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On a saddlepoint approximation to the Markov binomial
distribution

Jens Ledet Jensen
University of Aarhus

Abstract. A nonstandard saddlepoint approximation to the distribution of
a sum of Markov dependent trials is introduced. The relative error of the
approximation is studied, not only for the number of summands tending to
infinity, but also for the parameter approaching the boundary of its definition
range. A comparison is made with another recent study of Markov dependent
trials.

1 Introduction

Motivated by recent studies, we consider in this paper a saddlepoint approxima-
tion to the Markov binomial distribution, that is, the distibution of Sn = ∑n

i=1 Xi ,
where X1,X2, . . . is a Markov chain on the state space {0,1}. Let the transition
probabilities be parameterized by α = P(Xn+1 = 1|Xn = 0) and β = P(Xn+1 =
1|Xn = 1). Broadly speaking, approximations can be divided into the Gaussian
type and the compound Poisson type. In the first type the approximation becomes
exact in the limit of a Gaussian distribution only, whereas the second type handles
cases with α → 0, typically with α of order 1

n
. The possible limiting distributions

when α and β depend on n can be seen in Dobrushin (1961). The approximation of
Xia and Zhang (2009) is of the Gaussian type. The Markov binomial distribution is
approximated by either a binomial distribution or a negative binomial distribution
obtained by fitting the first two moments. This approximation is exact when α = β ,
but otherwise becomes exact for a limiting Gaussian distribution only. Most impor-
tantly, though, Xia and Zhang (2009) provide an explicit upper bound on the total
variation distance of the approximation, which is of order 1/

√
n for fixed values of

α and β . In Čekanavičius and Vellaisamy (2010) approximations of the compound
Poisson type are considered. If α is of order 1

n
the error is of order 1

n
as well, and

for fixed values of α and β the error is of order 1√
n

. However, one should keep

in mind that the approximating measure in Čekanavičius and Vellaisamy (2010)
is by itself complicated to evaluate. The saddlepoint approximation we suggest in
this paper is of the Gaussian type and is thus mostly inspired by Xia and Zhang
(2009). For fixed values of α and β the relative error is of order o( 1

n
). Contrary to
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the above mentioned approximations, the saddlepoint approximation has bounded
relative error throughout the parameter space.

The different approximations to the Markov binomial distribution have mostly
theoretical interest. The exact distribution can be calculated recursively. Define
p(k, a,n) = P(Sn = k,Xn = a). Then by splitting an event according to the value
of Xn we find

p(k,0, n + 1) = p(k,0, n)(1 − α) + p(k,1, n)(1 − β),
(1.1)

p(k,1, n + 1) = p(k − 1,0, n)α + p(k − 1,1, n)β,

with initial values p(0,0,1) = P(X1 = 0), p(1,1,1) = P(X1 = 1), p(0,1,1) =
p(1,0,1) = 0, and with p(k, a,n) = 0 for k > n. This simple recursion was stated
in Ladd (1975), and can be considered analogous to standard recursions within the
field of hidden Markov chains. The recursion is useful when all of the distribution
is wanted. For n of the order 104 the calculation is feasible. If only one point
probability is needed, the sum formula of Gabriel (1959) can be used,

P(Sn = k) = {P(X0 = 0)G0(k, n) + P(X0 = 1)G1(k, n)}βk(1 − α)n−k,

G0(k, n) =
c0∑

m=1

(
n − k

�m/2�
)(

k − 1
�m/2� − 1

)(
1 − β

1 − α

)�m/2�(α

β

)�m/2�
,

G1(k, n) =
c1∑

m=1

(
k

�m/2�
)(

n − k − 1
�m/2� − 1

)(
1 − β

1 − α

)�m/2�(α

β

)�m/2�
,

where c0 = min{2k,2(n − k) + 1} and c1 = min{2k + 1,2(n − k)}. For n of the
order 106 the calculation using this formula is feasible. Thus, the different approx-
imations become of practical interest only for very large n.

