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1. Introduction and motivations

The problem of recovering topological and geometric information from multi-
variate data has attracted increasing interest in recent years.

Taking a statistical point of view, data points are usually considered as in-
dependent observations drawn according to a common distribution μ on the
space R

d. In this stochastic framework, the problem of estimating the support
of μ and its geometric properties (e.g., dimension, number of connected com-
ponents, volume) has been widely studied during the last two decades (for a
review of the literature, see for instance Cuevas and Rodŕıguez-Casal [15], and
Biau, Cadre, and Pelletier [5]). There are set-ups in which sets or boundaries
are to be estimated from samples drawn from within and outside the set it-
self. Various models exist in this respect—it is the point of view taken, e.g.,
by Cuevas, Fraiman, and Rodŕıguez-Casal [14]. Korostelev and Tsybakov [30]
provide detailed analysis of the rate of convergence of various set or boundary
estimation errors under several scenarios. Many approaches are rooted in ker-
nel methods, placing a small weight, often in a carefully selected ball of small
radius, around data points inside the support set (Devroye and Wise [19]). Ob-
ject estimation can also be attacked by methods that are based on level sets
of densities. Cuevas, Fraiman, and Rodŕıguez-Casal [14] provide a consistent
estimate of the Minkowski content that turns out to also provide an estimate of
the boundary of the studied object. However, this boundary estimate does not
come with topological guarantees. Approaches like principal curves and surfaces
(Hastie and Stuetzle [28]), multiscale geometric analysis (Arias-Castro, Donoho,
and Huo [1]) and density-based methods (Genovese, Perone-Pacifico, Verdinelli,
and Wasserman [26]) have been successfully used to detect “simple” geomet-
ric structures such as one-dimensional curves or filaments in data corrupted by
noise.

On the other hand, taking a slightly different and nonstochastic point of
view, purely geometric methods have also been developed to infer the geometry
of general compact subsets of R

d from point cloud data. In this context Chazal,
Cohen-Steiner, and Lieutier [9, 10] and Chazal, Cohen-Steiner, and Mérigot
[11, 13] argue that the study of distance functions to the data provides precise
and robust information about the geometry of the sampled objects.

While statistical methods provide efficient tools to deal with noisy data, they
do not however come with strong guarantees on the inferred geometric properties
or are restricted to the inference of geometrically simple objects such as pieces
of smooth curves or topologically trivial manifolds. On the other hand, purely
geometric methods offer strong guarantees but, since they do not integrate any
statistical model, they usually rely on sampling assumptions that cannot be met
by data corrupted by noise.

In the so-called distance function approach, the unknown object is estimated
by the union of balls centered on the data points or, equivalently, by an ap-
propriate sublevel set of the distance function to the data. Thanks to classical
properties of distance functions, this procedure has revealed fruitful both from
the statistical (Devroye and Wise [19], Biau, Cadre, Mason, and Pelletier [4])



206 G. Biau et al.

and geometric (Chazal, Cohen-Steiner, and Lieutier [10]) points of view. Unfor-
tunately, the distance function approach obviously fails when the observations
are corrupted by “background noise” (as shown for example in Figure 1 and Fig-
ure 2), or when the observed data is not exactly drawn from a unique distribution
μ but from the convolution of μ with a noncompactly supported noise measure.
Different solutions have been proposed to get rid of this problem. These solutions
generally rely on statistical models assuming a strong knowledge on the nature
of the noise. For example, Niyogi, Smale, and Weinberger [39] show that it is
possible to infer the homology of a low-dimensional submanifold M ⊂ R

d from
data uniformly sampled on M and corrupted by a Gaussian noise in the normal
direction to M . In lower dimensions, motivated by applications ranging from
the inference of networks of blood vessels to the characterization of filaments
in distributions of galaxies, the detection of filamentary structures has been
carefully considered. For example, Genovese, Perone-Pacifico, Verdinelli, and
Wasserman [26] address this problem using the gradient of a density estimate
to exhibit filamentary structures in data; lately, these authors also proposed in
[27] an asymptotically consistent geometric approach for the same problem but
in dimension 2. Unfortunately, when the data is corrupted by outliers, the latter
method requires a—usually tricky—preprocessing step consisting in identifying
and eliminating these outliers.

Recently, Chazal, Cohen-Steiner, and Mérigot [12] proposed a framework to
bridge the gap between the statistical and geometric points of view. The ap-
proach of the authors avoids the cleaning step by replacing the usual distance
function by another distance-like function which is robust to the addition of a
certain amount of outliers. This function extends the notion of distance func-
tions from compact sets to probability distributions, allowing to robustly infer
geometric properties of the distribution μ using independent observations drawn
according to a distribution μ′ “close” to μ. In this framework, the closeness be-
tween probability distributions is assessed by a Wasserstein distance Wp defined
by

Wp(μ, μ′) = inf
π∈Π(μ,μ′)

(∫
Rd×Rd

‖x − y‖pπ(dx, dy)
) 1

p

,

where Π(μ, μ′) is the set of probability measures on R
d×R

d that have marginals
μ and μ′, ‖.‖ is a norm and p ≥ 1 is a real number (see Villani [50]).

In the approach of Chazal, Cohen-Steiner, and Mérigot [12], given the prob-
ability distribution μ in R

d and a parameter 0 ≤ m ≤ 1, the notion of distance
to the support of μ is generalized by the function δμ,m : x ∈ R

d �→ inf{r > 0 :
μ(B(x, r)) > m}, where B(x, r) denotes the closed ball of center x and radius
r. To avoid trouble due to discontinuities of the map μ �→ δμ,m, the distance
function to μ with parameter m0 is defined by

d2
μ,m0

: R
d → R

+, x �→ 1
m0

∫ m0

0

δμ,m(x)2dm,

where 0 < m0 ≤ 1 is a real number. The function dμ,m0 shares many prop-
erties with classical distance functions that make it well-suited for geometric
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inference purposes. In particular, if the space P(Rd) of probability measures in
R

d is equipped with the Wasserstein distance W2 and the space of real-valued
functions is equipped with the supremum norm, then the map μ �→ dμ,m0 is
1/

√
m0-Lipschitz, i.e.,

sup
x∈Rd

|dμ,m0(x) − dμ′,m0(x)| = ‖dμ,m0 − dμ′,m0‖∞ ≤ 1
√

m0
W2(μ, μ′).

This property ensures that W2-close measures have close sublevel sets in R
d.

The function d2
μ,m0

is also seen to be semiconcave (that is x �→ ‖x‖2 − d2
μ,m0

(x)
is convex, see Petrunin [40] for more information on geometric properties of
semiconcave functions). This regularity property implies that d2

μ,m0
is of class C2

almost everywhere, thus ensuring strong regularity properties on the geometry
of the level sets of dμ,m0 .

Using these properties, Chazal, Cohen-Steiner, and Mérigot prove, under
some general assumptions, that if μ′ is a probability distribution approximating
μ, then the sublevel sets of dμ′,m0 provide a topologically correct approximation
of the support of μ (see [12, Corollary 4.11]). Figure 1 and Figure 2 below show
some examples of level sets of distance functions to a measure illustrating this
result.

