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This paper considers the maximum likelihood estimation of factor mod-
els of high dimension, where the number of variables (N ) is comparable with
or even greater than the number of observations (T ). An inferential theory
is developed. We establish not only consistency but also the rate of conver-
gence and the limiting distributions. Five different sets of identification con-
ditions are considered. We show that the distributions of the MLE estimators
depend on the identification restrictions. Unlike the principal components ap-
proach, the maximum likelihood estimator explicitly allows heteroskedastic-
ities, which are jointly estimated with other parameters. Efficiency of MLE
relative to the principal components method is also considered.

1. Introduction. Factor models provide an effective way of summarizing in-
formation from large data sets, and are widely used in social and physical sci-
ences.3 There has also been advancement in the theoretical analysis of factor mod-
els of high dimension. Much of this progress has been focused on the principal
components method; see, for example, [5, 7, 22] and [23].4 The advantage of the
principal components method is that it is easy to compute and it provides consis-
tent estimators for the factors and factor loadings when both N and T are large.
The principal components method implicitly assumes that the idiosyncratic covari-
ance matrix is a scalar multiple of an identity matrix. While the method is robust
to heteroscedasticity and weak correlations in the idiosyncratic errors, there are bi-
ases associated with the estimates. In fact, if N is fixed, the principal components
estimator for the factor loadings is inconsistent, as shown in [5], except under ho-
moscedasticity.

In this paper, we consider the maximum likelihood estimator under the setting of
large N and large T . The maximum likelihood estimator (MLE) is more efficient
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than the principal components method. In addition, MLE is also consistent and
efficient under fixed N and large T because this setting falls within the framework
of classical inference; see, for example, [3] and [18].

Our estimator coincides with the classical factor analysis. However, the statisti-
cal theory does not follow from the existing literature. Classical inferential theory
is based on the assumption that N is fixed (or one of the dimensions is fixed). This
assumption, to a certain extent, runs counter to the primary purpose of factor anal-
ysis, which is to explain the commonality among a large number of variables in
terms of a small number of latent factors. Let Mzz = 1

T −1
∑T

t=1(zt − z̄)(zt − z̄)′
be the data matrix of N × N and let �zz(θ) = E(Mzz). A key assumption in clas-
sical inference is that

√
T vech(Mzz − �zz(θ)) is asymptotically normal with a

positive definite limiting covariance matrix, as T → ∞. This assumption does not
hold as N also goes to infinity. The asymptotic normality is not well defined with
an increasing dimension. For example, if N > T , Mzz is a singular matrix, so it
cannot have a normal distribution with a positive covariance matrix. Furthermore,
the dimension of the unknown parameters (denoted by θ ) is also increasing as N

increases. The usual delta method (Taylor expansion) for deriving the limiting dis-
tribution of the MLE of θ will not work. Therefore, the high-dimensional inference
for MLE requires a new framework.

Fixing N is for the purpose of tractability for theoretical analysis. Such an as-
sumption is unduly restrictive. Many applications or theoretical models involve
data sets with the number of variables comparable with or even greater than the
number of observations; see [11, 20, 22] and [23]. Although the large-N analysis
is demanding, the limiting distribution of the maximum likelihood estimator has a
much simpler form under large N than under fixed N .

There exists a small literature on efficient estimation of factors and factor load-
ings under large N . [9] considers a two-step approach by treating both the factors
and the factor loadings as the parameters of interest. [12] also considers a two-step
approach. The first step uses the principal components method to obtain the resid-
uals and the second step uses a feasible generalized least squares. This method de-
pends on large N and large T to get consistent estimation of the residual variances.
MLE is considered by [14]. A certain average consistency is obtained; [14] does
not consider consistency for individual parameters nor the limiting distributions.

The present paper is the first to develop a full statistical theory for the maximum
likelihood estimator. Our approach is different from the existing literature. The
challenge of the analysis lies in the simultaneous estimation of the heteroscedastic-
ities and other model parameters. To estimate the heteroscedasticity, the maximum
likelihood estimator does not rely on estimating the individual residuals, which
would be the case for two-step procedures. Using residuals to construct variance
estimators will be inconsistent when one of the dimension is fixed. The MLE re-
mains consistent under fixed N .
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The rest of this paper is organized as follows. Section 2 introduces the model
and assumptions. Section 3 considers a symmetrical presentation for factor mod-
els. Identification conditions are considered in Section 4. Consistency and limiting
distributions are derived in Section 5. Section 6 considers the estimation of fac-
tor scores. Section 7 compares the efficiency of the MLE relative to the principal
components method and Section 8 discusses computational issues. The last section
concludes. Proofs of consistency are given in the Appendix and additional proofs
are provided in the supplement [6]. Throughout the paper, the norm of a vector
or matrix is that of Frobenius, that is, ‖A‖ = [tr(A′A)]1/2 for vector or matrix A;
diag(A) represents a diagonal matrix when A is a vector, but diag(A) can be either
a matrix or a column vector (consisting of the diagonal elements of A) when A is
a matrix.

2. Factor models. Let N denote the number of variables and T the sample
size. For i = 1, . . . ,N and t = 1, . . . , T , the observation zit is said to have a factor
structure if it can be represented as

zit = αi + λ′
ift + eit ,(2.1)

where ft = (ft1, ft2, . . . , ftr )
′ and λi = (λi1, . . . , λir )

′; both are r × 1. Let � =
(λ1, λ2, . . . , λN)′ be N × r , and zt = (z1t , . . . , zNt )

′ be the N ×1 vector of observ-
able variables. Let et and α be similarly defined. In matrix form,

zt = α + �ft + et .(2.2)

The vector zt is observable; none of the right-hand side variables are observable.
We make the following assumptions:

ASSUMPTION A. {ft } is a sequence of fixed constants. Let Mff = 1
T

×∑T
t=1(ft − f̄ )(ft − f̄ )′ be the sample variance of ft where f̄ = 1

T

∑T
t=1 ft . There

exists an Mff > 0 (positive definite) such that Mff = limT →∞ Mff .

ASSUMPTION B. E(et ) = 0; E(ete
′
t ) = �ee = diag(σ 2

1 , σ 2
2 , . . . , σ 2

N);
E(e4

it ) ≤ C4 for all i and t , for some C < ∞. The eit are independent for all i

and t , and the N × 1 vector et is identically distributed over t .

ASSUMPTION C. There exists a positive constant C large enough such that:

(C.1) ‖λj‖ ≤ C for all j .
(C.2) C−2 ≤ σ 2

j ≤ C2 for all j .

(C.3) The limits limN→∞ N−1�′�−1
ee � = Q and limN→∞ 1

N

∑N
i=1 σ−4

i (λi ⊗
λi)(λ

′
i ⊗ λ′

i ) = � exist, where Q and � are positive definite matrices.

ASSUMPTION D. The variances σ 2
j are estimated in the compact set [C−2,

C2]. Furthermore, Mff is restricted to be in a set consisting of all semi-positive
definite matrices with all elements bounded in the interval [−C,C], where C is a
large constant.
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In Assumption A, we assume ft is a sequence of fixed constants. Our analy-
sis holds if it is a sequence of random variables. In this case, we assume ft to
be independent of all other variables. The analysis can then be regarded as con-
ditioning on {ft }. Without loss of generality, we assume that f̄ = 1

T

∑T
t=1 ft = 0

[or E(ft ) = 0 for random factors] because the model can be rewritten as zt =
α + �f̄ + �(ft − f̄ ) + et = α∗ + �f ∗

t + et with α∗ = α + �f̄ and f ∗
t = ft − f̄ .

In Assumption B, we assume et to be independent over time. In fact, our consistent
result still holds if et are serially correlated and heteroscedastic over time or eit are
correlated over i, provided that these correlations are weak (sufficient conditions
are given in [2]). The limiting distribution then would need modification. For sim-
plicity, we shall consider the uncorrelated case. The analysis of the maximum like-
lihood estimation under high dimension is already difficult; allowing correlation
will make the analysis even more cumbersome. We will report the results under
general correlation patterns in a separate paper. Assumption D is for theoretical
analysis. Like all nonlinear (nonconvex) analysis, parameters are assumed to be in
a bounded set.

The second moment of the sample, denoted by Mzz, is

Mzz = 1

T

T∑
t=1

(zt − z̄)(zt − z̄)′,(2.3)

where z̄ = T −1 ∑T
t=1 zt . Note that the division by T instead of T − 1 is for nota-

tional simplicity. Let �zz be

�zz = �Mff �′ + �ee.(2.4)

The objective function considered in this paper is

lnL = − 1

2N
ln|�zz| − 1

2N
tr(Mzz�

−1
zz ).(2.5)

The above objective function may be regarded as a quasi likelihood function. To
see this, assume ft is stochastic with mean zero and variance �ff . From zt =
α + �ft + et , the variance matrix of zt , denoted by �zz, is

�zz = ��ff �′ + �ee.

So the quasi likelihood function (omitting a constant) can be written as

lnL = − 1

2N
ln|�zz| − 1

2NT

T∑
t=1

(zt − α)′�−1
zz (zt − α)

= − 1

2N
ln|�zz| − 1

2NT

T∑
t=1

(zt − z̄)′�−1
zz (zt − z̄)

− 1

2NT

T∑
t=1

(z̄ − α)′�−1
zz (z̄ − α).
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Clearly α̂ minimizes the likelihood function at z̄. So the concentrated quasi likeli-
hood function can now be written as

lnL = − 1

2N
ln|�zz| − 1

2N
tr

[
1

T

T∑
t=1

(zt − z̄)(zt − z̄)′�−1
zz

]

= − 1

2N
ln|�zz| − 1

2N
tr(Mzz�

−1
zz ),

which is the same as (2.5) except that �ff is in place of Mff . Because the factors
are fixed constants instead of random variables, as stated in Assumption A, it is
natural to use Mff rather than �ff in (2.4) and (2.5).