In Section 2 we introduce the saddlepoint approximation and study the rela-
tive error of the approximation. In Section 3 we compare the approximation with
that of Xia and Zhang (2009) and study the upper bound given in that paper. The
Appendix provides details of the saddlepoint approximation.

2 Saddlepoint approximation

When β is of order 1 − α and α is small the distribution of Sn has high point
probabilities at zero and n and is almost uniform in between. Most approximations
will fail for this case. To handle this, we calculate the probabilities P(Sn = 0)

and P(Sn = n) exactly and use the saddlepoint approximation for the conditional
distribution given that 0 < Sn < n. This is motivated by numerical investigations
which indicate that the density P(Sn = k), k = 1, . . . , n − 1, in between the two
extremes is log concave. In relation to the saddlepoint approximation there are two
extreme cases of a log concave density. One is the uniform distribution mentioned
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already above, and the other is a very peaked distribution. The latter case is encoun-
tered as α → 1 and a slight modification of the traditional saddlepoint approxima-
tion is needed to handle this case. For comparison with Xia and Zhang (2009) we
consider the stationary case with p0 = P(X1 = 0) = (1 − β)/(1 − β + α) and
p1 = P(X1 = 1) = α/(1 − β + α), but the investigations of this section can easily
be redone with other choices of p0 and p1.

Let qk = P(Sn = k|0 < Sn < n) be the conditional probabilities and let φ(z) =∑n−1
k=1 zkqk be the moment generating function. In terms of the moment generating

function ψ(z) of Sn, we have

φ(z) = [ψ(z) − P(Sn = 0) − znP (Sn = n)]/P (0 < Sn < n)
(2.1)

= [ψ(z) − p0(1 − α)n−1 − znp1β
n−1]

[1 − p0(1 − α)n−1 − p1βn−1] ,

and using the recursion (1.1) for ψ(z) = ∑n
k=0 zk[p(k,0, n) + p(k,1, n)], we find

ψ(z) = (p0, zp1)P0(z)
n−1(1,1)T, P0(z) =

(
1 − α αz

1 − β βz

)
. (2.2)

Define the exponentially tilted distribution as q(k, z) = qkz
k/φ(z), k = 1, . . . ,

n − 1. For a fixed k = 2, . . . , n − 2 we choose zk such that the tilted distribution
has mean k and consider an approximation of the form

qk = φ(zk)z
−k
k q(k, zk) ≈ φ(zk)z

−k
k A(k), (2.3)

where A(k) is an approximation to q(k, zk). In this way the approximation problem
has been centered in that we seek an approximation to the point probability at
the mean of the distribution. The traditional saddlepoint approximation, including
O( 1

n
) terms, takes the form

A(k) = 1√
2πσ(k)2

{
1 + 1

8
γ4(k) − 5

24
γ3(k)2

}
, (2.4)

where σ(k)2 is the variance and γ3(k) and γ4(k) are the third and fourth standard-
ized cumulants of the exponentially tilted distribution. The saddlepoint approxi-
mation was originally developed for situations with a limiting normal distribution,
but including the O( 1

n
) term makes the approximation widely applicable. For dis-

crete distributions the approximation will, however, fail in cases where the variance
σ(k)2 is small, corresponding to a distribution almost concentrated in one point.
We therefore make the following alternative approximation:

A(k) = 1 − σ(k)2 if σ(k)2 < 0.4. (2.5)

The value 1 − σ 2 comes from the probability at the center of a symmetric three
point distribution with variance σ 2. Details of the approximation are given in the
Appendix.
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Before embarking on a detailed discussion of the Markov binomial distribution
we illustrate how log concavity bounds the error of the saddlepoint approximation.
Consider a variable X with a log concave density symmetric around x = 0, and
consider the main term of the saddlepoint approximation (2.3), that is, 1/

