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1. Introduction

The asymptotic behaviour of martingales plays a very important role in testing
statistical hypothesis. One reason therefore lays in the fact that many test statis-
tics Tn of interest can, in the context of general Doob-Meyer decompositions, be
divided in a martingale part Mn and an appropriate part An. For getting bet-
ter power functions or even distribution-free tests it can then be reasonable to
replace the original Tn-test by tests in the martingale partMn. This occurs e.g.
by Khamaladze transformations in connections with goodness-of-fit-, survival-
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or rank-statistics, see Khmaladze [18], Khmaladze and Koul [19] or Janssen and
Meyer [15].

Since every martingale (Mn)n∈N can be written as the sum of its increments

Mn =

n
∑

i=1

∆Mi, ∆M1 :=M1, ∆Mi :=Mi −Mi−1 for i ≥ 2 (1.1)

we consider the linear statistic

Sn :=

k(n)
∑

i=1

Xn,i, (1.2)

where k(n) is a subsequence of N such that k(n) → ∞ as n → ∞. Here the
random variables Xn,i : (Ω,A, P ) → (R,B), i ≤ k(n), form a martingale dif-
ference array (abbreviatory MDA). This means that (Xn,i)i≤k(n) is, for every
fixed n ∈ N, integrable and adapted to a given array of filtrations (Fn,i)i≤k(n)

and satisfies the condition

E(Xn,i|Fn,i−1) = 0 for all 1 ≤ i ≤ k(n) and n ∈ N. (1.3)

There we have set Xn,0 := 0 and Fn,0 := {∅,Ω}. Sn can for example be a
weighted form of (1.1)

n
∑

i=1

Cn,i∆Mi, (1.4)

where Cn,i is Fn,i−1-measurable.
The asymptotic properties of the linear statistic Sn have been studied in de-

tail in the literature; one may refer to the book of Hall and Heyde [12] and the
references therein. Yet, the asymptotic behaviour of the associated nonpara-
metric bootstrap and permutation statistics has not been investigated in the
same generality. This is in contrast to the case of i.i.d. variables where even
bootstrapping of the Student t-statistic is well understood, see Mason and Shao
[23]. Applications of such resampling procedures are meaningful since the cor-
responding resampling tests are distribution free and may have better finite
sample properties. Moreover, in the case of two-sample problems permutation
tests are even exact under the null-hypothesis of exchangeability. This advan-
tage of the permutation method has e.g. been used by Janssen and Meyer [15]
in the context of weighted two sample survival statistics. Because of their good
finite sample performance, bootstrap procedures have been used in the litera-
ture for testing the martingale difference hypothesis in different situations, see
e.g. Clark and West [3] or Escancianoa and Velasco [8].

In this paper we will analyze weighted bootstrap versions of the linear statis-
tic (1.2) for general MDAs. It will turn out that a lot of different resampling
procedures work if the MDA fulfils the conditions of a general central limit
theorem. Therefore we follow a weighted resampling approach that was first
proposed by Mason and Newton [22] and amongst others extended by Praest-
gaard and Wellner [25], Janssen and Pauls [16], Janssen [17] and Del Barrio
et al. [4].
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2. Resampling martingale difference arrays

Let (Xn,i,Fn,i)i≤k(n) be a MDA. For a triangular array of exchangeable random

weights Wn,i : (Ω̃, Ã, P̃ ) → (R,B), i ≤ k(n), that is independent of the MDA
(defined as r.v. on the product space), we define a general resampling version
of the linear statistic (1.2) as

T ∗
n = T ∗

n((Xn,i)i≤k(n)) := k(n)1/2
k(n)
∑

i=1

Wn,i(Xn,i −Xn). (2.1)

Here we have setXn = k(n)−1
∑k(n)

i=1 Xn,i. Remark that the choice of the weights
determines the resampling procedure. As special case them(n)-bootstrap proce-
dure (where we draw the bootstrap sample X∗

n,1, . . . , X
∗
n,m(n) by sampling m(n)

times with replacement from {Xn,1, . . . , Xn,k(n)}) is included. There we use the
weights