Fig 1. Left: A two-dimensional data set where 50% of the points have been uniformly ran-
domly sampled on the union K of a circle and a segment, and 50% have been uniformly
randomly sampled in a square containing K. Right: Three different level sets of the dis-
tance function dμ,m0 , where μ stands for the empirical measure based on the observations
and m0 = 0.02, showing that the topology of the union of the circle and the segment can be
correctly inferred.

2. Connection with density estimation

Let X1, . . . ,Xn be independent identically distributed observations with com-
mon distribution μ on R

d, equipped with the standard Euclidean norm ‖.‖. The
empirical measure μn based on X1, . . . ,Xn is defined, for any Borel set A ⊂ R

d,
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Fig 2. Left: A three-dimensional set of points uniformly sampled on the surface of a me-
chanical part to which 10% of points sampled uniformly at random in a box enclosing the
mechanical part have been added. Right: An isosurface of the distance function dμ,m0 to
the empirical measure based on the observations. This isosurface successfully recovers the
topology of the mechanical part. In this example, m0 = 0.003.

by

μn(A) =
1
n

n∑
i=1

1[Xi∈A].

This empirical distribution is known to provide a suitable approximation of
μ with respect to the Wasserstein distance (Bolley, Guillin, and Villani [7]).
Moreover, given a sequence of positive integers {kn} such that 1 ≤ kn ≤ n, for
mn = kn/n the function dμn,mn takes the simple form

d2
μn,mn

(x) =
1
kn

kn∑
j=1

‖X(j)(x) − x‖2

where X(j)(x) is the j-th nearest neighbor to x among X1, . . . ,Xn and ties are
broken arbitrarily. Thus, ‖X(1)(x) − x‖ ≤ · · · ≤ ‖X(n)(x) − x‖. In other words,
the value of d2

μn,mn
at x is just a weighted sum of the squares of the distances

from x to its first kn nearest neighbors.
Assume now that the common probability measure μ of the sequence is abso-

lutely continuous with respect to the Lebesgue measure on R
d, with a probability

density f . In this context, it turns out that the function dμn,mn is intimately
connected to both the geometric properties of μ and to the density f . To see
this, observe that in the regions where f is high, the function dμn,mn takes
small values while in the regions where f is low, dμn,mn takes larger values.
Observe also that the function δμn,mn is just the distance function to the kn-th
nearest neighbor, i.e., δμn,mn(x) = ‖X(kn) − x‖. These remarks motivate the
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introduction of the density estimate f̂n of f , defined by

f̂n(x) =
1

nVd

( ∑kn

j=1 j2/d

knd2
μn,mn

(x)

)d/2

, x ∈ R
d,

where Vd is the volume of the unit ball in R
d. Put differently, for x ∈ R

d,

f̂n(x) =
1

nVd

( ∑kn

j=1 j2/d∑kn

j=1 ‖X(j)(x) − x‖2

)d/2

.

From the geometric inference point of view, the estimate f̂n allows to infer both
the geometric properties of the support of μ and the geometry of the upperlevel
sets of f , i.e., sets of the form {x ∈ R

d : f(x) ≥ t}. A more general density
estimate is given, for p > 0, by

f̃n(x) =
1

nVd

( ∑kn

j=1 pnjj
p/d∑kn

j=1 pnj‖X(j)(x) − x‖p

)d/p

, x ∈ R
d,

where, for j = 1, . . . , kn,

pnj =
∫
] j−1

kn
, j

kn
]
ν(dt)

and ν is a given probability measure on [0, 1] with no atom at 0. To avoid
trivial complications in the proofs, we assume throughout the document that
p = d, leaving the reader the opportunity to adapt the results to the case
p 
= d. Therefore, we will consider the following generalized version of the k-
nearest neighbor density estimate of Fix and Hodges [23] and Loftsgaarden and
Quesenberry [31], defined by

fn(x) =

∑kn

j=1 pnjj

nVd

∑kn

j=1 pnj‖X(j)(x) − x‖d
, x ∈ R

d.

This estimate is but a special case of a larger class of estimates proposed by
Rodŕıguez [43] and Rodŕıguez and Van Ryzin [41, 42] that combine kernel
smoothing with nearest neighbor smoothing.

When ν is the Dirac measure at 1, we obtain

kn∑
j=1

pnjj = kn

and, consequently,

fn(x) =
kn

nVd‖X(kn)(x) − x‖d
, x ∈ R

d.
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This is the original Loftsgaarden and Quesenberry k-nearest neighbor den-
sity estimate. Its properties are well-understood (Fukunaga and Hostetler [25],
Devroye and Wagner [20, 21], Moore and Yackel [36, 37], Mack and Rosen-
blatt [33], Mack [32], Bhattacharya and Mack [3], Devroye, Györfi, and Lugosi
[18], Rodŕıguez [43, 44, 45]). For example, at Lebesgue-almost all x, we have
fn(x) → f(x) in probability as n → ∞, if kn → ∞ and kn/n → 0. On the other
hand, taking for ν the uniform measure on [0, 1], we obtain

kn∑
j=1

pnjj =
1 + kn

2
,

and
fn(x) =

kn(1 + kn)

2nVd

∑kn

j=1 ‖X(j)(x) − x‖d
, x ∈ R

d.

The remainder of the paper establishes various properties of fn (Section 3).
In particular, we look at pointwise consistency, and derive a general central limit
theorem under the lightest possible conditions. In addition, a strong approxi-
mation is obtained as well. The asymptotic mean square error, when optimized
with respect to kn, reduces to a product of three factors, n−4/(d+4) (the rate of
convergence), a factor depending upon the local shape of f (which involves the
trace of the Hessian), and a factor depending upon ν only. The third factor is
invariant for all x, and should thus be optimized once and for all—at least if
performance is measured by local mean square error. Attempts at such an opti-
mization are rare—we will optimize ν within a large parametric class of weight
functions that also play a role in the optimal shapes of kernels in kernel density
estimates as established in the classical papers of Bartlett [2] and Epanechnikov
[22]. Using simulations, we finally show in Section 4 the suitability of the class of
estimates in a number of important applications. For the sake of clarity, proofs
are postponed to Section 5.

Our approach is close in spirit to the one of Samworth [46], who derived
asymptotic expansions for the excess risk of a weighted nearest neighbor classi-
fier and found the asymptotically optimal vector of weights. In contrast, we are
considering density estimation and our optimization is quite different.

3. Some asymptotic results

Our goal in this section is to establish some pointwise asymptotic properties of
the estimate fn. To this aim, we note once and for all that for any ρ > 0, all
quantities of the form ∫

[0,1]

tρν(dt)

are finite and positive. Moreover, for ρ ≥ 1, as kn → ∞,

1
kρ

n

kn∑
j=1

pnjj
ρ =

∫
[0,1]

tρν(dt)
(

1 + O
(

1
kn

))
.



A weighted k-nearest neighbor density estimate 211

The symbol λ stands for the Lebesgue measure on R
d. We start by establishing

the weak pointwise consistency of fn.

Theorem 3.1. If kn → ∞ and kn/n → 0, then the generalized k-nearest neigh-
bor estimate fn is weakly consistent at λ-almost all x, that is fn(x) → f(x) in
probability at λ-almost all x as n → ∞.