√
2πσ 2

if σ 2 ≥ 0.4 from (2.4) and 1 −σ 2 if σ 2 < 0.4 from (2.5), where σ 2 is the variance.
For a fixed value p0 of P(X = 0) the smallest variance is obtained with an almost
uniform density: P(X = j) = p0 for |j | ≤ j∗, where j∗ is the largest integer less
than or equal to (1 − p0)/(2p0), and P(X = ±(j∗ + 1)) = (1 − p0 − 2p0j∗)/2.
The largest variance is obtained with a discrete Laplace distribution: P(X = j) =
θ |j |(1 − θ)/(1 + θ) with θ = (1 − p0)/(1 + p0). We thus have bounds on the ratio
of the approximation to the true probability. These bounds are shown in Figure 1 as
the full drawn line and the dashed line. Also included in the figure is the improved
approximation (2.4).

We start the investigation of the Markov binomial distribution with the case of
fixed parameter values as n tends to infinity.

Proposition 1. For fixed values of α and β the saddlepoint approximation given
through (2.3) and (2.4) has relative error of order o( 1

n
) in a large deviation region

for k. In particular, it follows that the total variation distance is of order o( 1
n
). For

Figure 1 Ratio of saddlepoint approximation to the true probability at the center point for a sym-
metric log concave density. The full drawn line is for the main term of the saddlepoint approximation
and an almost uniform density, and the dashed line is for a discrete Laplace distribution. The dotted
lines are for the same cases when using the saddlepoint approximation in (2.4) and (2.5).
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n → ∞ the relative error of the saddlepoint approximation at the extremes of the
distribution (k = 2 and k = n − 2) is approximately 0.0089.

Proof. The relative error in a large deviation region comes from standard results
(see, e.g., Jensen (1995), Chapter 9).

In order to consider the extreme case with k = 2 (and similarly with k = n− 2),
we consider the exponentially tilted distribution with moment generation function
φ(

γ
n
z)/φ(

γ
n
). Using an eigenvalue decomposition of P0(

γ
n
z), we find that the limit

as n → ∞ is a Poisson distribution with mean 2γα(1 − β)/(1 − α)2, conditioned
on being greater than zero. The saddlepoint approximation to the Poisson distri-
bution can be calculated numerically. This gives the stated relative error for the
extreme cases. �

The result of Proposition 1 that the total variation distance of the approxima-
tion is o( 1

n
) may be compared to the order O( 1√

n
) of the approximation of Xia

and Zhang (2009). A small relative error in a large deviation region is, however,
a stronger statement, allowing us to approximate tail probabilities that are much
smaller than o( 1

n
). The proposition also shows that in the very extreme tail of the

distribution the approximation gives the correct order of the probability.
We next turn to a discussing of the relative error of the approximation when

(α,β) approaches the boundary of the parameter space. We state the results in
terms of zkP (Sn = k) for suitable z, in which case the exponentially tilted dis-
tribution zkP (Sn = k)/[P(0 < Sn < n)φ(z)] is obtained by a normalization. We
first consider the case with α → 0 where P(Sn = 0) → 1, and the conditioning on
0 < Sn < n becomes important.

Proposition 2. For α → 0 with α/β → 0 we have that

β(1 − β + α)

α(1 − β)βk
P (Sn = k)

(2.6)
∼ 2 + (1 − β)(n − 1 − k), k = 1, . . . , n − 1.

The saddlepoint approximation (2.3) to the limiting distribution in (2.6) has maxi-
mal relative error between 0.17 and 0.18 for n ≥ 7.

Proof. The event {Sn = k} is the union of cases where xj = 1 for k consecutive
times and cases where these are not consecutive. In the former case the probability
is of order α(1 − β)βk−1/(1 − β + α), and in the latter case the probability is of
the same order multiplied by α/β . Thus, in the limit α → 0 with α/β → 0, we
need only consider the consecutive cases. This gives (2.6).