Wn,i =
√

m(n)

(

1

m(n)
Mn,i −

1

k(n)

)

, 1 ≤ i ≤ k(n), (2.2)

where (Mn,1, . . . ,Mn,k(n)) ∼ Mult(m(n), 1/k(n)) is a multinomial distributed
random vector and m(n) is a subsequence of N such that m(n) → ∞ as n→ ∞.
In the case of Efron’s bootstrap (where m(n) = k(n) = n) the corresponding
resampling statistic reduces to T ∗

n =
∑n

i=1Mn,i(Xn,i −Xn), which is equal in
distribution to

∑n
i=1X

∗
n,i − Xn,i. Another example is given by row-wise i.i.d.

weights with E(Wn,1) = 0 and Var(Wn,1) = k(n)−1. This setting corresponds to
the general wild bootstrap, see e.g. Mammen [21]. Other included resampling
procedures are amongst others permutation techniques and the m(n)-double- as
well as the Bayesian bootstrap, see Rubin [26]. For more details on resampling
schemes I refer to Janssen and Pauls [16], Janssen [17], Del Barrio et. al. [4] or
chapter 6 in Pauly [24]. The advantage of this weighted approach is that we can
prove consistency of several different resampling procedures simultaneously.

For gaining a conditional central limit theorem for (2.1) given (Xn,i)i≤k(n) we
will assume throughout that the weights fulfil the following conditions, which
are due to Janssen [17]:

max
1≤i≤k(n)

|Wn,i −Wn| P̃−→ 0 in probability (2.3)

k(n)
∑

i=1

(Wn,i −Wn)
2 P̃−→ 1 in probability (2.4)

√

k(n)(Wn,1 −Wn)
d−→ Z in distribution, (2.5)

where Z is a r.v. with E(Z) = 0 and Var(Z) = 1. Here we have used the notation
P−→ for convergence in P -probability and

d−→ for convergence in distribution
as n→ ∞. Recall that an Sn-type resampling test (i.e. a test with test statistic
Sn and critical value given by quantiles of the conditional distribution of T ∗

n) is
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applicable if (1.2) and its resampling version (2.1) posses the same asymptotic
limit under the null. The following theorem gives conditions for this situation.
As usual Φ denotes the df. of the standard normal distribution.

Theorem 2.1. Suppose that the MDA (Xn,i,Fn,i)i≤k(n) is square-integrable
and fulfils the following three assumptions

max
i≤k(n)

|Xn,i| P−→ 0, (2.6)

k(n)
∑

i=1

X2
n,i

P−→ σ2 ∈ R+, (2.7)

sup
n

E( max
i≤k(n)

X2
n,i) <∞. (2.8)

Then we have both, unconditional convergence

sup
x∈R

∣

∣

∣
P (Sn ≤ x)− Φ

(x

σ

)∣

∣

∣
−→ 0 (2.9)

and conditional convergence in probability

sup
x∈R

∣

∣

∣
P (T ∗

n ≤ x|Xn,1 . . .Xn,k(n))− Φ
(x

σ

)∣

∣

∣

P−→ 0 (2.10)

as n→ ∞.

The proofs and all technical details of the following sections are shifted to
the Appendix.

Remark 2.1. Suppose that the conditions of Theorem 2.1 hold, where now the
limit σ2 in (2.7) is, unlike above, not a constant but an a.s. finite random variable
that is measurable in the completions of all the σ-fields Fn,i. Then there exist
also some individual limit theorems for Sn and T ∗

n respectively, but the limit
distributions in (2.9) and (2.10) are in generally not equal. Hence resampling
cannot be applied in the described manner.