If both � and F = (f1, f2, . . . , fT )′ are treated as parameters, the correspond-
ing likelihood function is

− 1

2N
ln|�ee| − 1

2NT

T∑
t=1

(zt − α − �ft)
′�−1

ee (zt − α − �ft).(2.6)

Since � has Nr parameters and F has T r parameters, the number of parameters
to be estimated will be very large, which leads to efficiency loss. In contrast, the
number of parameters in (2.5) is only N(r +1)+r(r +1)/2, which is considerably
smaller than the number of parameters in (2.6), which is N(r + 1) + T r . The
difference is pronounced for small N but large T . In fact, when estimating �,F

and �ee, the global maximum likelihood estimator does not exist. It can be shown
that the likelihood function diverges to infinity by certain choice of parameters
(see [2], page 587).

By restricting �ee = IN (an identity matrix), the MLE estimator of (2.6) be-
comes the principal components estimator. That is, the principal components
method minimizes the objective function

∑T
t=1(zt −α −�ft)

′(zt −α −�ft) over
α, � and F . The estimators cannot be efficient when heteroscedasticity actually
exists.

Even though the ft are fixed constants, we avoid directly estimating ft . Instead
we only estimate the sample moment of ft . This considerably reduces the number
of parameters and removes the corresponding incidental parameters bias. The es-
timator is also consistent under fixed N , since the setting falls back to the classical
factor analysis.

By maximizing (2.5), in combination with (2.4), we can obtain three first-order
conditions (see, e.g., [18]):

�̂′�̂−1
zz (Mzz − �̂zz) = 0,(2.7)

diag(�̂−1
zz ) = diag(�̂−1

zz Mzz�̂
−1
zz ),(2.8)

�̂′�̂−1
zz �̂ = �̂′�̂−1

zz Mzz�̂
−1
zz �̂,(2.9)

where �̂, M̂ff and �̂ee denote the MLE and �̂zz = �̂M̂ff �̂′ + �̂ee.
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Condition (2.7) is derived from the partial derivatives with respect to �, (2.8)
is derived with respect to the diagonal elements of �ee, and (2.9) is derived with
respect to Mff . Equation (2.9) can be obtained from (2.7) by post-multiplying
�̂−1

zz �̂. Since (2.9) is redundant, in order to make the system of three equations
solvable, we need to impose further restrictions. These identification restrictions
will be discussed in Section 4.

3. Symmetry and choice of representations. Consider the model

zit = δt + λ′
ift + eit .

Let zi = (zi1, zi2, . . . , ziT )′, δ = (δ1, . . . , δT )′, F = (f1, f2, . . . , fT )′ and ei =
(ei1, . . . , eiT )′; then

zi = δ + Fλi + ei

(i = 1,2, . . . ,N). Define

Mzz = 1

N

N∑
i=1

(zi − z̄)(zi − z̄)′, �zz = FMλλF
′ + �†

ee,

where �†
ee = diag(σ 2

1 , . . . , σ 2
T ) and

Mλλ = 1

N

N∑
i=1

(λi − λ̄)(λi − λ̄)′

is the r × r sample variance of the factor loadings.
Although we use the same notation of Mzz and �zz, they are now T × T ma-

trices instead of N × N . The matrix �†
ee contains idiosyncratic variances in the

time dimension (time series heteroscedasticity). The quasi maximum likelihood
estimator maximizes the likelihood function

lnL = − 1

2T
ln|�zz| − 1

2T
tr(Mzz�

−1
zz ).

This representation avoids estimating λ1, λ2, . . . , λN directly, but only the sam-
ple moment of λi . The representation has T r + T + r(r + 1)/2 number of pa-
rameters. If N is much larger than T , this representation will give more efficient
estimation. In particular, if T is fixed, we can only use this representation to get
consistent estimation of f1, f2, . . . , fT and �†

ee. This representation will also be
useful if one is interested in estimating the heteroscedasticity in the time dimen-
sion.

The analysis of one representation will carry over to the other by switching the
role of N and T and the role of � and F . So it is sufficient to carefully examine
one representation. Bearing this in mind, our analysis focuses on the representation
in the previous section. The objective function in (2.5) involves fewer parameters
when N is less than T , although we make no assumption about the relative size
between N and T (except for Theorem 6.1), and in particular, N is allowed to be
much larger than T .



442 J. BAI AND K. LI

4. Identification conditions. It is well known that the factor models are not
identifiable without additional restrictions. For any r × r invertible matrix R, we
have �Mff �′ = �̃M̃ff �̃′ where �̃ = �R and M̃ff = R−1Mff R

′−1. Thus ob-
servationally equivalent models are obtained. In order to uniquely fix � and Mff

given �Mff �′, we need r2 restrictions since an invertible r × r matrix has r2 free
parameters. For details of identification conditions, readers are referred to [18]
and [4]. There are many ways to impose restrictions. In this paper, we consider
five identification strategies which have been used in traditional factor analysis.
These restrictions are listed in Table 1. The left pane is for the representation in
Section 2, while the right pane is for the representation in Section 3.

We make some comments on these restrictions. Given �Mff �′, IC1 will
uniquely fix � and Mff . So full identification is achieved. But this is not the
case for IC2. If we change the sign of any column of �, �Mff �′ is not changed.
This implies that we only identify � up to a column sign change.

Furthermore, if we switch the positions between the ith and j th columns of �,
and the positions between the ith and j th diagonal elements of Mff , the matrix
�Mff �′ is not changed. This means that we need restrictions on the ordering of
the diagonal elements of Mff . In this paper, we assume that the diagonal compo-
nents of Mff are arranged from the largest to the smallest and they must be distinct
and positive. Because of this restriction, we naturally require that the diagonal ele-
ments of estimator M̂ff are also arranged in this order, which is important for the
proof of consistency.

Under IC3, for the same reason, we assume that the diagonal elements of
1
N

�′�−1
ee � are distinct and positive, and are arranged in decreasing order; � is

identified up to a column sign change.
IC4 imposes 1

2r(r +1) restrictions on the factor loadings, and 1
2r(r −1) restric-

tions on the factors. Identification is fully achieved like IC1.
Under IC5, we can only identify � up to a column sign change. In addition,

we need nonzero diagonal elements for the lower triangular matrix. The reason is
intuitive. If the ith diagonal element is zero, both the ith and (i + 1)th columns
will share the same structure.

IC1 is related to the measurement error problem; it assumes that the first r ob-
servations are noise measurements of the underlying factors. IC2 and IC3 are the
usual restrictions for MLE; see [18]. IC4 and IC5 assume a recursive relation: the
first factor affects the first variable only, and the first two factors affect the first
two variables only, and so on; they are widely used, for example, [4] and [16].
Clearly, IC1, IC4 and IC5 require a careful choice of the first r observations in
practice. The inferential theory assumes that the underlying parameters satisfy the
restrictions, implying different λi under different restrictions.

5. Asymptotic properties of the likelihood estimators. Since the number of
parameters increases as N increases, the usual argument that the objective function
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TABLE 1
Identifying restrictions

Restrictions on F Restrictions on � Restrictions on � Restrictions on F

IC1 Unrestricted � = (Ir ,�
′
2)′ IC1′ Unrestricted F = (Ir ,F

′
2)′

IC2 Mff = diagonal 1
N

�′�−1
ee � = Ir IC2′ Mλλ = diagonal 1

T
F ′�†−1

ee F = Ir
(with distinct elements) (with distinct elements)

IC3 Mff = Ir
1
N

�′�−1
ee � = diagonal IC3′ Mλλ = Ir

1
T

F ′�†−1
ee F = diagonal

(with distinct elements) (with distinct elements)

IC4 Mff = diagonal � = (�′
1,�′

2)′ IC4′ Mλλ = diagonal F = (F ′
1,F ′

2)′

�1 =

⎛
⎜⎜⎜⎝

1 0 · · · 0
λ21 1 · · · 0
...

...
. . .

...

λr1 λr2 · · · 1

⎞
⎟⎟⎟⎠ F1 =

⎛
⎜⎜⎜⎝

1 0 · · · 0
f21 1 · · · 0
...

...
. . .

...

fr1 fr2 · · · 1

⎞
⎟⎟⎟⎠

IC5 Mff = Ir �′ = (�′
1,�′

2)′ IC5′ Mλλ = Ir F ′ = (F ′
1,F ′

2)′

�1 =

⎛
⎜⎜⎜⎝

λ11 0 · · · 0
λ21 λ22 · · · 0
...

...
. . .

...

λr1 λr2 · · · λrr

⎞
⎟⎟⎟⎠ F1 =

⎛
⎜⎜⎜⎝

f11 0 · · · 0
f21 f22 · · · 0
...

...
. . .

...

fr1 fr2 · · · frr

⎞
⎟⎟⎟⎠

λii 
= 0, i = 1,2, . . . , r fii 
= 0, i = 1,2, . . . , r
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converges in probability to a fixed nonrandom function and the function achieves
its maximum value at the true parameter values will not work. This is because
as N and T increase, there will be an infinite number of parameters in the limit.
Our idea of consistency is to obtain some average consistency, and then use these
initial results to obtain consistency for individual parameters. Even the average
consistency requires a novel argument in the presence of an increasing number of
parameters.