Our next result states the mean square consistency of the generalized k-
nearest neighbor estimate.

Theorem 3.2. We have, at λ-almost all x,

E
[
f2

n(x)
]

< ∞

whenever kn ≥ 5. Furthermore, if kn → ∞ and kn/n → 0, then, for such x,

E [fn(x) − f(x)]2 → 0 as n → ∞.

The asymptotic normality of the original Loftsgaarden and Quesenberry k-
nearest neighbor estimate has been established by Moore and Yackel in [37].
These authors proved that for f sufficiently smooth in a neighborhood of x,
f(x) > 0, kn → ∞ and kn/n2/(d+2) → 0 as n → ∞, then

√
kn

fn(x) − f(x)
f(x)

D→ N,

where N is a standard normal random variable. This result was obtained for the
generalized k-nearest neighbor estimate by Rodŕıguez [43, 45]. The novelty in
Theorem 3.3 is that it is a strong approximation result, which is interesting by
itself and implies the classical central limit theorem. We let Γ(.) be the gamma
function and denote by [∂2f(x)/∂x2] the Hessian matrix of f at x, which is
given by [

∂2f(x)
∂x2

]
i,j

def=
∂2f(x)
∂xi∂xj

.

Notation tr(A) stands for the trace of the square matrix A. For a sequence of
random variables {ζn} and a deterministic sequence {un}, notation ζn = oP(un)
means that ζn/un goes to 0 in probability as n tends to infinity, and notation
ζn = OP(un) means that ζn/un is bounded in probability as n tends to infinity.

Theorem 3.3. Let x ∈ R
d and assume that f has derivatives of second order

at x, with f(x) > 0. Let

v2 =

∫ 1

0
(1 − Φ(t))2 dt[∫
[0,1] tν(dt)

]2 and b =

∫
[0,1] t

1+2/dν(dt)∫
[0,1]

tν(dt)
,

with
Φ(t) =

∫
[0,t]

ν(du), t ∈ [0, 1].
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Let also

c(x) =
1

2(d + 2)π
Γ2/d

(
d + 2

2

)
tr
[
∂2f(x)

∂x2

]
.

Then, if N denotes a standard normal random variable, and if kn → ∞ and
kn/n → 0,

fn(x) − f(x) D=
f(x)v√

kn

N +
c(x)b

f2/d(x)

(
kn

n

)2/d

+ oP

(
1√
kn

+
(

kn

n

)2/d
)

.

Theorem 3.3 can be used when kn is at its optimal value (about n4/(d+4)). It
can also be used when kn is below this optimal value, that is

√
kn

fn(x) − f(x)
f(x)

D→ vN,

and above it, when(
n

kn

)2/d

(fn(x) − f(x)) → c(x)b
f2/d(x)

in probability.

The usual k-nearest neighbor estimate has v2 = 1. Consequently, for this esti-
mate, √

kn
fn(x) − f(x)

f(x)
D→ N, (3.1)

provided kn → ∞ and kn/n4/(d+4) → 0 as n → ∞. This is precisely the asymp-
totic normality result of Moore and Yackel [37]. Note however that our condition
kn/n4/(d+4) → 0 is less severe than the condition kn/n2/(d+2) → 0, which is im-
posed by these authors at the price of a less stringent smoothness condition on
f however. In any case, consistency (3.1) deals with the uninteresting case of a
kn which is suboptimal (that is, the bias in fn(x) is negligible with respect to
the variance term). Note, in addition, that analogues of Theorem 3.1 (yet with
different rates) may be obtained in the somewhat degenerated situations where
f(x) and/or c(x) = 0 by pushing the asymptotic expansions.

Theorem 3.3 has also interesting consequences for the analysis of the mean
square error development of the estimate fn. Let �·
 be the nearest larger integer
(or ceiling) function.

Theorem 3.4. With the notation and conditions of Theorem 3.3, if kn → ∞
and kn/n → 0, then

E [fn(x) − f(x)]2 =
f2(x)v2

kn
+

c2(x)b2

f4/d(x)

(
kn

n

)4/d

+ o

(
1
kn

+
(

kn

n

)4/d
)

whenever f(x) > 0. Thus, for such x, assuming that c(x) 
= 0 and for the choice

kn =

⎡
⎢⎢⎢
(

df2+4/d(x)v2

4c2(x)b2

) d
d+4

n
4

d+4

⎤
⎥⎥⎥ ,
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we have
E [fn(x) − f(x)]2 = Δ(x)n− 4

d+4 + o
(
n− 4

d+4

)
,

where

Δ(x) =
(

1 +
d

4

)(
4f4/d(x)c2(x)v8/db2

d

) d
d+4

.

For the standard k-nearest neighbor estimate,

Δ(x) =
(

1 +
d

4

)(
4f4/d(x)c2(x)

d

) d
d+4

and thus, as n → ∞,

E [fn(x) − f(x)]2 = Δ(x)n− 4
d+4 + o

(
n− 4

d+4

)
,

for the optimal choice

kn =
⌈(

df2+4/d(x)
4c2(x)

)
n

4
d+4

⌉
.

For the original Loftsgaarden and Quesenberry’s density estimate, the opti-
mization problem of kn with respect to the mean square error criterion is thor-
oughly discussed in Fukunaga and Hostetler [25]. The best possible asymptotic
quadratic error for the generalized k-nearest neighbor estimate, as given in The-
orem 3.4, consists of a product of three factors: The first factor depends upon
n and d only, and is the general rate of convergence. The second factor depends
upon f(x) and c(x), and we have no control over that. The third factor is

(
v8/db2

) d
d+4

,

which depends directly on our measure ν. It is clear that we would like to
minimize this factor. It is more convenient to work with a power of it, namely

A
def= bv

4
d .

For the Dirac measure at 1 (the classical k-nearest neighbor estimate), we note
that v = b = 1, so A = 1.

The first important consequence of the factorization is that the optimal ν
is the same at all points x with f(x) > 0 and c(x) 
= 0. A similar property
has been noted a long time ago for the form of the best positive kernel in the
Parzen-Rosenblatt density estimate (see Bartlett [2] and Epanechnikov [22] for
d = 1 and Deheuvels [16] for d > 1).

The functional optimization of A seems daunting, but one can make a good
guess in the following manner. Assume that we let ν be the measure of Uα,
where U is uniform on [0, 1], and α ≥ 0 is a parameter. The case α = 0 again
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yields the atomic measure at 1. Repeatedly using the fact that E[Us] = 1/(s+1),
simple calculations show that

A = A(α) =
d2

2
d (1 + α)1+

2
d

(2 + α)
2
d (2α + dα + d)

.

The behavior of A as a function of α (see Figure 3 below) is best captured
by studying log A and taking derivatives. This reveals that A(0) = 1, that A
decreases initially to reach a minimum at α = d/2, that the minimal value is

1
2

(
2 + d

2 + d
2

)1+ 2
d

,

and that A increases again to a limiting value given by

2
2
d

1 + 2
d

.

d=1

d=2

d=3

d=4

0 5 10 15 20

1

.05

1.1

.15

1.2

.25

1.3

.95

0.9

.85

Fig 3. This figure shows A versus α for 1 ≤ d ≤ 4. Note that A exceeds 1 only for d = 1 and
α large enough.
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0 5 10 15 20 25 30 35 40

1

.95

0.9

Fig 4. This figure shows the minimal value of A and the limiting value of A versus d. Note
that both are nearly indistinguishable for d ≥ 10.