We now specialize to MDAs of the form

Xn,i = Xi/
√
n, 1 ≤ i ≤ n. (2.11)

In this context the easiest example is just given by the assumptions of the
classical central limit theorem, whereX1, . . . , Xn are i.i.d. random variables with
finite variance. There Fn,i = Fi = σ(X1, . . . , Xi) and k(n) = n hold and for the
weights (2.2) the results (2.9) and (2.10) are well known, see e.g. Theorem 2.1 in
Bickel and Freedman [1]. The next more general step is to contemplate arrays
of the form (2.11), where now (Xn)n≥1 is a strictly stationary and ergodic
martingale difference sequence. This is the context of the next theorem.
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Theorem 2.2. Let (Xn)n≥1 be a strictly stationary and ergodic martingale
difference sequence (abbreviatory MDS) with respect to the canonical filtration
Fn,i = Fi = σ(X1, . . . , Xi), 1 ≤ i ≤ n, i.e. (1.3) holds for Xn,i := Xi/

√
n.

In this case the limit theorems (2.9) and (2.10) hold if X1 has finite variance
E(X2

1 ) = σ2 < ∞. Moreover, the convergence (2.10) will even hold if (Xn)n≥1

is only strictly stationary and ergodic (i.e. must not be a MDS).

A special example occurs in the context of ARCH(1)- or more general
GARCH(1,1)-processes. These processes are e.g. of interest in the context of
financial time series.

Example 2.1. Let (et)t∈Z be an i.i.d. process of zero-mean random variables
with Var(e1) = 1. An GARCH(1,1)-process is then defined as

Xt := σtet with σ
2
t = γ + αX2

t−1 + βσ2
t−1, (2.12)

where γ, α, β ≥ 0 are constants, see e.g. Fan and Yao [10]. It can be shown
that the above process is a strictly stationary and ergodic martingale difference
sequence if α+ β < 1 holds, see p.4 in [20]. In this case E(X2

1 ) < ∞ holds and
we can apply Theorem 2.2. In the special case β = 0, (Xt)t reduces to Engle’s
ARCH(1)-process with E(X2

1 ) = γ/(1− α), see e.g. [7] or p.104f. in [13].

3. Applications

It is well known that bootstrap and permutation tests posses better finite sample
properties than the corresponding asymptotic tests with fixed critical values
(derived from some limit theorem), see e.g. Edgington and Onghena [6], Good
[11] or Clark and West [3] as well as Escancianoa and Velasco [8] in the context
of testing martingale differences. In order to use our conditional central limit
theorem for constructing such resampling tests, we need a test statistic that is
a martingale under H0 of whose increments fulfil the conditions of Theorem 2.1
or 2.2. In the following we will give some examples.

The first natural application occurs in the context of testing or comparing
means. For example, we could think of analyzing comparative gains of a financial
time series. Denote by ri the comparative log-gains (or comparative log-returns)
from time i − 1 to time i. Then ri is often modeled by ri = Xi + µ, where
(Xi)i≤n is an ARCH(1)- or GARCH(1,1)-process and µ ∈ R is an unknown
value of interest. By applying Theorem 2.2 it is straightforward to construct
consistent resampling tests for the null hypothesis {µ ≤ µ0}, where µ0 is a
given benchmark value. In addition, we could also compare the means of two

independent time series r
(j)
i = X

(j)
i + µj , j = 1, 2, by permutation methods (if

we assume that (X
(j)
i )i≤n, j = 1, 2, are both ergodic and stationary MDS). This

would extend some results of Janssen [14] and section 5 in [17] for i.i.d. and
rowwise i.i.d. r.v.

Further possible applications for the usage of Theorem 2.2 can be derived
from the monograph of Hayashi [13], where plenty of statistical models (without
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using resampling procedures for them) are defined via strictly stationary and
ergodic MDS.

Another example occurs in the context of testing for martingale differences.
In the sequel we will use our theory to construct different resampling versions of
the asymptotic test of Kuan and Lee [20]. Let us shortly recall their situation:
Suppose that (Yn)n≥1 is a strictly stationary and ergodic time series with finite
variance and set Yn(w) := (Yn, . . . , Yn−w+1) for n ≥ w. For a fixed window
w ∈ N and a given weight function g : Rw → R with

∫

|g(x)|dx < ∞ we define
the C-valued random variable

ϕg(Yn−1(w)) :=

∫

Rw
+

exp(ixTYn−1(w))g(x)dx.