PROPOSITION 5.1. Let θ̂ be the MLE by maximizing (2.5), where θ̂ =
(λ̂1, . . . , λ̂N , σ̂ 2

1 , . . . , σ̂ 2
N, M̂ff ). Under Assumptions A–D, when N,T → ∞, with

any one of the identification conditions IC1–IC5, we have

1

N

N∑
i=1

1

σ̂ 2
i

‖λ̂i − λi‖2 p→ 0,(5.1a)

1

N

N∑
i=1

(σ̂ 2
i − σ 2

i )2 p→ 0,(5.1b)

M̂ff − Mff
p→ 0.(5.1c)

Establishing the above result requires a considerable amount of work. Devel-
oping and identifying appropriate strategies have taken an even greater amount of
efforts. The difficulty lies in the problem of infinite number of parameters in the
limit and the nonlinearity of objective function. The infinite number of parameters
problem in this paper is fundamentally different from those in the existing lit-
erature. For example, consider an AR(∞) process Xt = ∑∞

j=1 aj εt−j . Although
there exist an infinite number of parameters {aj }∞j=1, the assumption that aj → 0,
as j → ∞, effectively limits the number of parameters. For example, âj ≡ 0 is
consistent for aj for j ≥ ln(T ). The assumption that aj → 0 may be viewed as
one form of smoothing restriction. However, in the present context and in the ab-
sence of any form of smoothness, all parameters are free parameters, and there will
be an infinite number of them in the limit. This is the source of difficulty.

While there is also an infinite number of parameters problem in the analysis
of the principal components (PC) estimator, the method does not estimate het-
eroscedasticity, and it minimizes an objective function stated in Section 2. Its de-
gree of nonlinearity is much less than the likelihood function (2.5). It is the joint
estimation of heteroscedasticity that makes the analysis difficult. In the Appendix,
we provide a novel proof of consistency, which constitutes a departure from the
usual analysis, say, in [19] and [24].

The proofs of (5.1a) and (5.1c) depend heavily on the identification conditions.
If we denote A ≡ (�̂ − �)′�̂−1

ee �̂(�̂′�̂−1
ee �̂)−1, the proof of consistency centers

on proving A
p→ 0. However, the proof of A

p→ 0 is quite different with different
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identification conditions. Under IC2, for example, (�̂′�̂−1
ee �̂/N)−1 = Ir . Under

other identification conditions, the proof of even (�̂′�̂−1
ee �̂/N)−1 = Op(1) is ex-

tremely demanding. Under IC2, IC3 and IC5, we need to assume that the estimator
�̂ has the same column signs as those of � in order to have consistency. Having
the same column signs is regarded as part of the identification restrictions under
IC2, IC3 and IC5.

In order to derive the inferential theory for the estimated parameters, we need
to strengthen Proposition 5.1. We state the result as a theorem:

THEOREM 5.1. Under the assumptions of Proposition 5.1, we have

1

N

N∑
i=1

1

σ̂ 2
i

‖λ̂i − λi‖2 = Op(T −1),(5.2a)

1

N

N∑
i=1

(σ̂ 2
i − σ 2

i )2 = Op(T −1),(5.2b)

‖M̂ff − Mff ‖2 = Op(T −1).(5.2c)

It is interesting to compare our results with those in classical factor analysis.
If N is fixed, the existing literature has already shown that λ̂j and σ̂ 2

j converge
to λj and σ 2

j at the rate of
√

T for any j . Since N is fixed, the classical result

implies (5.2a) and (5.2b). In fact ‖M̂ff − Mff ‖2 = Op(T −1) holds also since
it can be derived from the first two (the results analogous to (5.2c) under IC1
when N is finite can be seen in [1]). Theorem 5.1 shows that these results still
hold in the large-N setting despite estimating an increasing number of elements.
However, we point out that the rate stated in Theorem 5.1 is not the sharpest. If IC2
or IC3 is adopted as identification conditions, then ‖M̂ff − Mff ‖2 = Op(T −1)

can be refined as ‖M̂ff − Mff ‖2 = Op(N−1T −1) + Op(T −2). Because (5.2c)
is sufficient for the inferential theory to be developed, we only state this general
result.

As pointed out earlier, the behavior of A ≡ (�̂ − �)′�̂−1
ee �̂(�̂′�̂−1

ee �̂)−1 is im-
portant in establishing consistency. In fact, matrix A plays a key role in the inferen-
tial theory as well. The convergence rate of A depends on identification conditions.
We use Ak in place of A under ICk (k = 1,2, . . . ,5). Under IC2 and IC3, the con-
vergence rate of A is min(

√
NT ,T ). However, under other sets of identification

conditions, the convergence rate of A is
√

T . This difference in convergence rate
affects the limiting distribution of M̂ff , which also makes the limiting distributions
of λ̂j different.

In Section C of the supplement [6], we give the asymptotic representations of√
T (λ̂j −λj ) under IC1–IC5. The main representations are given in (C.5), (C.12),

(C.17) and (C.24), respectively. The following theorem is a consequence of these
representations.
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THEOREM 5.2. Under the assumptions of Proposition 5.1, for each j =
1,2, . . . ,N , as N,T → ∞, we have:

Under IC1,
√

T (λ̂j − λj )
d→ N

(
0, (Mff )−1(λ′

j�eerλj + σ 2
j )

)
.(5.3a)

Under IC2 or IC3,
√

T (λ̂j − λj )
d→ N (0, (Mff )−1σ 2

j ).(5.3b)

Under IC4, for j > r
√

T (λ̂j − λj )
d→ N

(
0,� + (Mff )−1σ 2

j

)
(5.3c)

and for 2 ≤ j ≤ r
√

T (λ̂j − λj )
d→ N

(
0,� + 2I j−1

r (Mff )−1σ 2
j − (Mff )−1σ 2

j

)
.

Under IC5, for j > r
√

T (λ̂j − λj )
d→ N (0,� + Irσ

2
j )(5.3d)

and for 1 ≤ j ≤ r
√

T (λ̂j − λj )
d→ N (0,� + 2I j

r σ 2
j − Irσ

2
j ),

where � = (λ′
j ⊗ Ir)D̃(Mff )
D̃(Mff )′(λj ⊗ Ir), � = (λ′

j ⊗ Ir)D�D
′
(λj ⊗ Ir).

�eer is an r × r diagonal matrix with the j th diagonal element σ 2
j ; I

j
r is an r × r

diagonal matrix with the first j diagonal elements being 1 and the rest being 0.
The meanings of D̃(Mff ),D,
 and � are explained below.

The matrix D̃(M) (with M = Mff ) is a generalized duplication matrix of r2 ×
1
2r(r + 1) depending on the diagonal matrix M ; D̃(M) can be constructed row
by row in the following way. Given the number k, 1 ≤ k ≤ r2, we denote j =

(k − 1)/r� + 1 and i = k − (j − 1)r , where 
·� denotes the largest integer no
greater than the argument. If i ≥ j , all elements of the kth row are zero, except that
the (1

2(2r −j +2)(j −1)+ i −j +1)th element is 1; if i < j , all elements are zero,
except that the (1

2(2r − i +2)(i −1)− i + j +1)th element is −mjm
−1
i , where mj

is the j th diagonal element of M . The r2 × 1
2r(r − 1) matrix D under IC5 is also a

generalized duplication matrix. Let A be a skew-symmetric matrix and let veck(A)

be the operator that stacks the elements of A strictly below the diagonal into a
vector (excluding diagonal elements). Then D is defined as vec(A) = D veck(A).

Here are some examples for D̃(M). If M is a scalar, then D̃(M) = 1. If M =
diag(m1,m2), then

D̃(M) =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 −m2/m1 0
0 0 1

⎞
⎟⎟⎠ .
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If M = diag(m1,m2,m3), then

D̃(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −m2/m1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 −m3/m1 0 0 0
0 0 0 0 −m3/m2 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here are some examples for D, which only depends on the dimension of Mff

(i.e., the number of factors). If r = 1, then D = 0. If r = 2, then D = (0,1,−1,0)′.
If r = 3, then

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 1 0

−1 0 0
0 0 0
0 0 1
0 −1 0
0 0 −1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix 
 in (5.3c) is the limiting covariance of vech(A4), where A4 is the
A matrix defined earlier under IC4. The asymptotic representation of A4 is given
by (C.15) in Section C of the supplement [6]. From this asymptotic representation,
the elements of 
 can be easily computed and are given by (C.16). The matrix �

in (5.3d) is the limiting covariance of veck(A5), where A5 is the matrix A under
IC5, and is asymptotically skew-symmetric. The asymptotic representation of A5
is given by (C.22). The elements of � are determined by (C.23) in Section C of the
supplement [6].

Remarks: In classical factor analysis, the MLE usually imposes the restriction
of IC3. The limiting distribution λ̂j in classical factor analysis (fixed N ) is very
complicated; see [18]. Most textbooks on multivariate statistics do not even present
the limiting distributions owing to its complexity. As pointed out by Anderson ([2],
page 583), the limiting distribution is “too complicated to derive or even present
here.” In contrast, the limiting distribution under IC3 with large N is

√
T (λ̂j − λj )

d→ N (0, (Mff )−1σ 2
j ).