The latter limit is ≤ 1 for d ≥ 2. The value of A at the minimum is a strictly
increasing function in d with limit tending to one (see Figure 4).

In other words, except for d = 1, any value of α > 0 is better than α = 0:
The classical k-nearest neighbor estimate is actually the worst possible in this
entire class of natural weights! Furthermore, for any d ≥ 1, by taking α = d/2,
we obtain an improvement over the classical k-nearest neighbor estimate that
is most outspoken for d = 1. It is interesting that for d = 1, ν is the law of

√
U ,

which has a triangular (increasing) density on [0, 1]. Rodŕıguez [43] obtained
a similar result for the best weights in a weighted k-nearest neighbor rule for
density estimation. For d = 2, ν is the uniform law on [0, 1]2: So it is best to
weigh all of the k-nearest neighbors equally. We do not know whether Ud/2 is
in fact the optimal value.

Note also that in this paper, we are fixing the distance metric which deter-
mines the ranking among neighbors. There is ample evidence, especially from
practicing nonparametric statisticians, that in moderate and high dimensions, a
lot can be gained by considering variable metrics, such as Euclidean metrics ap-
plied after performing a locally affine (or matrix multiplication) transformation,
and letting the data select to some extent the metric. This strategy was already
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present in the work of Short and Fukunaga [47] and Fukunaga and Flick [24].
Kernel estimates are better adapted to take advantage of local second order or
Hessian structure. Combinations of nearest neighbor and kernel estimates that
incorporate these ideas are being considered by a subset of the authors in [45].

4. Numerical illustrations

A series of experiments were conducted in order to compare the performance
of our weighted estimate with that of the standard k-nearest neighbor estimate
of Fix and Hodges [23] and Loftsgaarden and Quesenberry [31]. We provide
numerical illustrations regarding both the geometric and convergence properties
of the estimates.

On the geometrical side, particular attention was paid on the comparison of
the geometry of the level sets of the various estimates. To this aim, we investi-
gated three synthetic data sets, sampled according to known probability density
models, and one real-life data set. These four data sets are denoted D1, D2,
D3 and D4 hereafter and are described below.

D1: A two-dimensional data set of 5,000 points, randomly sampled according
to a bivariate standard normal distribution (see Figure 5, left).

D2: A two-dimensional data set of 8,000 points, randomly sampled according
to an equal mixture of two bivariate normal distributions, with respective
means (−0.7,−0.7), (0.7, 0.7) and covariance matrices(

0.3 0
0 0.3

)

and (
0.8 −0.4
−0.4 0.8

)
(see Figure 6, left).

D3: A two-dimensional real data set representing the epicenters of 12,790
earthquakes registered during the period 1970-2010 on the longitude-la-
titude rectangle [−170, 10]× [−70, 70] (see Figure 7, left). This data has
been extracted from the US Geological Survey database [48].

D4: A three-dimensional data set of 50,000 points, randomly sampled accord-
ing to a standard normal distribution in R

3.

The computing program codes were implemented in C++ using the Approx-
imate Nearest Neighbor library developed by Mount and Arya [38]. Due to the
efficiency of this library, all computations took a few seconds to a few minutes on
a standard laptop. The programs are available upon request from the authors.

For the two-dimensional data sets D1, D2 and D3, the density estimates
were first evaluated on the vertices of a regular 2000 × 2000 grid, and the level
sets were extracted using the contour function in Matlab. Figures 5, 6 and 7
depict, for each of these data sets, some level sets of the standard k-nearest
neighbor estimate (middle column in the figures) and some level sets of the
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Fig 5. Left: Data set D1. Middle and right: Level sets of the standard (mid-
dle) and weighted (right) k-nearest neighbor estimates corresponding to level values
0.02, 0.04, 0.06, 0.08, 0.10, 0.12 and 0.14.

Fig 6. Left: Data set D2. Middle and right: Level sets of the standard (mid-
dle) and weighted (right) k-nearest neighbor estimates corresponding to level values
0.06, 0.085, 0.10, 0.14 and 0.21.

Fig 7. Left: Earthquakes data set D3. Middle and right: Level sets of the standard (middle)
and weighted (right) k-nearest neighbor estimates corresponding to level values 27 · 10−7, 82 ·
10−7, 20 · 10−6 and 110 · 10−6.

weighted estimate with uniform weights (right column in the figures). For the
data sets D1 and D2, Figures 9 and 10 (left) also show the details of one selected
level set of the true density and their corresponding density-based estimates.
Regarding the three-dimensional data set D4, we also used the uniform weights
for the generalized estimate and meshed some level sets of the estimates using
an implicit surface mesher from the C++ CGAL library [8] (Figure 11).

An important issue regarding k-nearest neighbor-based density estimates is
how to select the number kn of neighbors. In our experiments, this parameter
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Fig 8. A zoom on the level sets of Figure 7.

Fig 9. Left: Plot of the 0.06-level sets of the true density (green), the standard (blue) and
weighted (red) k-nearest neighbor estimates for the data set D1. Middle and right: A zoom
on the level sets of Figure 5, showing that the unweighted estimate does not allow to correctly
infer the connectedness of the level sets of the true density.

Fig 10. Left: Plot of the 0.085-level sets of the true density (black), the standard (blue) and
weighted (red) k-nearest neighbor estimates for the data set D1. Middle and right: A zoom
on the level sets of Figure 6. Here again, the unweighted estimate does not allow to correctly
infer the connectedness of the level sets of the true density.

was selected using a standard leave-one-out cross validation method performing
on the (global) L2 criterion ∫

Rd

[fn(x) − f(x)]2 dx.

As this procedure does not come with any theoretical guarantee (as far as we
know), we also evaluated the errors between the cross-validated estimates and
the true density when it was known (i.e., for data sets D1, D2 and D4). In all
cases, the selected value of kn appears to be very close to the optimal oracle k�

n,
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Fig 11. Level sets of the standard (left) and weighted (right) k-nearest neighbor estimates
for the data set D4. As in the two-dimensional case, the weighted estimate provides much
smoother level sets.

Table 1

Cross-validated selected kn and associated L2 errors

Data set D1 D2 D3 D4

Selected kn (cross-validation) 107 127 7 410
L2 error (standard estimate) 0.0296 0.0326 - 0.091

Selected kn (cross-validation) 210 184 11 500
L2 error (weighted estimate) 0.0261 0.0309 - 0.010

Oracle k∗
n (standard estimate) 183 180 - 3050

Oracle L2 error (standard estimate) 0.0276 0.0312 - 0.062

Oracle k∗
n (weighted estimate) 250 222 - 550

Oracle L2 error (weighted estimate) 0.0258 0.0295 - 0.009

which minimizes the L2 norm between the targeted density and the estimate.
The selected values of kn are shown in Table 1, together with the L2 norm
between the estimates (respectively, the oracles) and the true density (models
D1, D2 and D4 only).