Then Kuan and Lee like to test the null hypothesis

H0 : {(Yn≥1) is a MDS with respect to the canonical filtration} (3.1)

against the alternative

H1 : {E(Ynϕg(Yn−1(w))) 6= 0}. (3.2)

Remark that every MDS fulfils E(Ynϕg(Yn−1(w))) = 0 for all w ∈ N.
Now set

ψ1,g(Yn, . . . , . . . , Yn−w) := Re(Ynϕg(Yn−1(w))),

ψ2,g(Yn, . . . , . . . , Yn−w) := Im(Ynϕg(Yn−1(w))),

where Re and Im stand for the real- and imaginary part respectively.
Since E(Ynϕg(Yn−1(w))) = 0 is equivalent to E(ψj,g(Yn, . . . , . . . , Yn−w)) = 0

for j = 1, 2, we can use

Qg := (ψ̂1,g, ψ̂2,g)(ψ̂1,g, ψ̂2,g)
T = ‖(ψ̂1,g, ψ̂2,g)

T ‖2 (3.3)

as an adequate test statistic for the above problem, where

ψ̂j,g := (n− w)−1/2
n
∑

i=w+1

ψj,g(Yi, . . . , . . . , Yi−w), 1 ≤ j ≤ 2

are just normalized mean estimators and ‖ · ‖ denotes the euclidean norm.

Theorem 2.1 of Kuan and Lee implies that we have convergence Qg
d−→

‖Z‖2 in distribution under H0, where Z is a normally distributed random
variable with expectaion zero and covariance matrix Σg = (σj,r, g)1≤j,r≤2 :=
(Cov(ψj,g(Yw+1, . . . , Y1), ψr,g(Yw+1, . . . , Y1))1≤j,r≤2. To avoid trivialities we as-
sume throughout that Σg 6= 0 holds. Based on the above weak convergence
result Kuan and Lee use covariance estimators to construct an asymptotical
level α test under H0. One of the main advantages of this test is that it also has
power against non-MDS that fufil H1, see Corollary 2.2 of Kuan and Lee. For
a more detailed discussion on this test and the (very important) choice of the
function g I refer to their paper.
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Instead of using covariance estimators it is also possible to apply various re-
sampling techniques to derive tests with the same asymptotic properties. There-
fore set k(n) = n − w and let (Wn,i)i≤k(n) satisfy the conditions of section 2.
Moreover, we define by

Xn,i := k(n)−1/2

(

ψ1,g(Yi+w , . . . , Yi)

ψ2,g(Yi+w , . . . , Yi)

)

, 1 ≤ i ≤ k(n),

a triangular array of R2-valued random variables. A weighted resampling version
of Qg is now given by

Q∗
g := ‖T ∗

n‖2, where T ∗
n = k(n)1/2

k(n)
∑

i=1

Wn,i(Xn,i −Xn). (3.4)

Indeed, it will be shown in the Appendix that we have conditional convergence

Q∗
g

d−→ ‖Z‖2 in probability given (Yn)n≥1, whenever (Yn)n≥1 is strictly station-
ary and ergodic (i.e. must not be a MDS). Hence we can apply the resampling
test ξ∗n := 1(c∗n,α,∞)(Qg), where c

∗
n,α denotes the (1 − α)-quantile of the con-

ditional distribution L(Q∗
g|Y1, . . . , Yn) of Q∗

g given the data. Its properties are
summarized in the following theorem.

Theorem 3.1. Under the above conditions the test ξ∗n is an asymptotically level
α test, i.e. E(ξ∗n) → α holds under H0 as n → ∞. Moreover, ξ∗n is consistent,
i.e. we have convergence E(ξ∗n) → 1 under the alternative H1 as n→ ∞.

A further application in the context of survival analyis will be given in a
forthcoming paper.