This is as efficient as the case in which the ft are observable. For if the ft are
observable, the estimator of λj by applying OLS to (2.1) is λ̂ols

j = (T −1 ∑T
t=1(ft −

f̄ )(ft − f̄ )′)−1(T −1 ∑T
t=1(ft − f̄ )(zjt − z̄j )). It is easy to show that

√
T (λ̂ols

j −
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λj )
d→ N (0, (Mff )−1σ 2

j ), the same as the MLE estimator under IC2 and IC3.
The OLS estimator is the best linear unbiased estimator under Assumption B, as
the error terms of the regression equation are i.i.d.

Now we state the limiting distributions of M̂ff and σ̂ 2
j for each j . In Section C

of the supplement [6], we derive the asymptotic representations for M̂ff − Mff

under IC1, IC2 and IC4, respectively, which are given by (C.7), (C.11) and (C.19).
The asymptotic representation for σ̂ 2

j − σ 2
j is given by (C.4). The next two theo-

rems follow these asymptotic representations.

THEOREM 5.3. Under the assumptions of Proposition 5.1, we have:
Under IC1,

√
T vech(M̂ff − Mff )

d→ N
(
0,4D+

r (�eer ⊗ Mff )D+′
r

)
.

Under IC2, N/T → 0 and normality of eit ,√
NT diag(M̂ff − Mff )

d→ N
(
0, Jr [2(Ir ⊗ Mff )�(Ir ⊗ Mff ) + 4(Q ⊗ Mff )]J ′

r

)
.

Under IC4,
√

T diag(M̂ff − Mff )
d→ N

(
0,4Jr [(�′

1�
−1
eer�1)

−1 ⊗ Mff ]J ′
r

)
,

where D+
r is the Moore–Penrose inverse of the duplication matrix Dr ; Jr is an

r × r2 matrix, which satisfies, for any r × r matrix M, diag{M} = Jr vec(M),
where diag{·} is the operator which stacks the diagonal elements into a vector.

Note under IC3 and IC5, Mff is known and thus not estimated. Normality un-
der IC2 is used only for calculating the limiting variance. Given the asymptotic
representation of M̂ff − Mff , it is easy to derive the limiting distribution under
nonnormality.

THEOREM 5.4. Under the assumptions of Proposition 5.1, with any set of the
identification conditions, we have

√
T (σ̂ 2

j − σ 2
j )

d→ N
(
0, σ 4

j (2 + κj )
)
,(5.4)

where κj is the excess kurtosis of ejt . Under normality of eit , the limiting distribu-
tion becomes N (0,2σ 4

j ).

Our analysis assumes that the underlying parameters satisfy the identification
restrictions, which is also the classical framework of [18]. A consequence is that
we are directly estimating the underlying true parameters instead of rotations of
them. The rotation matrix used in [23] and [7] degenerates into an identity matrix.
This result itself is interesting.
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6. Asymptotic properties for the estimated factors. The factors ft can be
estimated by two different methods. One is the projection formula and the other is
the generalized least squares (GLS). These methods are discussed in [2].

If the factor ft is normally distributed with mean zero and variance �ff , and is
independent of et , then the joint distribution of (ft , zt ), by (2.2), can be written as[

ft

zt

]
∼ N

[(
0
α

)
,

�ff �ff �′
��ff ��ff �′ + �ee

]
.(6.1)

Given zt , the best predictor of ft , f
p
t , is f

p
t = �ff �′(��ff �′ +�ee)

−1(zt −α).
By the basic result (��ff �′ + �ee)

−1 = �−1
ee − �−1

ee �(�−1
ff + �′�−1

ff �)−1 ×
�′�−1

ee , we have

f
p
t = (�−1

ff + �′�−1
ee �)−1�′�−1

ee (zt − α).(6.2)

Although (6.2) is deduced under the assumption of normality of ft and in this
paper the ft are fixed constants, equation (6.2) can still be used to estimate ft by
replacing the parameters with their corresponding estimates. So the estimator f̃t is

f̃t = (M̂−1
ff + �̂′�̂−1

ee �̂)−1�̂′�̂−1
ee (zt − z̄).(6.3)

An alternative procedure is the GLS. If the λj and σ 2
j are observable, the GLS

estimator of ft is (�′�−1
ee �)−1�′�−1

ee (zt − z̄). The unknown variables can be re-
placed by their estimates. We define the GLS estimator of ft as

f̂t = (�̂′�̂−1
ee �̂)−1�̂′�̂−1

ee (zt − z̄).(6.4)

Under large N , not much difference exists between (6.3) and (6.4). In fact, they
are asymptotically equivalent and have the same limiting distributions. But for
relatively small N , the difference may not be ignorable.

PROPOSITION 6.1. Under the assumptions of Proposition 5.1, f̃t = f̂t +
Op(1/N).

Since f̃t and f̂t have the same limiting distribution, we only state the distribution
for (6.4). In Section D of the supplement [6] we derive the asymptotic represen-
tations for

√
N(f̂t − ft ), which are given by (D.3), (D.4) and (D.5), respectively.

From these representations, we obtain:

THEOREM 6.1. Let � ∈ [0,∞). Under the assumptions of Proposition 5.1
and

√
N/T → 0, we have:

Under IC1 and N/T → �,
√

N(f̂t − ft )
d→ N

(
0,�f ′

t (Mff )−1ft�eer + Q−1)
.(6.5a)
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Under IC2,
√

N(f̂t − ft )
d→ N (0, Ir).(6.5b)

Under IC3,
√

N(f̂t − ft )
d→ N (0,Q−1).(6.5c)

Under IC4 and N/T → �,
√

N(f̂t − ft )
(6.5d)

d→ N
(
0,�(Ir ⊗ f ′

t )D̃(Mff )
D̃′(Mff )(Ir ⊗ ft ) + Q−1)
.

Under IC5 and N/T → �,
√

N(f̂t − ft )
d→ N

(
0,�(Ir ⊗ f ′

t )D�D
′
(Ir ⊗ ft ) + Q−1)

.(6.5e)

The matrix Q is defined in Assumption C. The matrices �eer , 
,�, D̃(Mff ) and
D are defined in Theorem 5.2.

If � = 0, Theorem 6.1 shows that f̂t has the same limiting distribution re-
gardless of the identification restrictions. In this case, the variance is equal to
Q = limN→∞ N−1�′�−1

ee �. Note that under IC2, Q = Ir . Irrespective of whether
� is zero, f̂t is efficient under IC2 and IC3 in the sense that the limiting variance
coincides with the situation in which both the factor loadings and the variances σ 2

t

are observable and GLS is applied to a cross-sectional regression for each fixed t .
This result requires

√
N/T → 0.

Recall that a factor model has two symmetrical representations. We also dis-
cussed earlier which presentation should be used in practice. If N is smaller than T ,
we should estimate the factor loadings by the maximum likelihood method because
this representation has fewer number of parameters. The opposite is true if T is
smaller than N . This intuitive argument is borne out by the results of Theorems
5.2 and 6.1. By Theorem 5.2, the magnitudes of N and T do not affect the limiting
covariance of λ̂j (other than the rate of convergence) but they do affect the limiting
covariance of f̂t as shown by Theorem 6.1. If � is large, f̂t cannot be estimated
well under IC1, IC4 and IC5. Note that f̂t is not the maximum likelihood estima-
tor. In this case, we can use the representation of Section 3 and directly estimate
ft by the maximum likelihood method.

7. Comparison with the principal components method. The method of
principal components (PC) does not assume a factor model, and the method is
usually regarded as a dimension reduction technique. But PC can be used to esti-
mate factor models under large N and large T ; see [7, 11, 13] and [22]. Let λ̂

pc
j and

f̂
pc
t denote the PC estimators for λj and ft , respectively. The results of [5] and [8]
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imply the following asymptotic representation for the principal components esti-
mators. As N,T → ∞, if

√
N/T → 0, then

√
T (λ̂

pc
j − λj ) =

(
1

T

T∑
t=1

ftf
′
t

)−1(
1√
T

T∑
t=1

ftejt

)
+ op(1)

d→ N (0, (Mff )−1σ 2
j )

and if
√

N/T → 0, then

√
N(f̂

pc
t − ft ) =

(
1

N

N∑
i=1

λiλ
′
i

)−1(
1√
N

N∑
i=1

λieit

)
+ op(1)

d→ N (0, (Mλλ)
−1ϒ(Mλλ)

−1),

where Mλλ = limN→∞ 1
N

∑N
i=1 λiλ

′
i and ϒ = limN→∞ 1

N

∑N
i=1 λiλ

′
iσ

2
i .

The PC estimator in [5] uses the identification restriction IC3. Under IC3, we
already show that the MLE satisfies, as N,T → ∞,

√
T (λ̂j − λj )

d→ N (0, (Mff )−1σ 2
j ).

Theorem 6.1 above shows that, under IC3,
√

N(f̂t −ft )
d→ N (0,Q−1). This result

requires
√

N/T → 0, which is satisfied if N/T → �.
While λ̂

pc
j and λ̂j have the same limiting distribution, f̂

pc
t is less efficient

than f̂t . This follows because the sandwich form of the covariance matrix
(Mλλ)

−1ϒ(Mλλ)
−1 is no smaller than Q−1, where Q is the limit of 1

N

∑N
i=1

1
σ 2

i

×
λiλ

′
i . Moreover, under IC3, the MLE λ̂j only requires N,T → ∞, but the PC

estimator λ̂
pc
j requires an additional assumption that

√
T /N → 0. Furthermore,

the maximum likelihood estimator λ̂j is consistent under fixed N , but λ̂
pc
j requires

both N and T to be large in order to have consistency. Of course, under fixed N ,
the limiting distribution of MLE will have a different (more complicated) asymp-
totic covariance matrix; see [18].