A general observation is that, in all cases, the classical k-nearest neighbor
estimate provides a pretty poor geometric approximation of the level sets of the
true density. In the 2D case, these sets are very jagged and contain spurious
small connected components (Figures 7, 8, 9 and 10), thereby preventing any
direct inference on the geometry of the level sets of the true density (such
as, for instance, their connectedness). On the other hand, the level sets of the
generalized estimate are much smoother and, for values that are not too close
to the critical values of the true density, they appear to be homeomorphic to
the ones of the target.

In the 3D situation, it is noteworthy that the level sets of the weighted esti-
mate are smoother than the ones of the standard k-nearest neighbor (Figure 11).
For technical reasons, the surface mesher was only able to mesh the component
of the level sets containing the origin of R

3. As a consequence, the spurious
small components of the standard k-nearest neighbor estimate (similar to the
ones depicted in the 2D figures) are not represented on Figure 11, left.

Finally, in order to illustrate the convergence properties of the generalized k-
nearest neighbor estimate, we generated, for each n ∈ {1·104, 2·104, . . . , 15·104},
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Fig 12. Estimation of E[fn(x) − f(x)]2 averaged over 900 points of the regular grid G, as
a function of n. The blue curve corresponds to the standard k-nearest neighbor estimate
(kn = n2/3) and the red one to the weighted estimate (uniform weights and kn = n2/3).

100 data sets of n points randomly sampled according to a standard normal
distribution in R

2. These observations were used to estimate E[fn(x) − f(x)]2

at 900 points x distributed on a 30 × 30 regular grid G on [−3, 3] × [−3, 3],
where fn was either the standard k-nearest neighbor density estimate or the
generalized estimate with uniform weights. We took kn = n2/3.

For each x and each n, we first computed the average value of [fn(x)−f(x)]2

over the 100 data sets of size n and then averaged the outcomes over the 900
points of the grid G. Figure 12 shows the results as a function of n: The red
curve corresponds to the weighted estimate while the blue one refers to the
unweighted one. In both cases, we see that the estimates converge to the true
density with a smaller error for the generalized k-nearest neighbor estimate.

5. Proofs

Throughout this section, we let B(x, r) be the closed ball in R
d of radius r

centered at x and denote by μ the probability measure associated with the
density f . The collection of all x with μ(B(x, ε)) > 0 for all ε > 0 is called
the support of μ. We denote it by supp μ and note that it may alternatively be
defined as the smallest closed subset of R

d of μ-measure 1.

5.1. Two basic lemmas

We will make repeated use of the following two lemmas.
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Lemma 5.1. Let U1, . . . , Un be i.i.d. uniform [0, 1] random variables with order
statistics U(1) ≤ · · · ≤ U(n). Then

(
U(1), . . . , U(n)

) D=

(∑1
j=1 Ej

n + 1
, . . . ,

∑n
j=1 Ej

n + 1

)
(1 + ζn),

where E1, . . . , En is a sequence of i.i.d. standard exponential random variables
and ζn = OP(n−1/2) as n → ∞. Furthermore, for all positive integers r,

sup
n≥2r

[
nr/2

E|ζn|r
]

< ∞.

Proof. It is well known that if E1, . . . , En+1 is a sequence of i.i.d. standard
exponential random variables, then

(
U(1), . . . , U(n)

) D=

(∑1
j=1 Ej∑n+1
j=1 Ej

, . . . ,

∑n
j=1 Ej∑n+1
j=1 Ej

)

(see, e.g., Devroye [17, Chapter 5]). Let Gn+1 be the gamma (n + 1) random
variable

∑n+1
j=1 Ej . Then, by the central limit theorem,

√
n

(
Gn+1

n + 1
− 1
)

D→ N,

where N is a standard normal random variable. Thus, by an application of the
delta method, we obtain

√
n

(
n + 1
Gn+1

− 1
)

D→ N,

and the first part of the lemma follows by setting

ζn =
n + 1
Gn+1

− 1.

To prove the second statement, observe that by the Cauchy-Schwarz inequality,

E

∣∣∣∣n + 1
Gn+1

− 1
∣∣∣∣
r

≤
√

E |Gn+1 − (n + 1)|2r ×
√

EG−2r
n+1.

The first term in the above product is O(nr/2) (see, e.g., Willink [52]) whereas
the second one is infinite for n + 1 ≤ 2r and O(1/nr) otherwise. It follows that

sup
n≥2r

[
nr/2

E

∣∣∣∣n + 1
Gn+1

− 1
∣∣∣∣
r]

< ∞.
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Lemma 5.2. Let E1, E2, . . . be a sequence of i.i.d. standard exponential random
variables and let {kn} be a sequence of positive integers. For j = 1, . . . , kn, let

pnj =
∫
] j−1

kn
, j

kn
]
ν(dt),

where ν is a given probability measure on [0, 1] with no atom at 0. Fix ρ ≥ 1.
Then, if kn → ∞, ∑kn

j=1 pnj(E1 + · · · + Ej)ρ∑kn

j=1 pnjjρ
= 1 + ζn,

where ζn = OP(k−1/2
n ) and, for all positive integers r,

sup
n≥1

[
kr/2

n E|ζn|r
]

< ∞.

In addition, letting

Φ(t) =
∫

[0,t]

ν(du), t ∈ [0, 1]

and

σ2 =
∫ 1

0

(1 − Φ(t))2dt,

then, on an appropriate probability space, there exists a standard normal random
variable N such that

1
kn

kn∑
j=1

pnj(E1 + · · · + Ej) =
∫

[0,1]

tν(dt) +
σ√
kn

N + ζ′n,

where ζ′n = oP(k−1/2
n ) and, for all positive integers r,

sup
n≥1

[
kr/2

n E|ζ′n|r
]

< ∞.

Proof. Denote by �.
 the ceiling function and observe that, since ν has no atom
at 0,

kn∑
j=1

pnj(E1 + · · · + Ej)ρ =
∫

[0,1]

(
E1 + · · · + E�tkn�

)ρ
ν(dt)

=
∫

[0,1]

(
�tkn
 + S�tkn�

)ρ
ν(dt),

where we set

S�tkn� =
�tkn�∑
j=1

(Ej − 1).
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Note that S�tkn� is a sum of i.i.d. zero mean random variables. Therefore,

kn∑
j=1

pnj(E1 + · · · + Ej)ρ =
∫

[0,1]

�tkn
ρν(dt)

+
∫

[0,1]

[(
1 +

S�tkn�
�tkn


)ρ

− 1
]
�tkn
ρν(dt).

By an application of Donsker’s and continuous mapping theorems (see, e.g., van
der Vaart and Wellner [49]), as kn → ∞,∫

[0,1]

[(
1 +

S�tkn�
�tkn


)ρ

− 1
]
�tkn
ρν(dt) =

∫
[0,1]

ρ
S�tkn�
�tkn


�tkn
ρν(dt) + kρ
nζn1,

where ζn1 = OP(k−1
n ) and, for all positive integers r,

sup
n≥1

[kr
nE|ζn1|r] < ∞.