4. Appendix

The following theorem is crucial for all proofs and generalizes parts of Theo-
rem 2.1 of Janssen [17] to the multivariate case. Here (Zn,i)i≤k(n) is a trian-
gular array of Rp−valued random vectors, dp denotes a distance that metrizes
weak convergence on Rp, p ∈ N, e.g. the Prohorov metric (see p.394 in [5]), and

T ∗
n((Zn,i)i≤k(n)) = k(n)1/2

∑k(n)
i=1 Wn,i(Zn,i−Zn), see (2.1). Recall that we have

assumed throughout the paper that the exchangeable weights (Wn,i)i fulfil the
conditions (2.3)–(2.5).

Theorem 4.1. Suppose that (Zn,i)i≤k(n) satisfies the following two assertions

max
i≤k(n)

‖Zn,i‖ P−→ 0 in probability, (4.1)

k(n)
∑

i=1

(Zn,i − Zn)(Zn,i − Zn)
T d−→ Γ, (4.2)
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where Γ is a random matrix and ΓT denotes its transposed. In this case, we have
convergence in probability

dp(L(T ∗
n((Zn,i)i≤k(n))|Zn,1 . . . Zn,k(n)),L(N (·)))

P−→ 0, (4.3)

where N (ω) is a N(0,Γ(ω))−distributed random variable.

Proof of Theorem 4.1. Remark that (4.2) and the Portmanteau theorem imply
that Γ is a.s. a covariance matrix. Hence N(0,Γ(ω)) is well-defined for almost
every ω.

We now prove (4.3). First suppose that p = 1 holds and denote the order
statistics of (Zn,i)i≤k(n) by Z1:k(n) ≤ Z2:k(n) ≤ · · · ≤ Zn:k(n). If we set Zi:k(n) =
0 whenever i 6∈ {1, . . . , k(n)}, condition (4.1) shows convergence in probability

(

(Zi:k(n))i∈N, (Zn+1−j:k(n))j∈N

) P−→ 0.

Now Slutzky’s lemma and (4.2) imply condition (2.8) in [17]. Hence an applica-
tion of Theorem 2.1 from [17] proves (4.3) for p = 1. For general p ∈ N we use
a modified Cramer-Wold-Device. Let D := {λk : k ∈ N} be a countable dense
subset of Rp. Applying (4.3) for p = 1 on the triangular array λTj Zn,i, i ≤ k(n)
yields

d1(L(T ∗
n((λ

T
j Zn,i)i≤k(n))|Zn,1 . . . Zn,k(n)),L(N (·)

j ))
P−→ 0 (4.4)

for all fixed j ∈ N, where N
(ω)
j is N(0, λTj Γ(ω)λj)−distributed. Hence we can

find a setM,P (M) = 0, and a common subsequence such that (4.4) holds for all
j ∈ N and ω ∈M c along this subsequence. Now continuity of the characteristic
function of the limit and tightness of L(T ∗

n((Zn,i)i≤k(n))|Zn,1 . . . Zn,k(n))(ω, ·)
show that (4.4) holds for all λ ∈ Rp and ω ∈ M c along this subsequence. Thus
an application of the classical Cramer-Wold-Device completes the proof.

Proof of Theorem 2.1. By Theorem 3.2 of Hall and Heyde [12] we have con-
vergence in distribution of Sn to a normally distributed random variable, i.e.
(2.9) holds. For the limit behaviour of T ∗

n we apply the above theorem with the

centered array Xn,i −Xn, i ≤ k(n). Since (2.6) implies Xn
P→ 0, we have that

maxi≤k(n) |Xn,i − Xn| P→ 0 counts. Moreover, the statements (2.9) and (2.7)
deduce

k(n)
∑

i=1

(Xn,i −Xn)
2 =

k(n)
∑

i=1

X2
n,i −Xn

(

k(n)
∑

i=1

Xn,i

)

=

k(n)
∑

i=1

X2
n,i + oP (1)

P−→ σ2

by Slutzky’s lemma. Since the occurring limit distributions are continuous, this
shows (4.3) and (2.10).
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Proof of Remark 2.1. Suppose that the conditions of Theorem 2.1 hold, where
now σ2 is an a.s. finite and non-degenerated random variable that is measurable
in the completions of all the σ-fields Fn,i. In this case a remark of Hall and
Heyde [12], see p. 59, states that the convergence

Sn
d−→ Z

holds, where the random variable Z has the characteristic function ϕZ(t) =
E(exp(− 1

2σ
2t2)). In comparison to this Theorem 4.1 shows that

d1(L(T ∗
n((Xn,i)i≤k(n))|Xn,1 . . . Xn,k(n)), N(0, σ2(·))) P−→ 0

holds. Due to the fact that this limit is ω-dependent and ϕZ(t) is independent
of the special choice of ω ∈ Ω, we can conclude that the consistency fails in
general.