To estimate σ 2
j , the PC method would need to estimate the individual residuals

êit = Xit − α̂i − (λ̂
pc
i )′f̂ pc

t and then construct σ̂ 2
j = 1

T

∑T
t=1 ê2

j t . In case that N is
fixed, ft cannot be consistently estimated, so êit is inconsistent for eit . This further
implies that σ̂ 2

j is inconsistent for σ 2
j . In comparison, the MLE does not estimate

the individuals êit . The variances are estimated jointly with the factor loadings λj

and with the matrix Mff . The variance estimator remains consistent under fixed N .
Finally, the PC estimator for λi satisfies (see [5]) 1

N

∑N
i=1 ‖λ̂pc

i − λi‖2 =
Op( 1

N
) + Op( 1

T
), while the MLE for λi satisfies 1

N

∑N
i=1 ‖λ̂i − λi‖2 = Op( 1

T
).
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8. Computational issues. The maximum likelihood estimation can be imple-
mented via the EM algorithm and is considered by [21]. The EM algorithm is an
iterated approach. To be specific, consider the identification condition IC3. Once
the estimator under IC3 is obtained, estimators under other identification restric-
tions can be easily obtained (to be discussed below). Under IC3, we only need to
estimate � and �ee since Mff = Ir .

Let θ(k) = (�(k),�
(k)
ee ) denote the estimator at the kth iteration. The EM algo-

rithm updates the estimator according to

�(k+1) =
[

1

T

T∑
t=1

E
(
ztf

′
t |Z,θ(k))][

1

T

T∑
t=1

E
(
ftf

′
t |Z,θ(k))]−1

,

�(k+1)
ee = diag

(
Mzz − �(k+1)�(k)′(�(k)

zz

)−1
Mzz

)
,

where �
(k)
zz = �(k)�(k)′ + �

(k)
ee , and

1

T

T∑
t=1

E
(
ftf

′
t |Z,θ(k)) = �(k)′(�(k)

zz

)−1
Mzz

(
�(k)

zz

)−1
�(k)

+ Ir − �(k)′(�(k)
zz

)−1
�(k),

1

T

T∑
t=1

E
(
ztf

′
t |Z,θ(k)) = Mzz

(
�(k)

zz

)−1
�(k).

This gives θ(k+1) = (�(k+1),�
(k+1)
ee ). The iteration continues until ‖θ(k+1) −θ(k)‖

is smaller than a preset tolerance. In the simulation reported below, we use the
principal components estimator as the starting value. Let (�†,�†) denote the final
round of iteration. Let V be the orthogonal matrix consisting of the eigenvectors
of 1

N
�†′

(�†
ee)

−1�† corresponding to descending eigenvalues. Let �̂ = �†V and

�̂ee = �†
ee. Then θ̂ = (�̂, �̂ee) satisfies IC3. For general models, [25] shows that

the EM solutions are stationary points of the likelihood functions. For complete-
ness, we provide a direct and simple proof of this claim for factor models in the
supplement [6] (Section E).

It is interesting to note that, under large N and large T , the number of iterations
needed to achieve convergence is smaller than under either a small N or a small T .
In Section E of the supplement [6], we also explain how to write a computer pro-
gram so it runs fast.

Let (�̂, �̂ee) denote the MLE under IC3. We discuss how to obtain estimators
that satisfy other identification restrictions. First, note that �̂ee is identical under
IC1–IC5. We only need to discuss how to obtain � and Mff . Let �̂� and M̂�

ff

denote the MLE under IC� (� = 1, . . . ,5). Let �̂1 denote the first r × r block
of �̂. For IC1, let �̂1 = �̂(�̂1)

−1 and M̂1
ff = �̂1�̂

′
1. This new estimator satis-

fies IC1. For IC2, let �̂2 = �̂( 1
N

�̂′�̂−1
ee �̂)−1/2 and M̂2

ff = 1
N

�̂′�̂−1
ee �̂. Then this
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estimator satisfies IC2. For IC4, Mff = Ir is known. Let �′
1 = Q R be the QR

decomposition of �′
1 with Q an orthogonal matrix and R an upper triangular ma-

trix. Define �̂4 = �̂Q. Then �̂4 satisfies IC4. Finally, consider IC5. Let W be the
diagonal matrix with its diagonal elements the same as the first r × r block of �̂4.
Let �̂5 = �̂4W −1 and M̂5

ff = W W ′. Then IC5 is satisfied.
We now consider the finite sample properties of the MLE. Data are generated

according to zit = λ′
ift + eit with r = 2, where λi, ft are i.i.d. N (0, I2) and eit

follows N (0, σ 2
i ) with σ 2

i = 0.1 + 10 × Ui , and Ui are i.i.d. uniform on [0,1].
Adding 0.1 to the variance avoids near-zero values. We consider combinations of
T = 30,50,100 and N = 10,30,50,100,150. Estimators under different identifi-
cation conditions only differ up to a rotation matrix, so only IC3 will be consid-
ered. We also compute the principal components (PC) estimator for comparison.
To measure the accuracy between �̂ and � (both are N × 2), we compute the
second (the smallest nonzero) canonical correlation between them. Canonical cor-
relation is widely used as a measure of goodness-of-fit in factor analysis; see, for
example, [14] and [17]. Similarly, we also compute the second canonical corre-
lation between F̂ and F . For the estimated variances, we calculate the squared
correlation between diag(�̂ee) and diag(�ee). The corresponding values for the
principal components estimators are also computed. Table 2 reports the average
canonical correlations based on 5000 repetitions for each (N,T ) combination.

TABLE 2
The performance of MLE and PC

MLE PC

N T � F �ee � F �ee

10 30 0.4818 0.3473 0.8432 0.4058 0.2744 0.7991
30 30 0.7276 0.7995 0.9273 0.6391 0.6450 0.9223
50 30 0.7676 0.8973 0.9303 0.7221 0.7953 0.9302

100 30 0.7874 0.9555 0.9308 0.7679 0.9006 0.9312
150 30 0.7941 0.9719 0.9310 0.7823 0.9347 0.9315

10 50 0.6080 0.4153 0.8951 0.4875 0.2975 0.8187
30 50 0.8383 0.8407 0.9583 0.7751 0.7113 0.9499
50 50 0.8589 0.9161 0.9590 0.8306 0.8341 0.9569

100 50 0.8722 0.9624 0.9592 0.8613 0.9198 0.9591
150 50 0.8764 0.9764 0.9592 0.8697 0.9475 0.9593

10 100 0.7563 0.4939 0.9448 0.5878 0.3298 0.8345
30 100 0.9182 0.8614 0.9793 0.8789 0.7519 0.9700
50 100 0.9292 0.9245 0.9798 0.9135 0.8572 0.9770

100 100 0.9362 0.9668 0.9798 0.9305 0.9308 0.9792
150 100 0.9383 0.9788 0.9799 0.9349 0.9545 0.9798
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The results suggest that the precision of �̂ is closely tied to the size of T and
the precision of F̂ is tied to N . This is consistent with the theory. For all (N,T )

combinations, the MLE dominates PC. The domination becomes less important
for N ≥ 50 and T ≥ 50 for estimating factor loadings. But for small N , no matter
how large is T , MLE noticeably outperforms PC. For the estimated factors, there is
still noticeable outperformance even under large N and T . These are all consistent
with the theory.

9. Conclusion. In this paper we have developed an inferential theory for fac-
tor models of high dimension. We study the maximum likelihood estimator under
five different sets of identification restrictions. Consistency, rate of convergence
and the limiting distributions are derived. Unlike the principal component meth-
ods, the estimators are shown to be efficient under the model assumptions. While
both the factor loadings and factors are treated as parameters (nonrandom), the
key to efficiency is not to simultaneously estimate both the factor loadings and
the factors. If N is relatively small compared with T , the efficient approach is to
estimate the individual factor loadings (λi) and the sample moment of the factor
scores (ft ), not the individual scores. The sample moment contains only r(r +1)/2
unknown elements. If the factor scores ft are of interest, they can be estimated by
the generalized least squares in a separate stage. The estimated factor scores are
also shown to be efficient under the model assumptions. The opposite procedure
should be adopted if N is much larger than T . In the latter case, we estimate the
individual factor scores and the sample moment of the factor loadings. If N and
T are comparable, the choice of procedures boils down which heteroscedasticity,
cross-sectional dimension or the time dimension, is the object of interest. The pa-
per also provides a novel approach to consistency in the presence of a large and
increasing number of parameters.

APPENDIX: PROOF OF PROPOSITION 5.1

The following notation will be used throughout:

Ĥ = (�̂′�̂−1
ee �̂)−1,

ĤN = N · Ĥ = (N−1�̂′�̂−1
ee �̂)−1,

Ĝ = (M̂−1
ff + �̂′�̂−1

ee �̂)−1,

ĜN = N · Ĝ,

ξt = (e1t , e2t , . . . , ert )
′.