Similarly, ∫
[0,1]

ρ
S�tkn�
�tkn


�tkn
ρν(dt) = kρ
nζn2,

where ζn2 = OP(k−1/2
n ) and, for all positive integers r,

sup
n≥1

[
kr/2

n E|ζn2|r
]

< ∞.

Consequently,

1
kρ

n

kn∑
j=1

pnj(E1 + · · · + Ej)ρ =
∫

[0,1]

tρν(dt) + ζn,

where ζn = OP(k−1/2
n ) and, for all positive integers r,

sup
n≥1

[
kr/2

n E|ζn|r
]

< ∞.

The conclusion of the first assertion follows by observing that, for ρ ≥ 1,

1
kρ

n

kn∑
j=1

pnjj
ρ =

∫
[0,1]

tρν(dt)
(

1 + O
(

1
kn

))
.

The proof of the second assertion requires a bit more care. We already know
that

1
kn

kn∑
j=1

pnj(E1 + · · · + Ej) =
∫

[0,1]

tν(dt) +
1
kn

∫
[0,1]

S�tkn�ν(dt) + ζn3, (5.1)
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where ζn3 = O(k−1
n ). With respect to the second term on the right-hand side of

(5.1), we have

1
kn

∫
[0,1]

S�tkn�ν(dt) =
1
kn

kn∑
j=1

[
(Ej − 1)

∫
] j−1

kn
,1]

ν(dt)

]
.

Clearly, letting

σnj =
∫
] j−1

kn
,1]

ν(dt), j = 1, . . . , kn

and

Φ(t) =
∫

[0,t]

ν(du), t ∈ [0, 1],

we may write
kn∑

j=1

σ2
nj =

kn∑
j=1

(
1 − Φ

(
j − 1
kn

))2

.

As a consequence, setting

σ2 =
∫ 1

0

(1 − Φ(t))2dt

and using the fact that 0 ≤ (1−Φ(t))2 ≤ 1 is a monotone nonincreasing function,
a Riemannian argument shows that

1
kn

kn∑
j=1

σ2
nj ∈

[
σ2, σ2 +

1
kn

]
. (5.2)

Therefore, we obtain via the Komlós, Major, and Tusnády strong approximation
result (see Komlós, Major, and Tusnády [29] and Mason [34]) that, on the
same probability space, there exists a sequence E1, E2, . . . of i.i.d. standard
exponential random variables and a sequence N1, N2, . . . of standard normal
random variables such that, for positive constants C1 and λ1 and for all x ≥ 0,

P

⎛
⎝√kn

∣∣∣∣∣∣
1√∑kn

j=1 σ2
nj

kn∑
j=1

σnj(Ej − 1) − Nkn

∣∣∣∣∣∣ > x

⎞
⎠ ≤ C1e

−λ1x.

Using (5.2), we deduce that, for positive constants λ2, λ3 and all n large enough,

P

⎛
⎝√kn

∣∣∣∣∣∣
1√
kn

kn∑
j=1

σnj(Ej − 1) − σNkn

∣∣∣∣∣∣ > x

⎞
⎠

≤ C1e
−λ2x + P

(
|Nkn | > λ3

√
knx
)

.
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Thus, writing

ζn4 =
1
kn

kn∑
j=1

σnj(Ej − 1) − σ√
kn

Nkn ,

we see that
1
kn

∫
[0,1]

S�tkn�ν(dt) =
σ√
kn

Nkn + ζn4,

where ζn4 = oP(k−1/2
n ) and

sup
n≥1

[
kr/2

n E|ζn4|r
]

< ∞

for all positive integers r. Plugging this identity into (5.1) leads to the desired
result.

5.2. Proof of Theorem 3.1

Let x be a Lebesgue point of f , that is, an x for which

lim
r→0

μ (B(x, r))
λ (B(x, r))

= lim
r→0

∫
B(x,r) f(y)dy∫

B(x,r) dy
= f(x).

As f is a density, we know that λ-almost all x satisfy the property given above
(see for example Wheeden and Zygmund [51]).

Assume first that f(x) > 0. Fix ε ∈ (0, 1) and find δ > 0 such that

sup
0<r≤δ

∣∣∣∣∣
∫
B(x,r) f(y)dy∫

B(x,r) dy
− f(x)

∣∣∣∣∣ ≤ εf(x). (5.3)

Let F be the (continuous) univariate distribution function of W
def= ‖X − x‖d.

Note that if w ≤ δd, then

F (w) = P
(
‖X− x‖d ≤ w

)
= P

(
X ∈ B

(
x, w1/d

))
=
∫
B(x,w1/d)

f(y)dy ∈ [(1 − ε)Vdf(x)w, (1 + ε)Vdf(x)w] .

Define Wj = ‖Xj − x‖d, j = 1, . . . , n, and let W(1) ≤ · · · ≤ W(n) be the order
statistics for W1, . . . , Wn. If U(1) ≤ · · · ≤ U(n) are uniform [0, 1] order statistics,
we have in fact the representation

W(j)
D= F inv (U(j)

)
jointly for all j. Thus, provided U(j) ≤ F (δd),

U(j)

(1 + ε)Vdf(x)
≤ F inv (U(j)

)
≤

U(j)

(1 − ε)Vdf(x)
. (5.4)
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Therefore, on the event [U(kn) ≤ F (δd)], the generalized k-nearest neighbor
estimate may be written as follows:

fn(x) D=
θf(x)

n

∑kn

j=1 pnjj∑kn

j=1 pnjU(j)

,

where θ denotes some arbitrary random variable with values in [1 − ε, 1 + ε].
Observe that F (δd) > 0 and, as kn/n → 0, P(U(kn) ≤ F (δd)) → 1 as n → ∞
(see, e.g., Devroye et al. [18, Chapter 5]). Thus, to prove that fn(x) → f(x) in
probability, it suffices to show that∑kn

j=1 pnjj

n
∑kn

j=1 pnjU(j)

→ 1 in probability.

But, by Lemma 5.1, we know that

(
U(1), . . . , U(n)

) D=

(∑1
j=1 Ej

n + 1
, . . . ,

∑n
j=1 Ej

n + 1

)
(1 + ζn),

where E1, . . . , En are i.i.d. standard exponential random variables and ζn → 0
in probability. Consequently,∑kn

j=1 pnjj

n
∑kn

j=1 pnjU(j)

D=
n + 1

n
×

∑kn

j=1 pnjj∑kn

j=1 pnj(E1 + · · · + Ej)
× 1

1 + ζn
,

which goes to 1 in probability as kn → ∞ according to the first statement of
Lemma 5.2.

If f(x) = 0, two cases are possible. Suppose first that x belongs to the
complement of supp μ. Then, clearly, for some positive constant C and all n ≥ 1,
almost surely,

fn(x) ≤ Ckn

n
.

But f(x) = 0 and, using the condition kn/n → 0, we deduce that fn(x) → f(x)
in probability as n → ∞.

If x belongs to supp μ, the proof is similar to the case f(x) > 0. Just fix
ε ∈ (0, 1) and find δ > 0 such that

sup
0<r≤δ

∣∣∣∣∣
∫
B(x,r)

f(y)dy∫
B(x,r)

dy

∣∣∣∣∣ ≤ ε.