The density in (2.6) is clearly log concave and the most extreme case, when us-
ing the saddlepoint approximation, is the uniform distribution obtained for β → 1.
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For a uniform discrete distribution on the numbers {1,2, . . . ,m} the cumulant
transform is given by κ(s) = log(1 − esm) + log(ω/m) with ω = es/(1 − es). For
k = 2, . . . ,m − 1 let s be the saddlepoint determined by κ ′(s) = k. For symmetry
reasons we need only consider k ≤ m

2 , which is covered by −1
2 ≤ s ≤ 0. We first

consider the tail of the distribution with m4esm → 0 as m → ∞. Then the relative
error of the saddlepoint approximation tends to

ωe−s[1+ω]√
2πω2/es

{
1 + ω + 6ω2 + 6ω3

8ω2/es
− 5[ω + 2ω2]2

√
esω3/2

}
− 1,

as m → ∞. This is in the limiting situation of a geometric distribution, and the
largest absolute relative error is less than 0.013 for k = 2 corresponding to s =
− log(2). Next, for the center of the distribution let s = a

m+1 with −5 log(m) ≤
a ≤ 0 and let now ω = ea/(1 − ea). The limiting relative error as m → ∞ is

eae1+aω/[(−a)ω]√
2π(1/a2 − ω − ω2)

{1 + f1(a) − f2(a)} − 1,

f1(a) = 6/a4 − ω − 7ω2 − 12ω3 − 6ω4

8(1/a2 − ω − ω2)2 ,

f2(a) = 5[2/(−a)3 − ω − 3ω2 − 2ω3]2

24(1/a2 − ω − ω2)3/2 .

The largest relative error is less than 0.18 and is obtained for a = 0 corresponding
to the center value k = (m+1)/2. Numerical investigations show that the maximal
relative error is between 0.17 and 0.18 for m down to 6 (see in this connection also
Figure 1). �

By an interchange of the two states Proposition 1 also covers the case β → 1
with (1 − β)/(1 − α) → 0. Similarly, the case where α and β tend to zero at the
same rate is covered by the next proposition, where we turn to limiting cases with
α → 1.

Proposition 3. For α → 1 with (1 − α)β/(1 − β) → 0 we get

β(2 − β)

(
β

1 − β

)n(
1 − β

β2

)k

P (Sn = k)

(2.7)

∼

⎧⎪⎪⎨
⎪⎪⎩

(
k − 1
n − k

)
+ 2β

(
k − 1

n − k − 1

)
+ β2

(
k − 1

n − k − 2

)
, k ≥ n − 1

2
,

o(1), k <
n − 1

2
,
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and

2 − β

(1 − β)(1 − α)n−1

(
(1 − α)2

1 − β

)k

P (Sn = k)

(2.8)

∼

⎧⎪⎪⎨
⎪⎪⎩

o(1), k >
n − 1

2
,(

n − k − 1
k

)
, k ≤ n − 1

2
.

In both of the above cases the nonvanishing part of the density is log concave.
Finally, for α → 1 and (1−β)/(1−α) → ξ , where 0 < ξ < ∞, we can express

P(Sn = k)(1 − α)k/[(1 − α)n(1 + √
ξ)n−1] through probabilities calculated from

the Markov chain with transition probability
√

ξ/(1 + √
ξ) from state 0 to state 1

and transition probability 1/(1 + √
ξ) from state 1 to state 1.

Proof. The different cases are all based on the following rewriting of the moment
generating function:

ψ(γ z) =
n∑

k=0

(γ z)kp(Sn = k) = (p0, γ zp1)P0(γ z)n−1(1,1)T

= λ(γ )n−1(p0, γ zv(γ )p1)P0(γ ; z)n−1(
1,1/v(γ )

)T
,

where λ(γ ) is the maximal eigenvalue of P0(γ ), (1, v(γ ))T is a right eigenvector,
v(γ ) = [λ(γ ) − (1 − α)]/(αγ ), and

P0(γ ; z) =
(

(1 − α)/λ(γ ) zαγ v(γ )/λ(γ )

(1 − β)/(λ(γ )v(γ )) zβγ /λ(γ )

)
.