From (A+B)−1 = A−1 −A−1B(A+B)−1, we have Ĥ = Ĝ(I −M̂−1
ff Ĝ)−1. From

�zz = �Mff �′ + �ee, we have

�−1
zz = �−1

ee − �−1
ee �(M−1

ff + �′�−1
ee �)−1�′�−1

ee .(A.1)



FACTOR MODELS OF HIGH DIMENSION 455

It follows

�̂′�̂−1
zz = �̂′�̂−1

ee − �̂′�̂−1
ee �̂(M̂−1

ff + �̂′�̂−1
ee �̂)−1�̂′�̂−1

ee
(A.2)

= M̂−1
ff Ĝ�̂′�̂−1

ee .

To prove Proposition 5.1, we use a superscript “∗” to denote the true parameters,
for example, �∗, �∗

ee, f ∗
t , etc. The variables without the superscript “∗” denote the

function arguments (input variables) in the likelihood function.
Let θ = (λ1, . . . , λn, σ

2
1 , . . . , σ 2

n ,Mff ) and let � be a parameter set such that
C−2 ≤ σ 2

t ≤ C2, Mff is positive definite matrices with elements bounded. We
assume θ∗ = (λ∗

1, . . . , λ
∗
n, σ

2∗
1 , . . . , σ 2∗

n ,M∗
ff ) is an interior point of �. For sim-

plicity, we also write θ = (�,�ee,Mff ) and θ∗ = (�∗,�∗
ee,M

∗
ff ).

PROOF OF PROPOSITION 5.1. The centered likelihood function can be written
as

L(θ) = L(θ) + R(θ),

where

L(θ) = − 1

N
ln|�zz| − 1

N
tr(�zz(θ

∗)�−1
zz ) + 1 + 1

N
ln|�(θ∗)|

and R(θ) = − 1
N

tr((Mzz − �zz(θ
∗))�−1

zz ). Note that 1 + 1
N

∑N
i=1 ln|�(θ∗)| does

not depend on any unknown parameters and is for the purpose of centering.
Lemma A.2 [6] implies that supθ |R(θ)| = op(1). In particular, we have

|R(θ̂)| = op(1) and |R(θ∗)| = op(1). So |R(θ∗) − R(θ̂)| = op(1). Since θ̂ max-
imizes L(θ), it follows L(θ̂) + R(θ̂)) ≥ L(θ∗) + R(θ∗). Hence we have L(θ̂) ≥
L(θ∗) + R(θ∗) − R(θ̂) ≥ L(θ∗) − |op(1)|. However, the function L(θ) achieves
its maximum at θ∗, so L(θ̂) ≤ L(θ∗). Since L(θ∗) is normalized to zero, we have
L(θ̂) ≥ −|op(1)| and L(θ̂) ≤ 0. It follows that L(θ̂) = op(1).

Notice |�zz| = |�ee| · |Ir + Mff �′�−1
ee �|. But |Ir + Mff �′�−1

ee �| = O(N).
Similarly |�zz(θ

∗)| = |�∗
ee| · |Ir + M∗

ff �∗′�∗−1
ee �∗|, thus uniformly on �,

− 1

N
ln|�zz| + 1

N
ln|�zz(θ

∗)| = − 1

N
ln|�ee| + 1

N
ln|�∗

ee| + O

(
ln(N)

N

)
.

Next, from �zz(θ
∗) = �∗M∗

ff �∗′+�∗
ee, we have �zz(θ

∗)�−1
zz = �∗M∗

ff �∗′×
�−1

zz +�∗
ee�

−1
zz . Using the formula for �−1

zz , we have tr(�∗
ee�

−1
zz ) = tr(�∗

ee�
−1
ee )+

O(1), because tr[�∗
ee�

−1
ee �(M−1

ff + �′�−1
ee �)−1�′�−1

ee ] = O(1). The latter fol-

lows since the matrix in the square bracket is bounded in norm by C4‖�′�−1
ee � ×

(M−1
ff + �′�−1

ee �)−1‖ ≤ C4‖Ir‖ due to the bound on σ 2
i and σ ∗2

i . Thus divided
by N , we have

1

N
tr[�zz(θ

∗)�−1
zz ] = 1

N
tr[�∗M∗

ff �∗′�−1
zz ] + 1

N
tr(�∗

ee�
−1
ee ) + O

(
1

N

)
.
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Notice ln|�ee| = ∑N
i=1 lnσ 2

i and tr(�∗
ee�

−1
ee ) = ∑N

i=1 σ ∗2
i /σ 2

i ; we have proved
that

L(θ) = − 1

N

N∑
i=1

(
lnσ 2

i + σ ∗2
i

σ 2
i

− 1 − lnσ ∗2
i

)
− 1

N
tr(�∗M∗

ff �∗′�−1
zz )+O

(
lnN

N

)

uniformly on �. By L(θ̂) = op(1), it follows that

− 1

N

N∑
i=1

(
ln σ̂ 2

i + σ ∗2
i

σ̂ 2
i

− 1 − lnσ ∗2
i

)
− 1

N
tr(�∗M∗

ff �∗′�̂−1
zz )

p→ 0.

A key observation is that both terms are nonpositive; it follows

1

N

N∑
i=1

(
ln σ̂ 2

i + σ ∗2
i

σ̂ 2
i

− 1 − lnσ ∗2
i

)
p→ 0,(A.3)

1

N
tr(�∗M∗

ff �∗′�̂−1
zz )

p→ 0.(A.4)

Consider the function f (x) = lnx + σ ∗2
i

x
− lnσ ∗2

i − 1. Given that 0 < C−2 ≤ σ 2
i ≤

C2 < ∞ for C > 1, for any x ∈ [C−2,C2], there exists a constant b (e.g., take
b = 1

4C4 ), such that f (x) ≥ b(x − σ ∗2
i )2. It follows

op(1) = 1

N

N∑
i=1

(
ln σ̂ 2

i + σ ∗2
i

σ̂ 2
i

− 1 − lnσ ∗2
i

)
≥ b

1

N

N∑
i=1

(σ̂ 2
i − σ ∗2

i )2.

The above implies

1

N

N∑
i=1

(σ̂ 2
i − σ ∗2

i )2 p→ 0.(A.5)

Now we turn to (A.4). By (A.1), we have

1

N
tr(�∗M∗

ff �∗′�̂−1
zz )

= 1

N
tr

(
M∗

ff �∗′[�̂−1
ee − �̂−1

ee �̂(M̂−1
ff + �̂′�̂−1

ee �̂)−1�̂′�̂−1
ee ]�∗)

.

From (M̂−1
ff + �̂′�̂−1

ee �̂)−1 = (�̂′�̂−1
ee �̂)−1 − (�̂′�̂−1

ee �̂)−1M̂−1
ff (M̂−1

ff + �̂′ ×
�̂−1

ee �̂)−1, we obtain

1

N
tr(�∗M∗

ff �∗′�̂−1
zz )

= 1

N
tr[M∗

ff �∗′�̂−1
ee �∗ − M∗

ff �∗′�̂−1
ee �̂(�̂′�̂−1

ee �̂)−1�̂′�̂−1
ee �∗]

+ tr[M∗
ff �∗′�̂−1

ee �̂(�̂′�̂−1
ee �̂)−1M̂−1

ff (M̂−1
ff + �̂′�̂−1

ee �̂)−1�̂′�̂−1
ee �∗].
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Both expressions are nonnegative; by (A.4), we must have

1

N
tr

(
M∗

ff �∗′�̂−1
ee �∗ − M∗

ff �∗′�̂−1
ee �̂(�̂′�̂−1

ee �̂)−1�̂′�̂−1
ee �∗) p→ 0(A.6)

and

1

N
tr

(
M∗

ff �∗′�̂−1
ee �̂(�̂′�̂−1

ee �̂)−1

(A.7)
× M̂−1

ff (M̂−1
ff + �̂′�̂−1

ee �̂)−1�̂′�̂−1
ee �∗) p→ 0.

By (A.5) and Lemma A.4 [6], 1
N

tr(M∗
ff �∗′�̂−1

ee �∗) p→ C∗ > 0, say. From (A.6)

1

N
tr(M∗

ff �∗′�̂−1
ee �̂(�̂′�̂−1

ee �̂)−1�̂′�̂−1
ee �∗) p→ C∗ > 0

with the same C∗. The preceding result and (A.7) imply

M̂−1
ff (M̂−1

ff + �̂′�̂−1
ee �̂)−1 = op(1).

By assumption, we confine Mff on a compact set, that is, M̂ff = Op(1). By the
definition of Ĝ, we have Ĝ = op(1). From Ĥ = Ĝ(I − M̂−1

ff Ĝ)−1, we have Ĥ =
op(1). We obtain the following result:

Ĝ = op(1); Ĥ = op(1).(A.8)

The matrix on the left-hand side of (A.6) is semi-positive definite and is finite
dimensional (r × r), its trace is op(1) if and only if every entry is op(1). Thus we
have

1

N

(
M∗

ff �∗′�̂−1
ee �∗ − M∗

ff �∗′�̂−1
ee �̂(�̂′�̂−1

ee �̂)−1�̂′�̂−1
ee �∗) p→ 0.

Pre-multiplying both sides by M∗−1
ff gives

1

N
�∗′�̂−1

ee �∗ − 1

N
�∗′�̂−1

ee �̂(�̂′�̂−1
ee �̂)−1�̂′�̂−1

ee �∗ p→ 0.(A.9)

The second term on the left-hand side can be rewritten as

[�∗′�̂−1
ee �̂(�̂′�̂−1

ee �̂)−1]
(

1

N
�̂′�̂−1

ee �̂

)
[(�̂′�̂−1

ee �̂)−1�̂′�̂−1
ee �∗].