5.3. Proof of Theorem 3.2

Choose x a Lebesgue point of f . Assume first that f(x) > 0 and fix ε and δ as
in (5.3). Note that

f2
n(x) =

1
n2V 2

d

( ∑kn

j=1 pnjj∑kn

j=1 pnj‖X(j)(x) − x‖d

)2

.
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Using
1
kn

kn∑
j=1

pnjj →
∫

[0,1]

tν(dt)

and

lim inf
n→∞

kn∑
�kn/2�

pnj ≥
∫

[ 12 ,1]

ν(dt),

we have, for some positive constant C1 and all n ≥ 1,

E
[
f2

n(x)
]
≤ C1k

2
n

n2
E

[
1

‖X(�kn/2�)(x) − x‖2d

]
.

If U(1) ≤ · · · ≤ U(n) are uniform [0, 1] order statistics, we may write, using
inequality (5.4),

E

[
1

‖X(�kn/2�)(x) − x‖2d

]
≤ C2

(
E

[
1

U2
(�kn/2�)

]
+

1
δ2d

)

for some positive constant C2. It is known (see, e.g., Devroye [17, Chapter 1])
that U(�kn/2�) is beta distributed, with parameters �kn/2
 and n + 1 − �kn/2
.
Consequently, for �kn/2
 > 2,

E

[
1

‖X(�kn/2�)(x) − x‖2d

]
≤ C3

(
n2

k2
n

+
1

δ2d

)
,

whence, for kn ≥ 5,
E
[
f2

n(x)
]
≤ C4

for some positive constant C4.
Next, if f(x) = 0, two cases are possible. If x belongs to the complement of

supp μ, then, clearly, for some positive constant C5 and all n ≥ 1,

E
[
f2

n(x)
]
≤ C5k

2
n

n2
≤ C5.

If x belongs to supp μ, the proof is similar to the case f(x) > 0. Just fix ε ∈ (0, 1)
and find δ > 0 such that

sup
0<r≤δ

∣∣∣∣∣
∫
B(x,r) f(y)dy∫

B(x,r) dy

∣∣∣∣∣ ≤ ε.

This shows the first part of the theorem. One proves, with similar arguments,
that there exists a positive constant C6 such that, for all n large enough,

E
[
f3

n(x)
]
≤ C6.

Consequently, for all n large enough, the sequence {f2
n(x)} is uniformly inte-

grable and, since fn(x)−f(x) → 0 in probability (by Theorem 3.1), this implies
E [fn(x) − f(x)]2 → 0 as n → ∞ (see, e.g., Billingsley [6, Chapter 5]).
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5.4. Proof of Theorem 3.3

Fix x ∈ R
d and assume that f has derivatives of second order at x, with

f(x) > 0. Let

G(u) = P (‖X− x‖ ≤ u) =
∫
B(x,u)

f(y)dy

be the univariate distribution function of ‖X− x‖. We may write, by a Taylor-
Young expansion of f around x,

G(u) = Vdf(x)ud +
[
∂f(x)

∂x

]T ∫
B(x,u)

(y − x)dy

+
1
2

∫
B(x,u)

(y − x)T

[
∂2f(x)

∂x2

]
(y − x)dy + o

(
ud+2

)
as u → 0, (5.5)

where the symbol T denotes transposition and [∂f(x)/∂x] and [∂2f(x)/∂x2] are
a vector and a matrix given by

[
∂f(x)

∂x

]
=
(

∂f(x)
∂x1

, . . . ,
∂f(x)
∂xd

)T

and [
∂2f(x)

∂x2

]
i,j

=
∂2f(x)
∂xi∂xj

.

In view of the symmetry of the ball B(x, u), the first term in (5.5) is seen to be
zero. Using the linearity of trace and relations tr(AZZT ) = ZT AZ, tr(AB) =
tr(BA) for matrices A, B and vector Z, (5.5) becomes

G(u) = Vdf(x)ud +
1
2
tr

{[∫
B(x,u)

(y − x)(y − x)T dy

] [
∂2f(x)

∂x2

]}
+ o
(
ud+2

)
.

Letting z = (y−x)/u, that maps B(x, u) to B(0, 1), and using a hyperspherical
coordinate change of variables (see, e.g., Miller [35, Chapter 1]), the integral
inside the trace term simplifies to∫

B(0,1)

u2zzT uddz =
[

Vd

d + 2
ud+2

]
Id,

where Id is the d×d identity matrix. Thus, denoting by Γ(.) the gamma function
and recalling that, for the Euclidean norm,

Vd =
πd/2

Γ(1 + d/2)
,

we obtain

G(u) = Vdf(x)ud + c(x)V 1+2/d
d ud+2 + o

(
ud+2

)
as u → 0,
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where

c(x) =
1

2(d + 2)π
Γ2/d

(
d + 2

2

)
tr
[
∂2f(x)

∂x2

]
.

Consequently,

Ginv(u) =
1

V
1/d
d f1/d(x)

u1/d − c(x)

dV
1/d
d f1+3/d(x)

u3/d + o
(
u3/d

)
as u → 0

and

[
Ginv(u)

]d
=

1
Vdf(x)

u − c(x)
Vdf2+2/d(x)

u1+2/d + o
(
u1+2/d

)
as u → 0.

Let F be the univariate distribution function of W
def= ‖X− x‖d. Clearly,

F inv(u) =
[
Ginv(u)

]d
.

Define Wj = ‖Xj − x‖d, j = 1, . . . , n, and let W(1) ≤ · · · ≤ W(n) be the order
statistics for W1, . . . , Wn. If U(1) ≤ · · · ≤ U(n) are uniform [0, 1] order statistics,
using the representation

W(j)
D= F inv (U(j)

)
jointly for all j, we may write

fn(x) D=
1
n

∑kn

j=1 pnjj

f−1(x)
∑kn

j=1 pnjU(j) + c′(x)
∑kn

j=1 pnjU
1+2/d
(j) +

∑kn

j=1 pnjo
(
U

1+2/d
(j)

) ,

where

c′(x) = − c(x)
f2+2/d(x)

.

Thus,

f−1
n (x)

D= n

⎛
⎝f−1(x)

∑kn

j=1 pnjU(j)∑kn

j=1 pnjj
+

c′(x)
∑kn

j=1 pnjU
1+2/d
(j)∑kn

j=1 pnjj
+

∑kn

j=1 pnjo
(
U

1+2/d
(j)

)
∑kn

j=1 pnjj

⎞
⎠ .

Consequently, by Lemma 5.1, letting E1, . . . , En+1 be i.i.d. standard exponential
random variables and

V(j) =
∑j

i=1 Ei∑n+1
i=1 Ei

,
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we obtain

f−1
n (x) D=

f−1(x)
∑kn

j=1 pnj(E1 + · · · + Ej)∑kn

j=1 pnjj
(1 + ζn1)

+
c′(x)

∑kn

j=1 pnj(E1 + · · · + Ej)1+2/d

n2/d
∑kn

j=1 pnjj
(1 + ζn2)

+
n
∑kn

j=1 pnjo
(
V

1+2/d
(j)

)
∑kn

j=1 pnjj
.

Besides, for j = 1, 2, ζnj = OP(n−1/2) and, for all positive integers r,

lim sup
n→∞

[
nr/2

E|ζnj |r
]

< ∞.