When (1 − α)β/(1 − β) → 0 and γ = (1 − β)/β2 we find

λ(γ ) ∼ 1 − β

βε
, v(λ) ∼ β

ε
, P0(γ ; z) →

(
0 z

1 − ε εz

)
,

where ε = 2/(1 + √
5). When instead γ = (1 − α)2/(1 − β) we find

λ(γ ) ∼ 1 − α

ε
, v(λ) ∼ (1 − β)ε

(1 − α)
, P0(γ ; z) →

(
ε (1 − ε)z

1 0

)
.

Finally, when (1 − β)/(1 − α) → ξ and γ = 1 − α we obtain

λ(γ ) ∼ (1 − α)
(
1 + √

ξ
)
, v(λ) → √

ξ,

P0(γ ; z) →

⎛
⎜⎜⎝

1

1 + √
ξ

z
√

ξ

1 + √
ξ√

ξ

1 + √
ξ

z

1 + √
ξ

⎞
⎟⎟⎠ .
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Thus, to obtain the results of the proposition, we need to find powers of special-
ized matrices. By tedious calculations we obtain

(
0 z

1 − ε εz

)n−1

= εn

1 − ε

n−1∑
k=n∗

zk

{(
k − 1

n − k − 1

)(
0 1
0 ε

)

+
(

k − 1
n − k − 2

)(
ε 0
ε2 ε

)
+

(
k − 1

n − k − 3

)(
0 0
ε2 0

)}
,

and (
1 − ε εz

1 0

)n−1

= (1 − ε)n−2
n∗∑

k=0

zk

{(
n − k − 2

k

)(
1 − ε 0

1 0

)

+
(

n − k − 2
k − 1

)(
1 − ε (1 − ε)2

0 1 − ε

)

+
(

n − k − 2
k − 2

)(
0 (1 − ε)2

0 0

)}
,

where n∗ is the smallest integer greater than or equal to (n − 1)/2, and n∗ is the
largest integer smaller than or equal to (n − 1)/2.

To show log concavity of a function h(k), we must show that h(k)h(k + 2) ≤
h(k + 1)2. This is easy to show for the nonvanishing part of (2.8). For the nonva-
nishing part of (2.7) we must show that a fourth degree polynomial in 0 < β < 1
is nonnegative, and a tedious calculation shows that the coefficients of the polyno-
mial are indeed nonnegative. �

Since the two cases in (2.7) and (2.8) have different scalings, the exponentially
tilted distribution with mean (n−1)/2 for n odd or n/2 or (n−2)/2 for n even be-
come concentrated at one point for α → 1. Combined with the log concavity of the
nonvanishing parts of (2.7) and (2.8), we see that we need to consider the relative
error of the approximation at integers closest to (n − 1)/2. We should therefore
look at cases where we change from the approximation (2.4) to the approxima-
tion (2.5). This is when the variance of the exponentially tilted distribution is 0.4.
Thus, we have not gone all the way to the limit α = 1, and these cases have to be
investigated by numerical calculations. It is found that the relative error increases
with the value of β , and is less than 0.10 for (2.5) and less than 0.09 for (2.4) when
the variance is 0.4. To understand these numbers, it may be of interest to compare
with a distribution with probabilities proportional to exp(−τk2 − s|k|), k ∈ N, and
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where we want to approximate the probability at k = 0. For τ ≈ 0.73 and s chosen
so that the variance is 0.4 the relative errors of the saddlepoint approximation (2.3)
given through (2.4) and (2.5) are comparable to the numbers quoted above. The
extreme case of a discrete Laplace distribution (τ = 0) gives relative errors 0.43
and 0.24 for the approximations (2.4) and (2.5); see in this connection Figure 1.

In summary, the saddlepoint approximation of this paper has relative error of
order o(1/n) in a large deviation region for fixed values of (α,β), and has bounded
relative error all over the parameter space with a maximum of 0.18 for the limiting
case of a uniform distribution.