Let A ≡ (�̂ − �∗)′�̂−1
ee �̂Ĥ , where Ĥ = (�̂′�̂−1

ee �̂)−1. It follows that �∗′�̂−1
ee ×

�̂(�̂′�̂−1
ee �̂)−1 = (Ir − A). So (A.9) is equivalent to

1

N
�∗′�̂−1

ee �∗ − (Ir − A)
1

N
�̂′�̂−1

ee �̂(Ir − A)′ p→ 0.
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However, 1
N

�∗′�̂−1
ee �∗ = 1

N
�∗′�∗−1

ee �∗ + op(1) by Lemma A.4 [6] and (A.5),
thus

1

N
�∗′�∗−1

ee �∗ − (Ir − A)
1

N
�̂′�̂−1

ee �̂(Ir − A)′ p→ 0.(A.10)

Because the first term is of full rank in the limit, the second term is also of full
rank. This implies that Ir − A in the limit is of full rank.

Meanwhile, equation (A.9) can be expressed alternatively as

1

N
(�̂ − �∗)′�̂−1

ee (�̂ − �∗)

− 1

N
(�̂ − �∗)′�̂−1

ee �̂

(
1

N
�̂′�̂−1

ee �̂

)−1 1

N
�̂′�̂−1

ee (�̂ − �∗) p→ 0,

which can also be written as, in terms of A,

1

N
(�̂ − �∗)′�̂−1

ee (�̂ − �∗) − A

(
1

N
�̂′�̂−1

ee �̂

)
A′ p→ 0.(A.11)

Both (A.10) and (A.11) will be useful in establishing consistency.
We now make use of the first-order conditions. The first-order condition (2.7),

by (A.2), can be simplified as �̂′�̂−1
ee (Mzz − �̂zz) = 0. This gives

�̂′�̂−1
ee

(
�∗M∗

ff �∗′ + �∗ 1

T

T∑
t=1

f ∗
t e′

t + 1

T

T∑
t=1

etf
∗′
t �∗′

+ 1

T

T∑
t=1

(et e
′
t − �∗

ee) + �∗
ee − �̂M̂ff �̂′ − �̂ee

)
= 0.

For simplicity, we neglect the smaller-order term �̂′�̂−1
ee ēē′. The j th column of

the above equation can be written as (after some algebra),

λ̂j − λ∗
j = −M̂−1

ff (M̂ff − M∗
ff )λ∗

j

− M̂−1
ff Ĥ �̂′�̂−1

ee (�̂ − �∗)M∗
ff λ∗

j

+ M̂−1
ff Ĥ �̂′�̂−1

ee �∗
(

1

T

T∑
t=1

f ∗
t ej t

)
(A.12)

+ M̂−1
ff Ĥ �̂′�̂−1

ee

(
1

T

T∑
t=1

etf
∗′
t

)
λ∗

j − M̂−1
ff Ĥ λ̂j

1

σ̂ 2
j

(σ̂ 2
j − σ ∗2

j )

+ M̂−1
ff Ĥ

(
N∑

i=1

1

σ̂ 2
i

λ̂i

1

T

T∑
t=1

[eit ej t − E(eit ej t )]
)
.
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Consider the first-order condition (2.9). By the method analogous to the one in
deducing (A.12), we have

M̂ff − M∗
ff = −Ĥ �̂′�̂−1

ee (�̂ − �∗)M∗
ff − M∗

ff (�̂ − �∗)′�̂−1
ee �̂Ĥ

+ Ĥ �̂′�̂−1
ee (�̂ − �∗)M∗

ff (�̂ − �∗)′�̂−1
ee �̂Ĥ

+ Ĥ �̂′�̂−1
ee �∗

(
1

T

T∑
t=1

f ∗
t e′

t

)
�̂−1

ee �̂Ĥ

(A.13)

+ Ĥ �̂′�̂−1
ee

(
1

T

T∑
t=1

etf
∗′
t

)
�∗′�̂−1

ee �̂Ĥ

+ Ĥ

(
N∑

i=1

N∑
j=1

1

σ̂ 2
i σ̂ 2

j

λ̂i λ̂
′
j

1

T

T∑
t=1

[eit ej t − E(eit ej t )]
)
Ĥ

− Ĥ

N∑
i=1

1

σ̂ 4
i

λ̂i λ̂
′
i (σ̂

2
i − σ ∗2

i )Ĥ .

Substituting (A.13) into (A.12), we obtain

λ̂j − λ∗
j = M̂−1

ff M∗
ff (�̂ − �∗)′�̂−1

ee �̂Ĥλ∗
j

− M̂−1
ff Ĥ �̂′�̂−1

ee (�̂ − �∗)M∗
ff (�̂ − �∗)′�̂−1

ee �̂Ĥλ∗
j

− M̂−1
ff Ĥ �̂′�̂−1

ee �∗
(

1

T

T∑
t=1

f ∗
t e′

t

)
�̂−1

ee �̂Ĥλ∗
j

− M̂−1
ff Ĥ �̂′�̂−1

ee

(
1

T

T∑
t=1

etf
∗′
t

)
�∗′�̂−1

ee �̂Ĥλ∗
j

− M̂−1
ff Ĥ

(
N∑

i=1

N∑
j=1

1

σ̂ 2
i σ̂ 2

j

λ̂i λ̂
′
j

1

T

T∑
t=1

[eit ej t − E(eit ej t )]
)
Ĥλ∗

j

+ M̂−1
ff Ĥ

N∑
i=1

1

σ̂ 4
i

λ̂i λ̂
′
i (σ̂

2
i − σ ∗2

i )Ĥλ∗
j

+ M̂−1
ff Ĥ �̂′�̂−1

ee

(
1

T

T∑
t=1

etf
∗′
t

)
λ∗

j

+ M̂−1
ff Ĥ �̂′�̂−1

ee �∗
(

1

T

T∑
t=1

f ∗
t ej t

)
(A.14)
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+ M̂−1
ff Ĥ

(
N∑

i=1

1

σ̂ 2
i

λ̂i

1

T

T∑
t=1

[eit ej t − E(eit ej t )]
)

− M̂−1
ff Ĥ λ̂j

1

σ̂ 2
j

(σ̂ 2
j − σ ∗2

j ).

Consider (A.13). The fifth term of the right-hand side can be written as

Ĥ �̂′�̂−1
ee

(
1

T

T∑
t=1

etf
∗′
t

)
− Ĥ �̂′�̂−1

ee

(
1

T

T∑
t=1

etf
∗′
t

)
A,

where A ≡ (�̂ − �∗)′�̂−1
ee �̂Ĥ is defined following (A.9). The first term is

‖N1/2Ĥ 1/2‖ · Op(T −1/2) by Lemma A.3(b) [6] and the second term is

A · ‖N1/2Ĥ 1/2‖ · Op(T −1/2).

The fourth term is the transpose of the fifth. The sixth term is given in Lem-
ma A.3(d). The seventh term is bounded by ‖Ĥ‖ ·‖∑N

i=1
1
σ̂ 4

i

λ̂i λ̂
′
i (σ̂

2
i −σ 2

i )Ĥ‖. The

term ‖∑N
i=1

1
σ̂ 4

i

λ̂i λ̂
′
i (σ̂

2
i − σ 2

i )Ĥ‖ is bounded by 2C4√r due to | 1
σ̂ 2

i

(σ̂ 2
i − σ ∗2

i )| ≤
2C4 because of the boundedness of σ̂ 2

i , σ ∗2
i . So the seventh term is op(1) by (A.8).

Given these results, in terms of A, equation (A.13) can be rewritten as

M̂ff − M∗
ff = −A′M∗

ff − M∗
ff A + A′M∗

ff A + ‖N1/2Ĥ 1/2‖ · Op(T −1/2)

− A · ‖N1/2Ĥ 1/2‖ · Op(T −1/2)(A.15)

+ ‖N1/2Ĥ 1/2‖2 · Op(T −1/2) + op(1).

However, by the definition of Ĥ , NĤ = ( 1
N

�̂′�̂−1
ee �̂)−1. Equation (A.10) yields

( 1
N

�̂′�̂−1
ee �̂)−1 = (Ir − A)′( 1

N
�∗′�∗−1

ee �∗)−1(Ir − A) + op(‖Ir − A‖2). So we
have

‖N1/2Ĥ 1/2‖2 = tr[NĤ ]

= tr
[
(Ir − A)′

(
1

N
�∗′�∗−1

ee �∗
)−1

(Ir − A) + op(‖Ir − A‖2)

]
.