Proof of Theorem 2.2. The unconditional convergence follows from Theorem
23.1 of Billingsley [2], see also p.106 in [13].

We now show the conditional convergence (2.10) with the help of Theo-
rem 4.1. Notice that condition (2.6) is equivalent to the weak Lindeberg condi-
tion

n
∑

i=1

X2
n,i1{|Xn,i|>ǫ}

P−→ 0 for all ǫ > 0. (4.5)

This is obvious and has e.g. been used on p.53 in [12]. Since Tchebycheff’s
inequality yields

P (|X1| > ǫ
√
n) ≤ ǫ−2Var(X1)/n→ 0

for all ǫ > 0, we get by the dominated convergence theorem

E

(

1

n

n
∑

i=1

X2
i 1{|Xi|>ǫ

√
n}

)

= E(X2
11{|X1|>ǫ

√
n}) → 0

as n→ ∞. This shows (4.5) and so (4.1) (since we have Xn
P−→ 0 by Slutzky’s

Lemma and (2.6)).
The second condition (4.2) follows by the SLLN for stationary and ergodic

sequences, see e.g. Theorem 3.5.7 in [27]. It ensures that we have the almost
sure convergences

1

n

n
∑

i=1

Xi → E(X1) = 0 and
1

n

n
∑

i=1

X2
i → E(X2

1 )

as n→ ∞. Altogether this implies (4.2) with Γ = E(X2
1 ). Remark that we have

not used the MDS property to prove (2.10).

Proof of Theorem 3.1. We start by proving convergence in probability

sup
x∈R

|P (Q∗
g ≤ x|Y1 . . . Yn)− P (‖Z‖2 ≤ x)| P−→ 0, (4.6)
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whenever (Yn)n≥1 is strictly stationary and ergodic. By the continuous mapping
theorem it is enough to verify that

d2(L(T ∗
n |Y1 . . . Yn),L(Z))

P−→ 0 (4.7)

holds, where T ∗
n is as in (3.4) and d2 as in Theorem 4.1. Hence it remains to

check the conditions of Theorem 4.1. Let Xn,i = (X
(j)
n,i)1≤j≤2. Since the time

series (Yn)n≥1 is ergodic and stationary, the same holds true for the sequences

X
(1)
n,iX

(2)
n,i and (X

(j)
n,i)

2, see e.g. p.170 ff. in [27]. Thus the SLLN for stationary
and ergodic sequences proves condition (4.2):

k(n)
∑

i=1

X
(j)
n,iX

(r)
n,i −X

(j)

n X
(r)

n
P−→ σj,r, g for 1 ≤ j, r ≤ 2,

where X
(j)

n := k(n)−1/2
∑k(n)

i=1 X
(j)
n,i holds. As in the proof of Theorem 2.2 above,

we can conclude that X
(j)
n,i fulfils (2.6). This shows (4.1) and therefore (4.7).

Altogether this proves (4.6) under H0 from which we can deduce the asymptotic
exactness of ξ∗n, i.e. E(ξ∗n) → α as n→ ∞. For the consistency remark first that
the above proof shows that the convergence (4.6) is still valid under H1. Set
E(ψj,g(Yw+1, . . . , Y1)) =: δj , j = 1, 2 and suppose that (δ1, δ2) 6= 0. Again the
SLLN for stationary and ergodic sequences implies

k(n)−1Qg
P−→ ‖(δ1, δ2)T ‖2 > 0.

Since the critical value does not change under H1 this shows E(ξ∗n) → 1, which
completes the proof.
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