On the one hand, using the second statement of Lemma 5.2 and the identity

1
kn

kn∑
j=1

pnjj =
∫

[0,1]

tν(dt)
(

1 + O
(

1
kn

))
as kn → ∞,

we may write, on an appropriate probability space,

f−1(x)
∑kn

j=1 pnj(E1 + · · · + Ej)∑kn

j=1 pnjj
= f−1(x) +

f−1(x)v√
kn

N + ζn3,

where N is a standard normal random variable,

v2 =

∫ 1

0
(1 − Φ(t))2 dt[∫
[0,1]

tν(dt)
]2 ,

and ζn3 = oP(k−1/2
n ) with, for all positive integers r,

sup
n≥1

[
kr/2

n E|ζn3|r
]

< ∞.

Next, recalling that, for ρ ≥ 1,

1
kρ

n

kn∑
j=1

pnjj
ρ =

∫
[0,1]

tρν(dt)
(

1 + O
(

1
kn

))
,

and applying the first statement of Lemma 5.2, we obtain

c′(x)
∑kn

j=1 pnj(E1 + · · · + Ej)1+2/d

n2/d
∑kn

j=1 pnjj
= c′(x)b

(
kn

n

)2/d

+
(

kn

n

)2/d

ζn4,
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where

b =

∫
[0,1] t

1+2/dν(dt)∫
[0,1] tν(dt)

and ζn4 = oP(1) with, for all positive integers r,

sup
n≥1

E|ζn4|r < ∞.

Similarly,∣∣∣∣∣∣
n
∑kn

j=1 pnjo
(
V

1+2/d
(j)

)
∑kn

j=1 pnjj

∣∣∣∣∣∣ ≤
(E1 + · · · + Ekn)1+2/d

n2/d
∑kn

j=1 pnjj
×

o
(
V

1+2/d
(kn)

)
V

1+2/d
(kn)

× (1 + ζn5),

where ζn5 = OP(n−1/2) and, for all positive integers r,

lim sup
n→∞

[
nr/2

E|ζn5|r
]

< ∞.

Thus, ∣∣∣∣∣∣
n
∑kn

j=1 pnjo
(
V

1+2/d
(j)

)
∑kn

j=1 pnjj

∣∣∣∣∣∣ ≤
(

kn

n

)2/d

ζn6,

where ζn6 = oP(1). Moreover, we clearly have, for some ε0 ∈ (0, 1) and all r > 0,

lim sup
n→∞

E

[
|ζn6|r1[V(kn)≤ε0]

]
< ∞.

Thus, putting all the pieces together, we obtain

f−1
n (x) D= f−1(x) +

f−1(x)v√
kn

N + c′(x)b
(

kn

n

)2/d

+ ζn7 +
(

kn

n

)2/d

ζn8,

where ζn7 = oP(k−1/2
n ) and ζn8 = oP(1). Besides, for all positive integers r,

lim sup
n→∞

[
kr/2

n E|ζn7|r
]

< ∞ and lim sup
n→∞

E

[
|ζn8|r1[V(kn)≤ε0]

]
< ∞.

We see in particular that, for all positive integers r and all n large enough, the
sequence {kr/2

n ζr
n7} is uniformly integrable and, consequently, that E|ζn7|r =

o(k−r/2
n ) (see, e.g., Billingsley [6, Chapter 5]). Likewise, E[|ζn8|r1[V(kn)≤ε0]] =

o(1). It follows that

f−1
n (x) D= f−1(x) +

f−1(x)v√
kn

N + c′(x)b
(

kn

n

)2/d

+ ζn9,
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where ζn9 = oP(k−1/2
n + (kn/n)2/d) and

E

[
|ζn9|r1[V(kn)≤ε0]

]
= o

(
1

k
r/2
n

+
(

kn

n

)2r/d
)

(5.6)

as kn → ∞ and kn/n → 0. Note that, by definition, f−1
n (x) is almost surely

finite and positive. Therefore, setting

Tn(x) =
v√
kn

N + f(x)c′(x)b
(

kn

n

)2/d

+ f(x)ζn9

and using the identity
1

1 + t
= 1 − t +

t2

1 + t
valid for t 
= −1, we finally get

fn(x) D= f(x) − f(x)v√
kn

N +
c(x)b

f2/d(x)

(
kn

n

)2/d

+ ζn10 +
f(x)T 2

n(x)
1 + Tn(x)

,

where ζn10 = oP(k−1/2
n + (kn/n)2/d) and

E

[
ζ2
n101[V(kn)≤ε0]

]
= o

(
1
kn

+
(

kn

n

)4/d
)

.

Clearly,
T 2

n(x)
1 + Tn(x)

= oP

(
1√
kn

+
(

kn

n

)2/d
)

.

Next, observing that

E

[
1

1 + Tn(x)

]4
= f−4(x)E[f4

n(x)],

it follows from an immediate adaptation of the proof of Theorem 3.2 that

lim sup
n→∞

E

[
1

1 + Tn(x)

]4
< ∞.

Thus, using the Cauchy-Schwarz inequality and (5.6), we see that

E

[(
T 2

n(x)
1 + Tn(x)

)2

1[V(kn)≤ε0]

]
= o

(
1
kn

+
(

kn

n

)4/d
)

.

In conclusion,

fn(x) D= f(x) − f(x)v√
kn

N +
c(x)b

f2/d(x)

(
kn

n

)2/d

+ ζn, (5.7)

where ζn = oP(k−1/2
n + (kn/n)2/d), as desired. In addition,

E

[
ζ2
n1[V(kn)≤ε0]

]
= o

(
1
kn

+
(

kn

n

)4/d
)

. (5.8)
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5.5. Proof of Theorem 3.4

An immediate adaptation of the proof of Theorem 3.2 shows that for some
positive constant C1 and all n large enough,

E [fn(x) − f(x)]4 ≤ C1.

It follows, coming back to identity (5.7), that for some positive constant C2 and
all n large enough,

Eζ4
n ≤ C2.

Therefore, using identity (5.8) and the Cauchy-Schwarz inequality, for all n large
enough,

Eζ2
n ≤

√
C2

√
P
(
V(kn) > ε0

)
+ o

(
1
kn

+
(

kn

n

)4/d
)

.

We know that V(kn) is beta distributed, with parameters kn and n+1−kn (see,
e.g., Devroye [17, Chapter 1]). Thus, by Markov’s inequality,

P
(
V(kn) > ε0

)
= P

(
V

9/d
(kn) > ε

9/d
0

)
= O

((
kn

n

)9/d
)

and, consequently,

√
P
(
V(kn) > ε0

)
= o

((
kn

n

)4/d
)

as kn/n → 0. In conclusion, as kn → ∞ and kn/n → 0,

Eζ2
n = o

(
1
kn

+
(

kn

n

)4/d
)

,

and squaring and taking the expectation on both sides of identity (5.7) leads to
the desired statement. The last assertion of Theorem 3.4 is clear.
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[44] C.C. Rodŕıguez. Weak convergence of multivariate k-nn. Technical Re-
port, Department of Mathematics and Statistics, State University of New
York at Albany, New York, 1992. http://omega.albany.edu:8008.
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