3 A comparison with Xia and Zhang (2009)

In this section we compare the saddlepoint approximation of this paper with the
approximation of Xia and Zhang (2009). For the comparison we calculate exact
probabilities using the recursion in (1.1). As mentioned in the introduction, the
important aspect of the latter paper is that an explicit upper bound for the total vari-
ation distance of the approximation is given. Unfortunately, as we will demonstrate
below, for very many cases the upper bound is actually above one and therefore
gives no information on the quality of the approximation.

In Figure 2 it is shown for what parameter values the upper bound is less than
one. The white region is where the bound is below one. The left subfigure is for
n = 1000 and the right subfigure is for n = 100,000. Xia and Zhang (2009) say
that the upper bound is “useful when both α and β are a reasonable distance from
0 and 1.” However, as can be seen from Figure 2, even when n = 100,000 quite a
large part of the parameter space is excluded.

Figure 2 The figure shows the upper bound on the total variation distance from Xia and Zhang
(2009) truncated at one. Thus, the white region is where the upper bound is below one and the black
region is where the bound is above one. The left figure is for n = 1000 and the right figure is for
n = 100,000.
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Table 1 Upper bound on the total variation distance from Xia and Zhang
(2009). Four limiting situations for Sn from Dobrushin (1961) are considered

Upper bound

α β n = 100 n = 10,000 n = 1,000,000

4/
√

n 1/2 43 55 10
1/2 1 − 4/

√
n 73 3 · 103 6 · 104

1/2 1 − 40/n 73 3 · 106 3 · 1010

1 − 1/n 2/n <0 <0 <0

Table 2 Total variation distance (Total) and upper bound for the approxima-
tion in Xia and Zhang (2009). The parameter values are α = 0.4 and β = 0.5

n = 10 n = 1000 n = 10,000

Total 0.015 0.001 0.0005
Upper bound 360 6.4 1.3

We next consider situations where α = αn and β = βn depend on n and let
n → ∞. We consider situations where Sn, properly normalized, has a limiting dis-
tribution. In Table 1 we have considered three of the cases in Dobrushin (1961).
The table gives the upper bound of Xia and Zhang (2009) for the total variation
distance for n = 100,10,000,1,000,000. In the two first rows Sn has a limiting
normal distribution with Var(Sn)/E(Sn) larger than one and less than one, respec-
tively. Because the limit is a normal distribution we expect the total variation dis-
tance to tend to zero. This is, however, not reflected well in the upper bound. The
third row of Table 1 is for one of the remaining cases with a nonnormal limit,
and the results shown are typical for these cases, that is, the upper bound tends
to infinity. The fourth row has been included to show a flaw in the formulation of
Theorem 1.1 of Xia and Zhang (2009). That theorem contains a success probabil-
ity θ of a binomial distribution that becomes greater than one for certain values of
(α,β,n).

As a final investigation of the upper bound of Xia and Zhang (2009) we compare
the actual total variation distance with the upper bound as n → ∞. We take α = 0.4
and β = 0.5, staying well away from zero and one. The results can be seen in
Table 2. Even for n = 10,000, where the total variation distance is very small, the
upper bound is still above one.

Having considered the upper bound of Xia and Zhang (2009), we next turn
to a direct comparison of the quality of the approximation of that paper and the
saddlepoint approximation (2.3). Since we use the exact values of P(Sn = k) for
k = 0,1, n − 1, n [see (A.1)], we exclude these points when calculating the per-
formance of the approximation of Xia and Zhang (2009). We consider both the
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Table 3 The total variation distance for the approximation of Xia and Zhang (2009) (TXZ) and
for the saddlepoint approximation (2.3) (TSp), together with the maximal relative error of the ap-
proximation to the point probabilities P(Sn = k), k = 2, . . . , n− 2, (RXZ : approximation of Xia and
Zhang (2009); RSp : saddlepoint approximation)