The right-hand side is at most Op(A2), implying that ‖N1/2Ĥ 1/2‖ = Op(A).
Given the above result, we argue that the matrix A must be stochastically

bounded. First, notice that the left-hand side of (A.15) is stochastically bounded
by Assumption D. So if A is not stochastically bounded, the right-hand side
is dominated by A′M∗

ff A in view of ‖N1/2Ĥ 1/2‖ = Op(A), But A′M∗
ff A will

be unbounded since M∗
ff is positive definite. A contradiction is obtained. Thus

A = Op(1); it follows that ‖N1/2Ĥ 1/2‖ = Op(A) = Op(1). Given this result, we
have

M̂ff − M∗
ff = −A′M∗

ff − M∗
ff A + A′M∗

ff A + op(1).(A.16)
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Next consider (A.14). The seventh to ninth terms of the right-hand side of
(A.14) are all op(1) by Lemma A.3 [6] and ‖N1/2Ĥ 1/2‖ = Op(1). The last term
is bounded by 2C3‖M̂−1

ff ‖ · ‖ 1
σ̂j

λ̂j Ĥ
1/2‖ · ‖H 1/2‖. Since

∑N
j=1‖ 1

σ̂j
λ̂j Ĥ

1/2‖2 = r ,

‖M̂−1
ff ‖ = Op(1) by Assumption D and Ĥ = op(1) by (A.8), it follows that the last

term is op(1). The third and fourth terms are similar to the fourth and fifth terms in
(A.13), and hence are op(1) due to A = Op(1),‖λ∗

j‖ ≤ C for all j and M̂ff being
bounded. Using the same arguments for (A.16), we have

λ̂j − λ∗
j = M̂−1

ff M∗
ff Aλ∗

j − M̂−1
ff A′M∗

ff Aλ∗
j + op(1).(A.17)

We next prove consistency by using the identification conditions.
Under IC1: Since the identification condition is �∗ = [Ir ,�

∗′
2 ]′ and �̂ = [Ir ,

�̂′
2]′, the first r × r upper block of �∗ is the same as that of �̂, that is, [λ∗

1,

λ∗
2, . . . , λ

∗
r ] = [λ̂1, λ̂2, . . . , λ̂r ] = Ir . By (A.17) with λ̂j − λ∗

j = 0, j = 1,2, . . . , r ,

M∗
ff A − A′M∗

ff A
p→ 0.

We now attach a subscript to matrix A to signify which identification condition
is used. For ICk (k = 1,2, . . . ,5), we use Ak to denote the corresponding A. So

the above equation implies M∗
ff A1 − A′

1M
∗
ff A1

p→ 0. Taking transpose, we have

A′
1M

∗
ff − A′

1M
∗
ff A1

p→ 0. Thus M∗
ff A1 − A′

1M
∗
ff

p→ 0. Post-multiplying A1, we

obtain M∗
ff A2

1 − A′
1M

∗
ff A1

p→ 0. But we also have M∗
ff A1 − A′

1M
∗
ff A1

p→ 0.

Thus M∗
ff A2

1 − M∗
ff A1

p→ 0. Since M∗
ff is positive definite, we have A1(Ir −

A1)
p→ 0. Since we have proved that Ir − A1 converges in probability to a nonsin-

gular matrix, it follows that A1
p→ 0.

From (A.11) and A1
p→ 0, we obtain 1

N
(�̂ − �∗)′�̂−1

ee (�̂ − �∗) p→ 0, which is

equivalent to (5.1a). From (A.16) and A1
p→ 0, we obtain M̂ff −M∗

ff

p→ 0, which
is (5.1c). This proves Proposition 5.1 under IC1.

Under IC2: From the identification condition 1
N

�̂′�̂−1
ee �̂ = 1

N
�∗′�∗−1

ee �∗ =
Ir , by adding and subtracting terms, we have the identity

1

N
(�̂ − �∗)′�̂−1

ee �̂ + 1

N
�̂′�̂−1

ee (�̂ − �∗)
(A.18)

= − 1

N
�∗′(�̂−1

ee − �∗−1
ee )�∗ + 1

N
(�̂ − �∗)′�̂−1

ee (�̂ − �∗).

By (A.5) and Lemma A.4 [6], the term 1
N

�∗′(�̂−1
ee − �∗−1

ee )�∗ is op(1). Thus

1

N
(�̂ − �∗)′�̂−1

ee �̂ + 1

N
�̂′�̂−1

ee (�̂ − �∗) − 1

N
(�̂ − �∗)′�̂−1

ee (�̂ − �∗) p→ 0.

The above can be written in terms of matrix A (i.e., A2 under IC2),

A2 + A′
2 − 1

N
(�̂ − �∗)′�̂−1

ee (�̂ − �∗) p→ 0.
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With 1
N

�̂′�̂−1
ee �̂ = Ir , (A.11) implies A2A

′
2 − 1

N
(�̂ − �∗)′�̂−1

ee (�̂ − �∗) p→ 0.

These two results imply A2 + A′
2 − A2A

′
2

p→ 0, which is equivalent to

(A2 − Ir)(A2 − Ir)
′ − Ir

p→ 0.

However, (A.16) is equivalent to

M̂ff − (A2 − Ir)
′M∗

ff (A2 − Ir)
p→ 0.

Under IC2, M∗
ff is a diagonal matrix with distinct elements. Also, M̂ff is a diag-

onal matrix by restriction. Applying Lemma A.1 [6] with Q = A2 − Ir , V = M∗
ff ,

and D = M̂ff , we conclude that Q and thus A2 − Ir converge in probability to a
diagonal matrix with elements being either −1 or 1. Equivalently, A2 converges
to a diagonal matrix with diagonal elements being either 0 or 2. By assuming that
�̂ and �∗ have the same column signs, we rule out 2 as the diagonal element So
A2 = op(1). The rest of the proof is identical to IC1, implying Proposition 5.1
under IC2.

Under IC3: IC3 requires M̂ff = M∗
ff = Ir , and so by (A.16), (A3 − Ir)(A3 −

Ir)
′ − Ir

p→ 0. From (A.10),

1

N
�∗′�∗−1

ee �∗ − (A3 − Ir)
′
(

1

N
�̂′�̂−1

ee �̂

)
(A3 − Ir)

p→ 0.

Under IC3, 1
N

�∗′�∗−1
ee �∗ is diagonal with distinct elements, and 1

N
�̂′�̂−1

ee �̂ is
also diagonal by estimation restriction. The latter matrix has distinct diagonal el-
ements with probability 1. It follows that A3 − Ir converges in probability to a
diagonal matrix with diagonal elements either 1 or −1 by Lemma A.1 [6] applied
with Q = (A3 − Ir)

′, V = 1
N

�̂′�̂−1
ee �̂, and D = 1

N
�∗′�∗−1

ee �∗. The remaining
proof is identical to that of IC2 and hence omitted. So we have proved Proposi-
tion 5.1 under IC3.

Under IC4: By the identification condition, both �∗
1 and �̂1 are lower triangular

matrices, where �1 is first r × r submatrix of �. Consider the first r equations of
(A.17),

�̂′
1 − �∗′

1 − M̂−1
ff (M∗

ff A4 − A′
4M

∗
ff A4)�

∗′
1

p→ 0.

By (A.16), we have M̂ff − M∗
ff + A′

4M
∗
ff + M∗

ff A4 − A′
4M

∗
ff A4

p→ 0, which
can be rewritten as

M̂ff − (Ir − A4)
′M∗

ff (Ir − A4)
p→ 0.

The above two equations imply

(Ir − A4)
′M∗

ff (Ir − A4)(�̂
′
1 − �∗′

1 ) − (Ir − A4)
′M∗

ff A4�
∗′
1

p→ 0.(A.19)
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Since both M̂ff and Mff are of full rank, M̂ff − (Ir − A4)
′M∗

ff (Ir − A4)
p→ 0

implies Ir − A4 is of full rank. Pre-multiplying [(Ir − A4)
′M∗

ff ]−1, we obtain

(Ir − A4)�̂
′
1 − �∗′

1
p→ 0.(A.20)

Since both �̂1 and �∗
1 are lower triangular with diagonal elements all 1, both

matrices are invertible. It follows that Ir − A4 − �∗′
1 (�̂′

1)
−1 p→ 0. Since both �̂1

and �∗
1 are lower triangular, we have Ir − A4 converges to an upper triangular

matrix. However, M̂ff and M∗
ff are both diagonal matrices and invertible. For

M̂ff − (Ir − A4)
′M∗

ff (Ir − A4)
p→ 0 to hold, given that Ir − A4 is an upper tri-

angular matrix, it implies that Ir − A4 converges to a diagonal matrix. Because
both �̂1 and �∗

1 are matrices with diagonal elements 1, and given the asymptotic

diagonality of A4, it follows by (A.20) that Ir − A4
p→ Ir . So we have A4

p→ 0.
The remaining proof is the same as in IC1 and is omitted. This completes the proof
for IC4.

Under IC5: Both M̂ff and M∗
ff are identity matrices; it follows from (A.16) that

(Ir −A5)
′(Ir −A5)− Ir

p→ 0. The derivation of (A.20) only involves the full rank

of Ir − A, so it is applicable for IC5, that is, (Ir − A5)�̂
′
1 − �′

1
p→ 0. Since both

�̂1 and �1 are lower triangular and invertible, it follows that Ir − A5 converges

to an upper triangular matrix. Given this result and (Ir − A5)
′(Ir − A5) − Ir

p→ 0,
it follows that A5 converges to a diagonal matrix with diagonal elements either
0 or 2. By assuming that the column signs of �̂ and �∗ are the same, we have

A5
p→ 0. The remaining proof is the same as in IC1 and is omitted. So we have

proved Proposition 5.1 under IC5. This completes the proof of Proposition 5.1.
�

The proofs for other results are provided in the supplement [6].
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical analysis of factor models of high dimension”
(DOI: 10.1214/11-AOS966SUPP; .pdf). In this supplement we provide the detailed
proofs for Theorems 5.1–5.4 and 6.1. We also give a simple and direct proof that
the EM solutions satisfy the first order conditions. Remarks are given on how to
make use of matrix properties to write a faster computer program.
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