2 4 (1 — rBo)2]v+d/2+1 vl <rfo [V[I* feap (v V)dv
< 4C3(a? 4 r2)vtd/2 / v M v
T el WP A Cere ] v e
- 2w 2Cy M (o + r2)v+d/2 /°° zdt! p
X
S TR+ G- T Jy (Lt e
Cy
< - Vr > 0. 53
< sagey 2 (53)
Consequently, it follows from (51), (52) and (53) that
/Yg f/\/m fal,al (V)ftap(’yn(ru - V))dV 1
fa,o(ru)
Cl 01 Cl 02
< 1 . 54
- < +1+r2”+d>1+72””5 T ey Y

Finally from (49), (50) and (54), we obtain

fal,dl,n(Tu)

fa,o(ru)

_1‘
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< SN — A B S
T 12t L r2vtd J ] g A2vi26.8 0 1 4 p2vtd T 42(1 4 p2)

for all » > 0. This proves (28). It suffices to give a proof for the lower bound of
(29) as the upper bound is an immediate consequence of (28). Define

1
= — tap(V)dv, V¥V 0,1].
) d/”Wf o(v) y e 0,1]

We observe that ¢ : [0,1] — (0,00) is a continuous, strictly positive function.
Hence ¢ = ming<~<1 ((7y) > 0. For r > 0 and u € Rd with |Jul| = 1, define

New={veR?: |ru—v| <1}
Then using (2), we have

fal,dl,n(Tu)

m/ for o0 (V) frap (yn (ru = v) )dv

fao(ru)
dinf f
weN,, J o, 01
2 fa o ru /~ ftap ’Yn e ))d
2 21/ v+d/2
= oty (e +17) / Jrap(V)dv
0—2a2u[a2+(7-+1)2]1/+d/2 vl <7m
R A A
S .
= e[+ (r 4 prdiz =
for some constant ¢y > 0 (not depending on ru and n). O

Proof of Lemma 5. Using Plancherel’s theorem, we have for y € R,

—y) — x2x:—1 e~ ™'Y (W) — n,(w)|2dw
|ty —aubfix = o [ e ) ()
1 —zwy
= g [ = D)t
2oy :
< (27T)d ~/]Rd ”WHB |77n(W)|2dW

Using (16), Lemma 4 and Minkowski’s integral inequality (cf. Grafakos [8], page

12), we obtain
1/2
[ tensaut) - gn<x>|2dx]
Rd

|
[/Rd | /'y”@maan lgn(x = y) = gn(x)]en (y)dyl2dX] h

1/2
[ L tont=9) = anix| - entyiiy
Yy MagEn

IN
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22=60)/2(2m,e,,)P
2 [ oo as]

TN el g
B (2m) /25 +2e re (1+[w]?)? 7

/2

where (3 is a constant satisfying 8 € (d/2, min{2, 2¢,2v+d}) and 0 < Gy < 258—d.
The integral on the right hand side of the last inequality is finite. This proves
Lemma 5. O

Lemma 6. Let 1 <d <3, k€ (0,1/2) and & be as in (14). Then & : RY - R
is a continuous, isotropic, strictly positive function and {(w) < ||[w| ™" as

Proof of Lemma 6. We shall consider three cases. CASE 1. Suppose d = 1. Then

1
So(w) = /eﬂwx|x|“71d:17

1

1
= 2/ cos(wz )z tdx
0
92 |w]
= —/ cos(z)x"dx.
0

|w]*

Hence & is a continuous, isotropic, strictly positive functionon Ras 0 < k < 1/2
and

Jw| 37 /2
/ cos(x)z" tdx > / cos(x)z" tdr >0, V|w|€ [r/4,00).
0 0

Also &(w) < |w| ™" as |w| — oo since 0 < ;¥ cos(z)z"'dx < oo.
CASE 2. Suppose d = 2. Let Uy be the uniform probability measure on
Si={u e R?: ||u|| = 1}. Since & is an isotropic function, we have

/ {/ 61||W|U,X|X|n2U2(du)}dX

ixi<t s,

_ / ||x||~—2{/ cos(|w|u’x)U2(du)}dx,
[Ix]|<1 Sa

2
/ cos(||wl|u'x)Us(du) = i/O cos|||x|[||w]| cos(8)]d6.

3 2

o(w)

and

Hence

- e f [ 0)]do ¢ d
ow) = o [ 2 [ cosliwll costo)an i

1 [lx[["—2 {/2” dx
= — — cos|||x|| cos(0)]dl p ——
"2 Lo [wi?

2 Jixp<gwy W
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2m pellwl]
% / / 2"t cos[x| cos(0)|]dxdd
Iwl* Jo  Jo
I |

/ /ICOS(9)I|WII ) @)
= "7 cos(x)dzdo.
[wll* Jo [cos(8)|* Jo

Arguing as in Case 1, & is a continuous, isotropic, strictly positive function and
o(w) =< [[w]|™" as [[w]| = oo.
CASE 3. Suppose d = 3. As in Case 2, we have

w _ 671||w|\u’x x Kk—3 u <
£o(w) /”x”q{/sg x5 (dw)}d

- /” » i [ 3 cos(lwlu'x) ()}

We observe from Stein [12], page 43, and Andrews, Askey and Roy [2], page
202, that

sin([x|[||wi])

/53 cos(||wl|u'x)Us(du) = %/077 cos|||x|[||w]| cos(0)] sin(6)db =

[T wli

Consequently

o = ol
fo(w) = /”x”<1| n d

NGRS

/ <% sin([lx]}) _dx
I

x| <||wl| [wil==3 x|l [Jw]?

gr Wl
= —F/ "2 sin(x)dz.
0

[[wil

This implies that & is a continuous, isotropic, strictly positive function and
&o(w) < ||w|~" as ||w]|| = oo. This proves Lemma 6. O
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