α β n TXZ TSp RXZ RSp

0.01 0.10 10 0.0003 0.0001 9 · 100 0.0508
0.01 0.10 300 0.0010 0.0017 5 · 1081 0.0072
0.01 0.50 10 0.0036 0.0015 6 · 10−1 0.1294
0.01 0.50 300 0.0192 0.0020 6 · 1037 0.0075
0.01 0.99 10 0.2461 0.0031 1 · 101 0.1764
0.01 0.99 300 0.1368 0.0104 2 · 102 0.0441
0.50 0.60 10 0.0222 0.0023 2 · 10−1 0.0108
0.50 0.60 300 0.0033 0.0000 2 · 1017 0.0089
0.50 0.99 10 0.0170 0.0015 2 · 108 0.1294
0.50 0.99 300 0.0770 0.0020 >1 · 10100 0.0075
0.90 0.99 10 0.0034 0.0001 5 · 105 0.0508
0.90 0.99 300 0.0313 0.0017 >1 · 10100 0.0072

total variation distance and the maximal relative error of the approximation for the
point probabilities. The relative error of an approximation a to a number x is in
our comparisons computed as max{a, x}/min{a, x}− 1. Table 3 shows the typical
behaviour using n = 10 and n = 300. The saddlepoint approximation of course has
better properties in terms of relative error, but also, generally, performs better on
the total deviation scale. Even for the case α = 0.5 and β = 0.6, which is close to
the binomial case α = β , the saddlepoint approximation performs best.

Appendix: Technical details of the approximation

In this appendix we give details of the saddlepoint approximation (2.3). We let
p0 = P(X1 = 0) and p1 = P(X1 = 1) and use the following exact values:

P(Sn = 0) = p0(1 − α)n−1, P (Sn = n) = p1β
n−1,

P (Sn = 1) = (1 − α)n−3[
p0α

(
1 − α + (n − 2)(1 − β)

)
(A.1)

+ p1(1 − α)(1 − β)
]
,

P (Sn = n − 1) = βn−3[
p1(1 − β)

(
β + (n − 2)α

) + p0βα
]
.

The saddlepoint approximation is then used for P(Sn = k)/P (0 < Sn < n) for
k = 2, . . . , n − 2.

The moment generating function ψ(z) from (2.2) can be evaluated through an
eigenvalue decomposition of P0(z), and from this the first four derivatives can be
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found as well. Alternatively, we define

ψ(z, a,n; j) =
n∑

k=j

k(j)z
k−jP (Sn = k,Xn = a), a = 0,1, j = 0,1,2,3,4,

where k(j) = k(k − 1) · · · (k − j + 1) with k(0) = 1. Then the recursion (1.1) gives
that the vector of these terms (with the index a running faster than j ) is calculated
as

(p0, zp1,0,p1,0,0,0,0,0,0)M5(z)
n−1,

where M5(z) is the 10 × 10 matrix

M5(z) =

⎛
⎜⎜⎜⎜⎝

P0(z) B 0 0 0
0 P0(z) 2B 0 0
0 0 P0(z) 3B 0
0 0 0 P0(z) 4B

0 0 0 0 P0(z)

⎞
⎟⎟⎟⎟⎠ , B =

(
0 α

0 β

)
.

Let κ(s) = log(φ(es)) be the cumulant transform of the conditional distribution
with φ(z) defined in (2.1). For a given value of k let s(k) be the saddlepoint, that is,
κ ′(s(k)) = k, and let σ(k)2 = κ ′′(s(k)) be the variance of the exponentially tilted
distribution. The cumulants are κ3(k) = κ(3)(s(k)) and κ4(k) = κ(4)(s(k)), and the
standardized cumulants are γ3(k) = κ3(k)/σ (k)3 and γ4(k) = κ4(k)/σ (k)4. We
thus have all the quantities entering the approximation in (2.4) and (2.5).

For the numerical calculations of this paper we have found M5(z)
n by calculat-

ing M2
5 ,M4

5 , . . . ,M2m

5 , where m is the largest integer with 2m ≤ n.
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